13508
|
1 |
(******************************************************************************
|
|
2 |
from G. Karjoth, N. Asokan and C. Gulcu
|
|
3 |
"Protecting the computation results of free-roaming agents"
|
|
4 |
Mobiles Agents 1998, LNCS 1477
|
|
5 |
|
|
6 |
date: february 2002
|
|
7 |
author: Frederic Blanqui
|
|
8 |
email: blanqui@lri.fr
|
|
9 |
webpage: http://www.lri.fr/~blanqui/
|
|
10 |
|
|
11 |
University of Cambridge, Computer Laboratory
|
|
12 |
William Gates Building, JJ Thomson Avenue
|
|
13 |
Cambridge CB3 0FD, United Kingdom
|
|
14 |
******************************************************************************)
|
|
15 |
|
|
16 |
header{*Protocol P1*}
|
|
17 |
|
16417
|
18 |
theory P1 imports Guard_Public List_Msg begin
|
13508
|
19 |
|
|
20 |
subsection{*Protocol Definition*}
|
|
21 |
|
|
22 |
(******************************************************************************
|
|
23 |
|
|
24 |
the contents of the messages are not completely specified in the paper
|
|
25 |
we assume that the user sends his request and his itinerary in the clear
|
|
26 |
|
|
27 |
we will adopt the following format for messages: {|A,r,I,L|}
|
|
28 |
A: originator (agent)
|
|
29 |
r: request (number)
|
|
30 |
I: next shops (agent list)
|
|
31 |
L: collected offers (offer list)
|
|
32 |
|
|
33 |
in the paper, the authors use nonces r_i to add redundancy in the offer
|
|
34 |
in order to make it safer against dictionary attacks
|
|
35 |
it is not necessary in our modelization since crypto is assumed to be strong
|
|
36 |
(Crypt in injective)
|
|
37 |
******************************************************************************)
|
|
38 |
|
|
39 |
subsubsection{*offer chaining:
|
|
40 |
B chains his offer for A with the head offer of L for sending it to C*}
|
|
41 |
|
|
42 |
constdefs chain :: "agent => nat => agent => msg => agent => msg"
|
|
43 |
"chain B ofr A L C ==
|
|
44 |
let m1= Crypt (pubK A) (Nonce ofr) in
|
|
45 |
let m2= Hash {|head L, Agent C|} in
|
|
46 |
sign B {|m1,m2|}"
|
|
47 |
|
|
48 |
declare Let_def [simp]
|
|
49 |
|
|
50 |
lemma chain_inj [iff]: "(chain B ofr A L C = chain B' ofr' A' L' C')
|
|
51 |
= (B=B' & ofr=ofr' & A=A' & head L = head L' & C=C')"
|
|
52 |
by (auto simp: chain_def Let_def)
|
|
53 |
|
|
54 |
lemma Nonce_in_chain [iff]: "Nonce ofr:parts {chain B ofr A L C}"
|
|
55 |
by (auto simp: chain_def sign_def)
|
|
56 |
|
|
57 |
subsubsection{*agent whose key is used to sign an offer*}
|
|
58 |
|
|
59 |
consts shop :: "msg => msg"
|
|
60 |
|
|
61 |
recdef shop "measure size"
|
|
62 |
"shop {|B,X,Crypt K H|} = Agent (agt K)"
|
|
63 |
|
|
64 |
lemma shop_chain [simp]: "shop (chain B ofr A L C) = Agent B"
|
|
65 |
by (simp add: chain_def sign_def)
|
|
66 |
|
|
67 |
subsubsection{*nonce used in an offer*}
|
|
68 |
|
|
69 |
consts nonce :: "msg => msg"
|
|
70 |
|
|
71 |
recdef nonce "measure size"
|
|
72 |
"nonce {|B,{|Crypt K ofr,m2|},CryptH|} = ofr"
|
|
73 |
|
|
74 |
lemma nonce_chain [simp]: "nonce (chain B ofr A L C) = Nonce ofr"
|
|
75 |
by (simp add: chain_def sign_def)
|
|
76 |
|
|
77 |
subsubsection{*next shop*}
|
|
78 |
|
|
79 |
consts next_shop :: "msg => agent"
|
|
80 |
|
|
81 |
recdef next_shop "measure size"
|
|
82 |
"next_shop {|B,{|m1,Hash{|headL,Agent C|}|},CryptH|} = C"
|
|
83 |
|
|
84 |
lemma next_shop_chain [iff]: "next_shop (chain B ofr A L C) = C"
|
|
85 |
by (simp add: chain_def sign_def)
|
|
86 |
|
|
87 |
subsubsection{*anchor of the offer list*}
|
|
88 |
|
|
89 |
constdefs anchor :: "agent => nat => agent => msg"
|
|
90 |
"anchor A n B == chain A n A (cons nil nil) B"
|
|
91 |
|
|
92 |
