src/HOL/Analysis/Gamma_Function.thy
author wenzelm
Sun, 02 Oct 2016 14:07:43 +0200
changeset 63992 3aa9837d05c7
parent 63952 354808e9f44b
child 64267 b9a1486e79be
permissions -rw-r--r--
updated headers;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63992
3aa9837d05c7 updated headers;
wenzelm
parents: 63952
diff changeset
     1
(*  Title:    HOL/Analysis/Gamma_Function.thy
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
     2
    Author:   Manuel Eberl, TU München
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
     3
*)
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
     4
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
     5
section \<open>The Gamma Function\<close>
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
     6
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
     7
theory Gamma_Function
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
     8
imports
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
     9
  Complex_Transcendental
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
    10
  Summation_Tests
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    11
  Harmonic_Numbers
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    12
  "~~/src/HOL/Library/Nonpos_Ints"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    13
  "~~/src/HOL/Library/Periodic_Fun"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    14
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    15
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    16
text \<open>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    17
  Several equivalent definitions of the Gamma function and its
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    18
  most important properties. Also contains the definition and some properties
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    19
  of the log-Gamma function and the Digamma function and the other Polygamma functions.
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    20
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    21
  Based on the Gamma function, we also prove the Weierstraß product form of the
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    22
  sin function and, based on this, the solution of the Basel problem (the
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    23
  sum over all @{term "1 / (n::nat)^2"}.
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    24
\<close>
62055
755fda743c49 Multivariate-Analysis: fixed headers and a LaTex error (c.f. Isabelle b0f941e207cf)
hoelzl
parents: 62049
diff changeset
    25
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    26
lemma pochhammer_eq_0_imp_nonpos_Int:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    27
  "pochhammer (x::'a::field_char_0) n = 0 \<Longrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    28
  by (auto simp: pochhammer_eq_0_iff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    29
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    30
lemma closed_nonpos_Ints [simp]: "closed (\<int>\<^sub>\<le>\<^sub>0 :: 'a :: real_normed_algebra_1 set)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    31
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
    32
  have "\<int>\<^sub>\<le>\<^sub>0 = (of_int ` {n. n \<le> 0} :: 'a set)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    33
    by (auto elim!: nonpos_Ints_cases intro!: nonpos_Ints_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    34
  also have "closed \<dots>" by (rule closed_of_int_image)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    35
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    36
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    37
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    38
lemma plus_one_in_nonpos_Ints_imp: "z + 1 \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    39
  using nonpos_Ints_diff_Nats[of "z+1" "1"] by simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    40
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    41
lemma of_int_in_nonpos_Ints_iff:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    42
  "(of_int n :: 'a :: ring_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n \<le> 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    43
  by (auto simp: nonpos_Ints_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    44
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    45
lemma one_plus_of_int_in_nonpos_Ints_iff:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    46
  "(1 + of_int n :: 'a :: ring_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n \<le> -1"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    47
proof -
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    48
  have "1 + of_int n = (of_int (n + 1) :: 'a)" by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    49
  also have "\<dots> \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n + 1 \<le> 0" by (subst of_int_in_nonpos_Ints_iff) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    50
  also have "\<dots> \<longleftrightarrow> n \<le> -1" by presburger
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    51
  finally show ?thesis .
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    52
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    53
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    54
lemma one_minus_of_nat_in_nonpos_Ints_iff:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    55
  "(1 - of_nat n :: 'a :: ring_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n > 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    56
proof -
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    57
  have "(1 - of_nat n :: 'a) = of_int (1 - int n)" by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    58
  also have "\<dots> \<in> \<int>\<^sub>\<le>\<^sub>0 \<longleftrightarrow> n > 0" by (subst of_int_in_nonpos_Ints_iff) presburger
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    59
  finally show ?thesis .
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    60
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
    61
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    62
lemma fraction_not_in_ints:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    63
  assumes "\<not>(n dvd m)" "n \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    64
  shows   "of_int m / of_int n \<notin> (\<int> :: 'a :: {division_ring,ring_char_0} set)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    65
proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    66
  assume "of_int m / (of_int n :: 'a) \<in> \<int>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    67
  then obtain k where "of_int m / of_int n = (of_int k :: 'a)" by (elim Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    68
  with assms have "of_int m = (of_int (k * n) :: 'a)" by (auto simp add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    69
  hence "m = k * n" by (subst (asm) of_int_eq_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    70
  hence "n dvd m" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    71
  with assms(1) show False by contradiction
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    72
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    73
63317
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    74
lemma fraction_not_in_nats:
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    75
  assumes "\<not>n dvd m" "n \<noteq> 0"
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    76
  shows   "of_int m / of_int n \<notin> (\<nat> :: 'a :: {division_ring,ring_char_0} set)"
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    77
proof
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    78
  assume "of_int m / of_int n \<in> (\<nat> :: 'a set)"
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    79
  also note Nats_subset_Ints
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    80
  finally have "of_int m / of_int n \<in> (\<int> :: 'a set)" .
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    81
  moreover have "of_int m / of_int n \<notin> (\<int> :: 'a set)"
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    82
    using assms by (intro fraction_not_in_ints)
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    83
  ultimately show False by contradiction
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    84
qed
ca187a9f66da Various additions to polynomials, FPSs, Gamma function
eberlm
parents: 63296
diff changeset
    85
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    86
lemma not_in_Ints_imp_not_in_nonpos_Ints: "z \<notin> \<int> \<Longrightarrow> z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    87
  by (auto simp: Ints_def nonpos_Ints_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    88
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    89
lemma double_in_nonpos_Ints_imp:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    90
  assumes "2 * (z :: 'a :: field_char_0) \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    91
  shows   "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<or> z + 1/2 \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    92
proof-
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    93
  from assms obtain k where k: "2 * z = - of_nat k" by (elim nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    94
  thus ?thesis by (cases "even k") (auto elim!: evenE oddE simp: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    95
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    96
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    97
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    98
lemma sin_series: "(\<lambda>n. ((-1)^n / fact (2*n+1)) *\<^sub>R z^(2*n+1)) sums sin z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
    99
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   100
  from sin_converges[of z] have "(\<lambda>n. sin_coeff n *\<^sub>R z^n) sums sin z" .
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   101
  also have "(\<lambda>n. sin_coeff n *\<^sub>R z^n) sums sin z \<longleftrightarrow>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   102
                 (\<lambda>n. ((-1)^n / fact (2*n+1)) *\<^sub>R z^(2*n+1)) sums sin z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   103
    by (subst sums_mono_reindex[of "\<lambda>n. 2*n+1", symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   104
       (auto simp: sin_coeff_def subseq_def ac_simps elim!: oddE)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   105
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   106
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   107
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   108
lemma cos_series: "(\<lambda>n. ((-1)^n / fact (2*n)) *\<^sub>R z^(2*n)) sums cos z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   109
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   110
  from cos_converges[of z] have "(\<lambda>n. cos_coeff n *\<^sub>R z^n) sums cos z" .
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   111
  also have "(\<lambda>n. cos_coeff n *\<^sub>R z^n) sums cos z \<longleftrightarrow>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   112
                 (\<lambda>n. ((-1)^n / fact (2*n)) *\<^sub>R z^(2*n)) sums cos z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   113
    by (subst sums_mono_reindex[of "\<lambda>n. 2*n", symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   114
       (auto simp: cos_coeff_def subseq_def ac_simps elim!: evenE)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   115
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   116
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   117
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   118
lemma sin_z_over_z_series:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   119
  fixes z :: "'a :: {real_normed_field,banach}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   120
  assumes "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   121
  shows   "(\<lambda>n. (-1)^n / fact (2*n+1) * z^(2*n)) sums (sin z / z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   122
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   123
  from sin_series[of z] have "(\<lambda>n. z * ((-1)^n / fact (2*n+1)) * z^(2*n)) sums sin z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   124
    by (simp add: field_simps scaleR_conv_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   125
  from sums_mult[OF this, of "inverse z"] and assms show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   126
    by (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   127
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   128
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   129
lemma sin_z_over_z_series':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   130
  fixes z :: "'a :: {real_normed_field,banach}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   131
  assumes "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   132
  shows   "(\<lambda>n. sin_coeff (n+1) *\<^sub>R z^n) sums (sin z / z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   133
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   134
  from sums_split_initial_segment[OF sin_converges[of z], of 1]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   135
    have "(\<lambda>n. z * (sin_coeff (n+1) *\<^sub>R z ^ n)) sums sin z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   136
  from sums_mult[OF this, of "inverse z"] assms show ?thesis by (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   137
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   138
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   139
lemma has_field_derivative_sin_z_over_z:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   140
  fixes A :: "'a :: {real_normed_field,banach} set"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   141
  shows "((\<lambda>z. if z = 0 then 1 else sin z / z) has_field_derivative 0) (at 0 within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   142
      (is "(?f has_field_derivative ?f') _")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   143
proof (rule has_field_derivative_at_within)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   144
  have "((\<lambda>z::'a. \<Sum>n. of_real (sin_coeff (n+1)) * z^n)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   145
            has_field_derivative (\<Sum>n. diffs (\<lambda>n. of_real (sin_coeff (n+1))) n * 0^n)) (at 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   146
  proof (rule termdiffs_strong)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   147
    from summable_ignore_initial_segment[OF sums_summable[OF sin_converges[of "1::'a"]], of 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   148
      show "summable (\<lambda>n. of_real (sin_coeff (n+1)) * (1::'a)^n)" by (simp add: of_real_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   149
  qed simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   150
  also have "(\<lambda>z::'a. \<Sum>n. of_real (sin_coeff (n+1)) * z^n) = ?f"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   151
  proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   152
    fix z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   153
    show "(\<Sum>n. of_real (sin_coeff (n+1)) * z^n)  = ?f z"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   154
      by (cases "z = 0") (insert sin_z_over_z_series'[of z],
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   155
            simp_all add: scaleR_conv_of_real sums_iff powser_zero sin_coeff_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   156
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   157
  also have "(\<Sum>n. diffs (\<lambda>n. of_real (sin_coeff (n + 1))) n * (0::'a) ^ n) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   158
                 diffs (\<lambda>n. of_real (sin_coeff (Suc n))) 0" by (simp add: powser_zero)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   159
  also have "\<dots> = 0" by (simp add: sin_coeff_def diffs_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   160
  finally show "((\<lambda>z::'a. if z = 0 then 1 else sin z / z) has_field_derivative 0) (at 0)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   161
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   162
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   163
lemma round_Re_minimises_norm:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   164
  "norm ((z::complex) - of_int m) \<ge> norm (z - of_int (round (Re z)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   165
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   166
  let ?n = "round (Re z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   167
  have "norm (z - of_int ?n) = sqrt ((Re z - of_int ?n)\<^sup>2 + (Im z)\<^sup>2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   168
    by (simp add: cmod_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   169
  also have "\<bar>Re z - of_int ?n\<bar> \<le> \<bar>Re z - of_int m\<bar>" by (rule round_diff_minimal)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   170
  hence "sqrt ((Re z - of_int ?n)\<^sup>2 + (Im z)\<^sup>2) \<le> sqrt ((Re z - of_int m)\<^sup>2 + (Im z)\<^sup>2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   171
    by (intro real_sqrt_le_mono add_mono) (simp_all add: abs_le_square_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   172
  also have "\<dots> = norm (z - of_int m)" by (simp add: cmod_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   173
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   174
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   175
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   176
lemma Re_pos_in_ball:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   177
  assumes "Re z > 0" "t \<in> ball z (Re z/2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   178
  shows   "Re t > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   179
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   180
  have "Re (z - t) \<le> norm (z - t)" by (rule complex_Re_le_cmod)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   181
  also from assms have "\<dots> < Re z / 2" by (simp add: dist_complex_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   182
  finally show "Re t > 0" using assms by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   183
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   184
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   185
lemma no_nonpos_Int_in_ball_complex:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   186
  assumes "Re z > 0" "t \<in> ball z (Re z/2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   187
  shows   "t \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   188
  using Re_pos_in_ball[OF assms] by (force elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   189
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   190
lemma no_nonpos_Int_in_ball:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   191
  assumes "t \<in> ball z (dist z (round (Re z)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   192
  shows   "t \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   193
proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   194
  assume "t \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   195
  then obtain n where "t = of_int n" by (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   196
  have "dist z (of_int n) \<le> dist z t + dist t (of_int n)" by (rule dist_triangle)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   197
  also from assms have "dist z t < dist z (round (Re z))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   198
  also have "\<dots> \<le> dist z (of_int n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   199
    using round_Re_minimises_norm[of z] by (simp add: dist_complex_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   200
  finally have "dist t (of_int n) > 0" by simp
62072
bf3d9f113474 isabelle update_cartouches -c -t;
wenzelm
parents: 62055
diff changeset
   201
  with \<open>t = of_int n\<close> show False by simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   202
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   203
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   204
lemma no_nonpos_Int_in_ball':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   205
  assumes "(z :: 'a :: {euclidean_space,real_normed_algebra_1}) \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   206
  obtains d where "d > 0" "\<And>t. t \<in> ball z d \<Longrightarrow> t \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   207
proof (rule that)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   208
  from assms show "setdist {z} \<int>\<^sub>\<le>\<^sub>0 > 0" by (subst setdist_gt_0_compact_closed) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   209
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   210
  fix t assume "t \<in> ball z (setdist {z} \<int>\<^sub>\<le>\<^sub>0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   211
  thus "t \<notin> \<int>\<^sub>\<le>\<^sub>0" using setdist_le_dist[of z "{z}" t "\<int>\<^sub>\<le>\<^sub>0"] by force
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   212
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   213
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   214
lemma no_nonpos_Real_in_ball:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   215
  assumes z: "z \<notin> \<real>\<^sub>\<le>\<^sub>0" and t: "t \<in> ball z (if Im z = 0 then Re z / 2 else abs (Im z) / 2)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   216
  shows   "t \<notin> \<real>\<^sub>\<le>\<^sub>0"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   217
using z
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   218
proof (cases "Im z = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   219
  assume A: "Im z = 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   220
  with z have "Re z > 0" by (force simp add: complex_nonpos_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   221
  with t A Re_pos_in_ball[of z t] show ?thesis by (force simp add: complex_nonpos_Reals_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   222
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   223
  assume A: "Im z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   224
  have "abs (Im z) - abs (Im t) \<le> abs (Im z - Im t)" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   225
  also have "\<dots> = abs (Im (z - t))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   226
  also have "\<dots> \<le> norm (z - t)" by (rule abs_Im_le_cmod)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   227
  also from A t have "\<dots> \<le> abs (Im z) / 2" by (simp add: dist_complex_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   228
  finally have "abs (Im t) > 0" using A by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   229
  thus ?thesis by (force simp add: complex_nonpos_Reals_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   230
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   231
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   232
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   233
subsection \<open>Definitions\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   234
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   235
text \<open>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   236
  We define the Gamma function by first defining its multiplicative inverse @{term "Gamma_inv"}.
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   237
  This is more convenient because @{term "Gamma_inv"} is entire, which makes proofs of its
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   238
  properties more convenient because one does not have to watch out for discontinuities.
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   239
  (e.g. @{term "Gamma_inv"} fulfils @{term "rGamma z = z * rGamma (z + 1)"} everywhere,
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   240
  whereas @{term "Gamma"} does not fulfil the analogous equation on the non-positive integers)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   241
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   242
  We define the Gamma function (resp. its inverse) in the Euler form. This form has the advantage
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   243
  that it is a relatively simple limit that converges everywhere. The limit at the poles is 0
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   244
  (due to division by 0). The functional equation @{term "Gamma (z + 1) = z * Gamma z"} follows
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   245
  immediately from the definition.
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   246
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   247
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   248
definition Gamma_series :: "('a :: {banach,real_normed_field}) \<Rightarrow> nat \<Rightarrow> 'a" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   249
  "Gamma_series z n = fact n * exp (z * of_real (ln (of_nat n))) / pochhammer z (n+1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   250
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   251
definition Gamma_series' :: "('a :: {banach,real_normed_field}) \<Rightarrow> nat \<Rightarrow> 'a" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   252
  "Gamma_series' z n = fact (n - 1) * exp (z * of_real (ln (of_nat n))) / pochhammer z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   253
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   254
definition rGamma_series :: "('a :: {banach,real_normed_field}) \<Rightarrow> nat \<Rightarrow> 'a" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   255
  "rGamma_series z n = pochhammer z (n+1) / (fact n * exp (z * of_real (ln (of_nat n))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   256
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   257
lemma Gamma_series_altdef: "Gamma_series z n = inverse (rGamma_series z n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   258
  and rGamma_series_altdef: "rGamma_series z n = inverse (Gamma_series z n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   259
  unfolding Gamma_series_def rGamma_series_def by simp_all
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   260
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   261
lemma rGamma_series_minus_of_nat:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   262
  "eventually (\<lambda>n. rGamma_series (- of_nat k) n = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   263
  using eventually_ge_at_top[of k]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   264
  by eventually_elim (auto simp: rGamma_series_def pochhammer_of_nat_eq_0_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   265
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   266
lemma Gamma_series_minus_of_nat:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   267
  "eventually (\<lambda>n. Gamma_series (- of_nat k) n = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   268
  using eventually_ge_at_top[of k]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   269
  by eventually_elim (auto simp: Gamma_series_def pochhammer_of_nat_eq_0_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   270
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   271
lemma Gamma_series'_minus_of_nat:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   272
  "eventually (\<lambda>n. Gamma_series' (- of_nat k) n = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   273
  using eventually_gt_at_top[of k]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   274
  by eventually_elim (auto simp: Gamma_series'_def pochhammer_of_nat_eq_0_iff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   275
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   276
lemma rGamma_series_nonpos_Ints_LIMSEQ: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> rGamma_series z \<longlonglongrightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   277
  by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule rGamma_series_minus_of_nat, simp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   278
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   279
lemma Gamma_series_nonpos_Ints_LIMSEQ: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma_series z \<longlonglongrightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   280
  by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule Gamma_series_minus_of_nat, simp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   281
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   282
lemma Gamma_series'_nonpos_Ints_LIMSEQ: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma_series' z \<longlonglongrightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   283
  by (elim nonpos_Ints_cases', hypsubst, subst tendsto_cong, rule Gamma_series'_minus_of_nat, simp)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   284
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   285
lemma Gamma_series_Gamma_series':
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   286
  assumes z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   287
  shows   "(\<lambda>n. Gamma_series' z n / Gamma_series z n) \<longlonglongrightarrow> 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   288
proof (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   289
  from eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   290
    show "eventually (\<lambda>n. z / of_nat n + 1 = Gamma_series' z n / Gamma_series z n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   291
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   292
    fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   293
    from n z have "Gamma_series' z n / Gamma_series z n = (z + of_nat n) / of_nat n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   294
      by (cases n, simp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   295
         (auto simp add: Gamma_series_def Gamma_series'_def pochhammer_rec'
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   296
               dest: pochhammer_eq_0_imp_nonpos_Int plus_of_nat_eq_0_imp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   297
    also from n have "\<dots> = z / of_nat n + 1" by (simp add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   298
    finally show "z / of_nat n + 1 = Gamma_series' z n / Gamma_series z n" ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   299
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   300
  have "(\<lambda>x. z / of_nat x) \<longlonglongrightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   301
    by (rule tendsto_norm_zero_cancel)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   302
       (insert tendsto_mult[OF tendsto_const[of "norm z"] lim_inverse_n],
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   303
        simp add:  norm_divide inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   304
  from tendsto_add[OF this tendsto_const[of 1]] show "(\<lambda>n. z / of_nat n + 1) \<longlonglongrightarrow> 1" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   305
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   306
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   307
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   308
subsection \<open>Convergence of the Euler series form\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   309
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   310
text \<open>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   311
  We now show that the series that defines the Gamma function in the Euler form converges
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   312
  and that the function defined by it is continuous on the complex halfspace with positive
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   313
  real part.
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   314
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   315
  We do this by showing that the logarithm of the Euler series is continuous and converges
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   316
  locally uniformly, which means that the log-Gamma function defined by its limit is also
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   317
  continuous.
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   318
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   319
  This will later allow us to lift holomorphicity and continuity from the log-Gamma
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
   320
  function to the inverse of the Gamma function, and from that to the Gamma function itself.
