| author | haftmann | 
| Thu, 22 Aug 2013 21:15:43 +0200 | |
| changeset 53146 | 3a93bc5d3370 | 
| parent 41775 | 6214816d79d3 | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 41775 | 1 | (* Title: HOL/Auth/Guard/P1.thy | 
| 2 | Author: Frederic Blanqui, University of Cambridge Computer Laboratory | |
| 3 | Copyright 2002 University of Cambridge | |
| 13508 | 4 | |
| 41775 | 5 | From G. Karjoth, N. Asokan and C. Gulcu | 
| 6 | "Protecting the computation results of free-roaming agents" | |
| 7 | Mobiles Agents 1998, LNCS 1477. | |
| 8 | *) | |
| 13508 | 9 | |
| 10 | header{*Protocol P1*}
 | |
| 11 | ||
| 39216 | 12 | theory P1 imports "../Public" Guard_Public List_Msg begin | 
| 13508 | 13 | |
| 14 | subsection{*Protocol Definition*}
 | |
| 15 | ||
| 16 | (****************************************************************************** | |
| 17 | ||
| 18 | the contents of the messages are not completely specified in the paper | |
| 19 | we assume that the user sends his request and his itinerary in the clear | |
| 20 | ||
| 21 | we will adopt the following format for messages: {|A,r,I,L|}
 | |
| 22 | A: originator (agent) | |
| 23 | r: request (number) | |
| 24 | I: next shops (agent list) | |
| 25 | L: collected offers (offer list) | |
| 26 | ||
| 27 | in the paper, the authors use nonces r_i to add redundancy in the offer | |
| 28 | in order to make it safer against dictionary attacks | |
| 29 | it is not necessary in our modelization since crypto is assumed to be strong | |
| 30 | (Crypt in injective) | |
| 31 | ******************************************************************************) | |
| 32 | ||
| 33 | subsubsection{*offer chaining:
 | |
| 34 | B chains his offer for A with the head offer of L for sending it to C*} | |
| 35 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 36 | definition chain :: "agent => nat => agent => msg => agent => msg" where | 
| 13508 | 37 | "chain B ofr A L C == | 
| 38 | let m1= Crypt (pubK A) (Nonce ofr) in | |
| 39 | let m2= Hash {|head L, Agent C|} in
 | |
| 40 | sign B {|m1,m2|}"
 | |
| 41 | ||
| 42 | declare Let_def [simp] | |
| 43 | ||
| 44 | lemma chain_inj [iff]: "(chain B ofr A L C = chain B' ofr' A' L' C') | |
| 45 | = (B=B' & ofr=ofr' & A=A' & head L = head L' & C=C')" | |
| 46 | by (auto simp: chain_def Let_def) | |
| 47 | ||
| 48 | lemma Nonce_in_chain [iff]: "Nonce ofr:parts {chain B ofr A L C}"
 | |
| 49 | by (auto simp: chain_def sign_def) | |
| 50 | ||
| 51 | subsubsection{*agent whose key is used to sign an offer*}
 | |
| 52 | ||
| 35418 | 53 | fun shop :: "msg => msg" where | 
| 13508 | 54 | "shop {|B,X,Crypt K H|} = Agent (agt K)"
 | 
| 55 | ||
| 56 | lemma shop_chain [simp]: "shop (chain B ofr A L C) = Agent B" | |
| 57 | by (simp add: chain_def sign_def) | |
| 58 | ||
| 59 | subsubsection{*nonce used in an offer*}
 | |
| 60 | ||
| 35418 | 61 | fun nonce :: "msg => msg" where | 
| 13508 | 62 | "nonce {|B,{|Crypt K ofr,m2|},CryptH|} = ofr"
 | 
| 63 | ||
| 64 | lemma nonce_chain [simp]: "nonce (chain B ofr A L C) = Nonce ofr" | |
| 65 | by (simp add: chain_def sign_def) | |
| 66 | ||
| 67 | subsubsection{*next shop*}
 | |
| 68 | ||
| 35418 | 69 | fun next_shop :: "msg => agent" where | 
| 13508 | 70 | "next_shop {|B,{|m1,Hash{|headL,Agent C|}|},CryptH|} = C"
 | 
| 71 | ||
| 72 | lemma next_shop_chain [iff]: "next_shop (chain B ofr A L C) = C" | |
| 73 | by (simp add: chain_def sign_def) | |
| 74 | ||
| 75 | subsubsection{*anchor of the offer list*}
 | |
| 76 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 77 | definition anchor :: "agent => nat => agent => msg" where | 
| 13508 | 78 | "anchor A n B == chain A n A (cons nil nil) B" | 
| 79 | ||
| 80 | lemma anchor_inj [iff]: "(anchor A n B = anchor A' n' B') | |
| 81 | = (A=A' & n=n' & B=B')" | |
| 82 | by (auto simp: anchor_def) | |
