src/HOL/Limits.thy
author wenzelm
Tue, 06 Mar 2018 15:57:34 +0100
changeset 67771 3b91c21dcb00
parent 67707 68ca05a7f159
child 67950 99eaa5cedbb7
permissions -rw-r--r--
tuned signature;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51642
diff changeset
     1
(*  Title:      HOL/Limits.thy
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     2
    Author:     Brian Huffman
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     3
    Author:     Jacques D. Fleuriot, University of Cambridge
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     4
    Author:     Lawrence C Paulson
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     5
    Author:     Jeremy Avigad
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     6
*)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     7
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
     8
section \<open>Limits on Real Vector Spaces\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     9
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    10
theory Limits
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    11
  imports Real_Vector_Spaces
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    12
begin
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    13
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    14
subsection \<open>Filter going to infinity norm\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
    15
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    16
definition at_infinity :: "'a::real_normed_vector filter"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    17
  where "at_infinity = (INF r. principal {x. r \<le> norm x})"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    18
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    19
lemma eventually_at_infinity: "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> P x)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    20
  unfolding at_infinity_def
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    21
  by (subst eventually_INF_base)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    22
     (auto simp: subset_eq eventually_principal intro!: exI[of _ "max a b" for a b])
31392
69570155ddf8 replace filters with filter bases
huffman
parents: 31357
diff changeset
    23
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    24
corollary eventually_at_infinity_pos:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    25
  "eventually p at_infinity \<longleftrightarrow> (\<exists>b. 0 < b \<and> (\<forall>x. norm x \<ge> b \<longrightarrow> p x))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    26
  apply (simp add: eventually_at_infinity)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    27
  apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    28
  apply (case_tac "b \<le> 0")
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    29
  using norm_ge_zero order_trans zero_less_one apply blast
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    30
  apply force
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    31
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    32
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    33
lemma at_infinity_eq_at_top_bot: "(at_infinity :: real filter) = sup at_top at_bot"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    34
  apply (simp add: filter_eq_iff eventually_sup eventually_at_infinity
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    35
      eventually_at_top_linorder eventually_at_bot_linorder)
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    36
  apply safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    37
    apply (rule_tac x="b" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    38
    apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    39
   apply (rule_tac x="- b" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    40
   apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    41
  apply (rule_tac x="max (- Na) N" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    42
  apply (auto simp: abs_real_def)
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    43
  done
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    44
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    45
lemma at_top_le_at_infinity: "at_top \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    46
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    47
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    48
lemma at_bot_le_at_infinity: "at_bot \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    49
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    50
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    51
lemma filterlim_at_top_imp_at_infinity: "filterlim f at_top F \<Longrightarrow> filterlim f at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    52
  for f :: "_ \<Rightarrow> real"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    53
  by (rule filterlim_mono[OF _ at_top_le_at_infinity order_refl])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    54
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    55
lemma filterlim_real_at_infinity_sequentially: "filterlim real at_infinity sequentially"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    56
  by (simp add: filterlim_at_top_imp_at_infinity filterlim_real_sequentially)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    57
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    58
lemma lim_infinity_imp_sequentially: "(f \<longlongrightarrow> l) at_infinity \<Longrightarrow> ((\<lambda>n. f(n)) \<longlongrightarrow> l) sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    59
  by (simp add: filterlim_at_top_imp_at_infinity filterlim_compose filterlim_real_sequentially)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    60
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    61
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    62
subsubsection \<open>Boundedness\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    63
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    64
definition Bfun :: "('a \<Rightarrow> 'b::metric_space) \<Rightarrow> 'a filter \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    65
  where Bfun_metric_def: "Bfun f F = (\<exists>y. \<exists>K>0. eventually (\<lambda>x. dist (f x) y \<le> K) F)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    66
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    67
abbreviation Bseq :: "(nat \<Rightarrow> 'a::metric_space) \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    68
  where "Bseq X \<equiv> Bfun X sequentially"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    69
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    70
lemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    71
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    72
lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    73
  unfolding Bfun_metric_def by (subst eventually_sequentially_seg)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    74
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    75
lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    76
  unfolding Bfun_metric_def by (subst (asm) eventually_sequentially_seg)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    77
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    78
lemma Bfun_def: "Bfun f F \<longleftrightarrow> (\<exists>K>0. eventually (\<lambda>x. norm (f x) \<le> K) F)"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    79
  unfolding Bfun_metric_def norm_conv_dist
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    80
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    81
  fix y K
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    82
  assume K: "0 < K" and *: "eventually (\<lambda>x. dist (f x) y \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    83
  moreover have "eventually (\<lambda>x. dist (f x) 0 \<le> dist (f x) y + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    84
    by (intro always_eventually) (metis dist_commute dist_triangle)
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    85
  with * have "eventually (\<lambda>x. dist (f x) 0 \<le> K + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    86
    by eventually_elim auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    87
  with \<open>0 < K\<close> show "\<exists>K>0. eventually (\<lambda>x. dist (f x) 0 \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    88
    by (intro exI[of _ "K + dist 0 y"] add_pos_nonneg conjI zero_le_dist) auto
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    89
qed (force simp del: norm_conv_dist [symmetric])
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    90
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
    91
lemma BfunI:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    92
  assumes K: "eventually (\<lambda>x. norm (f x) \<le> K) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    93
  shows "Bfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    94