lemma anchor_inj [iff]: "(anchor A n B = anchor A' n' B')
|
|
93 |
= (A=A' & n=n' & B=B')"
|
|
94 |
by (auto simp: anchor_def)
|
|
95 |
|
|
96 |
lemma Nonce_in_anchor [iff]: "Nonce n:parts {anchor A n B}"
|
|
97 |
by (auto simp: anchor_def)
|
|
98 |
|
|
99 |
lemma shop_anchor [simp]: "shop (anchor A n B) = Agent A"
|
|
100 |
by (simp add: anchor_def)
|
|
101 |
|
|
102 |
lemma nonce_anchor [simp]: "nonce (anchor A n B) = Nonce n"
|
|
103 |
by (simp add: anchor_def)
|
|
104 |
|
|
105 |
lemma next_shop_anchor [iff]: "next_shop (anchor A n B) = B"
|
|
106 |
by (simp add: anchor_def)
|
|
107 |
|
|
108 |
subsubsection{*request event*}
|
|
109 |
|
|
110 |
constdefs reqm :: "agent => nat => nat => msg => agent => msg"
|
|
111 |
"reqm A r n I B == {|Agent A, Number r, cons (Agent A) (cons (Agent B) I),
|
|
112 |
cons (anchor A n B) nil|}"
|
|
113 |
|
|
114 |
lemma reqm_inj [iff]: "(reqm A r n I B = reqm A' r' n' I' B')
|
|
115 |
= (A=A' & r=r' & n=n' & I=I' & B=B')"
|
|
116 |
by (auto simp: reqm_def)
|
|
117 |
|
|
118 |
lemma Nonce_in_reqm [iff]: "Nonce n:parts {reqm A r n I B}"
|
|
119 |
by (auto simp: reqm_def)
|
|
120 |
|
|
121 |
constdefs req :: "agent => nat => nat => msg => agent => event"
|
|
122 |
"req A r n I B == Says A B (reqm A r n I B)"
|
|
123 |
|
|
124 |
lemma req_inj [iff]: "(req A r n I B = req A' r' n' I' B')
|
|
125 |
= (A=A' & r=r' & n=n' & I=I' & B=B')"
|
|
126 |
by (auto simp: req_def)
|
|
127 |
|
|
128 |
subsubsection{*propose event*}
|
|
129 |
|
|
130 |
constdefs prom :: "agent => nat => agent => nat => msg => msg =>
|
|
131 |
msg => agent => msg"
|
|
132 |
"prom B ofr A r I L J C == {|Agent A, Number r,
|
|
133 |
app (J, del (Agent B, I)), cons (chain B ofr A L C) L|}"
|
|
134 |
|
|
135 |
lemma prom_inj [dest]: "prom B ofr A r I L J C
|
|
136 |
= prom B' ofr' A' r' I' L' J' C'
|
|
137 |
==> B=B' & ofr=ofr' & A=A' & r=r' & L=L' & C=C'"
|
|
138 |
by (auto simp: prom_def)
|
|
139 |
|
|
140 |
lemma Nonce_in_prom [iff]: "Nonce ofr:parts {prom B ofr A r I L J C}"
|
|
141 |
by (auto simp: prom_def)
|
|
142 |
|
|
143 |
constdefs pro :: "agent => nat => agent => nat => msg => msg =>
|
|
144 |
msg => agent => event"
|
|
145 |
"pro B ofr A r I L J C == Says B C (prom B ofr A r I L J C)"
|
|
146 |
|
|
147 |
lemma pro_inj [dest]: "pro B ofr A r I L J C = pro B' ofr' A' r' I' L' J' C'
|
|
148 |
==> B=B' & ofr=ofr' & A=A' & r=r' & L=L' & C=C'"
|
|
149 |
by (auto simp: pro_def dest: prom_inj)
|
|
150 |
|
|
151 |
subsubsection{*protocol*}
|
|
152 |
|
23746
|
153 |
inductive_set p1 :: "event list set"
|
|
154 |
where
|
13508
|
155 |
|
23746
|
156 |
Nil: "[]:p1"
|
13508
|
157 |
|
23746
|
158 |
| Fake: "[| evsf:p1; X:synth (analz (spies evsf)) |] ==> Says Spy B X # evsf : p1"
|
13508
|
159 |
|
23746
|
160 |
| Request: "[| evsr:p1; Nonce n ~:used evsr; I:agl |] ==> req A r n I B # evsr : p1"
|
13508
|
161 |
|
23746
|
162 |
| Propose: "[| evsp:p1; Says A' B {|Agent A,Number r,I,cons M L|}:set evsp;
|
|
163 |
I:agl; J:agl; isin (Agent C, app (J, del (Agent B, I)));
|
|
164 |
Nonce ofr ~:used evsp |] ==> pro B ofr A r I (cons M L) J C # evsp : p1"
|
13508
|
165 |
|
|
166 |
subsubsection{*Composition of Traces*}
|
|
167 |
|
|
168 |
lemma "evs':p1 ==>
|
|
169 |
evs:p1 & (ALL n. Nonce n:used evs' --> Nonce n ~:used evs) -->
|
|
170 |
evs'@evs : p1"
|
|
171 |
apply (erule p1.induct, safe)
|
|
172 |
apply (simp_all add: used_ConsI)
|
|
173 |
apply (erule p1.Fake, erule synth_sub, rule analz_mono, rule knows_sub_app)
|
|
174 |
apply (erule p1.Request, safe, simp_all add: req_def, force)
|
|
175 |
apply (erule_tac A'=A' in p1.Propose, simp_all)
|
|
176 |
apply (drule_tac x=ofr in spec, simp add: pro_def, blast)