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   321
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   322
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   323
definition ln_Gamma_series :: "('a :: {banach,real_normed_field,ln}) \<Rightarrow> nat \<Rightarrow> 'a" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   324
  "ln_Gamma_series z n = z * ln (of_nat n) - ln z - (\<Sum>k=1..n. ln (z / of_nat k + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   325
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   326
definition ln_Gamma_series' :: "('a :: {banach,real_normed_field,ln}) \<Rightarrow> nat \<Rightarrow> 'a" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   327
  "ln_Gamma_series' z n =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   328
     - euler_mascheroni*z - ln z + (\<Sum>k=1..n. z / of_nat n - ln (z / of_nat k + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   329
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   330
definition ln_Gamma :: "('a :: {banach,real_normed_field,ln}) \<Rightarrow> 'a" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   331
  "ln_Gamma z = lim (ln_Gamma_series z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   332
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   333
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   334
text \<open>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   335
  We now show that the log-Gamma series converges locally uniformly for all complex numbers except
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   336
  the non-positive integers. We do this by proving that the series is locally Cauchy, adapting this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   337
  proof:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   338
  http://math.stackexchange.com/questions/887158/convergence-of-gammaz-lim-n-to-infty-fracnzn-prod-m-0nzm
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   339
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   340
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   341
context
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   342
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   343
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   344
private lemma ln_Gamma_series_complex_converges_aux:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   345
  fixes z :: complex and k :: nat
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   346
  assumes z: "z \<noteq> 0" and k: "of_nat k \<ge> 2*norm z" "k \<ge> 2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   347
  shows "norm (z * ln (1 - 1/of_nat k) + ln (z/of_nat k + 1)) \<le> 2*(norm z + norm z^2) / of_nat k^2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   348
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   349
  let ?k = "of_nat k :: complex" and ?z = "norm z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   350
  have "z *ln (1 - 1/?k) + ln (z/?k+1) = z*(ln (1 - 1/?k :: complex) + 1/?k) + (ln (1+z/?k) - z/?k)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   351
    by (simp add: algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   352
  also have "norm ... \<le> ?z * norm (ln (1-1/?k) + 1/?k :: complex) + norm (ln (1+z/?k) - z/?k)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   353
    by (subst norm_mult [symmetric], rule norm_triangle_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   354
  also have "norm (Ln (1 + -1/?k) - (-1/?k)) \<le> (norm (-1/?k))\<^sup>2 / (1 - norm(-1/?k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   355
    using k by (intro Ln_approx_linear) (simp add: norm_divide)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   356
  hence "?z * norm (ln (1-1/?k) + 1/?k) \<le> ?z * ((norm (1/?k))^2 / (1 - norm (1/?k)))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   357
    by (intro mult_left_mono) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   358
  also have "... \<le> (?z * (of_nat k / (of_nat k - 1))) / of_nat k^2" using k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   359
    by (simp add: field_simps power2_eq_square norm_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   360
  also have "... \<le> (?z * 2) / of_nat k^2" using k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   361
    by (intro divide_right_mono mult_left_mono) (simp_all add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   362
  also have "norm (ln (1+z/?k) - z/?k) \<le> norm (z/?k)^2 / (1 - norm (z/?k))" using k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   363
    by (intro Ln_approx_linear) (simp add: norm_divide)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   364
  hence "norm (ln (1+z/?k) - z/?k) \<le> ?z^2 / of_nat k^2 / (1 - ?z / of_nat k)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   365
    by (simp add: field_simps norm_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   366
  also have "... \<le> (?z^2 * (of_nat k / (of_nat k - ?z))) / of_nat k^2" using k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   367
    by (simp add: field_simps power2_eq_square)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   368
  also have "... \<le> (?z^2 * 2) / of_nat k^2" using k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   369
    by (intro divide_right_mono mult_left_mono) (simp_all add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   370
  also note add_divide_distrib [symmetric]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   371
  finally show ?thesis by (simp only: distrib_left mult.commute)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   372
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   373
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   374
lemma ln_Gamma_series_complex_converges:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   375
  assumes z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   376
  assumes d: "d > 0" "\<And>n. n \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> norm (z - of_int n) > d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   377
  shows "uniformly_convergent_on (ball z d) (\<lambda>n z. ln_Gamma_series z n :: complex)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   378
proof (intro Cauchy_uniformly_convergent uniformly_Cauchy_onI')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   379
  fix e :: real assume e: "e > 0"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   380
  define e'' where "e'' = (SUP t:ball z d. norm t + norm t^2)"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   381
  define e' where "e' = e / (2*e'')"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   382
  have "bounded ((\<lambda>t. norm t + norm t^2) ` cball z d)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   383
    by (intro compact_imp_bounded compact_continuous_image) (auto intro!: continuous_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   384
  hence "bounded ((\<lambda>t. norm t + norm t^2) ` ball z d)" by (rule bounded_subset) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   385
  hence bdd: "bdd_above ((\<lambda>t. norm t + norm t^2) ` ball z d)" by (rule bounded_imp_bdd_above)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   386
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   387
  with z d(1) d(2)[of "-1"] have e''_pos: "e'' > 0" unfolding e''_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   388
    by (subst less_cSUP_iff) (auto intro!: add_pos_nonneg bexI[of _ z])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   389
  have e'': "norm t + norm t^2 \<le> e''" if "t \<in> ball z d" for t unfolding e''_def using that
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   390
    by (rule cSUP_upper[OF _ bdd])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   391
  from e z e''_pos have e': "e' > 0" unfolding e'_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   392
    by (intro divide_pos_pos mult_pos_pos add_pos_pos) (simp_all add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   393
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   394
  have "summable (\<lambda>k. inverse ((real_of_nat k)^2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   395
    by (rule inverse_power_summable) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   396
  from summable_partial_sum_bound[OF this e'] guess M . note M = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   397
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   398
  define N where "N = max 2 (max (nat \<lceil>2 * (norm z + d)\<rceil>) M)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   399
  {
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   400
    from d have "\<lceil>2 * (cmod z + d)\<rceil> \<ge> \<lceil>0::real\<rceil>"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   401
      by (intro ceiling_mono mult_nonneg_nonneg add_nonneg_nonneg) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   402
    hence "2 * (norm z + d) \<le> of_nat (nat \<lceil>2 * (norm z + d)\<rceil>)" unfolding N_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   403
      by (simp_all add: le_of_int_ceiling)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   404
    also have "... \<le> of_nat N" unfolding N_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   405
      by (subst of_nat_le_iff) (rule max.coboundedI2, rule max.cobounded1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   406
    finally have "of_nat N \<ge> 2 * (norm z + d)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   407
    moreover have "N \<ge> 2" "N \<ge> M" unfolding N_def by simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   408
    moreover have "(\<Sum>k=m..n. 1/(of_nat k)\<^sup>2) < e'" if "m \<ge> N" for m n
62072
bf3d9f113474 isabelle update_cartouches -c -t;
wenzelm
parents: 62055
diff changeset
   409
      using M[OF order.trans[OF \<open>N \<ge> M\<close> that]] unfolding real_norm_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   410
      by (subst (asm) abs_of_nonneg) (auto intro: setsum_nonneg simp: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   411
    moreover note calculation
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   412
  } note N = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   413
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   414
  show "\<exists>M. \<forall>t\<in>ball z d. \<forall>m\<ge>M. \<forall>n>m. dist (ln_Gamma_series t m) (ln_Gamma_series t n) < e"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   415
    unfolding dist_complex_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   416
  proof (intro exI[of _ N] ballI allI impI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   417
    fix t m n assume t: "t \<in> ball z d" and mn: "m \<ge> N" "n > m"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   418
    from d(2)[of 0] t have "0 < dist z 0 - dist z t" by (simp add: field_simps dist_complex_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   419
    also have "dist z 0 - dist z t \<le> dist 0 t" using dist_triangle[of 0 z t]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   420
      by (simp add: dist_commute)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   421
    finally have t_nz: "t \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   422
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   423
    have "norm t \<le> norm z + norm (t - z)" by (rule norm_triangle_sub)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   424
    also from t have "norm (t - z) < d" by (simp add: dist_complex_def norm_minus_commute)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   425
    also have "2 * (norm z + d) \<le> of_nat N" by (rule N)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   426
    also have "N \<le> m" by (rule mn)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   427
    finally have norm_t: "2 * norm t < of_nat m" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   428
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   429
    have "ln_Gamma_series t m - ln_Gamma_series t n =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   430
              (-(t * Ln (of_nat n)) - (-(t * Ln (of_nat m)))) +
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   431
              ((\<Sum>k=1..n. Ln (t / of_nat k + 1)) - (\<Sum>k=1..m. Ln (t / of_nat k + 1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   432
      by (simp add: ln_Gamma_series_def algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   433
    also have "(\<Sum>k=1..n. Ln (t / of_nat k + 1)) - (\<Sum>k=1..m. Ln (t / of_nat k + 1)) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   434
                 (\<Sum>k\<in>{1..n}-{1..m}. Ln (t / of_nat k + 1))" using mn
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   435
      by (simp add: setsum_diff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   436
    also from mn have "{1..n}-{1..m} = {Suc m..n}" by fastforce
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   437
    also have "-(t * Ln (of_nat n)) - (-(t * Ln (of_nat m))) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   438
                   (\<Sum>k = Suc m..n. t * Ln (of_nat (k - 1)) - t * Ln (of_nat k))" using mn
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   439
      by (subst setsum_telescope'' [symmetric]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   440
    also have "... = (\<Sum>k = Suc m..n. t * Ln (of_nat (k - 1) / of_nat k))" using mn N
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   441
      by (intro setsum_cong_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   442
         (simp_all del: of_nat_Suc add: field_simps Ln_of_nat Ln_of_nat_over_of_nat)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   443
    also have "of_nat (k - 1) / of_nat k = 1 - 1 / (of_nat k :: complex)" if "k \<in> {Suc m..n}" for k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   444
      using that of_nat_eq_0_iff[of "Suc i" for i] by (cases k) (simp_all add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   445
    hence "(\<Sum>k = Suc m..n. t * Ln (of_nat (k - 1) / of_nat k)) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   446
             (\<Sum>k = Suc m..n. t * Ln (1 - 1 / of_nat k))" using mn N
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   447
      by (intro setsum.cong) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   448
    also note setsum.distrib [symmetric]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   449
    also have "norm (\<Sum>k=Suc m..n. t * Ln (1 - 1/of_nat k) + Ln (t/of_nat k + 1)) \<le>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   450
      (\<Sum>k=Suc m..n. 2 * (norm t + (norm t)\<^sup>2) / (real_of_nat k)\<^sup>2)" using t_nz N(2) mn norm_t
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   451
      by (intro order.trans[OF norm_setsum setsum_mono[OF ln_Gamma_series_complex_converges_aux]]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   452
    also have "... \<le> 2 * (norm t + norm t^2) * (\<Sum>k=Suc m..n. 1 / (of_nat k)\<^sup>2)"
63918
6bf55e6e0b75 left_distrib ~> distrib_right, right_distrib ~> distrib_left
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63725
diff changeset
   453
      by (simp add: setsum_distrib_left)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   454
    also have "... < 2 * (norm t + norm t^2) * e'" using mn z t_nz
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   455
      by (intro mult_strict_left_mono N mult_pos_pos add_pos_pos) simp_all
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   456
    also from e''_pos have "... = e * ((cmod t + (cmod t)\<^sup>2) / e'')"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   457
      by (simp add: e'_def field_simps power2_eq_square)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   458
    also from e''[OF t] e''_pos e
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   459
      have "\<dots> \<le> e * 1" by (intro mult_left_mono) (simp_all add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   460
    finally show "norm (ln_Gamma_series t m - ln_Gamma_series t n) < e" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   461
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   462
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   463
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   464
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   465
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   466
lemma ln_Gamma_series_complex_converges':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   467
  assumes z: "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   468
  shows "\<exists>d>0. uniformly_convergent_on (ball z d) (\<lambda>n z. ln_Gamma_series z n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   469
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   470
  define d' where "d' = Re z"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   471
  define d where "d = (if d' > 0 then d' / 2 else norm (z - of_int (round d')) / 2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   472
  have "of_int (round d') \<in> \<int>\<^sub>\<le>\<^sub>0" if "d' \<le> 0" using that
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   473
    by (intro nonpos_Ints_of_int) (simp_all add: round_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   474
  with assms have d_pos: "d > 0" unfolding d_def by (force simp: not_less)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   475
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   476
  have "d < cmod (z - of_int n)" if "n \<in> \<int>\<^sub>\<le>\<^sub>0" for n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   477
  proof (cases "Re z > 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   478
    case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   479
    from nonpos_Ints_nonpos[OF that] have n: "n \<le> 0" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   480
    from True have "d = Re z/2" by (simp add: d_def d'_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   481
    also from n True have "\<dots> < Re (z - of_int n)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   482
    also have "\<dots> \<le> norm (z - of_int n)" by (rule complex_Re_le_cmod)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   483
    finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   484
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   485
    case False
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   486
    with assms nonpos_Ints_of_int[of "round (Re z)"]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   487
      have "z \<noteq> of_int (round d')" by (auto simp: not_less)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   488
    with False have "d < norm (z - of_int (round d'))" by (simp add: d_def d'_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   489
    also have "\<dots> \<le> norm (z - of_int n)" unfolding d'_def by (rule round_Re_minimises_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   490
    finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   491
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   492
  hence conv: "uniformly_convergent_on (ball z d) (\<lambda>n z. ln_Gamma_series z n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   493
    by (intro ln_Gamma_series_complex_converges d_pos z) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   494
  from d_pos conv show ?thesis by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   495
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   496
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   497
lemma ln_Gamma_series_complex_converges'': "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> convergent (ln_Gamma_series z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   498
  by (drule ln_Gamma_series_complex_converges') (auto intro: uniformly_convergent_imp_convergent)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   499
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   500
lemma ln_Gamma_complex_LIMSEQ: "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> ln_Gamma_series z \<longlonglongrightarrow> ln_Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   501
  using ln_Gamma_series_complex_converges'' by (simp add: convergent_LIMSEQ_iff ln_Gamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   502
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   503
lemma exp_ln_Gamma_series_complex:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   504
  assumes "n > 0" "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   505
  shows   "exp (ln_Gamma_series z n :: complex) = Gamma_series z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   506
proof -
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   507
  from assms obtain m where m: "n = Suc m" by (cases n) blast
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   508
  from assms have "z \<noteq> 0" by (intro notI) auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   509
  with assms have "exp (ln_Gamma_series z n) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   510
          (of_nat n) powr z / (z * (\<Prod>k=1..n. exp (Ln (z / of_nat k + 1))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   511
    unfolding ln_Gamma_series_def powr_def by (simp add: exp_diff exp_setsum)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   512
  also from assms have "(\<Prod>k=1..n. exp (Ln (z / of_nat k + 1))) = (\<Prod>k=1..n. z / of_nat k + 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   513
    by (intro setprod.cong[OF refl], subst exp_Ln) (auto simp: field_simps plus_of_nat_eq_0_imp)
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   514
  also have "... = (\<Prod>k=1..n. z + k) / fact n"
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   515
    by (simp add: fact_setprod)
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   516
    (subst setprod_dividef [symmetric], simp_all add: field_simps)
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   517
  also from m have "z * ... = (\<Prod>k=0..n. z + k) / fact n"
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   518
    by (simp add: setprod.atLeast0_atMost_Suc_shift setprod.atLeast_Suc_atMost_Suc_shift)
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   519
  also have "(\<Prod>k=0..n. z + k) = pochhammer z (Suc n)"
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   520
    unfolding pochhammer_setprod
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
   521
    by (simp add: setprod.atLeast0_atMost_Suc atLeastLessThanSuc_atLeastAtMost)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   522
  also have "of_nat n powr z / (pochhammer z (Suc n) / fact n) = Gamma_series z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   523
    unfolding Gamma_series_def using assms by (simp add: divide_simps powr_def Ln_of_nat)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   524
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   525
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   526
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   527
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   528
lemma ln_Gamma_series'_aux:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   529
  assumes "(z::complex) \<notin> \<int>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   530
  shows   "(\<lambda>k. z / of_nat (Suc k) - ln (1 + z / of_nat (Suc k))) sums
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   531
              (ln_Gamma z + euler_mascheroni * z + ln z)" (is "?f sums ?s")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   532
unfolding sums_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   533
proof (rule Lim_transform)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   534
  show "(\<lambda>n. ln_Gamma_series z n + of_real (harm n - ln (of_nat n)) * z + ln z) \<longlonglongrightarrow> ?s"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   535
    (is "?g \<longlonglongrightarrow> _")
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   536
    by (intro tendsto_intros ln_Gamma_complex_LIMSEQ euler_mascheroni_LIMSEQ_of_real assms)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   537
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   538
  have A: "eventually (\<lambda>n. (\<Sum>k<n. ?f k) - ?g n = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   539
    using eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   540
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   541
    fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   542
    have "(\<Sum>k<n. ?f k) = (\<Sum>k=1..n. z / of_nat k - ln (1 + z / of_nat k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   543
      by (subst atLeast0LessThan [symmetric], subst setsum_shift_bounds_Suc_ivl [symmetric],
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   544
          subst atLeastLessThanSuc_atLeastAtMost) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   545
    also have "\<dots> = z * of_real (harm n) - (\<Sum>k=1..n. ln (1 + z / of_nat k))"
63918
6bf55e6e0b75 left_distrib ~> distrib_right, right_distrib ~> distrib_left
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63725
diff changeset
   546
      by (simp add: harm_def setsum_subtractf setsum_distrib_left divide_inverse)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   547
    also from n have "\<dots> - ?g n = 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   548
      by (simp add: ln_Gamma_series_def setsum_subtractf algebra_simps Ln_of_nat)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   549
    finally show "(\<Sum>k<n. ?f k) - ?g n = 0" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   550
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   551
  show "(\<lambda>n. (\<Sum>k<n. ?f k) - ?g n) \<longlonglongrightarrow> 0" by (subst tendsto_cong[OF A]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   552
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   553
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   554
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   555
lemma uniformly_summable_deriv_ln_Gamma:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   556
  assumes z: "(z :: 'a :: {real_normed_field,banach}) \<noteq> 0" and d: "d > 0" "d \<le> norm z/2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   557
  shows "uniformly_convergent_on (ball z d)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   558
            (\<lambda>k z. \<Sum>i<k. inverse (of_nat (Suc i)) - inverse (z + of_nat (Suc i)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   559
           (is "uniformly_convergent_on _ (\<lambda>k z. \<Sum>i<k. ?f i z)")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   560
proof (rule weierstrass_m_test'_ev)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   561
  {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   562
    fix t assume t: "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   563
    have "norm z = norm (t + (z - t))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   564
    have "norm (t + (z - t)) \<le> norm t + norm (z - t)" by (rule norm_triangle_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   565
    also from t d have "norm (z - t) < norm z / 2" by (simp add: dist_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   566
    finally have A: "norm t > norm z / 2" using z by (simp add: field_simps)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   567
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   568
    have "norm t = norm (z + (t - z))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   569
    also have "\<dots> \<le> norm z + norm (t - z)" by (rule norm_triangle_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   570
    also from t d have "norm (t - z) \<le> norm z / 2" by (simp add: dist_norm norm_minus_commute)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   571
    also from z have "\<dots> < norm z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   572
    finally have B: "norm t < 2 * norm z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   573
    note A B
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   574
  } note ball = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   575
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   576
  show "eventually (\<lambda>n. \<forall>t\<in>ball z d. norm (?f n t) \<le> 4 * norm z * inverse (of_nat (Suc n)^2)) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   577
    using eventually_gt_at_top apply eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   578
  proof safe
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   579
    fix t :: 'a assume t: "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   580
    from z ball[OF t] have t_nz: "t \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   581
    fix n :: nat assume n: "n > nat \<lceil>4 * norm z\<rceil>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   582
    from ball[OF t] t_nz have "4 * norm z > 2 * norm t" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   583
    also from n have "\<dots>  < of_nat n" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   584
    finally have n: "of_nat n > 2 * norm t" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   585
    hence "of_nat n > norm t" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   586
    hence t': "t \<noteq> -of_nat (Suc n)" by (intro notI) (simp del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   587
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   588
    with t_nz have "?f n t = 1 / (of_nat (Suc n) * (1 + of_nat (Suc n)/t))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   589
      by (simp add: divide_simps eq_neg_iff_add_eq_0 del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   590
    also have "norm \<dots> = inverse (of_nat (Suc n)) * inverse (norm (of_nat (Suc n)/t + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   591
      by (simp add: norm_divide norm_mult divide_simps add_ac del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   592
    also {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   593
      from z t_nz ball[OF t] have "of_nat (Suc n) / (4 * norm z) \<le> of_nat (Suc n) / (2 * norm t)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   594
        by (intro divide_left_mono mult_pos_pos) simp_all
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   595
      also have "\<dots> < norm (of_nat (Suc n) / t) - norm (1 :: 'a)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   596
        using t_nz n by (simp add: field_simps norm_divide del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   597
      also have "\<dots> \<le> norm (of_nat (Suc n)/t + 1)" by (rule norm_diff_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   598
      finally have "inverse (norm (of_nat (Suc n)/t + 1)) \<le> 4 * norm z / of_nat (Suc n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   599
        using z by (simp add: divide_simps norm_divide mult_ac del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   600
    }
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   601
    also have "inverse (real_of_nat (Suc n)) * (4 * norm z / real_of_nat (Suc n)) =
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   602
                 4 * norm z * inverse (of_nat (Suc n)^2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   603
                 by (simp add: divide_simps power2_eq_square del: of_nat_Suc)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   604
    finally show "norm (?f n t) \<le> 4 * norm z * inverse (of_nat (Suc n)^2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   605
      by (simp del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   606
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   607
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   608
  show "summable (\<lambda>n. 4 * norm z * inverse ((of_nat (Suc n))^2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   609
    by (subst summable_Suc_iff) (simp add: summable_mult inverse_power_summable)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   610
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   611
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   612
lemma summable_deriv_ln_Gamma:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   613
  "z \<noteq> (0 :: 'a :: {real_normed_field,banach}) \<Longrightarrow>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   614
     summable (\<lambda>n. inverse (of_nat (Suc n)) - inverse (z + of_nat (Suc n)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   615
  unfolding summable_iff_convergent
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   616
  by (rule uniformly_convergent_imp_convergent,
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   617
      rule uniformly_summable_deriv_ln_Gamma[of z "norm z/2"]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   618
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   619
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   620
definition Polygamma :: "nat \<Rightarrow> ('a :: {real_normed_field,banach}) \<Rightarrow> 'a" where
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   621
  "Polygamma n z = (if n = 0 then
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   622
      (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) - euler_mascheroni else
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   623
      (-1)^Suc n * fact n * (\<Sum>k. inverse ((z + of_nat k)^Suc n)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   624
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   625
abbreviation Digamma :: "('a :: {real_normed_field,banach}) \<Rightarrow> 'a" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   626
  "Digamma \<equiv> Polygamma 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   627
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   628
lemma Digamma_def:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   629
  "Digamma z = (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) - euler_mascheroni"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   630
  by (simp add: Polygamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   631
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   632
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   633
lemma summable_Digamma:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   634
  assumes "(z :: 'a :: {real_normed_field,banach}) \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   635
  shows   "summable (\<lambda>n. inverse (of_nat (Suc n)) - inverse (z + of_nat n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   636
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   637
  have sums: "(\<lambda>n. inverse (z + of_nat (Suc n)) - inverse (z + of_nat n)) sums
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   638
                       (0 - inverse (z + of_nat 0))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   639
    by (intro telescope_sums filterlim_compose[OF tendsto_inverse_0]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   640
              tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   641
  from summable_add[OF summable_deriv_ln_Gamma[OF assms] sums_summable[OF sums]]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   642
    show "summable (\<lambda>n. inverse (of_nat (Suc n)) - inverse (z + of_nat n))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   643
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   644
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   645
lemma summable_offset:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   646
  assumes "summable (\<lambda>n. f (n + k) :: 'a :: real_normed_vector)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   647
  shows   "summable f"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   648
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   649
  from assms have "convergent (\<lambda>m. \<Sum>n<m. f (n + k))" by (simp add: summable_iff_convergent)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   650
  hence "convergent (\<lambda>m. (\<Sum>n<k. f n) + (\<Sum>n<m. f (n + k)))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   651
    by (intro convergent_add convergent_const)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   652
  also have "(\<lambda>m. (\<Sum>n<k. f n) + (\<Sum>n<m. f (n + k))) = (\<lambda>m. \<Sum>n<m+k. f n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   653
  proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   654
    fix m :: nat
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   655
    have "{..<m+k} = {..<k} \<union> {k..<m+k}" by auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   656
    also have "(\<Sum>n\<in>\<dots>. f n) = (\<Sum>n<k. f n) + (\<Sum>n=k..<m+k. f n)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   657
      by (rule setsum.union_disjoint) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   658
    also have "(\<Sum>n=k..<m+k. f n) = (\<Sum>n=0..<m+k-k. f (n + k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   659
      by (intro setsum.reindex_cong[of "\<lambda>n. n + k"])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   660
         (simp, subst image_add_atLeastLessThan, auto)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   661
    finally show "(\<Sum>n<k. f n) + (\<Sum>n<m. f (n + k)) = (\<Sum>n<m+k. f n)" by (simp add: atLeast0LessThan)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   662
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   663
  finally have "(\<lambda>a. setsum f {..<a}) \<longlonglongrightarrow> lim (\<lambda>m. setsum f {..<m + k})"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   664
    by (auto simp: convergent_LIMSEQ_iff dest: LIMSEQ_offset)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   665
  thus ?thesis by (auto simp: summable_iff_convergent convergent_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   666
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   667
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   668
lemma Polygamma_converges:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   669
  fixes z :: "'a :: {real_normed_field,banach}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   670
  assumes z: "z \<noteq> 0" and n: "n \<ge> 2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   671
  shows "uniformly_convergent_on (ball z d) (\<lambda>k z. \<Sum>i<k. inverse ((z + of_nat i)^n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   672
proof (rule weierstrass_m_test'_ev)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   673
  define e where "e = (1 + d / norm z)"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   674
  define m where "m = nat \<lceil>norm z * e\<rceil>"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   675
  {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   676
    fix t assume t: "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   677
    have "norm t = norm (z + (t - z))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   678
    also have "\<dots> \<le> norm z + norm (t - z)" by (rule norm_triangle_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   679
    also from t have "norm (t - z) < d" by (simp add: dist_norm norm_minus_commute)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   680
    finally have "norm t < norm z * e" using z by (simp add: divide_simps e_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   681
  } note ball = this
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   682
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   683
  show "eventually (\<lambda>k. \<forall>t\<in>ball z d. norm (inverse ((t + of_nat k)^n)) \<le>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   684
            inverse (of_nat (k - m)^n)) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   685
    using eventually_gt_at_top[of m] apply eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   686
  proof (intro ballI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   687
    fix k :: nat and t :: 'a assume k: "k > m" and t: "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   688
    from k have "real_of_nat (k - m) = of_nat k - of_nat m" by (simp add: of_nat_diff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   689
    also have "\<dots> \<le> norm (of_nat k :: 'a) - norm z * e"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   690
      unfolding m_def by (subst norm_of_nat) linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   691
    also from ball[OF t] have "\<dots> \<le> norm (of_nat k :: 'a) - norm t" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   692
    also have "\<dots> \<le> norm (of_nat k + t)" by (rule norm_diff_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   693
    finally have "inverse ((norm (t + of_nat k))^n) \<le> inverse (real_of_nat (k - m)^n)" using k n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   694
      by (intro le_imp_inverse_le power_mono) (simp_all add: add_ac del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   695
    thus "norm (inverse ((t + of_nat k)^n)) \<le> inverse (of_nat (k - m)^n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   696
      by (simp add: norm_inverse norm_power power_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   697
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   698
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   699
  have "summable (\<lambda>k. inverse ((real_of_nat k)^n))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   700
    using inverse_power_summable[of n] n by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   701
  hence "summable (\<lambda>k. inverse ((real_of_nat (k + m - m))^n))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   702
  thus "summable (\<lambda>k. inverse ((real_of_nat (k - m))^n))" by (rule summable_offset)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   703
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   704
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   705
lemma Polygamma_converges':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   706
  fixes z :: "'a :: {real_normed_field,banach}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   707
  assumes z: "z \<noteq> 0" and n: "n \<ge> 2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   708
  shows "summable (\<lambda>k. inverse ((z + of_nat k)^n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   709
  using uniformly_convergent_imp_convergent[OF Polygamma_converges[OF assms, of 1], of z]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   710
  by (simp add: summable_iff_convergent)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   711
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   712
lemma Digamma_LIMSEQ:
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   713
  fixes z :: "'a :: {banach,real_normed_field}"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   714
  assumes z: "z \<noteq> 0"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   715
  shows   "(\<lambda>m. of_real (ln (real m)) - (\<Sum>n<m. inverse (z + of_nat n))) \<longlonglongrightarrow> Digamma z"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   716
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   717
  have "(\<lambda>n. of_real (ln (real n / (real (Suc n))))) \<longlonglongrightarrow> (of_real (ln 1) :: 'a)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   718
    by (intro tendsto_intros LIMSEQ_n_over_Suc_n) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   719
  hence "(\<lambda>n. of_real (ln (real n / (real n + 1)))) \<longlonglongrightarrow> (0 :: 'a)" by (simp add: add_ac)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   720
  hence lim: "(\<lambda>n. of_real (ln (real n)) - of_real (ln (real n + 1))) \<longlonglongrightarrow> (0::'a)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   721
  proof (rule Lim_transform_eventually [rotated])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   722
    show "eventually (\<lambda>n. of_real (ln (real n / (real n + 1))) = 
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   723
            of_real (ln (real n)) - (of_real (ln (real n + 1)) :: 'a)) at_top"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   724
      using eventually_gt_at_top[of "0::nat"] by eventually_elim (simp add: ln_div)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   725
  qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   726
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   727
  from summable_Digamma[OF z]
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   728
    have "(\<lambda>n. inverse (of_nat (n+1)) - inverse (z + of_nat n)) 
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   729
              sums (Digamma z + euler_mascheroni)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   730
    by (simp add: Digamma_def summable_sums)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   731
  from sums_diff[OF this euler_mascheroni_sum]
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   732
    have "(\<lambda>n. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n + 1)) - inverse (z + of_nat n))
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   733
            sums Digamma z" by (simp add: add_ac)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   734
  hence "(\<lambda>m. (\<Sum>n<m. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n + 1))) - 
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   735
              (\<Sum>n<m. inverse (z + of_nat n))) \<longlonglongrightarrow> Digamma z"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   736
    by (simp add: sums_def setsum_subtractf)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   737
  also have "(\<lambda>m. (\<Sum>n<m. of_real (ln (real (Suc n) + 1)) - of_real (ln (real n + 1)))) = 
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   738
                 (\<lambda>m. of_real (ln (m + 1)) :: 'a)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   739
    by (subst setsum_lessThan_telescope) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   740
  finally show ?thesis by (rule Lim_transform) (insert lim, simp)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   741
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
   742
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   743
lemma has_field_derivative_ln_Gamma_complex [derivative_intros]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   744
  fixes z :: complex
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   745
  assumes z: "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   746
  shows   "(ln_Gamma has_field_derivative Digamma z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   747
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   748
  have not_nonpos_Int [simp]: "t \<notin> \<int>\<^sub>\<le>\<^sub>0" if "Re t > 0" for t
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   749
    using that by (auto elim!: nonpos_Ints_cases')
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   750
  from z have z': "z \<notin> \<int>\<^sub>\<le>\<^sub>0" and z'': "z \<noteq> 0" using nonpos_Ints_subset_nonpos_Reals nonpos_Reals_zero_I
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   751
     by blast+
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   752
  let ?f' = "\<lambda>z k. inverse (of_nat (Suc k)) - inverse (z + of_nat (Suc k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   753
  let ?f = "\<lambda>z k. z / of_nat (Suc k) - ln (1 + z / of_nat (Suc k))" and ?F' = "\<lambda>z. \<Sum>n. ?f' z n"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   754
  define d where "d = min (norm z/2) (if Im z = 0 then Re z / 2 else abs (Im z) / 2)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   755
  from z have d: "d > 0" "norm z/2 \<ge> d" by (auto simp add: complex_nonpos_Reals_iff d_def)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   756
  have ball: "Im t = 0 \<longrightarrow> Re t > 0" if "dist z t < d" for t
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   757
    using no_nonpos_Real_in_ball[OF z, of t] that unfolding d_def by (force simp add: complex_nonpos_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   758
  have sums: "(\<lambda>n. inverse (z + of_nat (Suc n)) - inverse (z + of_nat n)) sums
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   759
                       (0 - inverse (z + of_nat 0))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   760
    by (intro telescope_sums filterlim_compose[OF tendsto_inverse_0]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   761
              tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   762
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   763
  have "((\<lambda>z. \<Sum>n. ?f z n) has_field_derivative ?F' z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   764
    using d z ln_Gamma_series'_aux[OF z']
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   765
    apply (intro has_field_derivative_series'(2)[of "ball z d" _ _ z] uniformly_summable_deriv_ln_Gamma)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   766
    apply (auto intro!: derivative_eq_intros add_pos_pos mult_pos_pos dest!: ball
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   767
             simp: field_simps sums_iff nonpos_Reals_divide_of_nat_iff
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   768
             simp del: of_nat_Suc)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   769
    apply (auto simp add: complex_nonpos_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   770
    done
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   771
  with z have "((\<lambda>z. (\<Sum>k. ?f z k) - euler_mascheroni * z - Ln z) has_field_derivative