  unfolding Bfun_def
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    95
proof (intro exI conjI allI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    96
  show "0 < max K 1" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    97
  show "eventually (\<lambda>x. norm (f x) \<le> max K 1) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    98
    using K by (rule eventually_mono) simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    99
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   100
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   101
lemma BfunE:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   102
  assumes "Bfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   103
  obtains B where "0 < B" and "eventually (\<lambda>x. norm (f x) \<le> B) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   104
  using assms unfolding Bfun_def by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   105
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   106
lemma Cauchy_Bseq: "Cauchy X \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   107
  unfolding Cauchy_def Bfun_metric_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   108
  apply (erule_tac x=1 in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   109
  apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   110
  apply safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   111
  apply (rule_tac x="X M" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   112
  apply (rule_tac x=1 in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   113
  apply (erule_tac x=M in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   114
  apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   115
  apply (rule_tac x=M in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   116
  apply (auto simp: dist_commute)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   117
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   118
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   119
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   120
subsubsection \<open>Bounded Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   121
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   122
lemma BseqI': "(\<And>n. norm (X n) \<le> K) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   123
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   124
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   125
lemma BseqI2': "\<forall>n\<ge>N. norm (X n) \<le> K \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   126
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   127
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   128
lemma Bseq_def: "Bseq X \<longleftrightarrow> (\<exists>K>0. \<forall>n. norm (X n) \<le> K)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   129
  unfolding Bfun_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   130
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   131
  fix N K
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   132
  assume "0 < K" "\<forall>n\<ge>N. norm (X n) \<le> K"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   133
  then show "\<exists>K>0. \<forall>n. norm (X n) \<le> K"
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 54263
diff changeset
   134
    by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] max.strict_coboundedI2)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   135
       (auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   136
qed auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   137
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   138
lemma BseqE: "Bseq X \<Longrightarrow> (\<And>K. 0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Q) \<Longrightarrow> Q"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   139
  unfolding Bseq_def by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   140
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   141
lemma BseqD: "Bseq X \<Longrightarrow> \<exists>K. 0 < K \<and> (\<forall>n. norm (X n) \<le> K)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   142
  by (simp add: Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   143
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   144
lemma BseqI: "0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Bseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   145
  by (auto simp add: Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   146
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   147
lemma Bseq_bdd_above: "Bseq X \<Longrightarrow> bdd_above (range X)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   148
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   149
proof (elim BseqE, intro bdd_aboveI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   150
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   151
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   152
  then show "X n \<le> K"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   153
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   154
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   155
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   156
lemma Bseq_bdd_above': "Bseq X \<Longrightarrow> bdd_above (range (\<lambda>n. norm (X n)))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   157
  for X :: "nat \<Rightarrow> 'a :: real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   158
proof (elim BseqE, intro bdd_aboveI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   159
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   160
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   161
  then show "norm (X n) \<le> K"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   162
    by (auto elim!: allE[of _ n])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   163
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   164
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   165
lemma Bseq_bdd_below: "Bseq X \<Longrightarrow> bdd_below (range X)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   166
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   167
proof (elim BseqE, intro bdd_belowI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   168
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   169
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   170
  then show "- K \<le> X n"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   171
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   172
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   173
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   174
lemma Bseq_eventually_mono:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   175
  assumes "eventually (\<lambda>n. norm (f n) \<le> norm (g n)) sequentially" "Bseq g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   176
  shows "Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   177
proof -
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   178
  from assms(1) obtain N where N: "\<And>n. n \<ge> N \<Longrightarrow> norm (f n) \<le> norm (g n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   179
    by (auto simp: eventually_at_top_linorder)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   180
  moreover from assms(2) obtain K where K: "\<And>n. norm (g n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   181
    by (blast elim!: BseqE)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   182
  ultimately have "norm (f n) \<le> max K (Max {norm (f n) |n. n < N})" for n
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   183
    apply (cases "n < N")
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   184
    subgoal by (rule max.coboundedI2, rule Max.coboundedI) auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   185
    subgoal by (rule max.coboundedI1) (force intro: order.trans[OF N K])
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   186
    done
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   187
  then show ?thesis by (blast intro: BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   188
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   189
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   190
lemma lemma_NBseq_def: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   191
proof safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   192
  fix K :: real
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   193
  from reals_Archimedean2 obtain n :: nat where "K < real n" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   194
  then have "K \<le> real (Suc n)" by auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   195
  moreover assume "\<forall>m. norm (X m) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   196
  ultimately have "\<forall>m. norm (X m) \<le> real (Suc n)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   197
    by (blast intro: order_trans)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   198
  then show "\<exists>N. \<forall>n. norm (X n) \<le> real (Suc N)" ..