|
|
177 |
apply (erule_tac A'=A' in p1.Propose, auto simp: pro_def)
|
|
178 |
done
|
|
179 |
|
|
180 |
subsubsection{*Valid Offer Lists*}
|
|
181 |
|
23746
|
182 |
inductive_set
|
|
183 |
valid :: "agent => nat => agent => msg set"
|
|
184 |
for A :: agent and n :: nat and B :: agent
|
|
185 |
where
|
|
186 |
Request [intro]: "cons (anchor A n B) nil:valid A n B"
|
13508
|
187 |
|
23746
|
188 |
| Propose [intro]: "L:valid A n B
|
13508
|
189 |
==> cons (chain (next_shop (head L)) ofr A L C) L:valid A n B"
|
|
190 |
|
|
191 |
subsubsection{*basic properties of valid*}
|
|
192 |
|
|
193 |
lemma valid_not_empty: "L:valid A n B ==> EX M L'. L = cons M L'"
|
|
194 |
by (erule valid.cases, auto)
|
|
195 |
|
|
196 |
lemma valid_pos_len: "L:valid A n B ==> 0 < len L"
|
|
197 |
by (erule valid.induct, auto)
|
|
198 |
|
|
199 |
subsubsection{*offers of an offer list*}
|
|
200 |
|
|
201 |
constdefs offer_nonces :: "msg => msg set"
|
|
202 |
"offer_nonces L == {X. X:parts {L} & (EX n. X = Nonce n)}"
|
|
203 |
|
|
204 |
subsubsection{*the originator can get the offers*}
|
|
205 |
|
|
206 |
lemma "L:valid A n B ==> offer_nonces L <= analz (insert L (initState A))"
|
|
207 |
by (erule valid.induct, auto simp: anchor_def chain_def sign_def
|
|
208 |
offer_nonces_def initState.simps)
|
|
209 |
|
|
210 |
subsubsection{*list of offers*}
|
|
211 |
|
|
212 |
consts offers :: "msg => msg"
|
|
213 |
|
|
214 |
recdef offers "measure size"
|
|
215 |
"offers (cons M L) = cons {|shop M, nonce M|} (offers L)"
|
|
216 |
"offers other = nil"
|
|
217 |
|
|
218 |
subsubsection{*list of agents whose keys are used to sign a list of offers*}
|
|
219 |
|
|
220 |
consts shops :: "msg => msg"
|
|
221 |
|
|
222 |
recdef shops "measure size"
|
|
223 |
"shops (cons M L) = cons (shop M) (shops L)"
|
|
224 |
"shops other = other"
|
|
225 |
|
|
226 |
lemma shops_in_agl: "L:valid A n B ==> shops L:agl"
|
|
227 |
by (erule valid.induct, auto simp: anchor_def chain_def sign_def)
|
|
228 |
|
|
229 |
subsubsection{*builds a trace from an itinerary*}
|
|
230 |
|
|
231 |
consts offer_list :: "agent * nat * agent * msg * nat => msg"
|
|
232 |
|
|
233 |
recdef offer_list "measure (%(A,n,B,I,ofr). size I)"
|
|
234 |
"offer_list (A,n,B,nil,ofr) = cons (anchor A n B) nil"
|
|
235 |
"offer_list (A,n,B,cons (Agent C) I,ofr) = (
|
|
236 |
let L = offer_list (A,n,B,I,Suc ofr) in
|
|
237 |
cons (chain (next_shop (head L)) ofr A L C) L)"
|
|
238 |
|
|
239 |
lemma "I:agl ==> ALL ofr. offer_list (A,n,B,I,ofr):valid A n B"
|
|
240 |
by (erule agl.induct, auto)
|
|
241 |
|
|
242 |
consts trace :: "agent * nat * agent * nat * msg * msg * msg
|
|
243 |
=> event list"
|
|
244 |
|
|
245 |
recdef trace "measure (%(B,ofr,A,r,I,L,K). size K)"
|
|
246 |
"trace (B,ofr,A,r,I,L,nil) = []"
|
|
247 |
"trace (B,ofr,A,r,I,L,cons (Agent D) K) = (
|
|
248 |
let C = (if K=nil then B else agt_nb (head K)) in
|
|
249 |
let I' = (if K=nil then cons (Agent A) (cons (Agent B) I)
|
|
250 |
else cons (Agent A) (app (I, cons (head K) nil))) in
|
|
251 |
let I'' = app (I, cons (head K) nil) in
|
|
252 |
pro C (Suc ofr) A r I' L nil D
|
|
253 |
# trace (B,Suc ofr,A,r,I'',tail L,K))"
|
|
254 |
|
|
255 |
constdefs trace' :: "agent => nat => nat => msg => agent => nat => event list"
|
|
256 |
"trace' A r n I B ofr == (
|
|
257 |
let AI = cons (Agent A) I in
|
|
258 |
let L = offer_list (A,n,B,AI,ofr) in
|
|
259 |
trace (B,ofr,A,r,nil,L,AI))"
|
|
260 |
|
|
261 |
declare trace'_def [simp]
|
|
262 |
|
|
263 |
subsubsection{*there is a trace in which the originator receives a valid answer*}
|
|
264 |
|
|
265 |