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   772
                   ?F' z - euler_mascheroni - inverse z) (at z)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   773
    by (force intro!: derivative_eq_intros simp: Digamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   774
  also have "?F' z - euler_mascheroni - inverse z = (?F' z + -inverse z) - euler_mascheroni" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   775
  also from sums have "-inverse z = (\<Sum>n. inverse (z + of_nat (Suc n)) - inverse (z + of_nat n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   776
    by (simp add: sums_iff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   777
  also from sums summable_deriv_ln_Gamma[OF z'']
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   778
    have "?F' z + \<dots> =  (\<Sum>n. inverse (of_nat (Suc n)) - inverse (z + of_nat n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   779
    by (subst suminf_add) (simp_all add: add_ac sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   780
  also have "\<dots> - euler_mascheroni = Digamma z" by (simp add: Digamma_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   781
  finally have "((\<lambda>z. (\<Sum>k. ?f z k) - euler_mascheroni * z - Ln z)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   782
                    has_field_derivative Digamma z) (at z)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   783
  moreover from eventually_nhds_ball[OF d(1), of z]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   784
    have "eventually (\<lambda>z. ln_Gamma z = (\<Sum>k. ?f z k) - euler_mascheroni * z - Ln z) (nhds z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   785
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   786
    fix t assume "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   787
    hence "t \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto dest!: ball elim!: nonpos_Ints_cases)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   788
    from ln_Gamma_series'_aux[OF this]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   789
      show "ln_Gamma t = (\<Sum>k. ?f t k) - euler_mascheroni * t - Ln t" by (simp add: sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   790
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   791
  ultimately show ?thesis by (subst DERIV_cong_ev[OF refl _ refl])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   792
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   793
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   794
declare has_field_derivative_ln_Gamma_complex[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   795
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   796
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   797
lemma Digamma_1 [simp]: "Digamma (1 :: 'a :: {real_normed_field,banach}) = - euler_mascheroni"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   798
  by (simp add: Digamma_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   799
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   800
lemma Digamma_plus1:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   801
  assumes "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   802
  shows   "Digamma (z+1) = Digamma z + 1/z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   803
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   804
  have sums: "(\<lambda>k. inverse (z + of_nat k) - inverse (z + of_nat (Suc k)))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   805
                  sums (inverse (z + of_nat 0) - 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   806
    by (intro telescope_sums'[OF filterlim_compose[OF tendsto_inverse_0]]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   807
              tendsto_add_filterlim_at_infinity[OF tendsto_const] tendsto_of_nat)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   808
  have "Digamma (z+1) = (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat (Suc k))) -
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   809
          euler_mascheroni" (is "_ = suminf ?f - _") by (simp add: Digamma_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   810
  also have "suminf ?f = (\<Sum>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k)) +
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   811
                         (\<Sum>k. inverse (z + of_nat k) - inverse (z + of_nat (Suc k)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   812
    using summable_Digamma[OF assms] sums by (subst suminf_add) (simp_all add: add_ac sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   813
  also have "(\<Sum>k. inverse (z + of_nat k) - inverse (z + of_nat (Suc k))) = 1/z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   814
    using sums by (simp add: sums_iff inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   815
  finally show ?thesis by (simp add: Digamma_def[of z])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   816
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   817
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   818
lemma Polygamma_plus1:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   819
  assumes "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   820
  shows   "Polygamma n (z + 1) = Polygamma n z + (-1)^n * fact n / (z ^ Suc n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   821
proof (cases "n = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   822
  assume n: "n \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   823
  let ?f = "\<lambda>k. inverse ((z + of_nat k) ^ Suc n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   824
  have "Polygamma n (z + 1) = (-1) ^ Suc n * fact n * (\<Sum>k. ?f (k+1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   825
    using n by (simp add: Polygamma_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   826
  also have "(\<Sum>k. ?f (k+1)) + (\<Sum>k<1. ?f k) = (\<Sum>k. ?f k)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   827
    using Polygamma_converges'[OF assms, of "Suc n"] n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   828
    by (subst suminf_split_initial_segment [symmetric]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   829
  hence "(\<Sum>k. ?f (k+1)) = (\<Sum>k. ?f k) - inverse (z ^ Suc n)" by (simp add: algebra_simps)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   830
  also have "(-1) ^ Suc n * fact n * ((\<Sum>k. ?f k) - inverse (z ^ Suc n)) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   831
               Polygamma n z + (-1)^n * fact n / (z ^ Suc n)" using n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   832
    by (simp add: inverse_eq_divide algebra_simps Polygamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   833
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   834
qed (insert assms, simp add: Digamma_plus1 inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   835
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   836
lemma Digamma_of_nat:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   837
  "Digamma (of_nat (Suc n) :: 'a :: {real_normed_field,banach}) = harm n - euler_mascheroni"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   838
proof (induction n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   839
  case (Suc n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   840
  have "Digamma (of_nat (Suc (Suc n)) :: 'a) = Digamma (of_nat (Suc n) + 1)" by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   841
  also have "\<dots> = Digamma (of_nat (Suc n)) + inverse (of_nat (Suc n))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   842
    by (subst Digamma_plus1) (simp_all add: inverse_eq_divide del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   843
  also have "Digamma (of_nat (Suc n) :: 'a) = harm n - euler_mascheroni " by (rule Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   844
  also have "\<dots> + inverse (of_nat (Suc n)) = harm (Suc n) - euler_mascheroni"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   845
    by (simp add: harm_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   846
  finally show ?case .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   847
qed (simp add: harm_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   848
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   849
lemma Digamma_numeral: "Digamma (numeral n) = harm (pred_numeral n) - euler_mascheroni"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   850
  by (subst of_nat_numeral[symmetric], subst numeral_eq_Suc, subst Digamma_of_nat) (rule refl)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   851
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   852
lemma Polygamma_of_real: "x \<noteq> 0 \<Longrightarrow> Polygamma n (of_real x) = of_real (Polygamma n x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   853
  unfolding Polygamma_def using summable_Digamma[of x] Polygamma_converges'[of x "Suc n"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   854
  by (simp_all add: suminf_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   855
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   856
lemma Polygamma_Real: "z \<in> \<real> \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> Polygamma n z \<in> \<real>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   857
  by (elim Reals_cases, hypsubst, subst Polygamma_of_real) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   858
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   859
lemma Digamma_half_integer:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   860
  "Digamma (of_nat n + 1/2 :: 'a :: {real_normed_field,banach}) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   861
      (\<Sum>k<n. 2 / (of_nat (2*k+1))) - euler_mascheroni - of_real (2 * ln 2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   862
proof (induction n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   863
  case 0
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   864
  have "Digamma (1/2 :: 'a) = of_real (Digamma (1/2))" by (simp add: Polygamma_of_real [symmetric])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   865
  also have "Digamma (1/2::real) =
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   866
               (\<Sum>k. inverse (of_nat (Suc k)) - inverse (of_nat k + 1/2)) - euler_mascheroni"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   867
    by (simp add: Digamma_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   868
  also have "(\<Sum>k. inverse (of_nat (Suc k) :: real) - inverse (of_nat k + 1/2)) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   869
             (\<Sum>k. inverse (1/2) * (inverse (2 * of_nat (Suc k)) - inverse (2 * of_nat k + 1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   870
    by (simp_all add: add_ac inverse_mult_distrib[symmetric] ring_distribs del: inverse_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   871
  also have "\<dots> = - 2 * ln 2" using sums_minus[OF alternating_harmonic_series_sums']
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   872
    by (subst suminf_mult) (simp_all add: algebra_simps sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   873
  finally show ?case by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   874
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   875
  case (Suc n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   876
  have nz: "2 * of_nat n + (1:: 'a) \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   877
     using of_nat_neq_0[of "2*n"] by (simp only: of_nat_Suc) (simp add: add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   878
  hence nz': "of_nat n + (1/2::'a) \<noteq> 0" by (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   879
  have "Digamma (of_nat (Suc n) + 1/2 :: 'a) = Digamma (of_nat n + 1/2 + 1)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   880
  also from nz' have "\<dots> = Digamma (of_nat n + 1 / 2) + 1 / (of_nat n + 1 / 2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   881
    by (rule Digamma_plus1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   882
  also from nz nz' have "1 / (of_nat n + 1 / 2 :: 'a) = 2 / (2 * of_nat n + 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   883
    by (subst divide_eq_eq) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   884
  also note Suc
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   885
  finally show ?case by (simp add: add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   886
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   887
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   888
lemma Digamma_one_half: "Digamma (1/2) = - euler_mascheroni - of_real (2 * ln 2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   889
  using Digamma_half_integer[of 0] by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   890
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   891
lemma Digamma_real_three_halves_pos: "Digamma (3/2 :: real) > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   892
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   893
  have "-Digamma (3/2 :: real) = -Digamma (of_nat 1 + 1/2)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   894
  also have "\<dots> = 2 * ln 2 + euler_mascheroni - 2" by (subst Digamma_half_integer) simp
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
   895
  also note euler_mascheroni_less_13_over_22
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
   896
  also note ln2_le_25_over_36
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   897
  finally show ?thesis by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   898
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   899
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   900
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   901
lemma has_field_derivative_Polygamma [derivative_intros]:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   902
  fixes z :: "'a :: {real_normed_field,euclidean_space}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   903
  assumes z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   904
  shows "(Polygamma n has_field_derivative Polygamma (Suc n) z) (at z within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   905
proof (rule has_field_derivative_at_within, cases "n = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   906
  assume n: "n = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   907
  let ?f = "\<lambda>k z. inverse (of_nat (Suc k)) - inverse (z + of_nat k)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   908
  let ?F = "\<lambda>z. \<Sum>k. ?f k z" and ?f' = "\<lambda>k z. inverse ((z + of_nat k)\<^sup>2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   909
  from no_nonpos_Int_in_ball'[OF z] guess d . note d = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   910
  from z have summable: "summable (\<lambda>k. inverse (of_nat (Suc k)) - inverse (z + of_nat k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   911
    by (intro summable_Digamma) force
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   912
  from z have conv: "uniformly_convergent_on (ball z d) (\<lambda>k z. \<Sum>i<k. inverse ((z + of_nat i)\<^sup>2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   913
    by (intro Polygamma_converges) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   914
  with d have "summable (\<lambda>k. inverse ((z + of_nat k)\<^sup>2))" unfolding summable_iff_convergent
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   915
    by (auto dest!: uniformly_convergent_imp_convergent simp: summable_iff_convergent )
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   916
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   917
  have "(?F has_field_derivative (\<Sum>k. ?f' k z)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   918
  proof (rule has_field_derivative_series'[of "ball z d" _ _ z])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   919
    fix k :: nat and t :: 'a assume t: "t \<in> ball z d"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   920
    from t d(2)[of t] show "((\<lambda>z. ?f k z) has_field_derivative ?f' k t) (at t within ball z d)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   921
      by (auto intro!: derivative_eq_intros simp: power2_eq_square simp del: of_nat_Suc
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   922
               dest!: plus_of_nat_eq_0_imp elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   923
  qed (insert d(1) summable conv, (assumption|simp)+)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   924
  with z show "(Polygamma n has_field_derivative Polygamma (Suc n) z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   925
    unfolding Digamma_def [abs_def] Polygamma_def [abs_def] using n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   926
    by (force simp: power2_eq_square intro!: derivative_eq_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   927
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   928
  assume n: "n \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   929
  from z have z': "z \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   930
  from no_nonpos_Int_in_ball'[OF z] guess d . note d = this
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
   931
  define n' where "n' = Suc n"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   932
  from n have n': "n' \<ge> 2" by (simp add: n'_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   933
  have "((\<lambda>z. \<Sum>k. inverse ((z + of_nat k) ^ n')) has_field_derivative
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   934
                (\<Sum>k. - of_nat n' * inverse ((z + of_nat k) ^ (n'+1)))) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   935
  proof (rule has_field_derivative_series'[of "ball z d" _ _ z])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   936
    fix k :: nat and t :: 'a assume t: "t \<in> ball z d"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   937
    with d have t': "t \<notin> \<int>\<^sub>\<le>\<^sub>0" "t \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   938
    show "((\<lambda>a. inverse ((a + of_nat k) ^ n')) has_field_derivative
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   939
                - of_nat n' * inverse ((t + of_nat k) ^ (n'+1))) (at t within ball z d)" using t'
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   940
      by (fastforce intro!: derivative_eq_intros simp: divide_simps power_diff dest: plus_of_nat_eq_0_imp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   941
  next
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   942
    have "uniformly_convergent_on (ball z d)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   943
              (\<lambda>k z. (- of_nat n' :: 'a) * (\<Sum>i<k. inverse ((z + of_nat i) ^ (n'+1))))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   944
      using z' n by (intro uniformly_convergent_mult Polygamma_converges) (simp_all add: n'_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   945
    thus "uniformly_convergent_on (ball z d)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   946
              (\<lambda>k z. \<Sum>i<k. - of_nat n' * inverse ((z + of_nat i :: 'a) ^ (n'+1)))"
63918
6bf55e6e0b75 left_distrib ~> distrib_right, right_distrib ~> distrib_left
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63725
diff changeset
   947
      by (subst (asm) setsum_distrib_left) simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   948
  qed (insert Polygamma_converges'[OF z' n'] d, simp_all)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   949
  also have "(\<Sum>k. - of_nat n' * inverse ((z + of_nat k) ^ (n' + 1))) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   950
               (- of_nat n') * (\<Sum>k. inverse ((z + of_nat k) ^ (n' + 1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   951
    using Polygamma_converges'[OF z', of "n'+1"] n' by (subst suminf_mult) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   952
  finally have "((\<lambda>z. \<Sum>k. inverse ((z + of_nat k) ^ n')) has_field_derivative
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   953
                    - of_nat n' * (\<Sum>k. inverse ((z + of_nat k) ^ (n' + 1)))) (at z)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   954
  from DERIV_cmult[OF this, of "(-1)^Suc n * fact n :: 'a"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   955
    show "(Polygamma n has_field_derivative Polygamma (Suc n) z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   956
    unfolding n'_def Polygamma_def[abs_def] using n by (simp add: algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   957
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   958
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   959
declare has_field_derivative_Polygamma[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   960
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   961
lemma isCont_Polygamma [continuous_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   962
  fixes f :: "_ \<Rightarrow> 'a :: {real_normed_field,euclidean_space}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   963
  shows "isCont f z \<Longrightarrow> f z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> isCont (\<lambda>x. Polygamma n (f x)) z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   964
  by (rule isCont_o2[OF _  DERIV_isCont[OF has_field_derivative_Polygamma]])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   965
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   966
lemma continuous_on_Polygamma:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   967
  "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> continuous_on A (Polygamma n :: _ \<Rightarrow> 'a :: {real_normed_field,euclidean_space})"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   968
  by (intro continuous_at_imp_continuous_on isCont_Polygamma[OF continuous_ident] ballI) blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   969
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   970
lemma isCont_ln_Gamma_complex [continuous_intros]:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   971
  fixes f :: "'a::t2_space \<Rightarrow> complex"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   972
  shows "isCont f z \<Longrightarrow> f z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> isCont (\<lambda>z. ln_Gamma (f z)) z"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   973
  by (rule isCont_o2[OF _  DERIV_isCont[OF has_field_derivative_ln_Gamma_complex]])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   974
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   975
lemma continuous_on_ln_Gamma_complex [continuous_intros]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   976
  fixes A :: "complex set"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   977
  shows "A \<inter> \<real>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> continuous_on A ln_Gamma"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   978
  by (intro continuous_at_imp_continuous_on ballI isCont_ln_Gamma_complex[OF continuous_ident])
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   979
     fastforce
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   980
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   981
text \<open>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   982
  We define a type class that captures all the fundamental properties of the inverse of the Gamma function
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   983
  and defines the Gamma function upon that. This allows us to instantiate the type class both for
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   984
  the reals and for the complex numbers with a minimal amount of proof duplication.
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   985
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   986
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   987
class Gamma = real_normed_field + complete_space +
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   988
  fixes rGamma :: "'a \<Rightarrow> 'a"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   989
  assumes rGamma_eq_zero_iff_aux: "rGamma z = 0 \<longleftrightarrow> (\<exists>n. z = - of_nat n)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   990
  assumes differentiable_rGamma_aux1:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   991
    "(\<And>n. z \<noteq> - of_nat n) \<Longrightarrow>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   992
     let d = (THE d. (\<lambda>n. \<Sum>k<n. inverse (of_nat (Suc k)) - inverse (z + of_nat k))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   993
               \<longlonglongrightarrow> d) - scaleR euler_mascheroni 1
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   994
     in  filterlim (\<lambda>y. (rGamma y - rGamma z + rGamma z * d * (y - z)) /\<^sub>R
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   995
                        norm (y - z)) (nhds 0) (at z)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   996
  assumes differentiable_rGamma_aux2:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   997
    "let z = - of_nat n
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
   998
     in  filterlim (\<lambda>y. (rGamma y - rGamma z - (-1)^n * (setprod of_nat {1..n}) * (y - z)) /\<^sub>R
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
   999
                        norm (y - z)) (nhds 0) (at z)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1000
  assumes rGamma_series_aux: "(\<And>n. z \<noteq> - of_nat n) \<Longrightarrow>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1001
             let fact' = (\<lambda>n. setprod of_nat {1..n});
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1002
                 exp = (\<lambda>x. THE e. (\<lambda>n. \<Sum>k<n. x^k /\<^sub>R fact k) \<longlonglongrightarrow> e);
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1003
                 pochhammer' = (\<lambda>a n. (\<Prod>n = 0..n. a + of_nat n))
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1004
             in  filterlim (\<lambda>n. pochhammer' z n / (fact' n * exp (z * (ln (of_nat n) *\<^sub>R 1))))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1005
                     (nhds (rGamma z)) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1006
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1007
subclass banach ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1008
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1009
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1010
definition "Gamma z = inverse (rGamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1011
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1012
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1013
subsection \<open>Basic properties\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1014
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1015
lemma Gamma_nonpos_Int: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma z = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1016
  and rGamma_nonpos_Int: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> rGamma z = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1017
  using rGamma_eq_zero_iff_aux[of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1018
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1019
lemma Gamma_nonzero: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1020
  and rGamma_nonzero: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> rGamma z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1021
  using rGamma_eq_zero_iff_aux[of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1022
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1023
lemma Gamma_eq_zero_iff: "Gamma z = 0 \<longleftrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1024
  and rGamma_eq_zero_iff: "rGamma z = 0 \<longleftrightarrow> z \<in> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1025
  using rGamma_eq_zero_iff_aux[of z] unfolding Gamma_def by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1026
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1027
lemma rGamma_inverse_Gamma: "rGamma z = inverse (Gamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1028
  unfolding Gamma_def by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1029
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1030
lemma rGamma_series_LIMSEQ [tendsto_intros]:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1031
  "rGamma_series z \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1032
proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1033
  case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1034
  hence "z \<noteq> - of_nat n" for n by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1035
  from rGamma_series_aux[OF this] show ?thesis
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
  1036
    by (simp add: rGamma_series_def[abs_def] fact_setprod pochhammer_Suc_setprod
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63317
diff changeset
  1037
                  exp_def of_real_def[symmetric] suminf_def sums_def[abs_def] atLeast0AtMost)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1038
qed (insert rGamma_eq_zero_iff[of z], simp_all add: rGamma_series_nonpos_Ints_LIMSEQ)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1039
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1040
lemma Gamma_series_LIMSEQ [tendsto_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1041
  "Gamma_series z \<longlonglongrightarrow> Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1042
proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1043
  case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1044
  hence "(\<lambda>n. inverse (rGamma_series z n)) \<longlonglongrightarrow> inverse (rGamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1045
    by (intro tendsto_intros) (simp_all add: rGamma_eq_zero_iff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1046
  also have "(\<lambda>n. inverse (rGamma_series z n)) = Gamma_series z"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1047
    by (simp add: rGamma_series_def Gamma_series_def[abs_def])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1048
  finally show ?thesis by (simp add: Gamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1049
qed (insert Gamma_eq_zero_iff[of z], simp_all add: Gamma_series_nonpos_Ints_LIMSEQ)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1050
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1051
lemma Gamma_altdef: "Gamma z = lim (Gamma_series z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1052
  using Gamma_series_LIMSEQ[of z] by (simp add: limI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1053
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1054
lemma rGamma_1 [simp]: "rGamma 1 = 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1055
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1056
  have A: "eventually (\<lambda>n. rGamma_series 1 n = of_nat (Suc n) / of_nat n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1057
    using eventually_gt_at_top[of "0::nat"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1058
    by (force elim!: eventually_mono simp: rGamma_series_def exp_of_real pochhammer_fact
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1059
                    divide_simps pochhammer_rec' dest!: pochhammer_eq_0_imp_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1060
  have "rGamma_series 1 \<longlonglongrightarrow> 1" by (subst tendsto_cong[OF A]) (rule LIMSEQ_Suc_n_over_n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1061
  moreover have "rGamma_series 1 \<longlonglongrightarrow> rGamma 1" by (rule tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1062
  ultimately show ?thesis by (intro LIMSEQ_unique)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1063
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1064
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1065
lemma rGamma_plus1: "z * rGamma (z + 1) = rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1066
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1067
  let ?f = "\<lambda>n. (z + 1) * inverse (of_nat n) + 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1068
  have "eventually (\<lambda>n. ?f n * rGamma_series z n = z * rGamma_series (z + 1) n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1069
    using eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1070
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1071
    fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1072
    hence "z * rGamma_series (z + 1) n = inverse (of_nat n) *
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1073
             pochhammer z (Suc (Suc n)) / (fact n * exp (z * of_real (ln (of_nat n))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1074
      by (subst pochhammer_rec) (simp add: rGamma_series_def field_simps exp_add exp_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1075
    also from n have "\<dots> = ?f n * rGamma_series z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1076
      by (subst pochhammer_rec') (simp_all add: divide_simps rGamma_series_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1077
    finally show "?f n * rGamma_series z n = z * rGamma_series (z + 1) n" ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1078
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1079
  moreover have "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> ((z+1) * 0 + 1) * rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1080
    by (intro tendsto_intros lim_inverse_n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1081
  hence "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> rGamma z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1082
  ultimately have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1083
    by (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1084
  moreover have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> z * rGamma (z + 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1085
    by (intro tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1086
  ultimately show "z * rGamma (z + 1) = rGamma z" using LIMSEQ_unique by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1087
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1088
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1089
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1090
lemma pochhammer_rGamma: "rGamma z = pochhammer z n * rGamma (z + of_nat n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1091
proof (induction n arbitrary: z)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1092
  case (Suc n z)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1093
  have "rGamma z = pochhammer z n * rGamma (z + of_nat n)" by (rule Suc.IH)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1094
  also note rGamma_plus1 [symmetric]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1095
  finally show ?case by (simp add: add_ac pochhammer_rec')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1096
qed simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1097
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1098
lemma Gamma_plus1: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma (z + 1) = z * Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1099
  using rGamma_plus1[of z] by (simp add: rGamma_inverse_Gamma field_simps Gamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1100
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1101
lemma pochhammer_Gamma: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> pochhammer z n = Gamma (z + of_nat n) / Gamma z"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1102
  using pochhammer_rGamma[of z]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1103
  by (simp add: rGamma_inverse_Gamma Gamma_eq_zero_iff field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1104
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1105
lemma Gamma_0 [simp]: "Gamma 0 = 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1106
  and rGamma_0 [simp]: "rGamma 0 = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1107
  and Gamma_neg_1 [simp]: "Gamma (- 1) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1108
  and rGamma_neg_1 [simp]: "rGamma (- 1) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1109
  and Gamma_neg_numeral [simp]: "Gamma (- numeral n) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1110
  and rGamma_neg_numeral [simp]: "rGamma (- numeral n) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1111
  and Gamma_neg_of_nat [simp]: "Gamma (- of_nat m) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1112
  and rGamma_neg_of_nat [simp]: "rGamma (- of_nat m) = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1113
  by (simp_all add: rGamma_eq_zero_iff Gamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1114
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1115
lemma Gamma_1 [simp]: "Gamma 1 = 1" unfolding Gamma_def by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1116
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1117
lemma Gamma_fact: "Gamma (1 + of_nat n) = fact n"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  1118
  by (simp add: pochhammer_fact pochhammer_Gamma of_nat_in_nonpos_Ints_iff
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1119
        of_nat_Suc [symmetric] del: of_nat_Suc)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1120
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1121
lemma Gamma_numeral: "Gamma (numeral n) = fact (pred_numeral n)"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  1122
  by (subst of_nat_numeral[symmetric], subst numeral_eq_Suc,
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1123
      subst of_nat_Suc, subst Gamma_fact) (rule refl)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1124
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1125
lemma Gamma_of_int: "Gamma (of_int n) = (if n > 0 then fact (nat (n - 1)) else 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1126
proof (cases "n > 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1127
  case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1128
  hence "Gamma (of_int n) = Gamma (of_nat (Suc (nat (n - 1))))" by (subst of_nat_Suc) simp_all
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1129
  with True show ?thesis by (subst (asm) of_nat_Suc, subst (asm) Gamma_fact) simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1130
qed (simp_all add: Gamma_eq_zero_iff nonpos_Ints_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1131
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1132
lemma rGamma_of_int: "rGamma (of_int n) = (if n > 0 then inverse (fact (nat (n - 1))) else 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1133
  by (simp add: Gamma_of_int rGamma_inverse_Gamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1134
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1135
lemma Gamma_seriesI:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1136
  assumes "(\<lambda>n. g n / Gamma_series z n) \<longlonglongrightarrow> 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1137
  shows   "g \<longlonglongrightarrow> Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1138
proof (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1139
  have "1/2 > (0::real)" by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1140
  from tendstoD[OF assms, OF this]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1141
    show "eventually (\<lambda>n. g n / Gamma_series z n * Gamma_series z n = g n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1142
    by (force elim!: eventually_mono simp: dist_real_def dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1143
  from assms have "(\<lambda>n. g n / Gamma_series z n * Gamma_series z n) \<longlonglongrightarrow> 1 * Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1144
    by (intro tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1145
  thus "(\<lambda>n. g n / Gamma_series z n * Gamma_series z n) \<longlonglongrightarrow> Gamma z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1146
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1147
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1148
lemma Gamma_seriesI':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1149
  assumes "f \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1150
  assumes "(\<lambda>n. g n * f n) \<longlonglongrightarrow> 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1151
  assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1152
  shows   "g \<longlonglongrightarrow> Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1153
proof (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1154
  have "1/2 > (0::real)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1155
  from tendstoD[OF assms(2), OF this] show "eventually (\<lambda>n. g n * f n / f n = g n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1156
    by (force elim!: eventually_mono simp: dist_real_def dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1157
  from assms have "(\<lambda>n. g n * f n / f n) \<longlonglongrightarrow> 1 / rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1158
    by (intro tendsto_divide assms) (simp_all add: rGamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1159
  thus "(\<lambda>n. g n * f n / f n) \<longlonglongrightarrow> Gamma z" by (simp add: Gamma_def divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1160
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1161
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1162
lemma Gamma_series'_LIMSEQ: "Gamma_series' z \<longlonglongrightarrow> Gamma z"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1163
  by (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0") (simp_all add: Gamma_nonpos_Int Gamma_seriesI[OF Gamma_series_Gamma_series']
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1164
                                      Gamma_series'_nonpos_Ints_LIMSEQ[of z])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1165
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1166
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1167
subsection \<open>Differentiability\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1168
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1169
lemma has_field_derivative_rGamma_no_nonpos_int:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1170
  assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1171
  shows   "(rGamma has_field_derivative -rGamma z * Digamma z) (at z within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1172
proof (rule has_field_derivative_at_within)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1173
  from assms have "z \<noteq> - of_nat n" for n by auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1174
  from differentiable_rGamma_aux1[OF this]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1175
    show "(rGamma has_field_derivative -rGamma z * Digamma z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1176
         unfolding Digamma_def suminf_def sums_def[abs_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1177
                   has_field_derivative_def has_derivative_def netlimit_at
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1178
    by (simp add: Let_def bounded_linear_mult_right mult_ac of_real_def [symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1179
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1180
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1181
lemma has_field_derivative_rGamma_nonpos_int:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1182
  "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat n) within A)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1183
  apply (rule has_field_derivative_at_within)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1184
  using differentiable_rGamma_aux2[of n]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1185
  unfolding Let_def has_field_derivative_def has_derivative_def netlimit_at
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
  1186
  by (simp only: bounded_linear_mult_right mult_ac of_real_def [symmetric] fact_setprod) simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1187
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1188
lemma has_field_derivative_rGamma [derivative_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1189
  "(rGamma has_field_derivative (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then (-1)^(nat \<lfloor>norm z\<rfloor>) * fact (nat \<lfloor>norm z\<rfloor>)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1190
      else -rGamma z * Digamma z)) (at z within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1191
using has_field_derivative_rGamma_no_nonpos_int[of z A]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1192
      has_field_derivative_rGamma_nonpos_int[of "nat \<lfloor>norm z\<rfloor>" A]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1193
  by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1194
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1195
declare has_field_derivative_rGamma_no_nonpos_int [THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1196
declare has_field_derivative_rGamma [THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1197
declare has_field_derivative_rGamma_nonpos_int [derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1198
declare has_field_derivative_rGamma_no_nonpos_int [derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1199
declare has_field_derivative_rGamma [derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1200
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1201
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1202
lemma has_field_derivative_Gamma [derivative_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1203
  "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> (Gamma has_field_derivative Gamma z * Digamma z) (at z within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1204
  unfolding Gamma_def [abs_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1205
  by (fastforce intro!: derivative_eq_intros simp: rGamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1206
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1207
declare has_field_derivative_Gamma[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1208
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1209
(* TODO: Hide ugly facts properly *)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1210
hide_fact rGamma_eq_zero_iff_aux differentiable_rGamma_aux1 differentiable_rGamma_aux2
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1211
          differentiable_rGamma_aux2 rGamma_series_aux Gamma_class.rGamma_eq_zero_iff_aux
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1212
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1213
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1214
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1215
(* TODO: differentiable etc. *)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1216
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1217
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1218
subsection \<open>Continuity\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1219
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1220
lemma continuous_on_rGamma [continuous_intros]: "continuous_on A rGamma"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1221
  by (rule DERIV_continuous_on has_field_derivative_rGamma)+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1222
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1223
lemma continuous_on_Gamma [continuous_intros]: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> continuous_on A Gamma"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1224
  by (rule DERIV_continuous_on has_field_derivative_Gamma)+ blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1225
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1226
lemma isCont_rGamma [continuous_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1227
  "isCont f z \<Longrightarrow> isCont (\<lambda>x. rGamma (f x)) z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1228
  by (rule isCont_o2[OF _  DERIV_isCont[OF has_field_derivative_rGamma]])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1229
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1230
lemma isCont_Gamma [continuous_intros]:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1231
  "isCont f z \<Longrightarrow> f z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> isCont (\<lambda>x. Gamma (f x)) z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1232
  by (rule isCont_o2[OF _  DERIV_isCont[OF has_field_derivative_Gamma]])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1233
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1234
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1235
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1236
text \<open>The complex Gamma function\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1237
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1238
instantiation complex :: Gamma
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1239
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1240
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1241
definition rGamma_complex :: "complex \<Rightarrow> complex" where
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1242
  "rGamma_complex z = lim (rGamma_series z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1243
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1244
lemma rGamma_series_complex_converges:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1245