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   199
next
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   200
  show "\<And>N. \<forall>n. norm (X n) \<le> real (Suc N) \<Longrightarrow> \<exists>K>0. \<forall>n. norm (X n) \<le> K"
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   201
    using of_nat_0_less_iff by blast
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   202
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   203
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   204
text \<open>Alternative definition for \<open>Bseq\<close>.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   205
lemma Bseq_iff: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   206
  by (simp add: Bseq_def) (simp add: lemma_NBseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   207
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   208
lemma lemma_NBseq_def2: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   209
  apply (subst lemma_NBseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   210
  apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   211
   apply (rule_tac x = "Suc N" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   212
   apply (rule_tac [2] x = N in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   213
   apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   214
   prefer 2 apply (blast intro: order_less_imp_le)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   215
  apply (drule_tac x = n in spec)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   216
  apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   217
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   218
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   219
text \<open>Yet another definition for Bseq.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   220
lemma Bseq_iff1a: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) < real (Suc N))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   221
  by (simp add: Bseq_def lemma_NBseq_def2)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   222
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   223
subsubsection \<open>A Few More Equivalence Theorems for Boundedness\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   224
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   225
text \<open>Alternative formulation for boundedness.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   226
lemma Bseq_iff2: "Bseq X \<longleftrightarrow> (\<exists>k > 0. \<exists>x. \<forall>n. norm (X n + - x) \<le> k)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   227
  apply (unfold Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   228
  apply safe
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   229
   apply (rule_tac [2] x = "k + norm x" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   230
   apply (rule_tac x = K in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   231
   apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   232
   apply (rule exI [where x = 0])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   233
   apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   234
   apply (erule order_less_le_trans)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   235
   apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   236
  apply (drule_tac x=n in spec)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   237
  apply (drule order_trans [OF norm_triangle_ineq2])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   238
  apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   239
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   240
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   241
text \<open>Alternative formulation for boundedness.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   242
lemma Bseq_iff3: "Bseq X \<longleftrightarrow> (\<exists>k>0. \<exists>N. \<forall>n. norm (X n + - X N) \<le> k)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   243
  (is "?P \<longleftrightarrow> ?Q")
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   244
proof
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   245
  assume ?P
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   246
  then obtain K where *: "0 < K" and **: "\<And>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   247
    by (auto simp add: Bseq_def)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   248
  from * have "0 < K + norm (X 0)" by (rule order_less_le_trans) simp
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   249
  from ** have "\<forall>n. norm (X n - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   250
    by (auto intro: order_trans norm_triangle_ineq4)
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   251
  then have "\<forall>n. norm (X n + - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   252
    by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   253
  with \<open>0 < K + norm (X 0)\<close> show ?Q by blast
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   254
next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   255
  assume ?Q
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   256
  then show ?P by (auto simp add: Bseq_iff2)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   257
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   258
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   259
lemma BseqI2: "\<forall>n. k \<le> f n \<and> f n \<le> K \<Longrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   260
  for k K :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   261
  apply (simp add: Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   262
  apply (rule_tac x = "(\<bar>k\<bar> + \<bar>K\<bar>) + 1" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   263
  apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   264
  apply (drule_tac x = n in spec)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   265
  apply arith
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   266
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   267
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   268
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   269
subsubsection \<open>Upper Bounds and Lubs of Bounded Sequences\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   270
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   271
lemma Bseq_minus_iff: "Bseq (\<lambda>n. - (X n) :: 'a::real_normed_vector) \<longleftrightarrow> Bseq X"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   272
  by (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   273
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   274
lemma Bseq_add:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   275
  fixes f :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   276
  assumes "Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   277
  shows "Bseq (\<lambda>x. f x + c)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   278
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   279
  from assms obtain K where K: "\<And>x. norm (f x) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   280
    unfolding Bseq_def by blast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   281
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   282
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   283
    have "norm (f x + c) \<le> norm (f x) + norm c" by (rule norm_triangle_ineq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   284
    also have "norm (f x) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   285
    finally have "norm (f x + c) \<le> K + norm c" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   286
  }
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   287
  then show ?thesis by (rule BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   288
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   289
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   290
lemma Bseq_add_iff: "Bseq (\<lambda>x. f x + c) \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   291
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   292
  using Bseq_add[of f c] Bseq_add[of "\<lambda>x. f x + c" "-c"] by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   293
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   294
lemma Bseq_mult:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   295
  fixes f g :: "nat \<Rightarrow> 'a::real_normed_field"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   296
  assumes "Bseq f" and "Bseq g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   297
  shows "Bseq (\<lambda>x. f x * g x)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   298
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   299
  from assms obtain K1 K2 where K: "norm (f x) \<le> K1" "K1 > 0" "norm (g x) \<le> K2" "K2 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   300
    for x
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   301
    unfolding Bseq_def by blast
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   302
  then have "norm (f x * g x) \<le> K1 * K2" for x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   303
    by (auto simp: norm_mult intro!: mult_mono)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   304