| 83 | ||
| 84 | lemma Nonce_in_anchor [iff]: "Nonce n:parts {anchor A n B}"
 | |
| 85 | by (auto simp: anchor_def) | |
| 86 | ||
| 87 | lemma shop_anchor [simp]: "shop (anchor A n B) = Agent A" | |
| 88 | by (simp add: anchor_def) | |
| 89 | ||
| 90 | lemma nonce_anchor [simp]: "nonce (anchor A n B) = Nonce n" | |
| 91 | by (simp add: anchor_def) | |
| 92 | ||
| 93 | lemma next_shop_anchor [iff]: "next_shop (anchor A n B) = B" | |
| 94 | by (simp add: anchor_def) | |
| 95 | ||
| 96 | subsubsection{*request event*}
 | |
| 97 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 98 | definition reqm :: "agent => nat => nat => msg => agent => msg" where | 
| 13508 | 99 | "reqm A r n I B == {|Agent A, Number r, cons (Agent A) (cons (Agent B) I),
 | 
| 100 | cons (anchor A n B) nil|}" | |
| 101 | ||
| 102 | lemma reqm_inj [iff]: "(reqm A r n I B = reqm A' r' n' I' B') | |
| 103 | = (A=A' & r=r' & n=n' & I=I' & B=B')" | |
| 104 | by (auto simp: reqm_def) | |
| 105 | ||
| 106 | lemma Nonce_in_reqm [iff]: "Nonce n:parts {reqm A r n I B}"
 | |
| 107 | by (auto simp: reqm_def) | |
| 108 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 109 | definition req :: "agent => nat => nat => msg => agent => event" where | 
| 13508 | 110 | "req A r n I B == Says A B (reqm A r n I B)" | 
| 111 | ||
| 112 | lemma req_inj [iff]: "(req A r n I B = req A' r' n' I' B') | |
| 113 | = (A=A' & r=r' & n=n' & I=I' & B=B')" | |
| 114 | by (auto simp: req_def) | |
| 115 | ||
| 116 | subsubsection{*propose event*}
 | |
| 117 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 118 | definition prom :: "agent => nat => agent => nat => msg => msg => | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 119 | msg => agent => msg" where | 
| 13508 | 120 | "prom B ofr A r I L J C == {|Agent A, Number r,
 | 
| 121 | app (J, del (Agent B, I)), cons (chain B ofr A L C) L|}" | |
| 122 | ||
| 123 | lemma prom_inj [dest]: "prom B ofr A r I L J C | |
| 124 | = prom B' ofr' A' r' I' L' J' C' | |
| 125 | ==> B=B' & ofr=ofr' & A=A' & r=r' & L=L' & C=C'" | |
| 126 | by (auto simp: prom_def) | |
| 127 | ||
| 128 | lemma Nonce_in_prom [iff]: "Nonce ofr:parts {prom B ofr A r I L J C}"
 | |
| 129 | by (auto simp: prom_def) | |
| 130 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 131 | definition pro :: "agent => nat => agent => nat => msg => msg => | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 132 | msg => agent => event" where | 
| 13508 | 133 | "pro B ofr A r I L J C == Says B C (prom B ofr A r I L J C)" | 
| 134 | ||
| 135 | lemma pro_inj [dest]: "pro B ofr A r I L J C = pro B' ofr' A' r' I' L' J' C' | |
| 136 | ==> B=B' & ofr=ofr' & A=A' & r=r' & L=L' & C=C'" | |
| 137 | by (auto simp: pro_def dest: prom_inj) | |
| 138 | ||
| 139 | subsubsection{*protocol*}
 | |
| 140 | ||
| 23746 | 141 | inductive_set p1 :: "event list set" | 
| 142 | where | |
| 13508 | 143 | |
| 23746 | 144 | Nil: "[]:p1" | 
| 13508 | 145 | |
| 23746 | 146 | | Fake: "[| evsf:p1; X:synth (analz (spies evsf)) |] ==> Says Spy B X # evsf : p1" | 
| 13508 | 147 | |
| 23746 | 148 | | Request: "[| evsr:p1; Nonce n ~:used evsr; I:agl |] ==> req A r n I B # evsr : p1" | 
| 13508 | 149 | |
| 23746 | 150 | | Propose: "[| evsp:p1; Says A' B {|Agent A,Number r,I,cons M L|}:set evsp;
 | 
| 151 | I:agl; J:agl; isin (Agent C, app (J, del (Agent B, I))); | |
| 152 | Nonce ofr ~:used evsp |] ==> pro B ofr A r I (cons M L) J C # evsp : p1" | |
| 13508 | 153 | |
| 154 | subsubsection{*Composition of Traces*}
 | |
| 155 | ||
| 156 | lemma "evs':p1 ==> | |
| 157 | evs:p1 & (ALL n. Nonce n:used evs' --> Nonce n ~:used evs) --> | |
| 158 | evs'@evs : p1" | |
| 159 | apply (erule p1.induct, safe) | |
| 160 | apply (simp_all add: used_ConsI) | |
| 161 | apply (erule p1.Fake, erule synth_sub, rule analz_mono, rule knows_sub_app) | |