        "convergent (rGamma_series (z :: complex))" (is "?thesis1")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1246
  and rGamma_complex_altdef:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1247
        "rGamma z = (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then 0 else exp (-ln_Gamma z))" (is "?thesis2")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1248
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1249
  have "?thesis1 \<and> ?thesis2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1250
  proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1251
    case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1252
    have "rGamma_series z \<longlonglongrightarrow> exp (- ln_Gamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1253
    proof (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1254
      from ln_Gamma_series_complex_converges'[OF False] guess d by (elim exE conjE)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1255
      from this(1) uniformly_convergent_imp_convergent[OF this(2), of z]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1256
        have "ln_Gamma_series z \<longlonglongrightarrow> lim (ln_Gamma_series z)" by (simp add: convergent_LIMSEQ_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1257
      thus "(\<lambda>n. exp (-ln_Gamma_series z n)) \<longlonglongrightarrow> exp (- ln_Gamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1258
        unfolding convergent_def ln_Gamma_def by (intro tendsto_exp tendsto_minus)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1259
      from eventually_gt_at_top[of "0::nat"] exp_ln_Gamma_series_complex False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1260
        show "eventually (\<lambda>n. exp (-ln_Gamma_series z n) = rGamma_series z n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1261
        by (force elim!: eventually_mono simp: exp_minus Gamma_series_def rGamma_series_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1262
    qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1263
    with False show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1264
      by (auto simp: convergent_def rGamma_complex_def intro!: limI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1265
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1266
    case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1267
    then obtain k where "z = - of_nat k" by (erule nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1268
    also have "rGamma_series \<dots> \<longlonglongrightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1269
      by (subst tendsto_cong[OF rGamma_series_minus_of_nat]) (simp_all add: convergent_const)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1270
    finally show ?thesis using True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1271
      by (auto simp: rGamma_complex_def convergent_def intro!: limI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1272
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1273
  thus "?thesis1" "?thesis2" by blast+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1274
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1275
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1276
context
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1277
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1278
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1279
(* TODO: duplication *)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1280
private lemma rGamma_complex_plus1: "z * rGamma (z + 1) = rGamma (z :: complex)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1281
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1282
  let ?f = "\<lambda>n. (z + 1) * inverse (of_nat n) + 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1283
  have "eventually (\<lambda>n. ?f n * rGamma_series z n = z * rGamma_series (z + 1) n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1284
    using eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1285
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1286
    fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1287
    hence "z * rGamma_series (z + 1) n = inverse (of_nat n) *
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1288
             pochhammer z (Suc (Suc n)) / (fact n * exp (z * of_real (ln (of_nat n))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1289
      by (subst pochhammer_rec) (simp add: rGamma_series_def field_simps exp_add exp_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1290
    also from n have "\<dots> = ?f n * rGamma_series z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1291
      by (subst pochhammer_rec') (simp_all add: divide_simps rGamma_series_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1292
    finally show "?f n * rGamma_series z n = z * rGamma_series (z + 1) n" ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1293
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1294
  moreover have "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> ((z+1) * 0 + 1) * rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1295
    using rGamma_series_complex_converges
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1296
    by (intro tendsto_intros lim_inverse_n)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1297
       (simp_all add: convergent_LIMSEQ_iff rGamma_complex_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1298
  hence "(\<lambda>n. ?f n * rGamma_series z n) \<longlonglongrightarrow> rGamma z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1299
  ultimately have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1300
    by (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1301
  moreover have "(\<lambda>n. z * rGamma_series (z + 1) n) \<longlonglongrightarrow> z * rGamma (z + 1)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1302
    using rGamma_series_complex_converges
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1303
    by (auto intro!: tendsto_mult simp: rGamma_complex_def convergent_LIMSEQ_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1304
  ultimately show "z * rGamma (z + 1) = rGamma z" using LIMSEQ_unique by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1305
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1306
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1307
private lemma has_field_derivative_rGamma_complex_no_nonpos_Int:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1308
  assumes "(z :: complex) \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1309
  shows   "(rGamma has_field_derivative - rGamma z * Digamma z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1310
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1311
  have diff: "(rGamma has_field_derivative - rGamma z * Digamma z) (at z)" if "Re z > 0" for z
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1312
  proof (subst DERIV_cong_ev[OF refl _ refl])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1313
    from that have "eventually (\<lambda>t. t \<in> ball z (Re z/2)) (nhds z)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1314
      by (intro eventually_nhds_in_nhd) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1315
    thus "eventually (\<lambda>t. rGamma t = exp (- ln_Gamma t)) (nhds z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1316
      using no_nonpos_Int_in_ball_complex[OF that]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1317
      by (auto elim!: eventually_mono simp: rGamma_complex_altdef)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1318
  next
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1319
    have "z \<notin> \<real>\<^sub>\<le>\<^sub>0" using that by (simp add: complex_nonpos_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1320
    with that show "((\<lambda>t. exp (- ln_Gamma t)) has_field_derivative (-rGamma z * Digamma z)) (at z)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1321
     by (force elim!: nonpos_Ints_cases intro!: derivative_eq_intros simp: rGamma_complex_altdef)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1322
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1323
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1324
  from assms show "(rGamma has_field_derivative - rGamma z * Digamma z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1325
  proof (induction "nat \<lfloor>1 - Re z\<rfloor>" arbitrary: z)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1326
    case (Suc n z)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1327
    from Suc.prems have z: "z \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1328
    from Suc.hyps have "n = nat \<lfloor>- Re z\<rfloor>" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1329
    hence A: "n = nat \<lfloor>1 - Re (z + 1)\<rfloor>" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1330
    from Suc.prems have B: "z + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0" by (force dest: plus_one_in_nonpos_Ints_imp)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1331
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1332
    have "((\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1)) z) has_field_derivative
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1333
      -rGamma (z + 1) * (Digamma (z + 1) * z - 1)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1334
      by (rule derivative_eq_intros DERIV_chain Suc refl A B)+ (simp add: algebra_simps)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1335
    also have "(\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1 :: complex)) z) = rGamma"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1336
      by (simp add: rGamma_complex_plus1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1337
    also from z have "Digamma (z + 1) * z - 1 = z * Digamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1338
      by (subst Digamma_plus1) (simp_all add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1339
    also have "-rGamma (z + 1) * (z * Digamma z) = -rGamma z * Digamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1340
      by (simp add: rGamma_complex_plus1[of z, symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1341
    finally show ?case .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1342
  qed (intro diff, simp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1343
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1344
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1345
private lemma rGamma_complex_1: "rGamma (1 :: complex) = 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1346
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1347
  have A: "eventually (\<lambda>n. rGamma_series 1 n = of_nat (Suc n) / of_nat n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1348
    using eventually_gt_at_top[of "0::nat"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1349
    by (force elim!: eventually_mono simp: rGamma_series_def exp_of_real pochhammer_fact
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1350
                    divide_simps pochhammer_rec' dest!: pochhammer_eq_0_imp_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1351
  have "rGamma_series 1 \<longlonglongrightarrow> 1" by (subst tendsto_cong[OF A]) (rule LIMSEQ_Suc_n_over_n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1352
  thus "rGamma 1 = (1 :: complex)" unfolding rGamma_complex_def by (rule limI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1353
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1354
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1355
private lemma has_field_derivative_rGamma_complex_nonpos_Int:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1356
  "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat n :: complex))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1357
proof (induction n)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1358
  case 0
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1359
  have A: "(0::complex) + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1360
  have "((\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1 :: complex)) z) has_field_derivative 1) (at 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1361
    by (rule derivative_eq_intros DERIV_chain refl
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1362
             has_field_derivative_rGamma_complex_no_nonpos_Int A)+ (simp add: rGamma_complex_1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1363
    thus ?case by (simp add: rGamma_complex_plus1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1364
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1365
  case (Suc n)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1366
  hence A: "(rGamma has_field_derivative (-1)^n * fact n)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1367
                (at (- of_nat (Suc n) + 1 :: complex))" by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1368
   have "((\<lambda>z. z * (rGamma \<circ> (\<lambda>z. z + 1 :: complex)) z) has_field_derivative
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1369
             (- 1) ^ Suc n * fact (Suc n)) (at (- of_nat (Suc n)))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1370
     by (rule derivative_eq_intros refl A DERIV_chain)+
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1371
        (simp add: algebra_simps rGamma_complex_altdef)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1372
  thus ?case by (simp add: rGamma_complex_plus1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1373
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1374
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1375
instance proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1376
  fix z :: complex show "(rGamma z = 0) \<longleftrightarrow> (\<exists>n. z = - of_nat n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1377
    by (auto simp: rGamma_complex_altdef elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1378
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1379
  fix z :: complex assume "\<And>n. z \<noteq> - of_nat n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1380
  hence "z \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1381
  from has_field_derivative_rGamma_complex_no_nonpos_Int[OF this]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1382
    show "let d = (THE d. (\<lambda>n. \<Sum>k<n. inverse (of_nat (Suc k)) - inverse (z + of_nat k))
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1383
                       \<longlonglongrightarrow> d) - euler_mascheroni *\<^sub>R 1 in  (\<lambda>y. (rGamma y - rGamma z +
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1384
              rGamma z * d * (y - z)) /\<^sub>R  cmod (y - z)) \<midarrow>z\<rightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1385
      by (simp add: has_field_derivative_def has_derivative_def Digamma_def sums_def [abs_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1386
                    netlimit_at of_real_def[symmetric] suminf_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1387
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1388
  fix n :: nat
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1389
  from has_field_derivative_rGamma_complex_nonpos_Int[of n]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1390
  show "let z = - of_nat n in (\<lambda>y. (rGamma y - rGamma z - (- 1) ^ n * setprod of_nat {1..n} *
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1391
                  (y - z)) /\<^sub>R cmod (y - z)) \<midarrow>z\<rightarrow> 0"
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
  1392
    by (simp add: has_field_derivative_def has_derivative_def fact_setprod netlimit_at Let_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1393
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1394
  fix z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1395
  from rGamma_series_complex_converges[of z] have "rGamma_series z \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1396
    by (simp add: convergent_LIMSEQ_iff rGamma_complex_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1397
  thus "let fact' = \<lambda>n. setprod of_nat {1..n};
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1398
            exp = \<lambda>x. THE e. (\<lambda>n. \<Sum>k<n. x ^ k /\<^sub>R fact k) \<longlonglongrightarrow> e;
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1399
            pochhammer' = \<lambda>a n. \<Prod>n = 0..n. a + of_nat n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1400
        in  (\<lambda>n. pochhammer' z n / (fact' n * exp (z * ln (real_of_nat n) *\<^sub>R 1))) \<longlonglongrightarrow> rGamma z"
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
  1401
    by (simp add: fact_setprod pochhammer_Suc_setprod rGamma_series_def [abs_def] exp_def
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63317
diff changeset
  1402
                  of_real_def [symmetric] suminf_def sums_def [abs_def] atLeast0AtMost)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1403
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1404
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1405
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1406
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1407
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1408
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1409
lemma Gamma_complex_altdef:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1410
  "Gamma z = (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then 0 else exp (ln_Gamma (z :: complex)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1411
  unfolding Gamma_def rGamma_complex_altdef by (simp add: exp_minus)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1412
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1413
lemma cnj_rGamma: "cnj (rGamma z) = rGamma (cnj z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1414
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1415
  have "rGamma_series (cnj z) = (\<lambda>n. cnj (rGamma_series z n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1416
    by (intro ext) (simp_all add: rGamma_series_def exp_cnj)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1417
  also have "... \<longlonglongrightarrow> cnj (rGamma z)" by (intro tendsto_cnj tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1418
  finally show ?thesis unfolding rGamma_complex_def by (intro sym[OF limI])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1419
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1420
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1421
lemma cnj_Gamma: "cnj (Gamma z) = Gamma (cnj z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1422
  unfolding Gamma_def by (simp add: cnj_rGamma)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1423
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1424
lemma Gamma_complex_real:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1425
  "z \<in> \<real> \<Longrightarrow> Gamma z \<in> (\<real> :: complex set)" and rGamma_complex_real: "z \<in> \<real> \<Longrightarrow> rGamma z \<in> \<real>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1426
  by (simp_all add: Reals_cnj_iff cnj_Gamma cnj_rGamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1427
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1428
lemma field_differentiable_rGamma: "rGamma field_differentiable (at z within A)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1429
  using has_field_derivative_rGamma[of z] unfolding field_differentiable_def by blast
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1430
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1431
lemma holomorphic_on_rGamma: "rGamma holomorphic_on A"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1432
  unfolding holomorphic_on_def by (auto intro!: field_differentiable_rGamma)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1433
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1434
lemma analytic_on_rGamma: "rGamma analytic_on A"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1435
  unfolding analytic_on_def by (auto intro!: exI[of _ 1] holomorphic_on_rGamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1436
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1437
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1438
lemma field_differentiable_Gamma: "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Gamma field_differentiable (at z within A)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1439
  using has_field_derivative_Gamma[of z] unfolding field_differentiable_def by auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1440
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1441
lemma holomorphic_on_Gamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma holomorphic_on A"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1442
  unfolding holomorphic_on_def by (auto intro!: field_differentiable_Gamma)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1443
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1444
lemma analytic_on_Gamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma analytic_on A"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1445
  by (rule analytic_on_subset[of _ "UNIV - \<int>\<^sub>\<le>\<^sub>0"], subst analytic_on_open)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1446
     (auto intro!: holomorphic_on_Gamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1447
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1448
lemma has_field_derivative_rGamma_complex' [derivative_intros]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1449
  "(rGamma has_field_derivative (if z \<in> \<int>\<^sub>\<le>\<^sub>0 then (-1)^(nat \<lfloor>-Re z\<rfloor>) * fact (nat \<lfloor>-Re z\<rfloor>) else
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1450
        -rGamma z * Digamma z)) (at z within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1451
  using has_field_derivative_rGamma[of z] by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1452
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1453
declare has_field_derivative_rGamma_complex'[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1454
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1455
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1456
lemma field_differentiable_Polygamma:
62533
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62398
diff changeset
  1457
  fixes z::complex
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62398
diff changeset
  1458
  shows
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1459
  "z \<notin> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Polygamma n field_differentiable (at z within A)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1460
  using has_field_derivative_Polygamma[of z n] unfolding field_differentiable_def by auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1461
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1462
lemma holomorphic_on_Polygamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Polygamma n holomorphic_on A"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1463
  unfolding holomorphic_on_def by (auto intro!: field_differentiable_Polygamma)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1464
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1465
lemma analytic_on_Polygamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Polygamma n analytic_on A"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1466
  by (rule analytic_on_subset[of _ "UNIV - \<int>\<^sub>\<le>\<^sub>0"], subst analytic_on_open)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1467
     (auto intro!: holomorphic_on_Polygamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1468
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1469
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1470
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1471
text \<open>The real Gamma function\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1472
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1473
lemma rGamma_series_real:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1474
  "eventually (\<lambda>n. rGamma_series x n = Re (rGamma_series (of_real x) n)) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1475
  using eventually_gt_at_top[of "0 :: nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1476
proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1477
  fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1478
  have "Re (rGamma_series (of_real x) n) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1479
          Re (of_real (pochhammer x (Suc n)) / (fact n * exp (of_real (x * ln (real_of_nat n)))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1480
    using n by (simp add: rGamma_series_def powr_def Ln_of_nat pochhammer_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1481
  also from n have "\<dots> = Re (of_real ((pochhammer x (Suc n)) /
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1482
                              (fact n * (exp (x * ln (real_of_nat n))))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1483
    by (subst exp_of_real) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1484
  also from n have "\<dots> = rGamma_series x n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1485
    by (subst Re_complex_of_real) (simp add: rGamma_series_def powr_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1486
  finally show "rGamma_series x n = Re (rGamma_series (of_real x) n)" ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1487
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1488
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1489
instantiation real :: Gamma
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1490
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1491
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1492
definition "rGamma_real x = Re (rGamma (of_real x :: complex))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1493
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1494
instance proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1495
  fix x :: real
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1496
  have "rGamma x = Re (rGamma (of_real x))" by (simp add: rGamma_real_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1497
  also have "of_real \<dots> = rGamma (of_real x :: complex)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1498
    by (intro of_real_Re rGamma_complex_real) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1499
  also have "\<dots> = 0 \<longleftrightarrow> x \<in> \<int>\<^sub>\<le>\<^sub>0" by (simp add: rGamma_eq_zero_iff of_real_in_nonpos_Ints_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1500
  also have "\<dots> \<longleftrightarrow> (\<exists>n. x = - of_nat n)" by (auto elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1501
  finally show "(rGamma x) = 0 \<longleftrightarrow> (\<exists>n. x = - real_of_nat n)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1502
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1503
  fix x :: real assume "\<And>n. x \<noteq> - of_nat n"
63539
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63417
diff changeset
  1504
  hence x: "complex_of_real x \<notin> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1505
    by (subst of_real_in_nonpos_Ints_iff) (auto elim!: nonpos_Ints_cases')
63539
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63417
diff changeset
  1506
  then have "x \<noteq> 0" by auto
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63417
diff changeset
  1507
  with x have "(rGamma has_field_derivative - rGamma x * Digamma x) (at x)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1508
    by (fastforce intro!: derivative_eq_intros has_vector_derivative_real_complex
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1509
                  simp: Polygamma_of_real rGamma_real_def [abs_def])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1510
  thus "let d = (THE d. (\<lambda>n. \<Sum>k<n. inverse (of_nat (Suc k)) - inverse (x + of_nat k))
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1511
                       \<longlonglongrightarrow> d) - euler_mascheroni *\<^sub>R 1 in  (\<lambda>y. (rGamma y - rGamma x +
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1512
              rGamma x * d * (y - x)) /\<^sub>R  norm (y - x)) \<midarrow>x\<rightarrow> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1513
      by (simp add: has_field_derivative_def has_derivative_def Digamma_def sums_def [abs_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1514
                    netlimit_at of_real_def[symmetric] suminf_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1515
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1516
  fix n :: nat
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1517
  have "(rGamma has_field_derivative (-1)^n * fact n) (at (- of_nat n :: real))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1518
    by (fastforce intro!: derivative_eq_intros has_vector_derivative_real_complex
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1519
                  simp: Polygamma_of_real rGamma_real_def [abs_def])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1520
  thus "let x = - of_nat n in (\<lambda>y. (rGamma y - rGamma x - (- 1) ^ n * setprod of_nat {1..n} *
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1521
                  (y - x)) /\<^sub>R norm (y - x)) \<midarrow>x::real\<rightarrow> 0"
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
  1522
    by (simp add: has_field_derivative_def has_derivative_def fact_setprod netlimit_at Let_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1523
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1524
  fix x :: real
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1525
  have "rGamma_series x \<longlonglongrightarrow> rGamma x"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1526
  proof (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1527
    show "(\<lambda>n. Re (rGamma_series (of_real x) n)) \<longlonglongrightarrow> rGamma x" unfolding rGamma_real_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1528
      by (intro tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1529
  qed (insert rGamma_series_real, simp add: eq_commute)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1530
  thus "let fact' = \<lambda>n. setprod of_nat {1..n};
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1531
            exp = \<lambda>x. THE e. (\<lambda>n. \<Sum>k<n. x ^ k /\<^sub>R fact k) \<longlonglongrightarrow> e;
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1532
            pochhammer' = \<lambda>a n. \<Prod>n = 0..n. a + of_nat n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1533
        in  (\<lambda>n. pochhammer' x n / (fact' n * exp (x * ln (real_of_nat n) *\<^sub>R 1))) \<longlonglongrightarrow> rGamma x"
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
  1534
    by (simp add: fact_setprod pochhammer_Suc_setprod rGamma_series_def [abs_def] exp_def
63367
6c731c8b7f03 simplified definitions of combinatorial functions
haftmann
parents: 63317
diff changeset
  1535
                  of_real_def [symmetric] suminf_def sums_def [abs_def] atLeast0AtMost)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1536
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1537
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1538
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1539
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1540
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1541
lemma rGamma_complex_of_real: "rGamma (complex_of_real x) = complex_of_real (rGamma x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1542
  unfolding rGamma_real_def using rGamma_complex_real by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1543
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1544
lemma Gamma_complex_of_real: "Gamma (complex_of_real x) = complex_of_real (Gamma x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1545
  unfolding Gamma_def by (simp add: rGamma_complex_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1546
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1547
lemma rGamma_real_altdef: "rGamma x = lim (rGamma_series (x :: real))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1548
  by (rule sym, rule limI, rule tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1549
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1550
lemma Gamma_real_altdef1: "Gamma x = lim (Gamma_series (x :: real))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1551
  by (rule sym, rule limI, rule tendsto_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1552
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1553
lemma Gamma_real_altdef2: "Gamma x = Re (Gamma (of_real x))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1554
  using rGamma_complex_real[OF Reals_of_real[of x]]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1555
  by (elim Reals_cases)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1556
     (simp only: Gamma_def rGamma_real_def of_real_inverse[symmetric] Re_complex_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1557
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1558
lemma ln_Gamma_series_complex_of_real:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1559
  "x > 0 \<Longrightarrow> n > 0 \<Longrightarrow> ln_Gamma_series (complex_of_real x) n = of_real (ln_Gamma_series x n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1560
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1561
  assume xn: "x > 0" "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1562
  have "Ln (complex_of_real x / of_nat k + 1) = of_real (ln (x / of_nat k + 1))" if "k \<ge> 1" for k
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1563
    using that xn by (subst Ln_of_real [symmetric]) (auto intro!: add_nonneg_pos simp: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1564
  with xn show ?thesis by (simp add: ln_Gamma_series_def Ln_of_nat Ln_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1565
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1566
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1567
lemma ln_Gamma_real_converges:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1568
  assumes "(x::real) > 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1569
  shows   "convergent (ln_Gamma_series x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1570
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1571
  have "(\<lambda>n. ln_Gamma_series (complex_of_real x) n) \<longlonglongrightarrow> ln_Gamma (of_real x)" using assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1572
    by (intro ln_Gamma_complex_LIMSEQ) (auto simp: of_real_in_nonpos_Ints_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1573
  moreover from eventually_gt_at_top[of "0::nat"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1574
    have "eventually (\<lambda>n. complex_of_real (ln_Gamma_series x n) =
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1575
            ln_Gamma_series (complex_of_real x) n) sequentially"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1576
    by eventually_elim (simp add: ln_Gamma_series_complex_of_real assms)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1577
  ultimately have "(\<lambda>n. complex_of_real (ln_Gamma_series x n)) \<longlonglongrightarrow> ln_Gamma (of_real x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1578
    by (subst tendsto_cong) assumption+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1579
  from tendsto_Re[OF this] show ?thesis by (auto simp: convergent_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1580
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1581
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1582
lemma ln_Gamma_real_LIMSEQ: "(x::real) > 0 \<Longrightarrow> ln_Gamma_series x \<longlonglongrightarrow> ln_Gamma x"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1583
  using ln_Gamma_real_converges[of x] unfolding ln_Gamma_def by (simp add: convergent_LIMSEQ_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1584
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1585
lemma ln_Gamma_complex_of_real: "x > 0 \<Longrightarrow> ln_Gamma (complex_of_real x) = of_real (ln_Gamma x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1586
proof (unfold ln_Gamma_def, rule limI, rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1587
  assume x: "x > 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1588
  show "eventually (\<lambda>n. of_real (ln_Gamma_series x n) =
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1589
            ln_Gamma_series (complex_of_real x) n) sequentially"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1590
    using eventually_gt_at_top[of "0::nat"]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1591
    by eventually_elim (simp add: ln_Gamma_series_complex_of_real x)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1592
qed (intro tendsto_of_real, insert ln_Gamma_real_LIMSEQ[of x], simp add: ln_Gamma_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1593
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1594
lemma Gamma_real_pos_exp: "x > (0 :: real) \<Longrightarrow> Gamma x = exp (ln_Gamma x)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1595
  by (auto simp: Gamma_real_altdef2 Gamma_complex_altdef of_real_in_nonpos_Ints_iff
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1596
                 ln_Gamma_complex_of_real exp_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1597
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1598
lemma ln_Gamma_real_pos: "x > 0 \<Longrightarrow> ln_Gamma x = ln (Gamma x :: real)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1599
  unfolding Gamma_real_pos_exp by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1600
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1601
lemma Gamma_real_pos: "x > (0::real) \<Longrightarrow> Gamma x > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1602
  by (simp add: Gamma_real_pos_exp)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1603
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1604
lemma has_field_derivative_ln_Gamma_real [derivative_intros]:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1605
  assumes x: "x > (0::real)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1606
  shows "(ln_Gamma has_field_derivative Digamma x) (at x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1607
proof (subst DERIV_cong_ev[OF refl _ refl])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1608
  from assms show "((Re \<circ> ln_Gamma \<circ> complex_of_real) has_field_derivative Digamma x) (at x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1609
    by (auto intro!: derivative_eq_intros has_vector_derivative_real_complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1610
             simp: Polygamma_of_real o_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1611
  from eventually_nhds_in_nhd[of x "{0<..}"] assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1612
    show "eventually (\<lambda>y. ln_Gamma y = (Re \<circ> ln_Gamma \<circ> of_real) y) (nhds x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1613
    by (auto elim!: eventually_mono simp: ln_Gamma_complex_of_real interior_open)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1614
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1615
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1616
declare has_field_derivative_ln_Gamma_real[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1617
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1618
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1619
lemma has_field_derivative_rGamma_real' [derivative_intros]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1620
  "(rGamma has_field_derivative (if x \<in> \<int>\<^sub>\<le>\<^sub>0 then (-1)^(nat \<lfloor>-x\<rfloor>) * fact (nat \<lfloor>-x\<rfloor>) else
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1621
        -rGamma x * Digamma x)) (at x within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1622
  using has_field_derivative_rGamma[of x] by (force elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1623
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1624
declare has_field_derivative_rGamma_real'[THEN DERIV_chain2, derivative_intros]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1625
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1626
lemma Polygamma_real_odd_pos:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1627
  assumes "(x::real) \<notin> \<int>\<^sub>\<le>\<^sub>0" "odd n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1628
  shows   "Polygamma n x > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1629
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1630
  from assms have "x \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1631
  with assms show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1632
    unfolding Polygamma_def using Polygamma_converges'[of x "Suc n"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1633
    by (auto simp: zero_less_power_eq simp del: power_Suc
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1634
             dest: plus_of_nat_eq_0_imp intro!: mult_pos_pos suminf_pos)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1635
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1636
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1637
lemma Polygamma_real_even_neg:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1638
  assumes "(x::real) > 0" "n > 0" "even n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1639
  shows   "Polygamma n x < 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1640
  using assms unfolding Polygamma_def using Polygamma_converges'[of x "Suc n"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1641
  by (auto intro!: mult_pos_pos suminf_pos)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1642
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1643
lemma Polygamma_real_strict_mono:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1644
  assumes "x > 0" "x < (y::real)" "even n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1645
  shows   "Polygamma n x < Polygamma n y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1646
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1647
  have "\<exists>\<xi>. x < \<xi> \<and> \<xi> < y \<and> Polygamma n y - Polygamma n x = (y - x) * Polygamma (Suc n) \<xi>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1648
    using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1649
  then guess \<xi> by (elim exE conjE) note \<xi> = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1650
  note \<xi>(3)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1651
  also from \<xi>(1,2) assms have "(y - x) * Polygamma (Suc n) \<xi> > 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1652
    by (intro mult_pos_pos Polygamma_real_odd_pos) (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1653
  finally show ?thesis by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1654
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1655
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1656
lemma Polygamma_real_strict_antimono:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1657
  assumes "x > 0" "x < (y::real)" "odd n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1658
  shows   "Polygamma n x > Polygamma n y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1659
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1660
  have "\<exists>\<xi>. x < \<xi> \<and> \<xi> < y \<and> Polygamma n y - Polygamma n x = (y - x) * Polygamma (Suc n) \<xi>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1661
    using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1662
  then guess \<xi> by (elim exE conjE) note \<xi> = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1663
  note \<xi>(3)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1664
  also from \<xi>(1,2) assms have "(y - x) * Polygamma (Suc n) \<xi> < 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1665
    by (intro mult_pos_neg Polygamma_real_even_neg) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1666
  finally show ?thesis by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1667
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1668
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1669
lemma Polygamma_real_mono:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1670
  assumes "x > 0" "x \<le> (y::real)" "even n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1671
  shows   "Polygamma n x \<le> Polygamma n y"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1672
  using Polygamma_real_strict_mono[OF assms(1) _ assms(3), of y] assms(2)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1673
  by (cases "x = y") simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1674
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1675
lemma Digamma_real_strict_mono: "(0::real) < x \<Longrightarrow> x < y \<Longrightarrow> Digamma x < Digamma y"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1676
  by (rule Polygamma_real_strict_mono) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1677
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1678
lemma Digamma_real_mono: "(0::real) < x \<Longrightarrow> x \<le> y \<Longrightarrow> Digamma x \<le> Digamma y"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1679
  by (rule Polygamma_real_mono) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1680
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1681
lemma Digamma_real_ge_three_halves_pos:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1682
  assumes "x \<ge> 3/2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1683
  shows   "Digamma (x :: real) > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1684
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1685
  have "0 < Digamma (3/2 :: real)" by (fact Digamma_real_three_halves_pos)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1686
  also from assms have "\<dots> \<le> Digamma x" by (intro Polygamma_real_mono) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1687
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1688
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1689
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1690
lemma ln_Gamma_real_strict_mono:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1691
  assumes "x \<ge> 3/2" "x < y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1692
  shows   "ln_Gamma (x :: real) < ln_Gamma y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1693
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1694
  have "\<exists>\<xi>. x < \<xi> \<and> \<xi> < y \<and> ln_Gamma y - ln_Gamma x = (y - x) * Digamma \<xi>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1695
    using assms by (intro MVT2 derivative_intros impI allI) (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1696
  then guess \<xi> by (elim exE conjE) note \<xi> = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1697
  note \<xi>(3)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1698
  also from \<xi>(1,2) assms have "(y - x) * Digamma \<xi> > 0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1699
    by (intro mult_pos_pos Digamma_real_ge_three_halves_pos) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1700
  finally show ?thesis by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1701
qed
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1702
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1703
lemma Gamma_real_strict_mono:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1704
  assumes "x \<ge> 3/2" "x < y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1705
  shows   "Gamma (x :: real) < Gamma y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1706
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1707
  from Gamma_real_pos_exp[of x] assms have "Gamma x = exp (ln_Gamma x)" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1708
  also have "\<dots> < exp (ln_Gamma y)" by (intro exp_less_mono ln_Gamma_real_strict_mono assms)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1709
  also from Gamma_real_pos_exp[of y] assms have "\<dots> = Gamma y" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1710
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1711
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1712
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1713
lemma log_convex_Gamma_real: "convex_on {0<..} (ln \<circ> Gamma :: real \<Rightarrow> real)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1714
  by (rule convex_on_realI[of _ _ Digamma])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1715
     (auto intro!: derivative_eq_intros Polygamma_real_mono Gamma_real_pos
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1716
           simp: o_def Gamma_eq_zero_iff elim!: nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1717
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1718
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1719
subsection \<open>The uniqueness of the real Gamma function\<close>
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1720
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1721
text \<open>
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1722
  The following is a proof of the Bohr--Mollerup theorem, which states that 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1723
  any log-convex function $G$ on the positive reals that fulfils $G(1) = 1$ and
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1724
  satisfies the functional equation $G(x+1) = x G(x)$ must be equal to the 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1725
  Gamma function.