  then show ?thesis by (rule BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   305
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   306
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   307
lemma Bfun_const [simp]: "Bfun (\<lambda>_. c) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   308
  unfolding Bfun_metric_def by (auto intro!: exI[of _ c] exI[of _ "1::real"])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   309
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   310
lemma Bseq_cmult_iff:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   311
  fixes c :: "'a::real_normed_field"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   312
  assumes "c \<noteq> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   313
  shows "Bseq (\<lambda>x. c * f x) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   314
proof
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   315
  assume "Bseq (\<lambda>x. c * f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   316
  with Bfun_const have "Bseq (\<lambda>x. inverse c * (c * f x))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   317
    by (rule Bseq_mult)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   318
  with \<open>c \<noteq> 0\<close> show "Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   319
    by (simp add: divide_simps)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   320
qed (intro Bseq_mult Bfun_const)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   321
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   322
lemma Bseq_subseq: "Bseq f \<Longrightarrow> Bseq (\<lambda>x. f (g x))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   323
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   324
  unfolding Bseq_def by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   325
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   326
lemma Bseq_Suc_iff: "Bseq (\<lambda>n. f (Suc n)) \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   327
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   328
  using Bseq_offset[of f 1] by (auto intro: Bseq_subseq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   329
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   330
lemma increasing_Bseq_subseq_iff:
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
   331
  assumes "\<And>x y. x \<le> y \<Longrightarrow> norm (f x :: 'a::real_normed_vector) \<le> norm (f y)" "strict_mono g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   332
  shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   333
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   334
  assume "Bseq (\<lambda>x. f (g x))"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   335
  then obtain K where K: "\<And>x. norm (f (g x)) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   336
    unfolding Bseq_def by auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   337
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   338
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   339
    from filterlim_subseq[OF assms(2)] obtain y where "g y \<ge> x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   340
      by (auto simp: filterlim_at_top eventually_at_top_linorder)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   341
    then have "norm (f x) \<le> norm (f (g y))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   342
      using assms(1) by blast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   343
    also have "norm (f (g y)) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   344
    finally have "norm (f x) \<le> K" .
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   345
  }
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   346
  then show "Bseq f" by (rule BseqI')
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   347
qed (use Bseq_subseq[of f g] in simp_all)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   348
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   349
lemma nonneg_incseq_Bseq_subseq_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   350
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   351
    and g :: "nat \<Rightarrow> nat"
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
   352
  assumes "\<And>x. f x \<ge> 0" "incseq f" "strict_mono g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   353
  shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   354
  using assms by (intro increasing_Bseq_subseq_iff) (auto simp: incseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   355
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   356
lemma Bseq_eq_bounded: "range f \<subseteq> {a..b} \<Longrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   357
  for a b :: real
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   358
  apply (simp add: subset_eq)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   359
  apply (rule BseqI'[where K="max (norm a) (norm b)"])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   360
  apply (erule_tac x=n in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   361
  apply auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   362
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   363
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   364
lemma incseq_bounded: "incseq X \<Longrightarrow> \<forall>i. X i \<le> B \<Longrightarrow> Bseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   365
  for B :: real
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   366
  by (intro Bseq_eq_bounded[of X "X 0" B]) (auto simp: incseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   367
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   368
lemma decseq_bounded: "decseq X \<Longrightarrow> \<forall>i. B \<le> X i \<Longrightarrow> Bseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   369
  for B :: real
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   370
  by (intro Bseq_eq_bounded[of X B "X 0"]) (auto simp: decseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   371
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   372
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   373
subsection \<open>Bounded Monotonic Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   374
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   375
subsubsection \<open>A Bounded and Monotonic Sequence Converges\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   376
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   377
(* TODO: delete *)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   378
(* FIXME: one use in NSA/HSEQ.thy *)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   379
lemma Bmonoseq_LIMSEQ: "\<forall>n. m \<le> n \<longrightarrow> X n = X m \<Longrightarrow> \<exists>L. X \<longlonglongrightarrow> L"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   380
  apply (rule_tac x="X m" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   381
  apply (rule filterlim_cong[THEN iffD2, OF refl refl _ tendsto_const])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   382
  unfolding eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   383
  apply blast
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   384
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   385
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   386
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   387
subsection \<open>Convergence to Zero\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   388
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   389
definition Zfun :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   390
  where "Zfun f F = (\<forall>r>0. eventually (\<lambda>x. norm (f x) < r) F)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   391
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   392
lemma ZfunI: "(\<And>r. 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F) \<Longrightarrow> Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   393
  by (simp add: Zfun_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   394
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   395
lemma ZfunD: "Zfun f F \<Longrightarrow> 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   396
  by (simp add: Zfun_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   397
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   398
lemma Zfun_ssubst: "eventually (\<lambda>x. f x = g x) F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   399
  unfolding Zfun_def by (auto elim!: eventually_rev_mp)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   400
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   401
lemma Zfun_zero: "Zfun (\<lambda>x. 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   402
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   403
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   404
lemma Zfun_norm_iff: "Zfun (\<lambda>x. norm (f x)) F = Zfun (\<lambda>x. f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   405
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   406
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   407
lemma Zfun_imp_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   408