| 162 | apply (erule p1.Request, safe, simp_all add: req_def, force) | |
| 163 | apply (erule_tac A'=A' in p1.Propose, simp_all) | |
| 164 | apply (drule_tac x=ofr in spec, simp add: pro_def, blast) | |
| 165 | apply (erule_tac A'=A' in p1.Propose, auto simp: pro_def) | |
| 166 | done | |
| 167 | ||
| 168 | subsubsection{*Valid Offer Lists*}
 | |
| 169 | ||
| 23746 | 170 | inductive_set | 
| 171 | valid :: "agent => nat => agent => msg set" | |
| 172 | for A :: agent and n :: nat and B :: agent | |
| 173 | where | |
| 174 | Request [intro]: "cons (anchor A n B) nil:valid A n B" | |
| 13508 | 175 | |
| 23746 | 176 | | Propose [intro]: "L:valid A n B | 
| 13508 | 177 | ==> cons (chain (next_shop (head L)) ofr A L C) L:valid A n B" | 
| 178 | ||
| 179 | subsubsection{*basic properties of valid*}
 | |
| 180 | ||
| 181 | lemma valid_not_empty: "L:valid A n B ==> EX M L'. L = cons M L'" | |
| 182 | by (erule valid.cases, auto) | |
| 183 | ||
| 184 | lemma valid_pos_len: "L:valid A n B ==> 0 < len L" | |
| 185 | by (erule valid.induct, auto) | |
| 186 | ||
| 187 | subsubsection{*offers of an offer list*}
 | |
| 188 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 189 | definition offer_nonces :: "msg => msg set" where | 
| 13508 | 190 | "offer_nonces L == {X. X:parts {L} & (EX n. X = Nonce n)}"
 | 
| 191 | ||
| 192 | subsubsection{*the originator can get the offers*}
 | |
| 193 | ||
| 194 | lemma "L:valid A n B ==> offer_nonces L <= analz (insert L (initState A))" | |
| 195 | by (erule valid.induct, auto simp: anchor_def chain_def sign_def | |
| 196 | offer_nonces_def initState.simps) | |
| 197 | ||
| 198 | subsubsection{*list of offers*}
 | |
| 199 | ||
| 35418 | 200 | fun offers :: "msg => msg" where | 
| 201 | "offers (cons M L) = cons {|shop M, nonce M|} (offers L)" |
 | |
| 13508 | 202 | "offers other = nil" | 
| 203 | ||
| 204 | subsubsection{*list of agents whose keys are used to sign a list of offers*}
 | |
| 205 | ||
| 35418 | 206 | fun shops :: "msg => msg" where | 
| 207 | "shops (cons M L) = cons (shop M) (shops L)" | | |
| 13508 | 208 | "shops other = other" | 
| 209 | ||
| 210 | lemma shops_in_agl: "L:valid A n B ==> shops L:agl" | |
| 211 | by (erule valid.induct, auto simp: anchor_def chain_def sign_def) | |
| 212 | ||
| 213 | subsubsection{*builds a trace from an itinerary*}
 | |
| 214 | ||
| 35418 | 215 | fun offer_list :: "agent * nat * agent * msg * nat => msg" where | 
| 216 | "offer_list (A,n,B,nil,ofr) = cons (anchor A n B) nil" | | |
| 13508 | 217 | "offer_list (A,n,B,cons (Agent C) I,ofr) = ( | 
| 218 | let L = offer_list (A,n,B,I,Suc ofr) in | |
| 219 | cons (chain (next_shop (head L)) ofr A L C) L)" | |
| 220 | ||
| 221 | lemma "I:agl ==> ALL ofr. offer_list (A,n,B,I,ofr):valid A n B" | |
| 222 | by (erule agl.induct, auto) | |
| 223 | ||
| 35418 | 224 | fun trace :: "agent * nat * agent * nat * msg * msg * msg | 
| 225 | => event list" where | |
| 226 | "trace (B,ofr,A,r,I,L,nil) = []" | | |
| 13508 | 227 | "trace (B,ofr,A,r,I,L,cons (Agent D) K) = ( | 
| 228 | let C = (if K=nil then B else agt_nb (head K)) in | |
| 229 | let I' = (if K=nil then cons (Agent A) (cons (Agent B) I) | |
| 230 | else cons (Agent A) (app (I, cons (head K) nil))) in | |
| 231 | let I'' = app (I, cons (head K) nil) in | |
| 232 | pro C (Suc ofr) A r I' L nil D | |
| 233 | # trace (B,Suc ofr,A,r,I'',tail L,K))" | |
| 234 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
23746diff
changeset | 235 | definition trace' :: "agent => nat => nat => msg => agent => nat => event list" where | 
| 13508 | 236 | "trace' A r n I B ofr == ( | 
| 237 | let AI = cons (Agent A) I in | |
| 238 | let L = offer_list (A,n,B,AI,ofr) in | |
| 239 | trace (B,ofr,A,r,nil,L,AI))" | |
| 240 | ||
| 241 | declare trace'_def [simp] | |