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1726
  In principle, if $G$ is a holomorphic complex function, one could then extend 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1727
  this from the positive reals to the entire complex plane (minus the non-positive 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1728
  integers, where the Gamma function is not defined).
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1729
\<close>
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1730
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1731
context
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1732
  fixes G :: "real \<Rightarrow> real"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1733
  assumes G_1: "G 1 = 1"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1734
  assumes G_plus1: "x > 0 \<Longrightarrow> G (x + 1) = x * G x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1735
  assumes G_pos: "x > 0 \<Longrightarrow> G x > 0"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1736
  assumes log_convex_G: "convex_on {0<..} (ln \<circ> G)"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1737
begin
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1738
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1739
private lemma G_fact: "G (of_nat n + 1) = fact n"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1740
  using G_plus1[of "real n + 1" for n]
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1741
  by (induction n) (simp_all add: G_1 G_plus1)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1742
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1743
private definition S :: "real \<Rightarrow> real \<Rightarrow> real" where
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1744
  "S x y = (ln (G y) - ln (G x)) / (y - x)"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1745
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1746
private lemma S_eq: 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1747
  "n \<ge> 2 \<Longrightarrow> S (of_nat n) (of_nat n + x) = (ln (G (real n + x)) - ln (fact (n - 1))) / x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1748
  by (subst G_fact [symmetric]) (simp add: S_def add_ac of_nat_diff)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1749
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1750
private lemma G_lower:
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1751
  assumes x: "x > 0" and n: "n \<ge> 1"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1752
  shows  "Gamma_series x n \<le> G x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1753
proof -
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1754
  have "(ln \<circ> G) (real (Suc n)) \<le> ((ln \<circ> G) (real (Suc n) + x) -
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1755
          (ln \<circ> G) (real (Suc n) - 1)) / (real (Suc n) + x - (real (Suc n) - 1)) *
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1756
           (real (Suc n) - (real (Suc n) - 1)) + (ln \<circ> G) (real (Suc n) - 1)"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1757
    using x n by (intro convex_onD_Icc' convex_on_subset[OF log_convex_G]) auto
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1758
  hence "S (of_nat n) (of_nat (Suc n)) \<le> S (of_nat (Suc n)) (of_nat (Suc n) + x)" 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1759
    unfolding S_def using x by (simp add: field_simps)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1760
  also have "S (of_nat n) (of_nat (Suc n)) = ln (fact n) - ln (fact (n-1))"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1761
    unfolding S_def using n 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1762
    by (subst (1 2) G_fact [symmetric]) (simp_all add: add_ac of_nat_diff)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1763
  also have "\<dots> = ln (fact n / fact (n-1))" by (subst ln_div) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1764
  also from n have "fact n / fact (n - 1) = n" by (cases n) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1765
  finally have "x * ln (real n) + ln (fact n) \<le> ln (G (real (Suc n) + x))"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1766
    using x n by (subst (asm) S_eq) (simp_all add: field_simps)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1767
  also have "x * ln (real n) + ln (fact n) = ln (exp (x * ln (real n)) * fact n)" 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1768
    using x by (simp add: ln_mult)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1769
  finally have "exp (x * ln (real n)) * fact n \<le> G (real (Suc n) + x)" using x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1770
    by (subst (asm) ln_le_cancel_iff) (simp_all add: G_pos)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1771
  also have "G (real (Suc n) + x) = pochhammer x (Suc n) * G x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1772
    using G_plus1[of "real (Suc n) + x" for n] G_plus1[of x] x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1773
    by (induction n) (simp_all add: pochhammer_Suc add_ac)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1774
  finally show "Gamma_series x n \<le> G x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1775
    using x by (simp add: field_simps pochhammer_pos Gamma_series_def)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1776
qed
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1777
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1778
private lemma G_upper:
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1779
  assumes x: "x > 0" "x \<le> 1" and n: "n \<ge> 2"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1780
  shows  "G x \<le> Gamma_series x n * (1 + x / real n)"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1781
proof -
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1782
  have "(ln \<circ> G) (real n + x) \<le> ((ln \<circ> G) (real n + 1) -
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1783
          (ln \<circ> G) (real n)) / (real n + 1 - (real n)) *
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1784
           ((real n + x) - real n) + (ln \<circ> G) (real n)" 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1785
    using x n by (intro convex_onD_Icc' convex_on_subset[OF log_convex_G]) auto
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1786
  hence "S (of_nat n) (of_nat n + x) \<le> S (of_nat n) (of_nat n + 1)" 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1787
    unfolding S_def using x by (simp add: field_simps)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1788
  also from n have "S (of_nat n) (of_nat n + 1) = ln (fact n) - ln (fact (n-1))"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1789
    by (subst (1 2) G_fact [symmetric]) (simp add: S_def add_ac of_nat_diff)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1790
  also have "\<dots> = ln (fact n / (fact (n-1)))" using n by (subst ln_div) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1791
  also from n have "fact n / fact (n - 1) = n" by (cases n) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1792
  finally have "ln (G (real n + x)) \<le> x * ln (real n) + ln (fact (n - 1))" 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1793
    using x n by (subst (asm) S_eq) (simp_all add: field_simps)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1794
  also have "\<dots> = ln (exp (x * ln (real n)) * fact (n - 1))" using x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1795
    by (simp add: ln_mult)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1796
  finally have "G (real n + x) \<le> exp (x * ln (real n)) * fact (n - 1)" using x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1797
    by (subst (asm) ln_le_cancel_iff) (simp_all add: G_pos)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1798
  also have "G (real n + x) = pochhammer x n * G x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1799
    using G_plus1[of "real n + x" for n] x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1800
    by (induction n) (simp_all add: pochhammer_Suc add_ac)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1801
  finally have "G x \<le> exp (x * ln (real n)) * fact (n- 1) / pochhammer x n"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1802
    using x by (simp add: field_simps pochhammer_pos)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1803
  also from n have "fact (n - 1) = fact n / n" by (cases n) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1804
  also have "exp (x * ln (real n)) * \<dots> / pochhammer x n = 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1805
               Gamma_series x n * (1 + x / real n)" using n x
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1806
    by (simp add: Gamma_series_def divide_simps pochhammer_Suc)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1807
  finally show ?thesis .
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1808
qed
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1809
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1810
private lemma G_eq_Gamma_aux:
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1811
  assumes x: "x > 0" "x \<le> 1"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1812
  shows   "G x = Gamma x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1813
proof (rule antisym)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1814
  show "G x \<ge> Gamma x"
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1815
  proof (rule tendsto_upperbound)
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1816
    from G_lower[of x] show "eventually (\<lambda>n. Gamma_series x n \<le> G x) sequentially"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1817
      using eventually_ge_at_top[of "1::nat"] x by (auto elim!: eventually_mono)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1818
  qed (simp_all add: Gamma_series_LIMSEQ)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1819
next
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1820
  show "G x \<le> Gamma x"
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1821
  proof (rule tendsto_lowerbound)
63725
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1822
    have "(\<lambda>n. Gamma_series x n * (1 + x / real n)) \<longlonglongrightarrow> Gamma x * (1 + 0)"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1823
      by (rule tendsto_intros real_tendsto_divide_at_top 
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1824
               Gamma_series_LIMSEQ filterlim_real_sequentially)+
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1825
    thus "(\<lambda>n. Gamma_series x n * (1 + x / real n)) \<longlonglongrightarrow> Gamma x" by simp
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1826
  next
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1827
    from G_upper[of x] show "eventually (\<lambda>n. Gamma_series x n * (1 + x / real n) \<ge> G x) sequentially"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1828
      using eventually_ge_at_top[of "2::nat"] x by (auto elim!: eventually_mono)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1829
  qed simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1830
qed
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1831
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1832
theorem Gamma_pos_real_unique:
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1833
  assumes x: "x > 0"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1834
  shows   "G x = Gamma x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1835
proof -
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1836
  have G_eq: "G (real n + x) = Gamma (real n + x)" if "x \<in> {0<..1}" for n x using that
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1837
  proof (induction n)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1838
    case (Suc n)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1839
    from Suc have "x + real n > 0" by simp
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1840
    hence "x + real n \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1841
    with Suc show ?case using G_plus1[of "real n + x"] Gamma_plus1[of "real n + x"]
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1842
      by (auto simp: add_ac)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1843
  qed (simp_all add: G_eq_Gamma_aux)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1844
  
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1845
  show ?thesis
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1846
  proof (cases "frac x = 0")
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1847
    case True
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1848
    hence "x = of_int (floor x)" by (simp add: frac_def)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1849
    with x have x_eq: "x = of_nat (nat (floor x) - 1) + 1" by simp
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1850
    show ?thesis by (subst (1 2) x_eq, rule G_eq) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1851
  next
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1852
    case False
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1853
    from assms have x_eq: "x = of_nat (nat (floor x)) + frac x"
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1854
      by (simp add: frac_def)
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1855
    have frac_le_1: "frac x \<le> 1" unfolding frac_def by linarith
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1856
    show ?thesis
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1857
      by (subst (1 2) x_eq, rule G_eq, insert False frac_le_1) simp_all
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1858
  qed
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1859
qed
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1860
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1861
end
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1862
4c00ba1ad11a Bohr-Mollerup theorem for the Gamma function
Manuel Eberl <eberlm@in.tum.de>
parents: 63721
diff changeset
  1863
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1864
subsection \<open>Beta function\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1865
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1866
definition Beta where "Beta a b = Gamma a * Gamma b / Gamma (a + b)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1867
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1868
lemma Beta_altdef: "Beta a b = Gamma a * Gamma b * rGamma (a + b)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1869
  by (simp add: inverse_eq_divide Beta_def Gamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1870
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1871
lemma Beta_commute: "Beta a b = Beta b a"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1872
  unfolding Beta_def by (simp add: ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1873
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1874
lemma has_field_derivative_Beta1 [derivative_intros]:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1875
  assumes "x \<notin> \<int>\<^sub>\<le>\<^sub>0" "x + y \<notin> \<int>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1876
  shows   "((\<lambda>x. Beta x y) has_field_derivative (Beta x y * (Digamma x - Digamma (x + y))))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1877
               (at x within A)" unfolding Beta_altdef
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1878
  by (rule DERIV_cong, (rule derivative_intros assms)+) (simp add: algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1879
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1880
lemma Beta_pole1: "x \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Beta x y = 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1881
  by (auto simp add: Beta_def elim!: nonpos_Ints_cases')
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1882
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1883
lemma Beta_pole2: "y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Beta x y = 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1884
  by (auto simp add: Beta_def elim!: nonpos_Ints_cases')
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  1885
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1886
lemma Beta_zero: "x + y \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Beta x y = 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1887
  by (auto simp add: Beta_def elim!: nonpos_Ints_cases')
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  1888
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1889
lemma has_field_derivative_Beta2 [derivative_intros]:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1890
  assumes "y \<notin> \<int>\<^sub>\<le>\<^sub>0" "x + y \<notin> \<int>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1891
  shows   "((\<lambda>y. Beta x y) has_field_derivative (Beta x y * (Digamma y - Digamma (x + y))))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1892
               (at y within A)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1893
  using has_field_derivative_Beta1[of y x A] assms by (simp add: Beta_commute add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1894
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1895
lemma Beta_plus1_plus1:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1896
  assumes "x \<notin> \<int>\<^sub>\<le>\<^sub>0" "y \<notin> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1897
  shows   "Beta (x + 1) y + Beta x (y + 1) = Beta x y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1898
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1899
  have "Beta (x + 1) y + Beta x (y + 1) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1900
            (Gamma (x + 1) * Gamma y + Gamma x * Gamma (y + 1)) * rGamma ((x + y) + 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1901
    by (simp add: Beta_altdef add_divide_distrib algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1902
  also have "\<dots> = (Gamma x * Gamma y) * ((x + y) * rGamma ((x + y) + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1903
    by (subst assms[THEN Gamma_plus1])+ (simp add: algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1904
  also from assms have "\<dots> = Beta x y" unfolding Beta_altdef by (subst rGamma_plus1) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1905
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1906
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1907
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1908
lemma Beta_plus1_left:
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1909
  assumes "x \<notin> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1910
  shows   "(x + y) * Beta (x + 1) y = x * Beta x y"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1911
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1912
  have "(x + y) * Beta (x + 1) y = Gamma (x + 1) * Gamma y * ((x + y) * rGamma ((x + y) + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1913
    unfolding Beta_altdef by (simp only: ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1914
  also have "\<dots> = x * Beta x y" unfolding Beta_altdef
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1915
     by (subst assms[THEN Gamma_plus1] rGamma_plus1)+ (simp only: ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1916
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1917
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1918
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1919
lemma Beta_plus1_right:
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1920
  assumes "y \<notin> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1921
  shows   "(x + y) * Beta x (y + 1) = y * Beta x y"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1922
  using Beta_plus1_left[of y x] assms by (simp_all add: Beta_commute add.commute)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1923
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1924
lemma Gamma_Gamma_Beta:
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  1925
  assumes "x + y \<notin> \<int>\<^sub>\<le>\<^sub>0"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1926
  shows   "Gamma x * Gamma y = Beta x y * Gamma (x + y)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1927
  unfolding Beta_altdef using assms Gamma_eq_zero_iff[of "x+y"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1928
  by (simp add: rGamma_inverse_Gamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1929
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1930
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1931
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1932
subsection \<open>Legendre duplication theorem\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1933
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1934
context
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1935
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1936
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1937
private lemma Gamma_legendre_duplication_aux:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1938
  fixes z :: "'a :: Gamma"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1939
  assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z + 1/2 \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1940
  shows "Gamma z * Gamma (z + 1/2) = exp ((1 - 2*z) * of_real (ln 2)) * Gamma (1/2) * Gamma (2*z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1941
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1942
  let ?powr = "\<lambda>b a. exp (a * of_real (ln (of_nat b)))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1943
  let ?h = "\<lambda>n. (fact (n-1))\<^sup>2 / fact (2*n-1) * of_nat (2^(2*n)) *
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1944
                exp (1/2 * of_real (ln (real_of_nat n)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1945
  {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1946
    fix z :: 'a assume z: "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z + 1/2 \<notin> \<int>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1947
    let ?g = "\<lambda>n. ?powr 2 (2*z) * Gamma_series' z n * Gamma_series' (z + 1/2) n /
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1948
                      Gamma_series' (2*z) (2*n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1949
    have "eventually (\<lambda>n. ?g n = ?h n) sequentially" using eventually_gt_at_top
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1950
    proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1951
      fix n :: nat assume n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1952
      let ?f = "fact (n - 1) :: 'a" and ?f' = "fact (2*n - 1) :: 'a"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1953
      have A: "exp t * exp t = exp (2*t :: 'a)" for t by (subst exp_add [symmetric]) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1954
      have A: "Gamma_series' z n * Gamma_series' (z + 1/2) n = ?f^2 * ?powr n (2*z + 1/2) /
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1955
                (pochhammer z n * pochhammer (z + 1/2) n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1956
        by (simp add: Gamma_series'_def exp_add ring_distribs power2_eq_square A mult_ac)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1957
      have B: "Gamma_series' (2*z) (2*n) =
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1958
                       ?f' * ?powr 2 (2*z) * ?powr n (2*z) /
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1959
                       (of_nat (2^(2*n)) * pochhammer z n * pochhammer (z+1/2) n)" using n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1960
        by (simp add: Gamma_series'_def ln_mult exp_add ring_distribs pochhammer_double)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1961
      from z have "pochhammer z n \<noteq> 0" by (auto dest: pochhammer_eq_0_imp_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1962
      moreover from z have "pochhammer (z + 1/2) n \<noteq> 0" by (auto dest: pochhammer_eq_0_imp_nonpos_Int)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1963
      ultimately have "?powr 2 (2*z) * (Gamma_series' z n * Gamma_series' (z + 1/2) n) / Gamma_series' (2*z) (2*n) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1964
         ?f^2 / ?f' * of_nat (2^(2*n)) * (?powr n ((4*z + 1)/2) * ?powr n (-2*z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1965
        using n unfolding A B by (simp add: divide_simps exp_minus)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1966
      also have "?powr n ((4*z + 1)/2) * ?powr n (-2*z) = ?powr n (1/2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1967
        by (simp add: algebra_simps exp_add[symmetric] add_divide_distrib)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1968
      finally show "?g n = ?h n" by (simp only: mult_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1969
    qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1970
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1971
    moreover from z double_in_nonpos_Ints_imp[of z] have "2 * z \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1972
    hence "?g \<longlonglongrightarrow> ?powr 2 (2*z) * Gamma z * Gamma (z+1/2) / Gamma (2*z)"
62397
5ae24f33d343 Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents: 62131
diff changeset
  1973
      using LIMSEQ_subseq_LIMSEQ[OF Gamma_series'_LIMSEQ, of "op*2" "2*z"]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1974
      by (intro tendsto_intros Gamma_series'_LIMSEQ)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1975
         (simp_all add: o_def subseq_def Gamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1976
    ultimately have "?h \<longlonglongrightarrow> ?powr 2 (2*z) * Gamma z * Gamma (z+1/2) / Gamma (2*z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1977
      by (rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1978
  } note lim = this
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1979
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1980
  from assms double_in_nonpos_Ints_imp[of z] have z': "2 * z \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1981
  from fraction_not_in_ints[of 2 1] have "(1/2 :: 'a) \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1982
    by (intro not_in_Ints_imp_not_in_nonpos_Ints) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1983
  with lim[of "1/2 :: 'a"] have "?h \<longlonglongrightarrow> 2 * Gamma (1 / 2 :: 'a)" by (simp add: exp_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1984
  from LIMSEQ_unique[OF this lim[OF assms]] z' show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1985
    by (simp add: divide_simps Gamma_eq_zero_iff ring_distribs exp_diff exp_of_real ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1986
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1987
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1988
(* TODO: perhaps this is unnecessary once we have the fact that a holomorphic function is
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1989
   infinitely differentiable *)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1990
private lemma Gamma_reflection_aux:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  1991
  defines "h \<equiv> \<lambda>z::complex. if z \<in> \<int> then 0 else
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1992
                 (of_real pi * cot (of_real pi*z) + Digamma z - Digamma (1 - z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1993
  defines "a \<equiv> complex_of_real pi"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1994
  obtains h' where "continuous_on UNIV h'" "\<And>z. (h has_field_derivative (h' z)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  1995
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  1996
  define f where "f n = a * of_real (cos_coeff (n+1) - sin_coeff (n+2))" for n
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  1997
  define F where "F z = (if z = 0 then 0 else (cos (a*z) - sin (a*z)/(a*z)) / z)" for z
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  1998
  define g where "g n = complex_of_real (sin_coeff (n+1))" for n
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  1999
  define G where "G z = (if z = 0 then 1 else sin (a*z)/(a*z))" for z
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2000
  have a_nz: "a \<noteq> 0" unfolding a_def by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2001
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2002
  have "(\<lambda>n. f n * (a*z)^n) sums (F z) \<and> (\<lambda>n. g n * (a*z)^n) sums (G z)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2003
    if "abs (Re z) < 1" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2004
  proof (cases "z = 0"; rule conjI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2005
    assume "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2006
    note z = this that
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2007
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2008
    from z have sin_nz: "sin (a*z) \<noteq> 0" unfolding a_def by (auto simp: sin_eq_0)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2009
    have "(\<lambda>n. of_real (sin_coeff n) * (a*z)^n) sums (sin (a*z))" using sin_converges[of "a*z"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2010
      by (simp add: scaleR_conv_of_real)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2011
    from sums_split_initial_segment[OF this, of 1]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2012
      have "(\<lambda>n. (a*z) * of_real (sin_coeff (n+1)) * (a*z)^n) sums (sin (a*z))" by (simp add: mult_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2013
    from sums_mult[OF this, of "inverse (a*z)"] z a_nz
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2014
      have A: "(\<lambda>n. g n * (a*z)^n) sums (sin (a*z)/(a*z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2015
      by (simp add: field_simps g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2016
    with z show "(\<lambda>n. g n * (a*z)^n) sums (G z)" by (simp add: G_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2017
    from A z a_nz sin_nz have g_nz: "(\<Sum>n. g n * (a*z)^n) \<noteq> 0" by (simp add: sums_iff g_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2018
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2019
    have [simp]: "sin_coeff (Suc 0) = 1" by (simp add: sin_coeff_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2020
    from sums_split_initial_segment[OF sums_diff[OF cos_converges[of "a*z"] A], of 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2021
    have "(\<lambda>n. z * f n * (a*z)^n) sums (cos (a*z) - sin (a*z) / (a*z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2022
      by (simp add: mult_ac scaleR_conv_of_real ring_distribs f_def g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2023
    from sums_mult[OF this, of "inverse z"] z assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2024
      show "(\<lambda>n. f n * (a*z)^n) sums (F z)" by (simp add: divide_simps mult_ac f_def F_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2025
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2026
    assume z: "z = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2027
    have "(\<lambda>n. f n * (a * z) ^ n) sums f 0" using powser_sums_zero[of f] z by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2028
    with z show "(\<lambda>n. f n * (a * z) ^ n) sums (F z)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2029
      by (simp add: f_def F_def sin_coeff_def cos_coeff_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2030
    have "(\<lambda>n. g n * (a * z) ^ n) sums g 0" using powser_sums_zero[of g] z by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2031
    with z show "(\<lambda>n. g n * (a * z) ^ n) sums (G z)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2032
      by (simp add: g_def G_def sin_coeff_def cos_coeff_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2033
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2034
  note sums = conjunct1[OF this] conjunct2[OF this]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2035
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2036
  define h2 where [abs_def]:
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2037
    "h2 z = (\<Sum>n. f n * (a*z)^n) / (\<Sum>n. g n * (a*z)^n) + Digamma (1 + z) - Digamma (1 - z)" for z
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2038
  define POWSER where [abs_def]: "POWSER f z = (\<Sum>n. f n * (z^n :: complex))" for f z
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2039
  define POWSER' where [abs_def]: "POWSER' f z = (\<Sum>n. diffs f n * (z^n))" for f and z :: complex
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2040
  define h2' where [abs_def]:
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2041
    "h2' z = a * (POWSER g (a*z) * POWSER' f (a*z) - POWSER f (a*z) * POWSER' g (a*z)) /
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2042
      (POWSER g (a*z))^2 + Polygamma 1 (1 + z) + Polygamma 1 (1 - z)" for z
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2043
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2044
  have h_eq: "h t = h2 t" if "abs (Re t) < 1" for t
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2045
  proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2046
    from that have t: "t \<in> \<int> \<longleftrightarrow> t = 0" by (auto elim!: Ints_cases simp: dist_0_norm)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2047
    hence "h t = a*cot (a*t) - 1/t + Digamma (1 + t) - Digamma (1 - t)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2048
      unfolding h_def using Digamma_plus1[of t] by (force simp: field_simps a_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2049
    also have "a*cot (a*t) - 1/t = (F t) / (G t)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2050
      using t by (auto simp add: divide_simps sin_eq_0 cot_def a_def F_def G_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2051
    also have "\<dots> = (\<Sum>n. f n * (a*t)^n) / (\<Sum>n. g n * (a*t)^n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2052
      using sums[of t] that by (simp add: sums_iff dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2053
    finally show "h t = h2 t" by (simp only: h2_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2054
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2055
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2056
  let ?A = "{z. abs (Re z) < 1}"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2057
  have "open ({z. Re z < 1} \<inter> {z. Re z > -1})"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2058
    using open_halfspace_Re_gt open_halfspace_Re_lt by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2059
  also have "({z. Re z < 1} \<inter> {z. Re z > -1}) = {z. abs (Re z) < 1}" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2060
  finally have open_A: "open ?A" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2061
  hence [simp]: "interior ?A = ?A" by (simp add: interior_open)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2062
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2063
  have summable_f: "summable (\<lambda>n. f n * z^n)" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2064
    by (rule powser_inside, rule sums_summable, rule sums[of "\<i> * of_real (norm z + 1) / a"])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2065
       (simp_all add: norm_mult a_def del: of_real_add)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2066
  have summable_g: "summable (\<lambda>n. g n * z^n)" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2067
    by (rule powser_inside, rule sums_summable, rule sums[of "\<i> * of_real (norm z + 1) / a"])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2068
       (simp_all add: norm_mult a_def del: of_real_add)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2069
  have summable_fg': "summable (\<lambda>n. diffs f n * z^n)" "summable (\<lambda>n. diffs g n * z^n)" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2070
    by (intro termdiff_converges_all summable_f summable_g)+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2071
  have "(POWSER f has_field_derivative (POWSER' f z)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2072
               "(POWSER g has_field_derivative (POWSER' g z)) (at z)" for z
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2073
    unfolding POWSER_def POWSER'_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2074
    by (intro termdiffs_strong_converges_everywhere summable_f summable_g)+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2075
  note derivs = this[THEN DERIV_chain2[OF _ DERIV_cmult[OF DERIV_ident]], unfolded POWSER_def]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2076
  have "isCont (POWSER f) z" "isCont (POWSER g) z" "isCont (POWSER' f) z" "isCont (POWSER' g) z"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2077
    for z unfolding POWSER_def POWSER'_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2078
    by (intro isCont_powser_converges_everywhere summable_f summable_g summable_fg')+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2079
  note cont = this[THEN isCont_o2[rotated], unfolded POWSER_def POWSER'_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2080
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2081
  {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2082
    fix z :: complex assume z: "abs (Re z) < 1"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2083
    define d where "d = \<i> * of_real (norm z + 1)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2084
    have d: "abs (Re d) < 1" "norm z < norm d" by (simp_all add: d_def norm_mult del: of_real_add)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2085