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   409
    and g: "eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   410
  shows "Zfun (\<lambda>x. g x) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   411
proof (cases "0 < K")
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   412
  case K: True
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   413
  show ?thesis
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   414
  proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   415
    fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   416
    assume "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   417
    then have "0 < r / K" using K by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   418
    then have "eventually (\<lambda>x. norm (f x) < r / K) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   419
      using ZfunD [OF f] by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   420
    with g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   421
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   422
      case (elim x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   423
      then have "norm (f x) * K < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   424
        by (simp add: pos_less_divide_eq K)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   425
      then show ?case
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   426
        by (simp add: order_le_less_trans [OF elim(1)])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   427
    qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   428
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   429
next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   430
  case False
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   431
  then have K: "K \<le> 0" by (simp only: not_less)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   432
  show ?thesis
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   433
  proof (rule ZfunI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   434
    fix r :: real
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   435
    assume "0 < r"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   436
    from g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   437
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   438
      case (elim x)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   439
      also have "norm (f x) * K \<le> norm (f x) * 0"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   440
        using K norm_ge_zero by (rule mult_left_mono)
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   441
      finally show ?case
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   442
        using \<open>0 < r\<close> by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   443
    qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   444
  qed
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   445
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   446
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   447
lemma Zfun_le: "Zfun g F \<Longrightarrow> \<forall>x. norm (f x) \<le> norm (g x) \<Longrightarrow> Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   448
  by (erule Zfun_imp_Zfun [where K = 1]) simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   449
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   450
lemma Zfun_add:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   451
  assumes f: "Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   452
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   453
  shows "Zfun (\<lambda>x. f x + g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   454
proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   455
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   456
  assume "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   457
  then have r: "0 < r / 2" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   458
  have "eventually (\<lambda>x. norm (f x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   459
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   460
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   461
  have "eventually (\<lambda>x. norm (g x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   462
    using g r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   463
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   464
  show "eventually (\<lambda>x. norm (f x + g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   465
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   466
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   467
    have "norm (f x + g x) \<le> norm (f x) + norm (g x)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   468
      by (rule norm_triangle_ineq)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   469
    also have "\<dots> < r/2 + r/2"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   470
      using elim by (rule add_strict_mono)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   471
    finally show ?case
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   472
      by simp
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   473
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   474
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   475
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   476
lemma Zfun_minus: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. - f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   477
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   478
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   479
lemma Zfun_diff: "Zfun f F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun (\<lambda>x. f x - g x) F"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   480
  using Zfun_add [of f F "\<lambda>x. - g x"] by (simp add: Zfun_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   481
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   482
lemma (in bounded_linear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   483
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   484
  shows "Zfun (\<lambda>x. f (g x)) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   485
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   486
  obtain K where "norm (f x) \<le> norm x * K" for x
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   487
    using bounded by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   488
  then have "eventually (\<lambda>x. norm (f (g x)) \<le> norm (g x) * K) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   489
    by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   490
  with g show ?thesis
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   491
    by (rule Zfun_imp_Zfun)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   492
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   493
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   494
lemma (in bounded_bilinear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   495
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   496
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   497
  shows "Zfun (\<lambda>x. f x ** g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   498
proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   499
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   500
  assume r: "0 < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   501
  obtain K where K: "0 < K"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   502
    and norm_le: "norm (x ** y) \<le> norm x * norm y * K" for x y
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   503
    using pos_bounded by blast
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   504
  from K have K': "0 < inverse K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   505
    by (rule positive_imp_inverse_positive)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   506
  have "eventually (\<lambda>x. norm (f x) < r) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   507
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   508
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   509
  have "eventually (\<lambda>x. norm (g x) < inverse K) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   510
    using g K' by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   511
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   512
  show "eventually (\<lambda>x. norm (f x ** g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   513
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   514
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   515
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   516
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   517
    also have "norm (f x) * norm (g x) * K < r * inverse K * K"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   518
      by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero elim K)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   519
    also from K have "r * inverse K * K = r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   520
      by simp
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   521
    finally show ?case .