| 242 | ||
| 243 | subsubsection{*there is a trace in which the originator receives a valid answer*}
 | |
| 244 | ||
| 245 | lemma p1_not_empty: "evs:p1 ==> req A r n I B:set evs --> | |
| 246 | (EX evs'. evs'@evs:p1 & pro B' ofr A r I' L J A:set evs' & L:valid A n B)" | |
| 247 | oops | |
| 248 | ||
| 249 | ||
| 250 | subsection{*properties of protocol P1*}
 | |
| 251 | ||
| 252 | text{*publicly verifiable forward integrity:
 | |
| 253 | anyone can verify the validity of an offer list*} | |
| 254 | ||
| 255 | subsubsection{*strong forward integrity:
 | |
| 256 | except the last one, no offer can be modified*} | |
| 257 | ||
| 258 | lemma strong_forward_integrity: "ALL L. Suc i < len L | |
| 259 | --> L:valid A n B & repl (L,Suc i,M):valid A n B --> M = ith (L,Suc i)" | |
| 260 | apply (induct i) | |
| 261 | (* i = 0 *) | |
| 262 | apply clarify | |
| 263 | apply (frule len_not_empty, clarsimp) | |
| 264 | apply (frule len_not_empty, clarsimp) | |
| 23746 | 265 | apply (ind_cases "{|x,xa,l'a|}:valid A n B" for x xa l'a)
 | 
| 266 | apply (ind_cases "{|x,M,l'a|}:valid A n B" for x l'a)
 | |
| 13508 | 267 | apply (simp add: chain_def) | 
| 268 | (* i > 0 *) | |
| 269 | apply clarify | |
| 270 | apply (frule len_not_empty, clarsimp) | |
| 23746 | 271 | apply (ind_cases "{|x,repl(l',Suc na,M)|}:valid A n B" for x l' na)
 | 
| 13508 | 272 | apply (frule len_not_empty, clarsimp) | 
| 23746 | 273 | apply (ind_cases "{|x,l'|}:valid A n B" for x l')
 | 
| 13508 | 274 | by (drule_tac x=l' in spec, simp, blast) | 
| 275 | ||
| 276 | subsubsection{*insertion resilience:
 | |
| 277 | except at the beginning, no offer can be inserted*} | |
| 278 | ||
| 279 | lemma chain_isnt_head [simp]: "L:valid A n B ==> | |
| 280 | head L ~= chain (next_shop (head L)) ofr A L C" | |
| 281 | by (erule valid.induct, auto simp: chain_def sign_def anchor_def) | |
| 282 | ||
| 283 | lemma insertion_resilience: "ALL L. L:valid A n B --> Suc i < len L | |
| 284 | --> ins (L,Suc i,M) ~:valid A n B" | |
| 285 | apply (induct i) | |
| 286 | (* i = 0 *) | |
| 287 | apply clarify | |
| 288 | apply (frule len_not_empty, clarsimp) | |
| 23746 | 289 | apply (ind_cases "{|x,l'|}:valid A n B" for x l', simp)
 | 
| 290 | apply (ind_cases "{|x,M,l'|}:valid A n B" for x l', clarsimp)
 | |
| 291 | apply (ind_cases "{|head l',l'|}:valid A n B" for l', simp, simp)
 | |
| 13508 | 292 | (* i > 0 *) | 
| 293 | apply clarify | |
| 294 | apply (frule len_not_empty, clarsimp) | |
| 23746 | 295 | apply (ind_cases "{|x,l'|}:valid A n B" for x l')
 | 
| 13508 | 296 | apply (frule len_not_empty, clarsimp) | 
| 23746 | 297 | apply (ind_cases "{|x,ins(l',Suc na,M)|}:valid A n B" for x l' na)
 | 
| 13508 | 298 | apply (frule len_not_empty, clarsimp) | 
| 299 | by (drule_tac x=l' in spec, clarsimp) | |
| 300 | ||
| 301 | subsubsection{*truncation resilience:
 | |
| 302 | only shop i can truncate at offer i*} | |
| 303 | ||
| 304 | lemma truncation_resilience: "ALL L. L:valid A n B --> Suc i < len L | |
| 305 | --> cons M (trunc (L,Suc i)):valid A n B --> shop M = shop (ith (L,i))" | |
| 306 | apply (induct i) | |
| 307 | (* i = 0 *) | |
| 308 | apply clarify | |
| 309 | apply (frule len_not_empty, clarsimp) | |
| 23746 | 310 | apply (ind_cases "{|x,l'|}:valid A n B" for x l')
 | 
| 13508 | 311 | apply (frule len_not_empty, clarsimp) | 
| 23746 | 312 | apply (ind_cases "{|M,l'|}:valid A n B" for l')
 | 
| 13508 | 313 | apply (frule len_not_empty, clarsimp, simp) | 
| 314 | (* i > 0 *) | |
| 315 | apply clarify | |
| 316 | apply (frule len_not_empty, clarsimp) | |
| 23746 | 317 | apply (ind_cases "{|x,l'|}:valid A n B" for x l')
 | 
| 13508 | 318 | apply (frule len_not_empty, clarsimp) | 
| 319 | by (drule_tac x=l' in spec, clarsimp) | |
| 320 | ||
| 321 | subsubsection{*declarations for tactics*}
 | |