    have "eventually (\<lambda>z. h z = h2 z) (nhds z)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2086
      using eventually_nhds_in_nhd[of z ?A] using h_eq z
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2087
      by (auto elim!: eventually_mono simp: dist_0_norm)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2088
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2089
    moreover from sums(2)[OF z] z have nz: "(\<Sum>n. g n * (a * z) ^ n) \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2090
      unfolding G_def by (auto simp: sums_iff sin_eq_0 a_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2091
    have A: "z \<in> \<int> \<longleftrightarrow> z = 0" using z by (auto elim!: Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2092
    have no_int: "1 + z \<in> \<int> \<longleftrightarrow> z = 0" using z Ints_diff[of "1+z" 1] A
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2093
      by (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2094
    have no_int': "1 - z \<in> \<int> \<longleftrightarrow> z = 0" using z Ints_diff[of 1 "1-z"] A
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2095
      by (auto elim!: nonpos_Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2096
    from no_int no_int' have no_int: "1 - z \<notin> \<int>\<^sub>\<le>\<^sub>0" "1 + z \<notin> \<int>\<^sub>\<le>\<^sub>0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2097
    have "(h2 has_field_derivative h2' z) (at z)" unfolding h2_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2098
      by (rule DERIV_cong, (rule derivative_intros refl derivs[unfolded POWSER_def] nz no_int)+)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2099
         (auto simp: h2'_def POWSER_def field_simps power2_eq_square)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2100
    ultimately have deriv: "(h has_field_derivative h2' z) (at z)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2101
      by (subst DERIV_cong_ev[OF refl _ refl])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2102
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2103
    from sums(2)[OF z] z have "(\<Sum>n. g n * (a * z) ^ n) \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2104
      unfolding G_def by (auto simp: sums_iff a_def sin_eq_0)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2105
    hence "isCont h2' z" using no_int unfolding h2'_def[abs_def] POWSER_def POWSER'_def
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2106
      by (intro continuous_intros cont
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2107
            continuous_on_compose2[OF _ continuous_on_Polygamma[of "{z. Re z > 0}"]]) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2108
    note deriv and this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2109
  } note A = this
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2110
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2111
  interpret h: periodic_fun_simple' h
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2112
  proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2113
    fix z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2114
    show "h (z + 1) = h z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2115
    proof (cases "z \<in> \<int>")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2116
      assume z: "z \<notin> \<int>"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2117
      hence A: "z + 1 \<notin> \<int>" "z \<noteq> 0" using Ints_diff[of "z+1" 1] by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2118
      hence "Digamma (z + 1) - Digamma (-z) = Digamma z - Digamma (-z + 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2119
        by (subst (1 2) Digamma_plus1) simp_all
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2120
      with A z show "h (z + 1) = h z"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2121
        by (simp add: h_def sin_plus_pi cos_plus_pi ring_distribs cot_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2122
    qed (simp add: h_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2123
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2124
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2125
  have h2'_eq: "h2' (z - 1) = h2' z" if z: "Re z > 0" "Re z < 1" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2126
  proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2127
    have "((\<lambda>z. h (z - 1)) has_field_derivative h2' (z - 1)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2128
      by (rule DERIV_cong, rule DERIV_chain'[OF _ A(1)])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2129
         (insert z, auto intro!: derivative_eq_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2130
    hence "(h has_field_derivative h2' (z - 1)) (at z)" by (subst (asm) h.minus_1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2131
    moreover from z have "(h has_field_derivative h2' z) (at z)" by (intro A) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2132
    ultimately show "h2' (z - 1) = h2' z" by (rule DERIV_unique)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2133
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2134
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2135
  define h2'' where "h2'' z = h2' (z - of_int \<lfloor>Re z\<rfloor>)" for z
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2136
  have deriv: "(h has_field_derivative h2'' z) (at z)" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2137
  proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2138
    fix z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2139
    have B: "\<bar>Re z - real_of_int \<lfloor>Re z\<rfloor>\<bar> < 1" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2140
    have "((\<lambda>t. h (t - of_int \<lfloor>Re z\<rfloor>)) has_field_derivative h2'' z) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2141
      unfolding h2''_def by (rule DERIV_cong, rule DERIV_chain'[OF _ A(1)])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2142
                            (insert B, auto intro!: derivative_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2143
    thus "(h has_field_derivative h2'' z) (at z)" by (simp add: h.minus_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2144
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2145
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2146
  have cont: "continuous_on UNIV h2''"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2147
  proof (intro continuous_at_imp_continuous_on ballI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2148
    fix z :: complex
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2149
    define r where "r = \<lfloor>Re z\<rfloor>"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2150
    define A where "A = {t. of_int r - 1 < Re t \<and> Re t < of_int r + 1}"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2151
    have "continuous_on A (\<lambda>t. h2' (t - of_int r))" unfolding A_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2152
      by (intro continuous_at_imp_continuous_on isCont_o2[OF _ A(2)] ballI continuous_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2153
         (simp_all add: abs_real_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2154
    moreover have "h2'' t = h2' (t - of_int r)" if t: "t \<in> A" for t
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2155
    proof (cases "Re t \<ge> of_int r")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2156
      case True
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2157
      from t have "of_int r - 1 < Re t" "Re t < of_int r + 1" by (simp_all add: A_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2158
      with True have "\<lfloor>Re t\<rfloor> = \<lfloor>Re z\<rfloor>" unfolding r_def by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2159
      thus ?thesis by (auto simp: r_def h2''_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2160
    next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2161
      case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2162
      from t have t: "of_int r - 1 < Re t" "Re t < of_int r + 1" by (simp_all add: A_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2163
      with False have t': "\<lfloor>Re t\<rfloor> = \<lfloor>Re z\<rfloor> - 1" unfolding r_def by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2164
      moreover from t False have "h2' (t - of_int r + 1 - 1) = h2' (t - of_int r + 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2165
        by (intro h2'_eq) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2166
      ultimately show ?thesis by (auto simp: r_def h2''_def algebra_simps t')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2167
    qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2168
    ultimately have "continuous_on A h2''" by (subst continuous_on_cong[OF refl])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2169
    moreover {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2170
      have "open ({t. of_int r - 1 < Re t} \<inter> {t. of_int r + 1 > Re t})"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2171
        by (intro open_Int open_halfspace_Re_gt open_halfspace_Re_lt)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2172
      also have "{t. of_int r - 1 < Re t} \<inter> {t. of_int r + 1 > Re t} = A"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2173
        unfolding A_def by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2174
      finally have "open A" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2175
    }
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2176
    ultimately have C: "isCont h2'' t" if "t \<in> A" for t using that
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2177
      by (subst (asm) continuous_on_eq_continuous_at) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2178
    have "of_int r - 1 < Re z" "Re z  < of_int r + 1" unfolding r_def by linarith+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2179
    thus "isCont h2'' z" by (intro C) (simp_all add: A_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2180
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2181
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2182
  from that[OF cont deriv] show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2183
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2184
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2185
lemma Gamma_reflection_complex:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2186
  fixes z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2187
  shows "Gamma z * Gamma (1 - z) = of_real pi / sin (of_real pi * z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2188
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2189
  let ?g = "\<lambda>z::complex. Gamma z * Gamma (1 - z) * sin (of_real pi * z)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2190
  define g where [abs_def]: "g z = (if z \<in> \<int> then of_real pi else ?g z)" for z :: complex
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2191
  let ?h = "\<lambda>z::complex. (of_real pi * cot (of_real pi*z) + Digamma z - Digamma (1 - z))"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2192
  define h where [abs_def]: "h z = (if z \<in> \<int> then 0 else ?h z)" for z :: complex
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2193
62072
bf3d9f113474 isabelle update_cartouches -c -t;
wenzelm
parents: 62055
diff changeset
  2194
  \<comment> \<open>@{term g} is periodic with period 1.\<close>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2195
  interpret g: periodic_fun_simple' g
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2196
  proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2197
    fix z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2198
    show "g (z + 1) = g z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2199
    proof (cases "z \<in> \<int>")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2200
      case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2201
      hence "z * g z = z * Beta z (- z + 1) * sin (of_real pi * z)" by (simp add: g_def Beta_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2202
      also have "z * Beta z (- z + 1) = (z + 1 + -z) * Beta (z + 1) (- z + 1)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2203
        using False Ints_diff[of 1 "1 - z"] nonpos_Ints_subset_Ints
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2204
        by (subst Beta_plus1_left [symmetric]) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2205
      also have "\<dots> * sin (of_real pi * z) = z * (Beta (z + 1) (-z) * sin (of_real pi * (z + 1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2206
        using False Ints_diff[of "z+1" 1] Ints_minus[of "-z"] nonpos_Ints_subset_Ints
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2207
        by (subst Beta_plus1_right) (auto simp: ring_distribs sin_plus_pi)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2208
      also from False have "Beta (z + 1) (-z) * sin (of_real pi * (z + 1)) = g (z + 1)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2209
        using Ints_diff[of "z+1" 1] by (auto simp: g_def Beta_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2210
      finally show "g (z + 1) = g z" using False by (subst (asm) mult_left_cancel) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2211
    qed (simp add: g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2212
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2213
62072
bf3d9f113474 isabelle update_cartouches -c -t;
wenzelm
parents: 62055
diff changeset
  2214
  \<comment> \<open>@{term g} is entire.\<close>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2215
  have g_g': "(g has_field_derivative (h z * g z)) (at z)" for z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2216
  proof (cases "z \<in> \<int>")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2217
    let ?h' = "\<lambda>z. Beta z (1 - z) * ((Digamma z - Digamma (1 - z)) * sin (z * of_real pi) +
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2218
                     of_real pi * cos (z * of_real pi))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2219
    case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2220
    from False have "eventually (\<lambda>t. t \<in> UNIV - \<int>) (nhds z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2221
      by (intro eventually_nhds_in_open) (auto simp: open_Diff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2222
    hence "eventually (\<lambda>t. g t = ?g t) (nhds z)" by eventually_elim (simp add: g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2223
    moreover {
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2224
      from False Ints_diff[of 1 "1-z"] have "1 - z \<notin> \<int>" by auto
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2225
      hence "(?g has_field_derivative ?h' z) (at z)" using nonpos_Ints_subset_Ints
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2226
        by (auto intro!: derivative_eq_intros simp: algebra_simps Beta_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2227
      also from False have "sin (of_real pi * z) \<noteq> 0" by (subst sin_eq_0) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2228
      hence "?h' z = h z * g z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2229
        using False unfolding g_def h_def cot_def by (simp add: field_simps Beta_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2230
      finally have "(?g has_field_derivative (h z * g z)) (at z)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2231
    }
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2232
    ultimately show ?thesis by (subst DERIV_cong_ev[OF refl _ refl])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2233
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2234
    case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2235
    then obtain n where z: "z = of_int n" by (auto elim!: Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2236
    let ?t = "(\<lambda>z::complex. if z = 0 then 1 else sin z / z) \<circ> (\<lambda>z. of_real pi * z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2237
    have deriv_0: "(g has_field_derivative 0) (at 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2238
    proof (subst DERIV_cong_ev[OF refl _ refl])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2239
      show "eventually (\<lambda>z. g z = of_real pi * Gamma (1 + z) * Gamma (1 - z) * ?t z) (nhds 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2240
        using eventually_nhds_ball[OF zero_less_one, of "0::complex"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2241
      proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2242
        fix z :: complex assume z: "z \<in> ball 0 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2243
        show "g z = of_real pi * Gamma (1 + z) * Gamma (1 - z) * ?t z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2244
        proof (cases "z = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2245
          assume z': "z \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2246
          with z have z'': "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z \<notin> \<int>" by (auto elim!: Ints_cases simp: dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2247
          from Gamma_plus1[OF this(1)] have "Gamma z = Gamma (z + 1) / z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2248
          with z'' z' show ?thesis by (simp add: g_def ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2249
        qed (simp add: g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2250
      qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2251
      have "(?t has_field_derivative (0 * of_real pi)) (at 0)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2252
        using has_field_derivative_sin_z_over_z[of "UNIV :: complex set"]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2253
        by (intro DERIV_chain) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2254
      thus "((\<lambda>z. of_real pi * Gamma (1 + z) * Gamma (1 - z) * ?t z) has_field_derivative 0) (at 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2255
        by (auto intro!: derivative_eq_intros simp: o_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2256
    qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2257
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2258
    have "((g \<circ> (\<lambda>x. x - of_int n)) has_field_derivative 0 * 1) (at (of_int n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2259
      using deriv_0 by (intro DERIV_chain) (auto intro!: derivative_eq_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2260
    also have "g \<circ> (\<lambda>x. x - of_int n) = g" by (intro ext) (simp add: g.minus_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2261
    finally show "(g has_field_derivative (h z * g z)) (at z)" by (simp add: z h_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2262
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2263
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2264
  have g_eq: "g (z/2) * g ((z+1)/2) = Gamma (1/2)^2 * g z" if "Re z > -1" "Re z < 2" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2265
  proof (cases "z \<in> \<int>")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2266
    case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2267
    with that have "z = 0 \<or> z = 1" by (force elim!: Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2268
    moreover have "g 0 * g (1/2) = Gamma (1/2)^2 * g 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2269
      using fraction_not_in_ints[where 'a = complex, of 2 1] by (simp add: g_def power2_eq_square)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2270
    moreover have "g (1/2) * g 1 = Gamma (1/2)^2 * g 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2271
        using fraction_not_in_ints[where 'a = complex, of 2 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2272
        by (simp add: g_def power2_eq_square Beta_def algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2273
    ultimately show ?thesis by force
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2274
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2275
    case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2276
    hence z: "z/2 \<notin> \<int>" "(z+1)/2 \<notin> \<int>" using Ints_diff[of "z+1" 1] by (auto elim!: Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2277
    hence z': "z/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" "(z+1)/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto elim!: nonpos_Ints_cases)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2278
    from z have "1-z/2 \<notin> \<int>" "1-((z+1)/2) \<notin> \<int>"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2279
      using Ints_diff[of 1 "1-z/2"] Ints_diff[of 1 "1-((z+1)/2)"] by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2280
    hence z'': "1-z/2 \<notin> \<int>\<^sub>\<le>\<^sub>0" "1-((z+1)/2) \<notin> \<int>\<^sub>\<le>\<^sub>0" by (auto elim!: nonpos_Ints_cases)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2281
    from z have "g (z/2) * g ((z+1)/2) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2282
      (Gamma (z/2) * Gamma ((z+1)/2)) * (Gamma (1-z/2) * Gamma (1-((z+1)/2))) *
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2283
      (sin (of_real pi * z/2) * sin (of_real pi * (z+1)/2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2284
      by (simp add: g_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2285
    also from z' Gamma_legendre_duplication_aux[of "z/2"]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2286
      have "Gamma (z/2) * Gamma ((z+1)/2) = exp ((1-z) * of_real (ln 2)) * Gamma (1/2) * Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2287
      by (simp add: add_divide_distrib)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2288
    also from z'' Gamma_legendre_duplication_aux[of "1-(z+1)/2"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2289
      have "Gamma (1-z/2) * Gamma (1-(z+1)/2) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2290
              Gamma (1-z) * Gamma (1/2) * exp (z * of_real (ln 2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2291
      by (simp add: add_divide_distrib ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2292
    finally have "g (z/2) * g ((z+1)/2) = Gamma (1/2)^2 * (Gamma z * Gamma (1-z) *
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2293
                    (2 * (sin (of_real pi*z/2) * sin (of_real pi*(z+1)/2))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2294
      by (simp add: add_ac power2_eq_square exp_add ring_distribs exp_diff exp_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2295
    also have "sin (of_real pi*(z+1)/2) = cos (of_real pi*z/2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2296
      using cos_sin_eq[of "- of_real pi * z/2", symmetric]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2297
      by (simp add: ring_distribs add_divide_distrib ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2298
    also have "2 * (sin (of_real pi*z/2) * cos (of_real pi*z/2)) = sin (of_real pi * z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2299
      by (subst sin_times_cos) (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2300
    also have "Gamma z * Gamma (1 - z) * sin (complex_of_real pi * z) = g z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2301
      using \<open>z \<notin> \<int>\<close> by (simp add: g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2302
    finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2303
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2304
  have g_eq: "g (z/2) * g ((z+1)/2) = Gamma (1/2)^2 * g z" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2305
  proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2306
    define r where "r = \<lfloor>Re z / 2\<rfloor>"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2307
    have "Gamma (1/2)^2 * g z = Gamma (1/2)^2 * g (z - of_int (2*r))" by (simp only: g.minus_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2308
    also have "of_int (2*r) = 2 * of_int r" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2309
    also have "Re z - 2 * of_int r > -1" "Re z - 2 * of_int r < 2" unfolding r_def by linarith+
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2310
    hence "Gamma (1/2)^2 * g (z - 2 * of_int r) =
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2311
                   g ((z - 2 * of_int r)/2) * g ((z - 2 * of_int r + 1)/2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2312
      unfolding r_def by (intro g_eq[symmetric]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2313
    also have "(z - 2 * of_int r) / 2 = z/2 - of_int r" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2314
    also have "g \<dots> = g (z/2)" by (rule g.minus_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2315
    also have "(z - 2 * of_int r + 1) / 2 = (z + 1)/2 - of_int r" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2316
    also have "g \<dots> = g ((z+1)/2)" by (rule g.minus_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2317
    finally show ?thesis ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2318
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2319
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2320
  have g_nz [simp]: "g z \<noteq> 0" for z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2321
  unfolding g_def using Ints_diff[of 1 "1 - z"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2322
    by (auto simp: Gamma_eq_zero_iff sin_eq_0 dest!: nonpos_Ints_Int)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2323
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2324
  have h_eq: "h z = (h (z/2) + h ((z+1)/2)) / 2" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2325
  proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2326
    have "((\<lambda>t. g (t/2) * g ((t+1)/2)) has_field_derivative
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2327
                       (g (z/2) * g ((z+1)/2)) * ((h (z/2) + h ((z+1)/2)) / 2)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2328
      by (auto intro!: derivative_eq_intros g_g'[THEN DERIV_chain2] simp: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2329
    hence "((\<lambda>t. Gamma (1/2)^2 * g t) has_field_derivative
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2330
              Gamma (1/2)^2 * g z * ((h (z/2) + h ((z+1)/2)) / 2)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2331
      by (subst (1 2) g_eq[symmetric]) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2332
    from DERIV_cmult[OF this, of "inverse ((Gamma (1/2))^2)"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2333
      have "(g has_field_derivative (g z * ((h (z/2) + h ((z+1)/2))/2))) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2334
      using fraction_not_in_ints[where 'a = complex, of 2 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2335
      by (simp add: divide_simps Gamma_eq_zero_iff not_in_Ints_imp_not_in_nonpos_Ints)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2336
    moreover have "(g has_field_derivative (g z * h z)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2337
      using g_g'[of z] by (simp add: ac_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2338
    ultimately have "g z * h z = g z * ((h (z/2) + h ((z+1)/2))/2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2339
      by (intro DERIV_unique)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2340
    thus "h z = (h (z/2) + h ((z+1)/2)) / 2" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2341
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2342
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2343
  obtain h' where h'_cont: "continuous_on UNIV h'" and
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2344
                  h_h': "\<And>z. (h has_field_derivative h' z) (at z)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2345
     unfolding h_def by (erule Gamma_reflection_aux)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2346
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2347
  have h'_eq: "h' z = (h' (z/2) + h' ((z+1)/2)) / 4" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2348
  proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2349
    have "((\<lambda>t. (h (t/2) + h ((t+1)/2)) / 2) has_field_derivative
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2350
                       ((h' (z/2) + h' ((z+1)/2)) / 4)) (at z)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2351
      by (fastforce intro!: derivative_eq_intros h_h'[THEN DERIV_chain2])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2352
    hence "(h has_field_derivative ((h' (z/2) + h' ((z+1)/2))/4)) (at z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2353
      by (subst (asm) h_eq[symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2354
    from h_h' and this show "h' z = (h' (z/2) + h' ((z+1)/2)) / 4" by (rule DERIV_unique)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2355
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2356
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2357
  have h'_zero: "h' z = 0" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2358
  proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2359
    define m where "m = max 1 \<bar>Re z\<bar>"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2360
    define B where "B = {t. abs (Re t) \<le> m \<and> abs (Im t) \<le> abs (Im z)}"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2361
    have "closed ({t. Re t \<ge> -m} \<inter> {t. Re t \<le> m} \<inter>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2362
                  {t. Im t \<ge> -\<bar>Im z\<bar>} \<inter> {t. Im t \<le> \<bar>Im z\<bar>})"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2363
      (is "closed ?B") by (intro closed_Int closed_halfspace_Re_ge closed_halfspace_Re_le
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2364
                                 closed_halfspace_Im_ge closed_halfspace_Im_le)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2365
    also have "?B = B" unfolding B_def by fastforce
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2366
    finally have "closed B" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2367
    moreover have "bounded B" unfolding bounded_iff
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2368
    proof (intro ballI exI)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2369
      fix t assume t: "t \<in> B"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2370
      have "norm t \<le> \<bar>Re t\<bar> + \<bar>Im t\<bar>" by (rule cmod_le)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2371
      also from t have "\<bar>Re t\<bar> \<le> m" unfolding B_def by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2372
      also from t have "\<bar>Im t\<bar> \<le> \<bar>Im z\<bar>" unfolding B_def by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2373
      finally show "norm t \<le> m + \<bar>Im z\<bar>" by - simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2374
    qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2375
    ultimately have compact: "compact B" by (subst compact_eq_bounded_closed) blast
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2376
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  2377
    define M where "M = (SUP z:B. norm (h' z))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2378
    have "compact (h' ` B)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2379
      by (intro compact_continuous_image continuous_on_subset[OF h'_cont] compact) blast+
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2380
    hence bdd: "bdd_above ((\<lambda>z. norm (h' z)) ` B)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2381
      using bdd_above_norm[of "h' ` B"] by (simp add: image_comp o_def compact_imp_bounded)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2382
    have "norm (h' z) \<le> M" unfolding M_def by (intro cSUP_upper bdd) (simp_all add: B_def m_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2383
    also have "M \<le> M/2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2384
    proof (subst M_def, subst cSUP_le_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2385
      have "z \<in> B" unfolding B_def m_def by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2386
      thus "B \<noteq> {}" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2387
    next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2388
      show "\<forall>z\<in>B. norm (h' z) \<le> M/2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2389
      proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2390
        fix t :: complex assume t: "t \<in> B"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2391
        from h'_eq[of t] t have "h' t = (h' (t/2) + h' ((t+1)/2)) / 4" by (simp add: dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2392
        also have "norm \<dots> = norm (h' (t/2) + h' ((t+1)/2)) / 4" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2393
        also have "norm (h' (t/2) + h' ((t+1)/2)) \<le> norm (h' (t/2)) + norm (h' ((t+1)/2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2394
          by (rule norm_triangle_ineq)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2395
        also from t have "abs (Re ((t + 1)/2)) \<le> m" unfolding m_def B_def by auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2396
        with t have "t/2 \<in> B" "(t+1)/2 \<in> B" unfolding B_def by auto
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2397
        hence "norm (h' (t/2)) + norm (h' ((t+1)/2)) \<le> M + M" unfolding M_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2398
          by (intro add_mono cSUP_upper bdd) (auto simp: B_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2399
        also have "(M + M) / 4 = M / 2" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2400
        finally show "norm (h' t) \<le> M/2" by - simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2401
      qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2402
    qed (insert bdd, auto simp: cball_eq_empty)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2403
    hence "M \<le> 0" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2404
    finally show "h' z = 0" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2405
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2406
  have h_h'_2: "(h has_field_derivative 0) (at z)" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2407
    using h_h'[of z] h'_zero[of z] by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2408
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2409
  have g_real: "g z \<in> \<real>" if "z \<in> \<real>" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2410
    unfolding g_def using that by (auto intro!: Reals_mult Gamma_complex_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2411
  have h_real: "h z \<in> \<real>" if "z \<in> \<real>" for z
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2412
    unfolding h_def using that by (auto intro!: Reals_mult Reals_add Reals_diff Polygamma_Real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2413
  have g_nz: "g z \<noteq> 0" for z unfolding g_def using Ints_diff[of 1 "1-z"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2414
    by (auto simp: Gamma_eq_zero_iff sin_eq_0)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2415
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2416
  from h'_zero h_h'_2 have "\<exists>c. \<forall>z\<in>UNIV. h z = c"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2417
    by (intro has_field_derivative_zero_constant) (simp_all add: dist_0_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2418
  then obtain c where c: "\<And>z. h z = c" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2419
  have "\<exists>u. u \<in> closed_segment 0 1 \<and> Re (g 1) - Re (g 0) = Re (h u * g u * (1 - 0))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2420
    by (intro complex_mvt_line g_g')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2421
    find_theorems name:deriv Reals
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2422
  then guess u by (elim exE conjE) note u = this
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2423
  from u(1) have u': "u \<in> \<real>" unfolding closed_segment_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2424
    by (auto simp: scaleR_conv_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2425
  from u' g_real[of u] g_nz[of u] have "Re (g u) \<noteq> 0" by (auto elim!: Reals_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2426
  with u(2) c[of u] g_real[of u] g_nz[of u] u'
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2427
    have "Re c = 0" by (simp add: complex_is_Real_iff g.of_1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2428
  with h_real[of 0] c[of 0] have "c = 0" by (auto elim!: Reals_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2429
  with c have A: "h z * g z = 0" for z by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2430
  hence "(g has_field_derivative 0) (at z)" for z using g_g'[of z] by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2431
  hence "\<exists>c'. \<forall>z\<in>UNIV. g z = c'" by (intro has_field_derivative_zero_constant) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2432
  then obtain c' where c: "\<And>z. g z = c'" by (force simp: dist_0_norm)
63539
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63417
diff changeset
  2433
  from this[of 0] have "c' = pi" unfolding g_def by simp
70d4d9e5707b tuned proofs -- avoid improper use of "this";
wenzelm
parents: 63417
diff changeset
  2434