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   522
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   523
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   524
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   525
lemma (in bounded_bilinear) Zfun_left: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. f x ** a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   526
  by (rule bounded_linear_left [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   527
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   528
lemma (in bounded_bilinear) Zfun_right: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. a ** f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   529
  by (rule bounded_linear_right [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   530
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   531
lemmas Zfun_mult = bounded_bilinear.Zfun [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   532
lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   533
lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult]
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   534
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   535
lemma tendsto_Zfun_iff: "(f \<longlongrightarrow> a) F = Zfun (\<lambda>x. f x - a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   536
  by (simp only: tendsto_iff Zfun_def dist_norm)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   537
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   538
lemma tendsto_0_le:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   539
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F \<Longrightarrow> (g \<longlongrightarrow> 0) F"
56366
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   540
  by (simp add: Zfun_imp_Zfun tendsto_Zfun_iff)
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   541
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   542
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   543
subsubsection \<open>Distance and norms\<close>
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   544
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   545
lemma tendsto_dist [tendsto_intros]:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   546
  fixes l m :: "'a::metric_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   547
  assumes f: "(f \<longlongrightarrow> l) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   548
    and g: "(g \<longlongrightarrow> m) F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   549
  shows "((\<lambda>x. dist (f x) (g x)) \<longlongrightarrow> dist l m) F"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   550
proof (rule tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   551
  fix e :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   552
  assume "0 < e"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   553
  then have e2: "0 < e/2" by simp
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   554
  from tendstoD [OF f e2] tendstoD [OF g e2]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   555
  show "eventually (\<lambda>x. dist (dist (f x) (g x)) (dist l m) < e) F"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   556
  proof (eventually_elim)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   557
    case (elim x)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   558
    then show "dist (dist (f x) (g x)) (dist l m) < e"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   559
      unfolding dist_real_def
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   560
      using dist_triangle2 [of "f x" "g x" "l"]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   561
        and dist_triangle2 [of "g x" "l" "m"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   562
        and dist_triangle3 [of "l" "m" "f x"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   563
        and dist_triangle [of "f x" "m" "g x"]
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   564
      by arith
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   565
  qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   566
qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   567
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   568
lemma continuous_dist[continuous_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   569
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   570
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   571
  unfolding continuous_def by (rule tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   572
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   573
lemma continuous_on_dist[continuous_intros]:
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   574
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   575
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   576
  unfolding continuous_on_def by (auto intro: tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   577
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   578
lemma tendsto_norm [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> norm a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   579
  unfolding norm_conv_dist by (intro tendsto_intros)
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   580
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   581
lemma continuous_norm [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. norm (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   582
  unfolding continuous_def by (rule tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   583
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   584
lemma continuous_on_norm [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   585
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. norm (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   586
  unfolding continuous_on_def by (auto intro: tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   587
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   588
lemma tendsto_norm_zero: "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   589
  by (drule tendsto_norm) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   590
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   591
lemma tendsto_norm_zero_cancel: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   592
  unfolding tendsto_iff dist_norm by simp
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   593
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   594
lemma tendsto_norm_zero_iff: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   595
  unfolding tendsto_iff dist_norm by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   596
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   597
lemma tendsto_rabs [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> \<bar>l\<bar>) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   598
  for l :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   599
  by (fold real_norm_def) (rule tendsto_norm)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   600
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   601
lemma continuous_rabs [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   602
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   603
  unfolding real_norm_def[symmetric] by (rule continuous_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   604
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   605
lemma continuous_on_rabs [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   606
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   607
  unfolding real_norm_def[symmetric] by (rule continuous_on_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   608
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   609
lemma tendsto_rabs_zero: "(f \<longlongrightarrow> (0::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   610
  by (fold real_norm_def) (rule tendsto_norm_zero)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   611
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   612
lemma tendsto_rabs_zero_cancel: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   613
  by (fold real_norm_def) (rule tendsto_norm_zero_cancel)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   614
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   615
lemma tendsto_rabs_zero_iff: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   616
  by (fold real_norm_def) (rule tendsto_norm_zero_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   617
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   618
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   619
subsection \<open>Topological Monoid\<close>
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   620
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   621
class topological_monoid_add = topological_space + monoid_add +
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   622
  assumes tendsto_add_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x + snd x :> nhds (a + b)"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   623
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   624
class topological_comm_monoid_add = topological_monoid_add + comm_monoid_add
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   625
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   626
lemma tendsto_add [tendsto_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   627
  fixes a b :: "'a::topological_monoid_add"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   628
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> a + b) F"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   629
  using filterlim_compose[OF tendsto_add_Pair, of "\<lambda>x. (f x, g x)" a b F]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   630
  by (simp add: nhds_prod[symmetric] tendsto_Pair)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   631
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   632
lemma continuous_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   633
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   634
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   635
  unfolding continuous_def by (rule tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   636
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   637
lemma continuous_on_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   638
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   639