| 322 | ||
| 323 | declare knows_Spy_partsEs [elim] | |
| 324 | declare Fake_parts_insert [THEN subsetD, dest] | |
| 325 | declare initState.simps [simp del] | |
| 326 | ||
| 327 | subsubsection{*get components of a message*}
 | |
| 328 | ||
| 329 | lemma get_ML [dest]: "Says A' B {|A,r,I,M,L|}:set evs ==>
 | |
| 330 | M:parts (spies evs) & L:parts (spies evs)" | |
| 331 | by blast | |
| 332 | ||
| 333 | subsubsection{*general properties of p1*}
 | |
| 334 | ||
| 335 | lemma reqm_neq_prom [iff]: | |
| 336 | "reqm A r n I B ~= prom B' ofr A' r' I' (cons M L) J C" | |
| 337 | by (auto simp: reqm_def prom_def) | |
| 338 | ||
| 339 | lemma prom_neq_reqm [iff]: | |
| 340 | "prom B' ofr A' r' I' (cons M L) J C ~= reqm A r n I B" | |
| 341 | by (auto simp: reqm_def prom_def) | |
| 342 | ||
| 343 | lemma req_neq_pro [iff]: "req A r n I B ~= pro B' ofr A' r' I' (cons M L) J C" | |
| 344 | by (auto simp: req_def pro_def) | |
| 345 | ||
| 346 | lemma pro_neq_req [iff]: "pro B' ofr A' r' I' (cons M L) J C ~= req A r n I B" | |
| 347 | by (auto simp: req_def pro_def) | |
| 348 | ||
| 349 | lemma p1_has_no_Gets: "evs:p1 ==> ALL A X. Gets A X ~:set evs" | |
| 350 | by (erule p1.induct, auto simp: req_def pro_def) | |
| 351 | ||
| 352 | lemma p1_is_Gets_correct [iff]: "Gets_correct p1" | |
| 353 | by (auto simp: Gets_correct_def dest: p1_has_no_Gets) | |
| 354 | ||
| 355 | lemma p1_is_one_step [iff]: "one_step p1" | |
| 23746 | 356 | by (unfold one_step_def, clarify, ind_cases "ev#evs:p1" for ev evs, auto) | 
| 13508 | 357 | |
| 358 | lemma p1_has_only_Says' [rule_format]: "evs:p1 ==> | |
| 359 | ev:set evs --> (EX A B X. ev=Says A B X)" | |
| 360 | by (erule p1.induct, auto simp: req_def pro_def) | |
| 361 | ||
| 362 | lemma p1_has_only_Says [iff]: "has_only_Says p1" | |
| 363 | by (auto simp: has_only_Says_def dest: p1_has_only_Says') | |
| 364 | ||
| 365 | lemma p1_is_regular [iff]: "regular p1" | |
| 366 | apply (simp only: regular_def, clarify) | |
| 367 | apply (erule_tac p1.induct) | |
| 368 | apply (simp_all add: initState.simps knows.simps pro_def prom_def | |
| 369 | req_def reqm_def anchor_def chain_def sign_def) | |
| 370 | by (auto dest: no_Key_in_agl no_Key_in_appdel parts_trans) | |
| 371 | ||
| 372 | subsubsection{*private keys are safe*}
 | |
| 373 | ||
| 374 | lemma priK_parts_Friend_imp_bad [rule_format,dest]: | |
| 375 | "[| evs:p1; Friend B ~= A |] | |
| 376 | ==> (Key (priK A):parts (knows (Friend B) evs)) --> (A:bad)" | |
| 377 | apply (erule p1.induct) | |
| 378 | apply (simp_all add: initState.simps knows.simps pro_def prom_def | |
| 17778 | 379 | req_def reqm_def anchor_def chain_def sign_def) | 
| 13508 | 380 | apply (blast dest: no_Key_in_agl) | 
| 381 | apply (auto del: parts_invKey disjE dest: parts_trans | |
| 382 | simp add: no_Key_in_appdel) | |
| 383 | done | |
| 384 | ||
| 385 | lemma priK_analz_Friend_imp_bad [rule_format,dest]: | |
| 386 | "[| evs:p1; Friend B ~= A |] | |
| 387 | ==> (Key (priK A):analz (knows (Friend B) evs)) --> (A:bad)" | |
| 388 | by auto | |
| 389 | ||
| 390 | lemma priK_notin_knows_max_Friend: "[| evs:p1; A ~:bad; A ~= Friend C |] | |
| 391 | ==> Key (priK A) ~:analz (knows_max (Friend C) evs)" | |
| 392 | apply (rule not_parts_not_analz, simp add: knows_max_def, safe) | |
| 393 | apply (drule_tac H="spies' evs" in parts_sub) | |
| 394 | apply (rule_tac p=p1 in knows_max'_sub_spies', simp+) | |
| 395 | apply (drule_tac H="spies evs" in parts_sub) | |
| 396 | by (auto dest: knows'_sub_knows [THEN subsetD] priK_notin_initState_Friend) | |
| 397 | ||
| 398 | subsubsection{*general guardedness properties*}
 | |
| 399 | ||
| 400 | lemma agl_guard [intro]: "I:agl ==> I:guard n Ks" | |
| 401 | by (erule agl.induct, auto) | |
| 402 | ||
| 403 | lemma Says_to_knows_max'_guard: "[| Says A' C {|A'',r,I,L|}:set evs;