lemma p1_not_empty: "evs:p1 ==> req A r n I B:set evs -->
|
|
266 |
(EX evs'. evs'@evs:p1 & pro B' ofr A r I' L J A:set evs' & L:valid A n B)"
|
|
267 |
oops
|
|
268 |
|
|
269 |
|
|
270 |
subsection{*properties of protocol P1*}
|
|
271 |
|
|
272 |
text{*publicly verifiable forward integrity:
|
|
273 |
anyone can verify the validity of an offer list*}
|
|
274 |
|
|
275 |
subsubsection{*strong forward integrity:
|
|
276 |
except the last one, no offer can be modified*}
|
|
277 |
|
|
278 |
lemma strong_forward_integrity: "ALL L. Suc i < len L
|
|
279 |
--> L:valid A n B & repl (L,Suc i,M):valid A n B --> M = ith (L,Suc i)"
|
|
280 |
apply (induct i)
|
|
281 |
(* i = 0 *)
|
|
282 |
apply clarify
|
|
283 |
apply (frule len_not_empty, clarsimp)
|
|
284 |
apply (frule len_not_empty, clarsimp)
|
23746
|
285 |
apply (ind_cases "{|x,xa,l'a|}:valid A n B" for x xa l'a)
|
|
286 |
apply (ind_cases "{|x,M,l'a|}:valid A n B" for x l'a)
|
13508
|
287 |
apply (simp add: chain_def)
|
|
288 |
(* i > 0 *)
|
|
289 |
apply clarify
|
|
290 |
apply (frule len_not_empty, clarsimp)
|
23746
|
291 |
apply (ind_cases "{|x,repl(l',Suc na,M)|}:valid A n B" for x l' na)
|
13508
|
292 |
apply (frule len_not_empty, clarsimp)
|
23746
|
293 |
apply (ind_cases "{|x,l'|}:valid A n B" for x l')
|
13508
|
294 |
by (drule_tac x=l' in spec, simp, blast)
|
|
295 |
|
|
296 |
subsubsection{*insertion resilience:
|
|
297 |
except at the beginning, no offer can be inserted*}
|
|
298 |
|
|
299 |
lemma chain_isnt_head [simp]: "L:valid A n B ==>
|
|
300 |
head L ~= chain (next_shop (head L)) ofr A L C"
|
|
301 |
by (erule valid.induct, auto simp: chain_def sign_def anchor_def)
|
|
302 |
|
|
303 |
lemma insertion_resilience: "ALL L. L:valid A n B --> Suc i < len L
|
|
304 |
--> ins (L,Suc i,M) ~:valid A n B"
|
|
305 |
apply (induct i)
|
|
306 |
(* i = 0 *)
|
|
307 |
apply clarify
|
|
308 |
apply (frule len_not_empty, clarsimp)
|
23746
|
309 |
apply (ind_cases "{|x,l'|}:valid A n B" for x l', simp)
|
|
310 |
apply (ind_cases "{|x,M,l'|}:valid A n B" for x l', clarsimp)
|
|
311 |
apply (ind_cases "{|head l',l'|}:valid A n B" for l', simp, simp)
|
13508
|
312 |
(* i > 0 *)
|
|
313 |
apply clarify
|
|
314 |
apply (frule len_not_empty, clarsimp)
|
23746
|
315 |
apply (ind_cases "{|x,l'|}:valid A n B" for x l')
|
13508
|
316 |
apply (frule len_not_empty, clarsimp)
|
23746
|
317 |
apply (ind_cases "{|x,ins(l',Suc na,M)|}:valid A n B" for x l' na)
|
13508
|
318 |
apply (frule len_not_empty, clarsimp)
|
|
319 |
by (drule_tac x=l' in spec, clarsimp)
|
|
320 |
|
|
321 |
subsubsection{*truncation resilience:
|
|
322 |
only shop i can truncate at offer i*}
|
|
323 |
|
|
324 |
lemma truncation_resilience: "ALL L. L:valid A n B --> Suc i < len L
|
|
325 |
--> cons M (trunc (L,Suc i)):valid A n B --> shop M = shop (ith (L,i))"
|
|
326 |
apply (induct i)
|
|
327 |
(* i = 0 *)
|
|
328 |
apply clarify
|
|
329 |
apply (frule len_not_empty, clarsimp)
|
23746
|
330 |
apply (ind_cases "{|x,l'|}:valid A n B" for x l')
|
13508
|
331 |
apply (frule len_not_empty, clarsimp)
|
23746
|
332 |
apply (ind_cases "{|M,l'|}:valid A n B" for l')
|
13508
|
333 |
apply (frule len_not_empty, clarsimp, simp)
|
|
334 |
(* i > 0 *)
|
|
335 |
apply clarify
|
|
336 |
apply (frule len_not_empty, clarsimp)
|
23746
|
337 |
apply (ind_cases "{|x,l'|}:valid A n B" for x l')
|
13508
|
338 |
apply (frule len_not_empty, clarsimp)
|
|
339 |
by (drule_tac x=l' in spec, clarsimp)
|
|
340 |
|
|
341 |
subsubsection{*declarations for tactics*}
|
|
342 |
|
|
343 |
declare knows_Spy_partsEs [elim]
|
|
344 |
declare Fake_parts_insert [THEN subsetD, dest]
|
|
345 |
declare initState.simps [simp del]