  with c have "g z = pi" by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2435
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2436
  show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2437
  proof (cases "z \<in> \<int>")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2438
    case False
62072
bf3d9f113474 isabelle update_cartouches -c -t;
wenzelm
parents: 62055
diff changeset
  2439
    with \<open>g z = pi\<close> show ?thesis by (auto simp: g_def divide_simps)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2440
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2441
    case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2442
    then obtain n where n: "z = of_int n" by (elim Ints_cases)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2443
    with sin_eq_0[of "of_real pi * z"] have "sin (of_real pi * z) = 0" by force
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2444
    moreover have "of_int (1 - n) \<in> \<int>\<^sub>\<le>\<^sub>0" if "n > 0" using that by (intro nonpos_Ints_of_int) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2445
    ultimately show ?thesis using n
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2446
      by (cases "n \<le> 0") (auto simp: Gamma_eq_zero_iff nonpos_Ints_of_int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2447
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2448
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2449
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2450
lemma rGamma_reflection_complex:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2451
  "rGamma z * rGamma (1 - z :: complex) = sin (of_real pi * z) / of_real pi"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2452
  using Gamma_reflection_complex[of z]
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
  2453
    by (simp add: Gamma_def divide_simps split: if_split_asm)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2454
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2455
lemma rGamma_reflection_complex':
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2456
  "rGamma z * rGamma (- z :: complex) = -z * sin (of_real pi * z) / of_real pi"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2457
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2458
  have "rGamma z * rGamma (-z) = -z * (rGamma z * rGamma (1 - z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2459
    using rGamma_plus1[of "-z", symmetric] by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2460
  also have "rGamma z * rGamma (1 - z) = sin (of_real pi * z) / of_real pi"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2461
    by (rule rGamma_reflection_complex)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2462
  finally show ?thesis by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2463
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2464
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2465
lemma Gamma_reflection_complex':
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2466
  "Gamma z * Gamma (- z :: complex) = - of_real pi / (z * sin (of_real pi * z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2467
  using rGamma_reflection_complex'[of z] by (force simp add: Gamma_def divide_simps mult_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2468
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2469
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2470
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2471
lemma Gamma_one_half_real: "Gamma (1/2 :: real) = sqrt pi"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2472
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2473
  from Gamma_reflection_complex[of "1/2"] fraction_not_in_ints[where 'a = complex, of 2 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2474
    have "Gamma (1/2 :: complex)^2 = of_real pi" by (simp add: power2_eq_square)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2475
  hence "of_real pi = Gamma (complex_of_real (1/2))^2" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2476
  also have "\<dots> = of_real ((Gamma (1/2))^2)" by (subst Gamma_complex_of_real) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2477
  finally have "Gamma (1/2)^2 = pi" by (subst (asm) of_real_eq_iff) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2478
  moreover have "Gamma (1/2 :: real) \<ge> 0" using Gamma_real_pos[of "1/2"] by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2479
  ultimately show ?thesis by (rule real_sqrt_unique [symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2480
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2481
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2482
lemma Gamma_one_half_complex: "Gamma (1/2 :: complex) = of_real (sqrt pi)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2483
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2484
  have "Gamma (1/2 :: complex) = Gamma (of_real (1/2))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2485
  also have "\<dots> = of_real (sqrt pi)" by (simp only: Gamma_complex_of_real Gamma_one_half_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2486
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2487
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2488
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2489
lemma Gamma_legendre_duplication:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2490
  fixes z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2491
  assumes "z \<notin> \<int>\<^sub>\<le>\<^sub>0" "z + 1/2 \<notin> \<int>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2492
  shows "Gamma z * Gamma (z + 1/2) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2493
             exp ((1 - 2*z) * of_real (ln 2)) * of_real (sqrt pi) * Gamma (2*z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2494
  using Gamma_legendre_duplication_aux[OF assms] by (simp add: Gamma_one_half_complex)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2495
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2496
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2497
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2498
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2499
subsection \<open>Limits and residues\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2500
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2501
text \<open>
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2502
  The inverse of the Gamma function has simple zeros:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2503
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2504
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2505
lemma rGamma_zeros:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2506
  "(\<lambda>z. rGamma z / (z + of_nat n)) \<midarrow> (- of_nat n) \<rightarrow> ((-1)^n * fact n :: 'a :: Gamma)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2507
proof (subst tendsto_cong)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2508
  let ?f = "\<lambda>z. pochhammer z n * rGamma (z + of_nat (Suc n)) :: 'a"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2509
  from eventually_at_ball'[OF zero_less_one, of "- of_nat n :: 'a" UNIV]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2510
    show "eventually (\<lambda>z. rGamma z / (z + of_nat n) = ?f z) (at (- of_nat n))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2511
    by (subst pochhammer_rGamma[of _ "Suc n"])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2512
       (auto elim!: eventually_mono simp: divide_simps pochhammer_rec' eq_neg_iff_add_eq_0)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2513
  have "isCont ?f (- of_nat n)" by (intro continuous_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2514
  thus "?f \<midarrow> (- of_nat n) \<rightarrow> (- 1) ^ n * fact n" unfolding isCont_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2515
    by (simp add: pochhammer_same)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2516
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2517
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2518
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2519
text \<open>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2520
  The simple zeros of the inverse of the Gamma function correspond to simple poles of the Gamma function,
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2521
  and their residues can easily be computed from the limit we have just proven:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2522
\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2523
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2524
lemma Gamma_poles: "filterlim Gamma at_infinity (at (- of_nat n :: 'a :: Gamma))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2525
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2526
  from eventually_at_ball'[OF zero_less_one, of "- of_nat n :: 'a" UNIV]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2527
    have "eventually (\<lambda>z. rGamma z \<noteq> (0 :: 'a)) (at (- of_nat n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2528
    by (auto elim!: eventually_mono nonpos_Ints_cases'
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2529
             simp: rGamma_eq_zero_iff dist_of_nat dist_minus)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2530
  with isCont_rGamma[of "- of_nat n :: 'a", OF continuous_ident]
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2531
    have "filterlim (\<lambda>z. inverse (rGamma z) :: 'a) at_infinity (at (- of_nat n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2532
    unfolding isCont_def by (intro filterlim_compose[OF filterlim_inverse_at_infinity])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2533
                            (simp_all add: filterlim_at)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2534
  moreover have "(\<lambda>z. inverse (rGamma z) :: 'a) = Gamma"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2535
    by (intro ext) (simp add: rGamma_inverse_Gamma)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2536
  ultimately show ?thesis by (simp only: )
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2537
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2538
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2539
lemma Gamma_residues:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2540
  "(\<lambda>z. Gamma z * (z + of_nat n)) \<midarrow> (- of_nat n) \<rightarrow> ((-1)^n / fact n :: 'a :: Gamma)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2541
proof (subst tendsto_cong)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2542
  let ?c = "(- 1) ^ n / fact n :: 'a"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2543
  from eventually_at_ball'[OF zero_less_one, of "- of_nat n :: 'a" UNIV]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2544
    show "eventually (\<lambda>z. Gamma z * (z + of_nat n) = inverse (rGamma z / (z + of_nat n)))
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2545
            (at (- of_nat n))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2546
    by (auto elim!: eventually_mono simp: divide_simps rGamma_inverse_Gamma)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2547
  have "(\<lambda>z. inverse (rGamma z / (z + of_nat n))) \<midarrow> (- of_nat n) \<rightarrow>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2548
          inverse ((- 1) ^ n * fact n :: 'a)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2549
    by (intro tendsto_intros rGamma_zeros) simp_all
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2550
  also have "inverse ((- 1) ^ n * fact n) = ?c"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2551
    by (simp_all add: field_simps power_mult_distrib [symmetric] del: power_mult_distrib)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2552
  finally show "(\<lambda>z. inverse (rGamma z / (z + of_nat n))) \<midarrow> (- of_nat n) \<rightarrow> ?c" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2553
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2554
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2555
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2556
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2557
subsection \<open>Alternative definitions\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2558
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2559
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2560
subsubsection \<open>Variant of the Euler form\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2561
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2562
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2563
definition Gamma_series_euler' where
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2564
  "Gamma_series_euler' z n =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2565
     inverse z * (\<Prod>k=1..n. exp (z * of_real (ln (1 + inverse (of_nat k)))) / (1 + z / of_nat k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2566
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2567
context
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2568
begin
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2569
private lemma Gamma_euler'_aux1:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2570
  fixes z :: "'a :: {real_normed_field,banach}"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2571
  assumes n: "n > 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2572
  shows "exp (z * of_real (ln (of_nat n + 1))) = (\<Prod>k=1..n. exp (z * of_real (ln (1 + 1 / of_nat k))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2573
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2574
  have "(\<Prod>k=1..n. exp (z * of_real (ln (1 + 1 / of_nat k)))) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2575
          exp (z * of_real (\<Sum>k = 1..n. ln (1 + 1 / real_of_nat k)))"
63918
6bf55e6e0b75 left_distrib ~> distrib_right, right_distrib ~> distrib_left
fleury <Mathias.Fleury@mpi-inf.mpg.de>
parents: 63725
diff changeset
  2576
    by (subst exp_setsum [symmetric]) (simp_all add: setsum_distrib_left)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2577
  also have "(\<Sum>k=1..n. ln (1 + 1 / of_nat k) :: real) = ln (\<Prod>k=1..n. 1 + 1 / real_of_nat k)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2578
    by (subst ln_setprod [symmetric]) (auto intro!: add_pos_nonneg)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2579
  also have "(\<Prod>k=1..n. 1 + 1 / of_nat k :: real) = (\<Prod>k=1..n. (of_nat k + 1) / of_nat k)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2580
    by (intro setprod.cong) (simp_all add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2581
  also have "(\<Prod>k=1..n. (of_nat k + 1) / of_nat k :: real) = of_nat n + 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2582
    by (induction n) (simp_all add: setprod_nat_ivl_Suc' divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2583
  finally show ?thesis ..
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2584
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2585
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2586
lemma Gamma_series_euler':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2587
  assumes z: "(z :: 'a :: Gamma) \<notin> \<int>\<^sub>\<le>\<^sub>0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2588
  shows "(\<lambda>n. Gamma_series_euler' z n) \<longlonglongrightarrow> Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2589
proof (rule Gamma_seriesI, rule Lim_transform_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2590
  let ?f = "\<lambda>n. fact n * exp (z * of_real (ln (of_nat n + 1))) / pochhammer z (n + 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2591
  let ?r = "\<lambda>n. ?f n / Gamma_series z n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2592
  let ?r' = "\<lambda>n. exp (z * of_real (ln (of_nat (Suc n) / of_nat n)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2593
  from z have z': "z \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2594
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2595
  have "eventually (\<lambda>n. ?r' n = ?r n) sequentially" using eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2596
    using z by (auto simp: divide_simps Gamma_series_def ring_distribs exp_diff ln_div add_ac
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2597
                     elim!: eventually_mono dest: pochhammer_eq_0_imp_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2598
  moreover have "?r' \<longlonglongrightarrow> exp (z * of_real (ln 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2599
    by (intro tendsto_intros LIMSEQ_Suc_n_over_n) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2600
  ultimately show "?r \<longlonglongrightarrow> 1" by (force dest!: Lim_transform_eventually)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2601
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2602
  from eventually_gt_at_top[of "0::nat"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2603
    show "eventually (\<lambda>n. ?r n = Gamma_series_euler' z n / Gamma_series z n) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2604
  proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2605
    fix n :: nat assume n: "n > 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2606
    from n z' have "Gamma_series_euler' z n =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2607
      exp (z * of_real (ln (of_nat n + 1))) / (z * (\<Prod>k=1..n. (1 + z / of_nat k)))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2608
      by (subst Gamma_euler'_aux1)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2609
         (simp_all add: Gamma_series_euler'_def setprod.distrib
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2610
                        setprod_inversef[symmetric] divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2611
    also have "(\<Prod>k=1..n. (1 + z / of_nat k)) = pochhammer (z + 1) n / fact n"
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
  2612
      by (cases n) (simp_all add: pochhammer_setprod fact_setprod atLeastLessThanSuc_atLeastAtMost
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
  2613
        setprod_dividef [symmetric] field_simps setprod.atLeast_Suc_atMost_Suc_shift)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2614
    also have "z * \<dots> = pochhammer z (Suc n) / fact n" by (simp add: pochhammer_rec)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2615
    finally show "?r n = Gamma_series_euler' z n / Gamma_series z n" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2616
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2617
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2618
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2619
end
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2620
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2621
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2622
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2623
subsubsection \<open>Weierstrass form\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2624
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2625
definition Gamma_series_weierstrass :: "'a :: {banach,real_normed_field} \<Rightarrow> nat \<Rightarrow> 'a" where
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2626
  "Gamma_series_weierstrass z n =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2627
     exp (-euler_mascheroni * z) / z * (\<Prod>k=1..n. exp (z / of_nat k) / (1 + z / of_nat k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2628
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2629
definition rGamma_series_weierstrass :: "'a :: {banach,real_normed_field} \<Rightarrow> nat \<Rightarrow> 'a" where
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2630
  "rGamma_series_weierstrass z n =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2631
     exp (euler_mascheroni * z) * z * (\<Prod>k=1..n. (1 + z / of_nat k) * exp (-z / of_nat k))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2632
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2633
lemma Gamma_series_weierstrass_nonpos_Ints:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2634
  "eventually (\<lambda>k. Gamma_series_weierstrass (- of_nat n) k = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2635
  using eventually_ge_at_top[of n] by eventually_elim (auto simp: Gamma_series_weierstrass_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2636
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2637
lemma rGamma_series_weierstrass_nonpos_Ints:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2638
  "eventually (\<lambda>k. rGamma_series_weierstrass (- of_nat n) k = 0) sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2639
  using eventually_ge_at_top[of n] by eventually_elim (auto simp: rGamma_series_weierstrass_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2640
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2641
lemma Gamma_weierstrass_complex: "Gamma_series_weierstrass z \<longlonglongrightarrow> Gamma (z :: complex)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2642
proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2643
  case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2644
  then obtain n where "z = - of_nat n" by (elim nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2645
  also from True have "Gamma_series_weierstrass \<dots> \<longlonglongrightarrow> Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2646
    by (simp add: tendsto_cong[OF Gamma_series_weierstrass_nonpos_Ints] Gamma_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2647
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2648
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2649
  case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2650
  hence z: "z \<noteq> 0" by auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2651
  let ?f = "(\<lambda>x. \<Prod>x = Suc 0..x. exp (z / of_nat x) / (1 + z / of_nat x))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2652
  have A: "exp (ln (1 + z / of_nat n)) = (1 + z / of_nat n)" if "n \<ge> 1" for n :: nat
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2653
    using False that by (subst exp_Ln) (auto simp: field_simps dest!: plus_of_nat_eq_0_imp)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2654
  have "(\<lambda>n. \<Sum>k=1..n. z / of_nat k - ln (1 + z / of_nat k)) \<longlonglongrightarrow> ln_Gamma z + euler_mascheroni * z + ln z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2655
    using ln_Gamma_series'_aux[OF False]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2656
    by (simp only: atLeastLessThanSuc_atLeastAtMost [symmetric] One_nat_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2657
                   setsum_shift_bounds_Suc_ivl sums_def atLeast0LessThan)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2658
  from tendsto_exp[OF this] False z have "?f \<longlonglongrightarrow> z * exp (euler_mascheroni * z) * Gamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2659
    by (simp add: exp_add exp_setsum exp_diff mult_ac Gamma_complex_altdef A)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2660
  from tendsto_mult[OF tendsto_const[of "exp (-euler_mascheroni * z) / z"] this] z
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2661
    show "Gamma_series_weierstrass z \<longlonglongrightarrow> Gamma z"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2662
    by (simp add: exp_minus divide_simps Gamma_series_weierstrass_def [abs_def])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2663
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2664
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2665
lemma tendsto_complex_of_real_iff: "((\<lambda>x. complex_of_real (f x)) \<longlongrightarrow> of_real c) F = (f \<longlongrightarrow> c) F"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2666
  by (rule tendsto_of_real_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2667
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2668
lemma Gamma_weierstrass_real: "Gamma_series_weierstrass x \<longlonglongrightarrow> Gamma (x :: real)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2669
  using Gamma_weierstrass_complex[of "of_real x"] unfolding Gamma_series_weierstrass_def[abs_def]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2670
  by (subst tendsto_complex_of_real_iff [symmetric])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2671
     (simp_all add: exp_of_real[symmetric] Gamma_complex_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2672
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2673
lemma rGamma_weierstrass_complex: "rGamma_series_weierstrass z \<longlonglongrightarrow> rGamma (z :: complex)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2674
proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2675
  case True
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2676
  then obtain n where "z = - of_nat n" by (elim nonpos_Ints_cases')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2677
  also from True have "rGamma_series_weierstrass \<dots> \<longlonglongrightarrow> rGamma z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2678
    by (simp add: tendsto_cong[OF rGamma_series_weierstrass_nonpos_Ints] rGamma_nonpos_Int)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2679
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2680
next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2681
  case False
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2682
  have "rGamma_series_weierstrass z = (\<lambda>n. inverse (Gamma_series_weierstrass z n))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2683
    by (simp add: rGamma_series_weierstrass_def[abs_def] Gamma_series_weierstrass_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2684
                  exp_minus divide_inverse setprod_inversef[symmetric] mult_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2685
  also from False have "\<dots> \<longlonglongrightarrow> inverse (Gamma z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2686
    by (intro tendsto_intros Gamma_weierstrass_complex) (simp add: Gamma_eq_zero_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2687
  finally show ?thesis by (simp add: Gamma_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2688
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  2689
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2690
subsubsection \<open>Binomial coefficient form\<close>
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2691
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2692
lemma Gamma_gbinomial:
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2693
  "(\<lambda>n. ((z + of_nat n) gchoose n) * exp (-z * of_real (ln (of_nat n)))) \<longlonglongrightarrow> rGamma (z+1)"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2694
proof (cases "z = 0")
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2695
  case False
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2696
  show ?thesis
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2697
  proof (rule Lim_transform_eventually)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2698
    let ?powr = "\<lambda>a b. exp (b * of_real (ln (of_nat a)))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2699
    show "eventually (\<lambda>n. rGamma_series z n / z =
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2700
            ((z + of_nat n) gchoose n) * ?powr n (-z)) sequentially"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2701
    proof (intro always_eventually allI)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2702
      fix n :: nat
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2703
      from False have "((z + of_nat n) gchoose n) = pochhammer z (Suc n) / z / fact n"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2704
        by (simp add: gbinomial_pochhammer' pochhammer_rec)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2705
      also have "pochhammer z (Suc n) / z / fact n * ?powr n (-z) = rGamma_series z n / z"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2706
        by (simp add: rGamma_series_def divide_simps exp_minus)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2707
      finally show "rGamma_series z n / z = ((z + of_nat n) gchoose n) * ?powr n (-z)" ..
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2708
    qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2709
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2710
    from False have "(\<lambda>n. rGamma_series z n / z) \<longlonglongrightarrow> rGamma z / z" by (intro tendsto_intros)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2711
    also from False have "rGamma z / z = rGamma (z + 1)" using rGamma_plus1[of z]
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2712
      by (simp add: field_simps)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2713
    finally show "(\<lambda>n. rGamma_series z n / z) \<longlonglongrightarrow> rGamma (z+1)" .
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2714
  qed
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2715
qed (simp_all add: binomial_gbinomial [symmetric])
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2716
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2717
lemma gbinomial_minus': "(a + of_nat b) gchoose b = (- 1) ^ b * (- (a + 1) gchoose b)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2718
  by (subst gbinomial_minus) (simp add: power_mult_distrib [symmetric])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2719
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2720
lemma gbinomial_asymptotic:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2721
  fixes z :: "'a :: Gamma"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2722
  shows "(\<lambda>n. (z gchoose n) / ((-1)^n / exp ((z+1) * of_real (ln (real n))))) \<longlonglongrightarrow>
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2723
           inverse (Gamma (- z))"
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2724
  unfolding rGamma_inverse_Gamma [symmetric] using Gamma_gbinomial[of "-z-1"]
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2725
  by (subst (asm) gbinomial_minus')
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2726
     (simp add: add_ac mult_ac divide_inverse power_inverse [symmetric])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2727
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  2728
lemma fact_binomial_limit:
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2729
  "(\<lambda>n. of_nat ((k + n) choose n) / of_nat (n ^ k) :: 'a :: Gamma) \<longlonglongrightarrow> 1 / fact k"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2730
proof (rule Lim_transform_eventually)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2731
  have "(\<lambda>n. of_nat ((k + n) choose n) / of_real (exp (of_nat k * ln (real_of_nat n))))
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2732
            \<longlonglongrightarrow> 1 / Gamma (of_nat (Suc k) :: 'a)" (is "?f \<longlonglongrightarrow> _")
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2733
    using Gamma_gbinomial[of "of_nat k :: 'a"]
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2734
    by (simp add: binomial_gbinomial add_ac Gamma_def divide_simps exp_of_real [symmetric] exp_minus)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2735
  also have "Gamma (of_nat (Suc k)) = fact k" by (simp add: Gamma_fact)
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2736
  finally show "?f \<longlonglongrightarrow> 1 / fact k" .
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2737
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2738
  show "eventually (\<lambda>n. ?f n = of_nat ((k + n) choose n) / of_nat (n ^ k)) sequentially"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2739
    using eventually_gt_at_top[of "0::nat"]
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2740
  proof eventually_elim
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2741
    fix n :: nat assume n: "n > 0"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2742
    from n have "exp (real_of_nat k * ln (real_of_nat n)) = real_of_nat (n^k)"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2743
      by (simp add: exp_of_nat_mult)
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2744
    thus "?f n = of_nat ((k + n) choose n) / of_nat (n ^ k)" by simp
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2745
  qed
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2746
qed
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2747
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2748
lemma binomial_asymptotic':
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2749
  "(\<lambda>n. of_nat ((k + n) choose n) / (of_nat (n ^ k) / fact k) :: 'a :: Gamma) \<longlonglongrightarrow> 1"
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2750
  using tendsto_mult[OF fact_binomial_limit[of k] tendsto_const[of "fact k :: 'a"]] by simp
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2751
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2752
lemma gbinomial_Beta:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2753
  assumes "z + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2754
  shows   "((z::'a::Gamma) gchoose n) = inverse ((z + 1) * Beta (z - of_nat n + 1) (of_nat n + 1))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2755
using assms
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2756
proof (induction n arbitrary: z)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2757
  case 0
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2758
  hence "z + 2 \<notin> \<int>\<^sub>\<le>\<^sub>0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2759
    using plus_one_in_nonpos_Ints_imp[of "z+1"] by (auto simp: add.commute)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2760
  with 0 show ?case
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2761
    by (auto simp: Beta_def Gamma_eq_zero_iff Gamma_plus1 [symmetric] add.commute)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2762
next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2763
  case (Suc n z)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2764
  show ?case
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2765
  proof (cases "z \<in> \<int>\<^sub>\<le>\<^sub>0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2766
    case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2767
    with Suc.prems have "z = 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2768
      by (auto elim!: nonpos_Ints_cases simp: algebra_simps one_plus_of_int_in_nonpos_Ints_iff)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2769
    show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2770
    proof (cases "n = 0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2771
      case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2772
      with \<open>z = 0\<close> show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2773
        by (simp add: Beta_def Gamma_eq_zero_iff Gamma_plus1 [symmetric])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2774
    next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2775
      case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2776
      with \<open>z = 0\<close> show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2777
        by (simp_all add: Beta_pole1 one_minus_of_nat_in_nonpos_Ints_iff gbinomial_1)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2778
    qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2779
  next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2780
    case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2781
    have "(z gchoose (Suc n)) = ((z - 1 + 1) gchoose (Suc n))" by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2782
    also have "\<dots> = (z - 1 gchoose n) * ((z - 1) + 1) / of_nat (Suc n)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2783
      by (subst gbinomial_factors) (simp add: field_simps)
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2784
    also from False have "\<dots> = inverse (of_nat (Suc n) * Beta (z - of_nat n) (of_nat (Suc n)))"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2785
      (is "_ = inverse ?x") by (subst Suc.IH) (simp_all add: field_simps Beta_pole1)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2786
    also have "of_nat (Suc n) \<notin> (\<int>\<^sub>\<le>\<^sub>0 :: 'a set)" by (subst of_nat_in_nonpos_Ints_iff) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2787
    hence "?x = (z + 1) * Beta (z - of_nat (Suc n) + 1) (of_nat (Suc n) + 1)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2788
      by (subst Beta_plus1_right [symmetric]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2789
    finally show ?thesis .
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2790
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2791
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2792
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2793
lemma gbinomial_Gamma:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2794
  assumes "z + 1 \<notin> \<int>\<^sub>\<le>\<^sub>0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2795
  shows   "(z gchoose n) = Gamma (z + 1) / (fact n * Gamma (z - of_nat n + 1))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2796
proof -
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2797
  have "(z gchoose n) = Gamma (z + 2) / (z + 1) / (fact n * Gamma (z - of_nat n + 1))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2798
    by (subst gbinomial_Beta[OF assms]) (simp_all add: Beta_def Gamma_fact [symmetric] add_ac)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2799
  also from assms have "Gamma (z + 2) / (z + 1) = Gamma (z + 1)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2800
    using Gamma_plus1[of "z+1"] by (auto simp add: divide_simps mult_ac add_ac)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2801
  finally show ?thesis .