 | |
| 404 | Guard n Ks (knows_max' C evs) |] ==> L:guard n Ks" | |
| 405 | by (auto dest: Says_to_knows_max') | |
| 406 | ||
| 407 | lemma Says_from_knows_max'_guard: "[| Says C A' {|A'',r,I,L|}:set evs;
 | |
| 408 | Guard n Ks (knows_max' C evs) |] ==> L:guard n Ks" | |
| 409 | by (auto dest: Says_from_knows_max') | |
| 410 | ||
| 411 | lemma Says_Nonce_not_used_guard: "[| Says A' B {|A'',r,I,L|}:set evs;
 | |
| 412 | Nonce n ~:used evs |] ==> L:guard n Ks" | |
| 413 | by (drule not_used_not_parts, auto) | |
| 414 | ||
| 415 | subsubsection{*guardedness of messages*}
 | |
| 416 | ||
| 417 | lemma chain_guard [iff]: "chain B ofr A L C:guard n {priK A}"
 | |
| 418 | by (case_tac "ofr=n", auto simp: chain_def sign_def) | |
| 419 | ||
| 420 | lemma chain_guard_Nonce_neq [intro]: "n ~= ofr | |
| 421 | ==> chain B ofr A' L C:guard n {priK A}"
 | |
| 422 | by (auto simp: chain_def sign_def) | |
| 423 | ||
| 424 | lemma anchor_guard [iff]: "anchor A n' B:guard n {priK A}"
 | |
| 425 | by (case_tac "n'=n", auto simp: anchor_def) | |
| 426 | ||
| 427 | lemma anchor_guard_Nonce_neq [intro]: "n ~= n' | |
| 428 | ==> anchor A' n' B:guard n {priK A}"
 | |
| 429 | by (auto simp: anchor_def) | |
| 430 | ||
| 431 | lemma reqm_guard [intro]: "I:agl ==> reqm A r n' I B:guard n {priK A}"
 | |
| 432 | by (case_tac "n'=n", auto simp: reqm_def) | |
| 433 | ||
| 434 | lemma reqm_guard_Nonce_neq [intro]: "[| n ~= n'; I:agl |] | |
| 435 | ==> reqm A' r n' I B:guard n {priK A}"
 | |
| 436 | by (auto simp: reqm_def) | |
| 437 | ||
| 438 | lemma prom_guard [intro]: "[| I:agl; J:agl; L:guard n {priK A} |]
 | |
| 439 | ==> prom B ofr A r I L J C:guard n {priK A}"
 | |
| 440 | by (auto simp: prom_def) | |
| 441 | ||
| 442 | lemma prom_guard_Nonce_neq [intro]: "[| n ~= ofr; I:agl; J:agl; | |
| 443 | L:guard n {priK A} |] ==> prom B ofr A' r I L J C:guard n {priK A}"
 | |
| 444 | by (auto simp: prom_def) | |
| 445 | ||
| 446 | subsubsection{*Nonce uniqueness*}
 | |
| 447 | ||
| 448 | lemma uniq_Nonce_in_chain [dest]: "Nonce k:parts {chain B ofr A L C} ==> k=ofr"
 | |
| 449 | by (auto simp: chain_def sign_def) | |
| 450 | ||
| 451 | lemma uniq_Nonce_in_anchor [dest]: "Nonce k:parts {anchor A n B} ==> k=n"
 | |
| 452 | by (auto simp: anchor_def chain_def sign_def) | |
| 453 | ||
| 454 | lemma uniq_Nonce_in_reqm [dest]: "[| Nonce k:parts {reqm A r n I B};
 | |
| 455 | I:agl |] ==> k=n" | |
| 456 | by (auto simp: reqm_def dest: no_Nonce_in_agl) | |
| 457 | ||
| 458 | lemma uniq_Nonce_in_prom [dest]: "[| Nonce k:parts {prom B ofr A r I L J C};
 | |
| 459 | I:agl; J:agl; Nonce k ~:parts {L} |] ==> k=ofr"
 | |
| 460 | by (auto simp: prom_def dest: no_Nonce_in_agl no_Nonce_in_appdel) | |
| 461 | ||
| 462 | subsubsection{*requests are guarded*}
 | |
| 463 | ||
| 464 | lemma req_imp_Guard [rule_format]: "[| evs:p1; A ~:bad |] ==> | |
| 465 | req A r n I B:set evs --> Guard n {priK A} (spies evs)"
 | |
| 466 | apply (erule p1.induct, simp) | |
| 467 | apply (simp add: req_def knows.simps, safe) | |
| 468 | apply (erule in_synth_Guard, erule Guard_analz, simp) | |
| 469 | by (auto simp: req_def pro_def dest: Says_imp_knows_Spy) | |
| 470 | ||
| 471 | lemma req_imp_Guard_Friend: "[| evs:p1; A ~:bad; req A r n I B:set evs |] | |
| 472 | ==> Guard n {priK A} (knows_max (Friend C) evs)"
 | |
| 473 | apply (rule Guard_knows_max') | |
| 474 | apply (rule_tac H="spies evs" in Guard_mono) | |
| 475 | apply (rule req_imp_Guard, simp+) | |
| 476 | apply (rule_tac B="spies' evs" in subset_trans) | |
| 477 | apply (rule_tac p=p1 in knows_max'_sub_spies', simp+) | |
| 478 | by (rule knows'_sub_knows) | |
| 479 | ||
| 480 | subsubsection{*propositions are guarded*}
 | |
| 481 | ||
| 482 | lemma pro_imp_Guard [rule_format]: "[| evs:p1; B ~:bad; A ~:bad |] ==> | |