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   640
  unfolding continuous_on_def by (auto intro: tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   641
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   642
lemma tendsto_add_zero:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   643
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   644
  shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   645
  by (drule (1) tendsto_add) simp
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   646
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   647
lemma tendsto_sum [tendsto_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   648
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   649
  shows "(\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F) \<Longrightarrow> ((\<lambda>x. \<Sum>i\<in>I. f i x) \<longlongrightarrow> (\<Sum>i\<in>I. a i)) F"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   650
  by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_add)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   651
67673
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   652
lemma tendsto_null_sum:
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   653
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   654
  assumes "\<And>i. i \<in> I \<Longrightarrow> ((\<lambda>x. f x i) \<longlongrightarrow> 0) F"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   655
  shows "((\<lambda>i. sum (f i) I) \<longlongrightarrow> 0) F"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   656
  using tendsto_sum [of I "\<lambda>x y. f y x" "\<lambda>x. 0"] assms by simp
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   657
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   658
lemma continuous_sum [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   659
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   660
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Sum>i\<in>I. f i x)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   661
  unfolding continuous_def by (rule tendsto_sum)
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   662
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   663
lemma continuous_on_sum [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   664
  fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   665
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Sum>i\<in>I. f i x)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   666
  unfolding continuous_on_def by (auto intro: tendsto_sum)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   667
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   668
instance nat :: topological_comm_monoid_add
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   669
  by standard
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   670
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   671
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   672
instance int :: topological_comm_monoid_add
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   673
  by standard
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   674
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   675
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   676
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   677
subsubsection \<open>Topological group\<close>
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   678
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   679
class topological_group_add = topological_monoid_add + group_add +
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   680
  assumes tendsto_uminus_nhds: "(uminus \<longlongrightarrow> - a) (nhds a)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   681
begin
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   682
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   683
lemma tendsto_minus [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> - a) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   684
  by (rule filterlim_compose[OF tendsto_uminus_nhds])
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   685
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   686
end
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   687
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   688
class topological_ab_group_add = topological_group_add + ab_group_add
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   689
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   690
instance topological_ab_group_add < topological_comm_monoid_add ..
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   691
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   692
lemma continuous_minus [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. - f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   693
  for f :: "'a::t2_space \<Rightarrow> 'b::topological_group_add"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   694
  unfolding continuous_def by (rule tendsto_minus)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   695
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   696
lemma continuous_on_minus [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   697
  for f :: "_ \<Rightarrow> 'b::topological_group_add"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   698
  unfolding continuous_on_def by (auto intro: tendsto_minus)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   699
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   700
lemma tendsto_minus_cancel: "((\<lambda>x. - f x) \<longlongrightarrow> - a) F \<Longrightarrow> (f \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   701
  for a :: "'a::topological_group_add"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   702
  by (drule tendsto_minus) simp
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   703
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   704
lemma tendsto_minus_cancel_left:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   705
  "(f \<longlongrightarrow> - (y::_::topological_group_add)) F \<longleftrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> y) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   706
  using tendsto_minus_cancel[of f "- y" F]  tendsto_minus[of f "- y" F]
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   707
  by auto
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   708
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   709
lemma tendsto_diff [tendsto_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   710
  fixes a b :: "'a::topological_group_add"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   711
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> a - b) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   712
  using tendsto_add [of f a F "\<lambda>x. - g x" "- b"] by (simp add: tendsto_minus)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   713
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   714
lemma continuous_diff [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   715
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   716
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   717
  unfolding continuous_def by (rule tendsto_diff)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   718
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   719
lemma continuous_on_diff [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   720
  fixes f g :: "_ \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   721
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   722
  unfolding continuous_on_def by (auto intro: tendsto_diff)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   723
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67371
diff changeset
   724
lemma continuous_on_op_minus: "continuous_on (s::'a::topological_group_add set) ((-) x)"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   725
  by (rule continuous_intros | simp)+
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   726
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   727
instance real_normed_vector < topological_ab_group_add
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   728
proof
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   729
  fix a b :: 'a
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   730
  show "((\<lambda>x. fst x + snd x) \<longlongrightarrow> a + b) (nhds a \<times>\<^sub>F nhds b)"
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   731
    unfolding tendsto_Zfun_iff add_diff_add
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   732
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   733
    by (intro Zfun_add)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   734
       (auto simp add: tendsto_Zfun_iff[symmetric] nhds_prod[symmetric] intro!: tendsto_fst)
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   735
  show "(uminus \<longlongrightarrow> - a) (nhds a)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   736
    unfolding tendsto_Zfun_iff minus_diff_minus
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   737
    using filterlim_ident[of "nhds a"]
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   738
    by (intro Zfun_minus) (simp add: tendsto_Zfun_iff)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   739
qed
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   740
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65036
diff changeset
   741
lemmas real_tendsto_sandwich = tendsto_sandwich[where 'a=real]
50999
3de230ed0547 introduce order topology
hoelzl
parents: 50880
diff changeset
   742
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   743
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   744
subsubsection \<open>Linear operators and multiplication\<close>
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   745
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   746
lemma linear_times: "linear (\<lambda>x. c * x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   747
  for c :: "'a::real_algebra"
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   748
  by (auto simp: linearI distrib_left)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   749
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   750
lemma (in bounded_linear) tendsto: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> f a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   751