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2802
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63040
diff changeset
  2803
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  2804
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2805
subsubsection \<open>Integral form\<close>
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2806
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2807
lemma integrable_Gamma_integral_bound:
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2808
  fixes a c :: real
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2809
  assumes a: "a > -1" and c: "c \<ge> 0"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2810
  defines "f \<equiv> \<lambda>x. if x \<in> {0..c} then x powr a else exp (-x/2)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2811
  shows   "f integrable_on {0..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2812
proof -
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2813
  have "f integrable_on {0..c}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2814
    by (rule integrable_spike_finite[of "{}", OF _ _ integrable_on_powr_from_0[of a c]])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2815
       (insert a c, simp_all add: f_def)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2816
  moreover have A: "(\<lambda>x. exp (-x/2)) integrable_on {c..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2817
    using integrable_on_exp_minus_to_infinity[of "1/2"] by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2818
  have "f integrable_on {c..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2819
    by (rule integrable_spike_finite[of "{c}", OF _ _ A]) (simp_all add: f_def)
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2820
  ultimately show "f integrable_on {0..}"
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2821
    by (rule integrable_union') (insert c, auto simp: max_def)
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2822
qed
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2823
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2824
lemma Gamma_integral_complex:
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2825
  assumes z: "Re z > 0"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2826
  shows   "((\<lambda>t. of_real t powr (z - 1) / of_real (exp t)) has_integral Gamma z) {0..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2827
proof -
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2828
  have A: "((\<lambda>t. (of_real t) powr (z - 1) * of_real ((1 - t) ^ n))
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2829
          has_integral (fact n / pochhammer z (n+1))) {0..1}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2830
    if "Re z > 0" for n z using that
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2831
  proof (induction n arbitrary: z)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2832
    case 0
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2833
    have "((\<lambda>t. complex_of_real t powr (z - 1)) has_integral
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2834
            (of_real 1 powr z / z - of_real 0 powr z / z)) {0..1}" using 0
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2835
      by (intro fundamental_theorem_of_calculus_interior)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2836
         (auto intro!: continuous_intros derivative_eq_intros has_vector_derivative_real_complex)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2837
    thus ?case by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2838
  next
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2839
    case (Suc n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2840
    let ?f = "\<lambda>t. complex_of_real t powr z / z"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2841
    let ?f' = "\<lambda>t. complex_of_real t powr (z - 1)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2842
    let ?g = "\<lambda>t. (1 - complex_of_real t) ^ Suc n"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2843
    let ?g' = "\<lambda>t. - ((1 - complex_of_real t) ^ n) * of_nat (Suc n)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2844
    have "((\<lambda>t. ?f' t * ?g t) has_integral
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2845
            (of_nat (Suc n)) * fact n / pochhammer z (n+2)) {0..1}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2846
      (is "(_ has_integral ?I) _")
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2847
    proof (rule integration_by_parts_interior[where f' = ?f' and g = ?g])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2848
      from Suc.prems show "continuous_on {0..1} ?f" "continuous_on {0..1} ?g"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2849
        by (auto intro!: continuous_intros)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2850
    next
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2851
      fix t :: real assume t: "t \<in> {0<..<1}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2852
      show "(?f has_vector_derivative ?f' t) (at t)" using t Suc.prems
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2853
        by (auto intro!: derivative_eq_intros has_vector_derivative_real_complex)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2854
      show "(?g has_vector_derivative ?g' t) (at t)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2855
        by (rule has_vector_derivative_real_complex derivative_eq_intros refl)+ simp_all
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2856
    next
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2857
      from Suc.prems have [simp]: "z \<noteq> 0" by auto
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2858
      from Suc.prems have A: "Re (z + of_nat n) > 0" for n by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2859
      have [simp]: "z + of_nat n \<noteq> 0" "z + 1 + of_nat n \<noteq> 0" for n
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2860
        using A[of n] A[of "Suc n"] by (auto simp add: add.assoc simp del: plus_complex.sel)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2861
      have "((\<lambda>x. of_real x powr z * of_real ((1 - x) ^ n) * (- of_nat (Suc n) / z)) has_integral
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2862
              fact n / pochhammer (z+1) (n+1) * (- of_nat (Suc n) / z)) {0..1}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2863
        (is "(?A has_integral ?B) _")
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2864
        using Suc.IH[of "z+1"] Suc.prems by (intro has_integral_mult_left) (simp_all add: add_ac pochhammer_rec)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2865
      also have "?A = (\<lambda>t. ?f t * ?g' t)" by (intro ext) (simp_all add: field_simps)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2866
      also have "?B = - (of_nat (Suc n) * fact n / pochhammer z (n+2))"
63417
c184ec919c70 more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
haftmann
parents: 63367
diff changeset
  2867
        by (simp add: divide_simps pochhammer_rec
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2868
              setprod_shift_bounds_cl_Suc_ivl del: of_nat_Suc)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2869
      finally show "((\<lambda>t. ?f t * ?g' t) has_integral (?f 1 * ?g 1 - ?f 0 * ?g 0 - ?I)) {0..1}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2870
        by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2871
    qed (simp_all add: bounded_bilinear_mult)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2872
    thus ?case by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2873
  qed
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2874
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2875
  have B: "((\<lambda>t. if t \<in> {0..of_nat n} then
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2876
             of_real t powr (z - 1) * (1 - of_real t / of_nat n) ^ n else 0)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2877
           has_integral (of_nat n powr z * fact n / pochhammer z (n+1))) {0..}" for n
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2878
  proof (cases "n > 0")
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2879
    case [simp]: True
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2880
    hence [simp]: "n \<noteq> 0" by auto
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2881
    with has_integral_affinity01[OF A[OF z, of n], of "inverse (of_nat n)" 0]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2882
      have "((\<lambda>x. (of_nat n - of_real x) ^ n * (of_real x / of_nat n) powr (z - 1) / of_nat n ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2883
              has_integral fact n * of_nat n / pochhammer z (n+1)) ((\<lambda>x. real n * x)`{0..1})"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2884
      (is "(?f has_integral ?I) ?ivl") by (simp add: field_simps scaleR_conv_of_real)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2885
    also from True have "((\<lambda>x. real n*x)`{0..1}) = {0..real n}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2886
      by (subst image_mult_atLeastAtMost) simp_all
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2887
    also have "?f = (\<lambda>x. (of_real x / of_nat n) powr (z - 1) * (1 - of_real x / of_nat n) ^ n)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2888
      using True by (intro ext) (simp add: field_simps)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2889
    finally have "((\<lambda>x. (of_real x / of_nat n) powr (z - 1) * (1 - of_real x / of_nat n) ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2890
                    has_integral ?I) {0..real n}" (is ?P) .
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2891
    also have "?P \<longleftrightarrow> ((\<lambda>x. exp ((z - 1) * of_real (ln (x / of_nat n))) * (1 - of_real x / of_nat n) ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2892
                        has_integral ?I) {0..real n}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2893
      by (intro has_integral_spike_finite_eq[of "{0}"]) (auto simp: powr_def Ln_of_real [symmetric])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2894
    also have "\<dots> \<longleftrightarrow> ((\<lambda>x. exp ((z - 1) * of_real (ln x - ln (of_nat n))) * (1 - of_real x / of_nat n) ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2895
                        has_integral ?I) {0..real n}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2896
      by (intro has_integral_spike_finite_eq[of "{0}"]) (simp_all add: ln_div)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2897
    finally have \<dots> .
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2898
    note B = has_integral_mult_right[OF this, of "exp ((z - 1) * ln (of_nat n))"]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2899
    have "((\<lambda>x. exp ((z - 1) * of_real (ln x)) * (1 - of_real x / of_nat n) ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2900
            has_integral (?I * exp ((z - 1) * ln (of_nat n)))) {0..real n}" (is ?P)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2901
      by (insert B, subst (asm) mult.assoc [symmetric], subst (asm) exp_add [symmetric])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2902
         (simp add: Ln_of_nat algebra_simps)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2903
    also have "?P \<longleftrightarrow> ((\<lambda>x. of_real x powr (z - 1) * (1 - of_real x / of_nat n) ^ n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2904
            has_integral (?I * exp ((z - 1) * ln (of_nat n)))) {0..real n}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2905
      by (intro has_integral_spike_finite_eq[of "{0}"]) (simp_all add: powr_def Ln_of_real)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2906
    also have "fact n * of_nat n / pochhammer z (n+1) * exp ((z - 1) * Ln (of_nat n)) =
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2907
                 (of_nat n powr z * fact n / pochhammer z (n+1))"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2908
      by (auto simp add: powr_def algebra_simps exp_diff)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2909
    finally show ?thesis by (subst has_integral_restrict) simp_all
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2910
  next
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2911
    case False
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2912
    thus ?thesis by (subst has_integral_restrict) (simp_all add: has_integral_refl)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2913
  qed
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2914
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2915
  have "eventually (\<lambda>n. Gamma_series z n =
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2916
          of_nat n powr z * fact n / pochhammer z (n+1)) sequentially"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2917
    using eventually_gt_at_top[of "0::nat"]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2918
    by eventually_elim (simp add: powr_def algebra_simps Ln_of_nat Gamma_series_def)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2919
  from this and Gamma_series_LIMSEQ[of z]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2920
    have C: "(\<lambda>k. of_nat k powr z * fact k / pochhammer z (k+1)) \<longlonglongrightarrow> Gamma z"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2921
    by (rule Lim_transform_eventually)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2922
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2923
  {
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2924
    fix x :: real assume x: "x \<ge> 0"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2925
    have lim_exp: "(\<lambda>k. (1 - x / real k) ^ k) \<longlonglongrightarrow> exp (-x)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2926
      using tendsto_exp_limit_sequentially[of "-x"] by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2927
    have "(\<lambda>k. of_real x powr (z - 1) * of_real ((1 - x / of_nat k) ^ k))
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2928
            \<longlonglongrightarrow> of_real x powr (z - 1) * of_real (exp (-x))" (is ?P)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2929
      by (intro tendsto_intros lim_exp)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2930
    also from eventually_gt_at_top[of "nat \<lceil>x\<rceil>"]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2931
      have "eventually (\<lambda>k. of_nat k > x) sequentially" by eventually_elim linarith
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2932
    hence "?P \<longleftrightarrow> (\<lambda>k. if x \<le> of_nat k then
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2933
                 of_real x powr (z - 1) * of_real ((1 - x / of_nat k) ^ k) else 0)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2934
                   \<longlonglongrightarrow> of_real x powr (z - 1) * of_real (exp (-x))"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2935
      by (intro tendsto_cong) (auto elim!: eventually_mono)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2936
    finally have \<dots> .
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2937
  }
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2938
  hence D: "\<forall>x\<in>{0..}. (\<lambda>k. if x \<in> {0..real k} then
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2939
              of_real x powr (z - 1) * (1 - of_real x / of_nat k) ^ k else 0)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2940
             \<longlonglongrightarrow> of_real x powr (z - 1) / of_real (exp x)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2941
    by (simp add: exp_minus field_simps cong: if_cong)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2942
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2943
  have "((\<lambda>x. (Re z - 1) * (ln x / x)) \<longlongrightarrow> (Re z - 1) * 0) at_top"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2944
    by (intro tendsto_intros ln_x_over_x_tendsto_0)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2945
  hence "((\<lambda>x. ((Re z - 1) * ln x) / x) \<longlongrightarrow> 0) at_top" by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2946
  from order_tendstoD(2)[OF this, of "1/2"]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2947
    have "eventually (\<lambda>x. (Re z - 1) * ln x / x < 1/2) at_top" by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2948
  from eventually_conj[OF this eventually_gt_at_top[of 0]]
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2949
    obtain x0 where "\<forall>x\<ge>x0. (Re z - 1) * ln x / x < 1/2 \<and> x > 0"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2950
    by (auto simp: eventually_at_top_linorder)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2951
  hence x0: "x0 > 0" "\<And>x. x \<ge> x0 \<Longrightarrow> (Re z - 1) * ln x < x / 2" by auto
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2952
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2953
  define h where "h = (\<lambda>x. if x \<in> {0..x0} then x powr (Re z - 1) else exp (-x/2))"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2954
  have le_h: "x powr (Re z - 1) * exp (-x) \<le> h x" if x: "x \<ge> 0" for x
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2955
  proof (cases "x > x0")
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2956
    case True
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2957
    from True x0(1) have "x powr (Re z - 1) * exp (-x) = exp ((Re z - 1) * ln x - x)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2958
      by (simp add: powr_def exp_diff exp_minus field_simps exp_add)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2959
    also from x0(2)[of x] True have "\<dots> < exp (-x/2)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2960
      by (simp add: field_simps)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2961
    finally show ?thesis using True by (auto simp add: h_def)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2962
  next
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2963
    case False
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2964
    from x have "x powr (Re z - 1) * exp (- x) \<le> x powr (Re z - 1) * 1"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2965
      by (intro mult_left_mono) simp_all
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2966
    with False show ?thesis by (auto simp add: h_def)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2967
  qed
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2968
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2969
  have E: "\<forall>x\<in>{0..}. cmod (if x \<in> {0..real k} then of_real x powr (z - 1) *
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2970
                   (1 - complex_of_real x / of_nat k) ^ k else 0) \<le> h x"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2971
    (is "\<forall>x\<in>_. ?f x \<le> _") for k
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2972
  proof safe
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2973
    fix x :: real assume x: "x \<ge> 0"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2974
    {
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2975
      fix x :: real and n :: nat assume x: "x \<le> of_nat n"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2976
      have "(1 - complex_of_real x / of_nat n) = complex_of_real ((1 - x / of_nat n))" by simp
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2977
      also have "norm \<dots> = \<bar>(1 - x / real n)\<bar>" by (subst norm_of_real) (rule refl)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2978
      also from x have "\<dots> = (1 - x / real n)" by (intro abs_of_nonneg) (simp_all add: divide_simps)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2979
      finally have "cmod (1 - complex_of_real x / of_nat n) = 1 - x / real n" .
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2980
    } note D = this
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2981
    from D[of x k] x
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2982
      have "?f x \<le> (if of_nat k \<ge> x \<and> k > 0 then x powr (Re z - 1) * (1 - x / real k) ^ k else 0)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2983
      by (auto simp: norm_mult norm_powr_real_powr norm_power intro!: mult_nonneg_nonneg)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2984
    also have "\<dots> \<le> x powr (Re z - 1) * exp  (-x)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2985
      by (auto intro!: mult_left_mono exp_ge_one_minus_x_over_n_power_n)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2986
    also from x have "\<dots> \<le> h x" by (rule le_h)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2987
    finally show "?f x \<le> h x" .
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2988
  qed
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63539
diff changeset
  2989
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2990
  have F: "h integrable_on {0..}" unfolding h_def
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2991
    by (rule integrable_Gamma_integral_bound) (insert assms x0(1), simp_all)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2992
  show ?thesis
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2993
    by (rule has_integral_dominated_convergence[OF B F E D C])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2994
qed
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2995
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2996
lemma Gamma_integral_real:
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2997
  assumes x: "x > (0 :: real)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2998
  shows   "((\<lambda>t. t powr (x - 1) / exp t) has_integral Gamma x) {0..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2999
proof -
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3000
  have A: "((\<lambda>t. complex_of_real t powr (complex_of_real x - 1) /
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3001
          complex_of_real (exp t)) has_integral complex_of_real (Gamma x)) {0..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3002
    using Gamma_integral_complex[of x] assms by (simp_all add: Gamma_complex_of_real powr_of_real)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3003
  have "((\<lambda>t. complex_of_real (t powr (x - 1) / exp t)) has_integral of_real (Gamma x)) {0..}"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3004
    by (rule has_integral_eq[OF _ A]) (simp_all add: powr_of_real [symmetric])
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3005
  from has_integral_linear[OF this bounded_linear_Re] show ?thesis by (simp add: o_def)
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3006
qed
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3007
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3008
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  3009
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  3010
subsection \<open>The Weierstraß product formula for the sine\<close>
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  3011
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3012
lemma sin_product_formula_complex:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3013
  fixes z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3014
  shows "(\<lambda>n. of_real pi * z * (\<Prod>k=1..n. 1 - z^2 / of_nat k^2)) \<longlonglongrightarrow> sin (of_real pi * z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3015
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3016
  let ?f = "rGamma_series_weierstrass"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3017
  have "(\<lambda>n. (- of_real pi * inverse z) * (?f z n * ?f (- z) n))
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3018
            \<longlonglongrightarrow> (- of_real pi * inverse z) * (rGamma z * rGamma (- z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3019
    by (intro tendsto_intros rGamma_weierstrass_complex)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3020
  also have "(\<lambda>n. (- of_real pi * inverse z) * (?f z n * ?f (-z) n)) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3021
                    (\<lambda>n. of_real pi * z * (\<Prod>k=1..n. 1 - z^2 / of_nat k ^ 2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3022
  proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3023
    fix n :: nat
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3024
    have "(- of_real pi * inverse z) * (?f z n * ?f (-z) n) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3025
              of_real pi * z * (\<Prod>k=1..n. (of_nat k - z) * (of_nat k + z) / of_nat k ^ 2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3026
      by (simp add: rGamma_series_weierstrass_def mult_ac exp_minus
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3027
                    divide_simps setprod.distrib[symmetric] power2_eq_square)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3028
    also have "(\<Prod>k=1..n. (of_nat k - z) * (of_nat k + z) / of_nat k ^ 2) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3029
                 (\<Prod>k=1..n. 1 - z^2 / of_nat k ^ 2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3030
      by (intro setprod.cong) (simp_all add: power2_eq_square field_simps)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3031
    finally show "(- of_real pi * inverse z) * (?f z n * ?f (-z) n) = of_real pi * z * \<dots>"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3032
      by (simp add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3033
  qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3034
  also have "(- of_real pi * inverse z) * (rGamma z * rGamma (- z)) = sin (of_real pi * z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3035
    by (subst rGamma_reflection_complex') (simp add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3036
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3037
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3038
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3039
lemma sin_product_formula_real:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3040
  "(\<lambda>n. pi * (x::real) * (\<Prod>k=1..n. 1 - x^2 / of_nat k^2)) \<longlonglongrightarrow> sin (pi * x)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3041
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3042
  from sin_product_formula_complex[of "of_real x"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3043
    have "(\<lambda>n. of_real pi * of_real x * (\<Prod>k=1..n. 1 - (of_real x)^2 / (of_nat k)^2))
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3044
              \<longlonglongrightarrow> sin (of_real pi * of_real x :: complex)" (is "?f \<longlonglongrightarrow> ?y") .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3045
  also have "?f = (\<lambda>n. of_real (pi * x * (\<Prod>k=1..n. 1 - x^2 / (of_nat k^2))))" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3046
  also have "?y = of_real (sin (pi * x))" by (simp only: sin_of_real [symmetric] of_real_mult)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3047
  finally show ?thesis by (subst (asm) tendsto_of_real_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3048
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3050
lemma sin_product_formula_real':
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3051
  assumes "x \<noteq> (0::real)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3052
  shows   "(\<lambda>n. (\<Prod>k=1..n. 1 - x^2 / of_nat k^2)) \<longlonglongrightarrow> sin (pi * x) / (pi * x)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3053
  using tendsto_divide[OF sin_product_formula_real[of x] tendsto_const[of "pi * x"]] assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3054
  by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3055
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3056
theorem wallis: "(\<lambda>n. \<Prod>k=1..n. (4*real k^2) / (4*real k^2 - 1)) \<longlonglongrightarrow> pi / 2"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3057
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3058
  from tendsto_inverse[OF tendsto_mult[OF 
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3059
         sin_product_formula_real[of "1/2"] tendsto_const[of "2/pi"]]]
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3060
    have "(\<lambda>n. (\<Prod>k=1..n. inverse (1 - (1 / 2)\<^sup>2 / (real k)\<^sup>2))) \<longlonglongrightarrow> pi/2" 
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3061
    by (simp add: setprod_inversef [symmetric])
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3062
  also have "(\<lambda>n. (\<Prod>k=1..n. inverse (1 - (1 / 2)\<^sup>2 / (real k)\<^sup>2))) =
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3063
               (\<lambda>n. (\<Prod>k=1..n. (4*real k^2)/(4*real k^2 - 1)))"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3064
    by (intro ext setprod.cong refl) (simp add: divide_simps)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3065
  finally show ?thesis .
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3066
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  3067
62085
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  3068
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  3069
subsection \<open>The Solution to the Basel problem\<close>
5b7758af429e Tuned approximations in Multivariate_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 62072
diff changeset
  3070
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3071
theorem inverse_squares_sums: "(\<lambda>n. 1 / (n + 1)\<^sup>2) sums (pi\<^sup>2 / 6)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3072
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  3073
  define P where "P x n = (\<Prod>k=1..n. 1 - x^2 / of_nat k^2)" for x :: real and n
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  3074
  define K where "K = (\<Sum>n. inverse (real_of_nat (Suc n))^2)"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  3075
  define f where [abs_def]: "f x = (\<Sum>n. P x n / of_nat (Suc n)^2)" for x
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  3076
  define g where [abs_def]: "g x = (1 - sin (pi * x) / (pi * x))" for x
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3077
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3078
  have sums: "(\<lambda>n. P x n / of_nat (Suc n)^2) sums (if x = 0 then K else g x / x^2)" for x
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3079
  proof (cases "x = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3080
    assume x: "x = 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3081
    have "summable (\<lambda>n. inverse ((real_of_nat (Suc n))\<^sup>2))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3082
      using inverse_power_summable[of 2] by (subst summable_Suc_iff) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3083
    thus ?thesis by (simp add: x g_def P_def K_def inverse_eq_divide power_divide summable_sums)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3084
  next
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3085
    assume x: "x \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3086
    have "(\<lambda>n. P x n - P x (Suc n)) sums (P x 0 - sin (pi * x) / (pi * x))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3087
      unfolding P_def using x by (intro telescope_sums' sin_product_formula_real')
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3088
    also have "(\<lambda>n. P x n - P x (Suc n)) = (\<lambda>n. (x^2 / of_nat (Suc n)^2) * P x n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3089
      unfolding P_def by (simp add: setprod_nat_ivl_Suc' algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3090
    also have "P x 0 = 1" by (simp add: P_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3091
    finally have "(\<lambda>n. x\<^sup>2 / (of_nat (Suc n))\<^sup>2 * P x n) sums (1 - sin (pi * x) / (pi * x))" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3092
    from sums_divide[OF this, of "x^2"] x show ?thesis unfolding g_def by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3093
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3094
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3095
  have "continuous_on (ball 0 1) f"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3096
  proof (rule uniform_limit_theorem; (intro always_eventually allI)?)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3097
    show "uniform_limit (ball 0 1) (\<lambda>n x. \<Sum>k<n. P x k / of_nat (Suc k)^2) f sequentially"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3098
    proof (unfold f_def, rule weierstrass_m_test)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3099
      fix n :: nat and x :: real assume x: "x \<in> ball 0 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3100
      {
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3101
        fix k :: nat assume k: "k \<ge> 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3102
        from x have "x^2 < 1" by (auto simp: dist_0_norm abs_square_less_1)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3103
        also from k have "\<dots> \<le> of_nat k^2" by simp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3104
        finally have "(1 - x^2 / of_nat k^2) \<in> {0..1}" using k
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3105
          by (simp_all add: field_simps del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3106
      }
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3107
      hence "(\<Prod>k=1..n. abs (1 - x^2 / of_nat k^2)) \<le> (\<Prod>k=1..n. 1)" by (intro setprod_mono) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3108
      thus "norm (P x n / (of_nat (Suc n)^2)) \<le> 1 / of_nat (Suc n)^2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3109
        unfolding P_def by (simp add: field_simps abs_setprod del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3110
    qed (subst summable_Suc_iff, insert inverse_power_summable[of 2], simp add: inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3111
  qed (auto simp: P_def intro!: continuous_intros)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3112
  hence "isCont f 0" by (subst (asm) continuous_on_eq_continuous_at) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3113
  hence "(f \<midarrow> 0 \<rightarrow> f 0)" by (simp add: isCont_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3114
  also have "f 0 = K" unfolding f_def P_def K_def by (simp add: inverse_eq_divide power_divide)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3115
  finally have "f \<midarrow> 0 \<rightarrow> K" .
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3116
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3117
  moreover have "f \<midarrow> 0 \<rightarrow> pi^2 / 6"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3118
  proof (rule Lim_transform_eventually)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62534
diff changeset
  3119
    define f' where [abs_def]: "f' x = (\<Sum>n. - sin_coeff (n+3) * pi ^ (n+2) * x^n)" for x
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3120
    have "eventually (\<lambda>x. x \<noteq> (0::real)) (at 0)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3121
      by (auto simp add: eventually_at intro!: exI[of _ 1])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3122
    thus "eventually (\<lambda>x. f' x = f x) (at 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3123
    proof eventually_elim
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3124
      fix x :: real assume x: "x \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3125
      have "sin_coeff 1 = (1 :: real)" "sin_coeff 2 = (0::real)" by (simp_all add: sin_coeff_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3126
      with sums_split_initial_segment[OF sums_minus[OF sin_converges], of 3 "pi*x"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3127
      have "(\<lambda>n. - (sin_coeff (n+3) * (pi*x)^(n+3))) sums (pi * x - sin (pi*x))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3128
        by (simp add: eval_nat_numeral)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3129
      from sums_divide[OF this, of "x^3 * pi"] x
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3130
        have "(\<lambda>n. - (sin_coeff (n+3) * pi^(n+2) * x^n)) sums ((1 - sin (pi*x) / (pi*x)) / x^2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3131
        by (simp add: divide_simps eval_nat_numeral power_mult_distrib mult_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3132
      with x have "(\<lambda>n. - (sin_coeff (n+3) * pi^(n+2) * x^n)) sums (g x / x^2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3133
        by (simp add: g_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3134
      hence "f' x = g x / x^2" by (simp add: sums_iff f'_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3135
      also have "\<dots> = f x" using sums[of x] x by (simp add: sums_iff g_def f_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3136
      finally show "f' x = f x" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3137
    qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3138
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3139
    have "isCont f' 0" unfolding f'_def
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3140
    proof (intro isCont_powser_converges_everywhere)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3141
      fix x :: real show "summable (\<lambda>n. -sin_coeff (n+3) * pi^(n+2) * x^n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3142
      proof (cases "x = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3143
        assume x: "x \<noteq> 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3144
        from summable_divide[OF sums_summable[OF sums_split_initial_segment[OF
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3145
               sin_converges[of "pi*x"]], of 3], of "-pi*x^3"] x
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3146
          show ?thesis by (simp add: mult_ac power_mult_distrib divide_simps eval_nat_numeral)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3147
      qed (simp only: summable_0_powser)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3148
    qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3149
    hence "f' \<midarrow> 0 \<rightarrow> f' 0" by (simp add: isCont_def)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3150
    also have "f' 0 = pi * pi / fact 3" unfolding f'_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3151
      by (subst powser_zero) (simp add: sin_coeff_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3152
    finally show "f' \<midarrow> 0 \<rightarrow> pi^2 / 6" by (simp add: eval_nat_numeral)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3153
  qed
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3154
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3155
  ultimately have "K = pi^2 / 6" by (rule LIM_unique)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3156
  moreover from inverse_power_summable[of 2]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3157
    have "summable (\<lambda>n. (inverse (real_of_nat (Suc n)))\<^sup>2)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3158
    by (subst summable_Suc_iff) (simp add: power_inverse)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62085
diff changeset
  3159
  ultimately show ?thesis unfolding K_def
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3160
    by (auto simp add: sums_iff power_divide inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3161
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3162
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents:
diff changeset
  3163
end