|
|
346 |
|
|
347 |
subsubsection{*get components of a message*}
|
|
348 |
|
|
349 |
lemma get_ML [dest]: "Says A' B {|A,r,I,M,L|}:set evs ==>
|
|
350 |
M:parts (spies evs) & L:parts (spies evs)"
|
|
351 |
by blast
|
|
352 |
|
|
353 |
subsubsection{*general properties of p1*}
|
|
354 |
|
|
355 |
lemma reqm_neq_prom [iff]:
|
|
356 |
"reqm A r n I B ~= prom B' ofr A' r' I' (cons M L) J C"
|
|
357 |
by (auto simp: reqm_def prom_def)
|
|
358 |
|
|
359 |
lemma prom_neq_reqm [iff]:
|
|
360 |
"prom B' ofr A' r' I' (cons M L) J C ~= reqm A r n I B"
|
|
361 |
by (auto simp: reqm_def prom_def)
|
|
362 |
|
|
363 |
lemma req_neq_pro [iff]: "req A r n I B ~= pro B' ofr A' r' I' (cons M L) J C"
|
|
364 |
by (auto simp: req_def pro_def)
|
|
365 |
|
|
366 |
lemma pro_neq_req [iff]: "pro B' ofr A' r' I' (cons M L) J C ~= req A r n I B"
|
|
367 |
by (auto simp: req_def pro_def)
|
|
368 |
|
|
369 |
lemma p1_has_no_Gets: "evs:p1 ==> ALL A X. Gets A X ~:set evs"
|
|
370 |
by (erule p1.induct, auto simp: req_def pro_def)
|
|
371 |
|
|
372 |
lemma p1_is_Gets_correct [iff]: "Gets_correct p1"
|
|
373 |
by (auto simp: Gets_correct_def dest: p1_has_no_Gets)
|
|
374 |
|
|
375 |
lemma p1_is_one_step [iff]: "one_step p1"
|
23746
|
376 |
by (unfold one_step_def, clarify, ind_cases "ev#evs:p1" for ev evs, auto)
|
13508
|
377 |
|
|
378 |
lemma p1_has_only_Says' [rule_format]: "evs:p1 ==>
|
|
379 |
ev:set evs --> (EX A B X. ev=Says A B X)"
|
|
380 |
by (erule p1.induct, auto simp: req_def pro_def)
|
|
381 |
|
|
382 |
lemma p1_has_only_Says [iff]: "has_only_Says p1"
|
|
383 |
by (auto simp: has_only_Says_def dest: p1_has_only_Says')
|
|
384 |
|
|
385 |
lemma p1_is_regular [iff]: "regular p1"
|
|
386 |
apply (simp only: regular_def, clarify)
|
|
387 |
apply (erule_tac p1.induct)
|
|
388 |
apply (simp_all add: initState.simps knows.simps pro_def prom_def
|
|
389 |
req_def reqm_def anchor_def chain_def sign_def)
|
|
390 |
by (auto dest: no_Key_in_agl no_Key_in_appdel parts_trans)
|
|
391 |
|
|
392 |
subsubsection{*private keys are safe*}
|
|
393 |
|
|
394 |
lemma priK_parts_Friend_imp_bad [rule_format,dest]:
|
|
395 |
"[| evs:p1; Friend B ~= A |]
|
|
396 |
==> (Key (priK A):parts (knows (Friend B) evs)) --> (A:bad)"
|
|
397 |
apply (erule p1.induct)
|
|
398 |
apply (simp_all add: initState.simps knows.simps pro_def prom_def
|
17778
|
399 |
req_def reqm_def anchor_def chain_def sign_def)
|
13508
|
400 |
apply (blast dest: no_Key_in_agl)
|
|
401 |
apply (auto del: parts_invKey disjE dest: parts_trans
|
|
402 |
simp add: no_Key_in_appdel)
|
|
403 |
done
|
|
404 |
|
|
405 |
lemma priK_analz_Friend_imp_bad [rule_format,dest]:
|
|
406 |
"[| evs:p1; Friend B ~= A |]
|
|
407 |
==> (Key (priK A):analz (knows (Friend B) evs)) --> (A:bad)"
|
|
408 |
by auto
|
|
409 |
|
|
410 |
lemma priK_notin_knows_max_Friend: "[| evs:p1; A ~:bad; A ~= Friend C |]
|
|
411 |
==> Key (priK A) ~:analz (knows_max (Friend C) evs)"
|
|
412 |
apply (rule not_parts_not_analz, simp add: knows_max_def, safe)
|
|
413 |
apply (drule_tac H="spies' evs" in parts_sub)
|
|
414 |
apply (rule_tac p=p1 in knows_max'_sub_spies', simp+)
|
|
415 |
apply (drule_tac H="spies evs" in parts_sub)
|
|
416 |
by (auto dest: knows'_sub_knows [THEN subsetD] priK_notin_initState_Friend)
|
|
417 |
|
|
418 |
subsubsection{*general guardedness properties*}
|
|
419 |
|
|
420 |
lemma agl_guard [intro]: "I:agl ==> I:guard n Ks"
|
|
421 |
by (erule agl.induct, auto)
|
|
422 |
|
|
423 |
lemma Says_to_knows_max'_guard: "[| Says A' C {|A'',r,I,L|}:set evs;
|
|
424 |
Guard n Ks (knows_max' C evs) |] ==> L:guard n Ks"
|
|
425 |
by (auto dest: Says_to_knows_max')