| 483 | pro B ofr A r I (cons M L) J C:set evs --> Guard ofr {priK A} (spies evs)"
 | |
| 484 | apply (erule p1.induct) (* +3 subgoals *) | |
| 485 | (* Nil *) | |
| 486 | apply simp | |
| 487 | (* Fake *) | |
| 488 | apply (simp add: pro_def, safe) (* +4 subgoals *) | |
| 489 | (* 1 *) | |
| 490 | apply (erule in_synth_Guard, drule Guard_analz, simp, simp) | |
| 491 | (* 2 *) | |
| 492 | apply simp | |
| 493 | (* 3 *) | |
| 494 | apply (simp, simp add: req_def pro_def, blast) | |
| 495 | (* 4 *) | |
| 496 | apply (simp add: pro_def) | |
| 497 | apply (blast dest: prom_inj Says_Nonce_not_used_guard Nonce_not_used_Guard) | |
| 498 | (* 5 *) | |
| 499 | apply simp | |
| 500 | apply safe (* +1 subgoal *) | |
| 501 | apply (simp add: pro_def) | |
| 502 | apply (blast dest: prom_inj Says_Nonce_not_used_guard) | |
| 503 | (* 6 *) | |
| 504 | apply (simp add: pro_def) | |
| 505 | apply (blast dest: Says_imp_knows_Spy) | |
| 506 | (* Request *) | |
| 507 | apply (simp add: pro_def) | |
| 508 | apply (blast dest: prom_inj Says_Nonce_not_used_guard Nonce_not_used_Guard) | |
| 509 | (* Propose *) | |
| 510 | apply simp | |
| 511 | apply safe (* +1 subgoal *) | |
| 512 | (* 1 *) | |
| 513 | apply (simp add: pro_def) | |
| 514 | apply (blast dest: prom_inj Says_Nonce_not_used_guard) | |
| 515 | (* 2 *) | |
| 516 | apply (simp add: pro_def) | |
| 517 | by (blast dest: Says_imp_knows_Spy) | |
| 518 | ||
| 519 | lemma pro_imp_Guard_Friend: "[| evs:p1; B ~:bad; A ~:bad; | |
| 520 | pro B ofr A r I (cons M L) J C:set evs |] | |
| 521 | ==> Guard ofr {priK A} (knows_max (Friend D) evs)"
 | |
| 522 | apply (rule Guard_knows_max') | |
| 523 | apply (rule_tac H="spies evs" in Guard_mono) | |
| 524 | apply (rule pro_imp_Guard, simp+) | |
| 525 | apply (rule_tac B="spies' evs" in subset_trans) | |
| 526 | apply (rule_tac p=p1 in knows_max'_sub_spies', simp+) | |
| 527 | by (rule knows'_sub_knows) | |
| 528 | ||
| 529 | subsubsection{*data confidentiality:
 | |
| 530 | no one other than the originator can decrypt the offers*} | |
| 531 | ||
| 532 | lemma Nonce_req_notin_spies: "[| evs:p1; req A r n I B:set evs; A ~:bad |] | |
| 533 | ==> Nonce n ~:analz (spies evs)" | |
| 534 | by (frule req_imp_Guard, simp+, erule Guard_Nonce_analz, simp+) | |
| 535 | ||
| 536 | lemma Nonce_req_notin_knows_max_Friend: "[| evs:p1; req A r n I B:set evs; | |
| 537 | A ~:bad; A ~= Friend C |] ==> Nonce n ~:analz (knows_max (Friend C) evs)" | |
| 538 | apply (clarify, frule_tac C=C in req_imp_Guard_Friend, simp+) | |
| 539 | apply (simp add: knows_max_def, drule Guard_invKey_keyset, simp+) | |
| 540 | by (drule priK_notin_knows_max_Friend, auto simp: knows_max_def) | |
| 541 | ||
| 542 | lemma Nonce_pro_notin_spies: "[| evs:p1; B ~:bad; A ~:bad; | |
| 543 | pro B ofr A r I (cons M L) J C:set evs |] ==> Nonce ofr ~:analz (spies evs)" | |
| 544 | by (frule pro_imp_Guard, simp+, erule Guard_Nonce_analz, simp+) | |
| 545 | ||
| 546 | lemma Nonce_pro_notin_knows_max_Friend: "[| evs:p1; B ~:bad; A ~:bad; | |
| 547 | A ~= Friend D; pro B ofr A r I (cons M L) J C:set evs |] | |
| 548 | ==> Nonce ofr ~:analz (knows_max (Friend D) evs)" | |
| 549 | apply (clarify, frule_tac A=A in pro_imp_Guard_Friend, simp+) | |
| 550 | apply (simp add: knows_max_def, drule Guard_invKey_keyset, simp+) | |
| 551 | by (drule priK_notin_knows_max_Friend, auto simp: knows_max_def) | |
| 552 | ||
| 553 | subsubsection{*non repudiability:
 | |
| 554 | an offer signed by B has been sent by B*} | |
| 555 | ||
| 556 | lemma Crypt_reqm: "[| Crypt (priK A) X:parts {reqm A' r n I B}; I:agl |] ==> A=A'"
 | |
| 557 | by (auto simp: reqm_def anchor_def chain_def sign_def dest: no_Crypt_in_agl) | |
| 558 | ||
| 559 | lemma Crypt_prom: "[| Crypt (priK A) X:parts {prom B ofr A' r I L J C};
 | |
| 560 | I:agl; J:agl |] ==> A=B | Crypt (priK A) X:parts {L}"