|
|
426 |
|
|
427 |
lemma Says_from_knows_max'_guard: "[| Says C A' {|A'',r,I,L|}:set evs;
|
|
428 |
Guard n Ks (knows_max' C evs) |] ==> L:guard n Ks"
|
|
429 |
by (auto dest: Says_from_knows_max')
|
|
430 |
|
|
431 |
lemma Says_Nonce_not_used_guard: "[| Says A' B {|A'',r,I,L|}:set evs;
|
|
432 |
Nonce n ~:used evs |] ==> L:guard n Ks"
|
|
433 |
by (drule not_used_not_parts, auto)
|
|
434 |
|
|
435 |
subsubsection{*guardedness of messages*}
|
|
436 |
|
|
437 |
lemma chain_guard [iff]: "chain B ofr A L C:guard n {priK A}"
|
|
438 |
by (case_tac "ofr=n", auto simp: chain_def sign_def)
|
|
439 |
|
|
440 |
lemma chain_guard_Nonce_neq [intro]: "n ~= ofr
|
|
441 |
==> chain B ofr A' L C:guard n {priK A}"
|
|
442 |
by (auto simp: chain_def sign_def)
|
|
443 |
|
|
444 |
lemma anchor_guard [iff]: "anchor A n' B:guard n {priK A}"
|
|
445 |
by (case_tac "n'=n", auto simp: anchor_def)
|
|
446 |
|
|
447 |
lemma anchor_guard_Nonce_neq [intro]: "n ~= n'
|
|
448 |
==> anchor A' n' B:guard n {priK A}"
|
|
449 |
by (auto simp: anchor_def)
|
|
450 |
|
|
451 |
lemma reqm_guard [intro]: "I:agl ==> reqm A r n' I B:guard n {priK A}"
|
|
452 |
by (case_tac "n'=n", auto simp: reqm_def)
|
|
453 |
|
|
454 |
lemma reqm_guard_Nonce_neq [intro]: "[| n ~= n'; I:agl |]
|
|
455 |
==> reqm A' r n' I B:guard n {priK A}"
|
|
456 |
by (auto simp: reqm_def)
|
|
457 |
|
|
458 |
lemma prom_guard [intro]: "[| I:agl; J:agl; L:guard n {priK A} |]
|
|
459 |
==> prom B ofr A r I L J C:guard n {priK A}"
|
|
460 |
by (auto simp: prom_def)
|
|
461 |
|
|
462 |
lemma prom_guard_Nonce_neq [intro]: "[| n ~= ofr; I:agl; J:agl;
|
|
463 |
L:guard n {priK A} |] ==> prom B ofr A' r I L J C:guard n {priK A}"
|
|
464 |
by (auto simp: prom_def)
|
|
465 |
|
|
466 |
subsubsection{*Nonce uniqueness*}
|
|
467 |
|
|
468 |
lemma uniq_Nonce_in_chain [dest]: "Nonce k:parts {chain B ofr A L C} ==> k=ofr"
|
|
469 |
by (auto simp: chain_def sign_def)
|
|
470 |
|
|
471 |
lemma uniq_Nonce_in_anchor [dest]: "Nonce k:parts {anchor A n B} ==> k=n"
|
|
472 |
by (auto simp: anchor_def chain_def sign_def)
|
|
473 |
|
|
474 |
lemma uniq_Nonce_in_reqm [dest]: "[| Nonce k:parts {reqm A r n I B};
|
|
475 |
I:agl |] ==> k=n"
|
|
476 |
by (auto simp: reqm_def dest: no_Nonce_in_agl)
|
|
477 |
|
|
478 |
lemma uniq_Nonce_in_prom [dest]: "[| Nonce k:parts {prom B ofr A r I L J C};
|
|
479 |
I:agl; J:agl; Nonce k ~:parts {L} |] ==> k=ofr"
|
|
480 |
by (auto simp: prom_def dest: no_Nonce_in_agl no_Nonce_in_appdel)
|
|
481 |
|
|
482 |
subsubsection{*requests are guarded*}
|
|
483 |
|
|
484 |
lemma req_imp_Guard [rule_format]: "[| evs:p1; A ~:bad |] ==>
|
|
485 |
req A r n I B:set evs --> Guard n {priK A} (spies evs)"
|
|
486 |
apply (erule p1.induct, simp)
|
|
487 |
apply (simp add: req_def knows.simps, safe)
|
|
488 |
apply (erule in_synth_Guard, erule Guard_analz, simp)
|
|
489 |
by (auto simp: req_def pro_def dest: Says_imp_knows_Spy)
|
|
490 |
|
|
491 |
lemma req_imp_Guard_Friend: "[| evs:p1; A ~:bad; req A r n I B:set evs |]
|
|
492 |
==> Guard n {priK A} (knows_max (Friend C) evs)"
|
|
493 |
apply (rule Guard_knows_max')
|
|
494 |
apply (rule_tac H="spies evs" in Guard_mono)
|
|
495 |
apply (rule req_imp_Guard, simp+)
|
|
496 |
apply (rule_tac B="spies' evs" in subset_trans)
|
|
497 |
apply (rule_tac p=p1 in knows_max'_sub_spies', simp+)
|
|
498 |
by (rule knows'_sub_knows)
|
|
499 |
|
|
500 |
subsubsection{*propositions are guarded*}
|
|
501 |
|
|
502 |
lemma pro_imp_Guard [rule_format]: "[| evs:p1; B ~:bad; A ~:bad |] ==>
|
|
503 |
pro B ofr A r I (cons M L) J C:set evs --> Guard ofr {priK A} (spies evs)"
|
|
504 |