 | |
| 561 | apply (simp add: prom_def anchor_def chain_def sign_def) | |
| 562 | by (blast dest: no_Crypt_in_agl no_Crypt_in_appdel) | |
| 563 | ||
| 564 | lemma Crypt_safeness: "[| evs:p1; A ~:bad |] ==> Crypt (priK A) X:parts (spies evs) | |
| 565 | --> (EX B Y. Says A B Y:set evs & Crypt (priK A) X:parts {Y})"
 | |
| 566 | apply (erule p1.induct) | |
| 567 | (* Nil *) | |
| 568 | apply simp | |
| 569 | (* Fake *) | |
| 570 | apply clarsimp | |
| 571 | apply (drule_tac P="%G. Crypt (priK A) X:G" in parts_insert_substD, simp) | |
| 572 | apply (erule disjE) | |
| 573 | apply (drule_tac K="priK A" in Crypt_synth, simp+, blast, blast) | |
| 574 | (* Request *) | |
| 575 | apply (simp add: req_def, clarify) | |
| 576 | apply (drule_tac P="%G. Crypt (priK A) X:G" in parts_insert_substD, simp) | |
| 577 | apply (erule disjE) | |
| 578 | apply (frule Crypt_reqm, simp, clarify) | |
| 579 | apply (rule_tac x=B in exI, rule_tac x="reqm A r n I B" in exI, simp, blast) | |
| 580 | (* Propose *) | |
| 581 | apply (simp add: pro_def, clarify) | |
| 582 | apply (drule_tac P="%G. Crypt (priK A) X:G" in parts_insert_substD, simp) | |
| 583 | apply (rotate_tac -1, erule disjE) | |
| 584 | apply (frule Crypt_prom, simp, simp) | |
| 585 | apply (rotate_tac -1, erule disjE) | |
| 586 | apply (rule_tac x=C in exI) | |
| 587 | apply (rule_tac x="prom B ofr Aa r I (cons M L) J C" in exI, blast) | |
| 588 | apply (subgoal_tac "cons M L:parts (spies evsp)") | |
| 589 | apply (drule_tac G="{cons M L}" and H="spies evsp" in parts_trans, blast, blast)
 | |
| 590 | apply (drule Says_imp_spies, rotate_tac -1, drule parts.Inj) | |
| 591 | apply (drule parts.Snd, drule parts.Snd, drule parts.Snd) | |
| 592 | by auto | |
| 593 | ||
| 594 | lemma Crypt_Hash_imp_sign: "[| evs:p1; A ~:bad |] ==> | |
| 595 | Crypt (priK A) (Hash X):parts (spies evs) | |
| 596 | --> (EX B Y. Says A B Y:set evs & sign A X:parts {Y})"
 | |
| 597 | apply (erule p1.induct) | |
| 598 | (* Nil *) | |
| 599 | apply simp | |
| 600 | (* Fake *) | |
| 601 | apply clarsimp | |
| 602 | apply (drule_tac P="%G. Crypt (priK A) (Hash X):G" in parts_insert_substD) | |
| 603 | apply simp | |
| 604 | apply (erule disjE) | |
| 605 | apply (drule_tac K="priK A" in Crypt_synth, simp+, blast, blast) | |
| 606 | (* Request *) | |
| 607 | apply (simp add: req_def, clarify) | |
| 608 | apply (drule_tac P="%G. Crypt (priK A) (Hash X):G" in parts_insert_substD) | |
| 609 | apply simp | |
| 610 | apply (erule disjE) | |
| 611 | apply (frule Crypt_reqm, simp+) | |
| 612 | apply (rule_tac x=B in exI, rule_tac x="reqm Aa r n I B" in exI) | |
| 613 | apply (simp add: reqm_def sign_def anchor_def no_Crypt_in_agl) | |
| 614 | apply (simp add: chain_def sign_def, blast) | |
| 615 | (* Propose *) | |
| 616 | apply (simp add: pro_def, clarify) | |
| 617 | apply (drule_tac P="%G. Crypt (priK A) (Hash X):G" in parts_insert_substD) | |
| 618 | apply simp | |
| 619 | apply (rotate_tac -1, erule disjE) | |
| 620 | apply (simp add: prom_def sign_def no_Crypt_in_agl no_Crypt_in_appdel) | |
| 621 | apply (simp add: chain_def sign_def) | |
| 622 | apply (rotate_tac -1, erule disjE) | |
| 623 | apply (rule_tac x=C in exI) | |
| 624 | apply (rule_tac x="prom B ofr Aa r I (cons M L) J C" in exI) | |
| 625 | apply (simp add: prom_def chain_def sign_def) | |
| 626 | apply (erule impE) | |
| 627 | apply (blast dest: get_ML parts_sub) | |
| 628 | apply (blast del: MPair_parts)+ | |
| 629 | done | |
| 630 | ||
| 631 | lemma sign_safeness: "[| evs:p1; A ~:bad |] ==> sign A X:parts (spies evs) | |
| 632 | --> (EX B Y. Says A B Y:set evs & sign A X:parts {Y})"
 | |
| 633 | apply (clarify, simp add: sign_def, frule parts.Snd) | |
| 634 | apply (blast dest: Crypt_Hash_imp_sign [unfolded sign_def]) | |
| 635 | done | |
| 636 | ||
| 637 | end |