apply (erule p1.induct) (* +3 subgoals *)
|
|
505 |
(* Nil *)
|
|
506 |
apply simp
|
|
507 |
(* Fake *)
|
|
508 |
apply (simp add: pro_def, safe) (* +4 subgoals *)
|
|
509 |
(* 1 *)
|
|
510 |
apply (erule in_synth_Guard, drule Guard_analz, simp, simp)
|
|
511 |
(* 2 *)
|
|
512 |
apply simp
|
|
513 |
(* 3 *)
|
|
514 |
apply (simp, simp add: req_def pro_def, blast)
|
|
515 |
(* 4 *)
|
|
516 |
apply (simp add: pro_def)
|
|
517 |
apply (blast dest: prom_inj Says_Nonce_not_used_guard Nonce_not_used_Guard)
|
|
518 |
(* 5 *)
|
|
519 |
apply simp
|
|
520 |
apply safe (* +1 subgoal *)
|
|
521 |
apply (simp add: pro_def)
|
|
522 |
apply (blast dest: prom_inj Says_Nonce_not_used_guard)
|
|
523 |
(* 6 *)
|
|
524 |
apply (simp add: pro_def)
|
|
525 |
apply (blast dest: Says_imp_knows_Spy)
|
|
526 |
(* Request *)
|
|
527 |
apply (simp add: pro_def)
|
|
528 |
apply (blast dest: prom_inj Says_Nonce_not_used_guard Nonce_not_used_Guard)
|
|
529 |
(* Propose *)
|
|
530 |
apply simp
|
|
531 |
apply safe (* +1 subgoal *)
|
|
532 |
(* 1 *)
|
|
533 |
apply (simp add: pro_def)
|
|
534 |
apply (blast dest: prom_inj Says_Nonce_not_used_guard)
|
|
535 |
(* 2 *)
|
|
536 |
apply (simp add: pro_def)
|
|
537 |
by (blast dest: Says_imp_knows_Spy)
|
|
538 |
|
|
539 |
lemma pro_imp_Guard_Friend: "[| evs:p1; B ~:bad; A ~:bad;
|
|
540 |
pro B ofr A r I (cons M L) J C:set evs |]
|
|
541 |
==> Guard ofr {priK A} (knows_max (Friend D) evs)"
|
|
542 |
apply (rule Guard_knows_max')
|
|
543 |
apply (rule_tac H="spies evs" in Guard_mono)
|
|
544 |
apply (rule pro_imp_Guard, simp+)
|
|
545 |
apply (rule_tac B="spies' evs" in subset_trans)
|
|
546 |
apply (rule_tac p=p1 in knows_max'_sub_spies', simp+)
|
|
547 |
by (rule knows'_sub_knows)
|
|
548 |
|
|
549 |
subsubsection{*data confidentiality:
|
|
550 |
no one other than the originator can decrypt the offers*}
|
|
551 |
|
|
552 |
lemma Nonce_req_notin_spies: "[| evs:p1; req A r n I B:set evs; A ~:bad |]
|
|
553 |
==> Nonce n ~:analz (spies evs)"
|
|
554 |
by (frule req_imp_Guard, simp+, erule Guard_Nonce_analz, simp+)
|
|
555 |
|
|
556 |
lemma Nonce_req_notin_knows_max_Friend: "[| evs:p1; req A r n I B:set evs;
|
|
557 |
A ~:bad; A ~= Friend C |] ==> Nonce n ~:analz (knows_max (Friend C) evs)"
|
|
558 |
apply (clarify, frule_tac C=C in req_imp_Guard_Friend, simp+)
|
|
559 |
apply (simp add: knows_max_def, drule Guard_invKey_keyset, simp+)
|
|
560 |
by (drule priK_notin_knows_max_Friend, auto simp: knows_max_def)
|
|
561 |
|
|
562 |
lemma Nonce_pro_notin_spies: "[| evs:p1; B ~:bad; A ~:bad;
|
|
563 |
pro B ofr A r I (cons M L) J C:set evs |] ==> Nonce ofr ~:analz (spies evs)"
|
|
564 |
by (frule pro_imp_Guard, simp+, erule Guard_Nonce_analz, simp+)
|
|
565 |
|
|
566 |
lemma Nonce_pro_notin_knows_max_Friend: "[| evs:p1; B ~:bad; A ~:bad;
|
|
567 |
A ~= Friend D; pro B ofr A r I (cons M L) J C:set evs |]
|
|
568 |
==> Nonce ofr ~:analz (knows_max (Friend D) evs)"
|
|
569 |
apply (clarify, frule_tac A=A in pro_imp_Guard_Friend, simp+)
|
|
570 |
apply (simp add: knows_max_def, drule Guard_invKey_keyset, simp+)
|
|
571 |
by (drule priK_notin_knows_max_Friend, auto simp: knows_max_def)
|
|
572 |
|
|
573 |
subsubsection{*non repudiability:
|
|
574 |
an offer signed by B has been sent by B*}
|
|
575 |
|
|
576 |
lemma Crypt_reqm: "[| Crypt (priK A) X:parts {reqm A' r n I B}; I:agl |] ==> A=A'"
|
|
577 |
by (auto simp: reqm_def anchor_def chain_def sign_def dest: no_Crypt_in_agl)
|
|
578 |
|
|
579 |
lemma Crypt_prom: "[| Crypt (priK A) X:parts {prom B ofr A' r I L J C};
|
|
580 |
I:agl; J:agl |] ==> A=B | Crypt (priK A) X:parts {L}"
|
|
581 |
apply (simp add: prom_def anchor_def chain_def sign_def)
|
|
582 |
by (blast dest: no_Crypt_in_agl no_Crypt_in_appdel)
|
|
583 |
|
|
584 |
lemma Crypt_safeness: "[| evs:p1; A ~:bad |] ==> Crypt (priK A) X:parts (spies evs)
|
|
585 |
--> (EX B Y. Says A B Y:set evs & Crypt (priK A) X:parts {Y})"
|
|
586 |
apply (erule p1.induct)
|
|
587 |
(* Nil *)
|
|
588 |
apply simp
|
|
589 |
(* Fake *)
|
|
590 |
apply clarsimp
|
|
591 |
apply (drule_tac P="%G. Crypt (priK A) X:G" in parts_insert_substD, simp)
|
|
592 |
apply (erule disjE)
|
|
593 |
apply (drule_tac K="priK A" in Crypt_synth, simp+, blast, blast)
|
|
594 |
(* Request *)
|
|
595 |
apply (simp add: req_def, clarify)
|
|
596 |
apply (drule_tac P="%G. Crypt (priK A) X:G" in parts_insert_substD, simp)
|
|
597 |
apply (erule disjE)
|
|
598 |
apply (frule Crypt_reqm, simp, clarify)
|
|
599 |
apply (rule_tac x=B in exI, rule_tac x="reqm A r n I B" in exI, simp, blast)
|
|
600 |
(* Propose *)
|
|
601 |
apply (simp add: pro_def, clarify)
|
|
602 |
apply (drule_tac P="%G. Crypt (priK A) X:G" in parts_insert_substD, simp)
|
|
603 |
apply (rotate_tac -1, erule disjE)
|
|
604 |
apply (frule Crypt_prom, simp, simp)
|
|
605 |
apply (rotate_tac -1, erule disjE)
|
|
606 |
apply (rule_tac x=C in exI)
|
|
607 |
apply (rule_tac x="prom B ofr Aa r I (cons M L) J C" in exI, blast)
|
|
608 |
apply (subgoal_tac "cons M L:parts (spies evsp)")
|
|
609 |
apply (drule_tac G="{cons M L}" and H="spies evsp" in parts_trans, blast, blast)
|
|
610 |
apply (drule Says_imp_spies, rotate_tac -1, drule parts.Inj)
|
|
611 |
apply (drule parts.Snd, drule parts.Snd, drule parts.Snd)
|
|
612 |
by auto
|
|
613 |
|
|
614 |
lemma Crypt_Hash_imp_sign: "[| evs:p1; A ~:bad |] ==>
|
|
615 |
Crypt (priK A) (Hash X):parts (spies evs)
|
|
616 |
--> (EX B Y. Says A B Y:set evs & sign A X:parts {Y})"
|
|
617 |
apply (erule p1.induct)
|
|
618 |
(* Nil *)
|
|
619 |
apply simp
|
|
620 |
(* Fake *)
|
|
621 |
apply clarsimp
|
|
622 |
apply (drule_tac P="%G. Crypt (priK A) (Hash X):G" in parts_insert_substD)
|
|
623 |
apply simp
|
|
624 |
apply (erule disjE)
|
|
625 |
apply (drule_tac K="priK A" in Crypt_synth, simp+, blast, blast)
|
|
626 |
(* Request *)
|
|
627 |
apply (simp add: req_def, clarify)
|
|
628 |
apply (drule_tac P="%G. Crypt (priK A) (Hash X):G" in parts_insert_substD)
|
|
629 |
apply simp
|
|
630 |
apply (erule disjE)
|
|
631 |
apply (frule Crypt_reqm, simp+)
|
|
632 |
apply (rule_tac x=B in exI, rule_tac x="reqm Aa r n I B" in exI)
|
|
633 |
apply (simp add: reqm_def sign_def anchor_def no_Crypt_in_agl)
|
|
634 |
apply (simp add: chain_def sign_def, blast)
|
|
635 |
(* Propose *)
|
|
636 |
apply (simp add: pro_def, clarify)
|
|
637 |
apply (drule_tac P="%G. Crypt (priK A) (Hash X):G" in parts_insert_substD)
|
|
638 |
apply simp
|
|
639 |
apply (rotate_tac -1, erule disjE)
|
|
640 |
apply (simp add: prom_def sign_def no_Crypt_in_agl no_Crypt_in_appdel)
|
|
641 |
apply (simp add: chain_def sign_def)
|
|
642 |
apply (rotate_tac -1, erule disjE)
|
|
643 |
apply (rule_tac x=C in exI)
|
|
644 |
apply (rule_tac x="prom B ofr Aa r I (cons M L) J C" in exI)
|
|
645 |
apply (simp add: prom_def chain_def sign_def)
|
|
646 |
apply (erule impE)
|
|
647 |
apply (blast dest: get_ML parts_sub)
|
|
648 |
apply (blast del: MPair_parts)+
|
|
649 |
done
|
|
650 |
|
|
651 |
lemma sign_safeness: "[| evs:p1; A ~:bad |] ==> sign A X:parts (spies evs)
|
|
652 |
--> (EX B Y. Says A B Y:set evs & sign A X:parts {Y})"
|
|
653 |
apply (clarify, simp add: sign_def, frule parts.Snd)
|
|
654 |
apply (blast dest: Crypt_Hash_imp_sign [unfolded sign_def])
|
|
655 |
done
|
|
656 |
|
|
657 |
end |