  by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   752
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   753
lemma (in bounded_linear) continuous: "continuous F g \<Longrightarrow> continuous F (\<lambda>x. f (g x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   754
  using tendsto[of g _ F] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   755
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   756
lemma (in bounded_linear) continuous_on: "continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f (g x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   757
  using tendsto[of g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   758
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   759
lemma (in bounded_linear) tendsto_zero: "(g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   760
  by (drule tendsto) (simp only: zero)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   761
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   762
lemma (in bounded_bilinear) tendsto:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   763
  "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x ** g x) \<longlongrightarrow> a ** b) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   764
  by (simp only: tendsto_Zfun_iff prod_diff_prod Zfun_add Zfun Zfun_left Zfun_right)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   765
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   766
lemma (in bounded_bilinear) continuous:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   767
  "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   768
  using tendsto[of f _ F g] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   769
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   770
lemma (in bounded_bilinear) continuous_on:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   771
  "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   772
  using tendsto[of f _ _ g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   773
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   774
lemma (in bounded_bilinear) tendsto_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   775
  assumes f: "(f \<longlongrightarrow> 0) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   776
    and g: "(g \<longlongrightarrow> 0) F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   777
  shows "((\<lambda>x. f x ** g x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   778
  using tendsto [OF f g] by (simp add: zero_left)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   779
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   780
lemma (in bounded_bilinear) tendsto_left_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   781
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x ** c) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   782
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_left])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   783
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   784
lemma (in bounded_bilinear) tendsto_right_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   785
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. c ** f x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   786
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_right])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   787
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   788
lemmas tendsto_of_real [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   789
  bounded_linear.tendsto [OF bounded_linear_of_real]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   790
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   791
lemmas tendsto_scaleR [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   792
  bounded_bilinear.tendsto [OF bounded_bilinear_scaleR]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   793
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   794
lemmas tendsto_mult [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   795
  bounded_bilinear.tendsto [OF bounded_bilinear_mult]
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   796
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   797
lemma tendsto_mult_left: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) \<longlongrightarrow> c * l) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   798
  for c :: "'a::real_normed_algebra"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   799
  by (rule tendsto_mult [OF tendsto_const])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   800
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   801
lemma tendsto_mult_right: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) \<longlongrightarrow> l * c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   802
  for c :: "'a::real_normed_algebra"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   803
  by (rule tendsto_mult [OF _ tendsto_const])
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   804
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   805
lemmas continuous_of_real [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   806
  bounded_linear.continuous [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   807
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   808
lemmas continuous_scaleR [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   809
  bounded_bilinear.continuous [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   810
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   811
lemmas continuous_mult [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   812
  bounded_bilinear.continuous [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   813
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   814
lemmas continuous_on_of_real [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   815
  bounded_linear.continuous_on [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   816
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   817
lemmas continuous_on_scaleR [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   818
  bounded_bilinear.continuous_on [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   819
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   820
lemmas continuous_on_mult [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   821
  bounded_bilinear.continuous_on [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   822
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   823
lemmas tendsto_mult_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   824
  bounded_bilinear.tendsto_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   825
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   826
lemmas tendsto_mult_left_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   827
  bounded_bilinear.tendsto_left_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   828
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   829
lemmas tendsto_mult_right_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   830
  bounded_bilinear.tendsto_right_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   831
66793
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   832
lemma tendsto_divide_zero:
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   833
  fixes c :: "'a::real_normed_field"
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   834
  shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x / c) \<longlongrightarrow> 0) F"
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   835
  by (cases "c=0") (simp_all add: divide_inverse tendsto_mult_left_zero)
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   836
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   837
lemma tendsto_power [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> a ^ n) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   838
  for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra}"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
   839
  by (induct n) (simp_all add: tendsto_mult)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   840
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   841
lemma tendsto_null_power: "\<lbrakk>(f \<longlongrightarrow> 0) F; 0 < n\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> 0) F"
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   842
    for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra_1}"
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   843
  using tendsto_power [of f 0 F n] by (simp add: power_0_left)
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   844
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   845
lemma continuous_power [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. (f x)^n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   846
  for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   847
  unfolding continuous_def by (rule tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   848
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   849
lemma continuous_on_power [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   850
  fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   851
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. (f x)^n)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   852
  unfolding continuous_on_def by (auto intro: tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   853
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   854
lemma tendsto_prod [tendsto_intros]:
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   855
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   856
  shows "(\<And>i. i \<in> S \<Longrightarrow> (f i \<longlongrightarrow> L i) F) \<Longrightarrow> ((\<lambda>x. \<Prod>i\<in>S. f i x) \<longlongrightarrow> (\<Prod>i\<in>S. L i)) F"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   857
  by (induct S rule: infinite_finite_induct) (simp_all add: tendsto_mult)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   858
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   859
lemma continuous_prod [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   860
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   861
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>S. f i x)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   862
  unfolding continuous_def by (rule tendsto_prod)
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   863
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   864
lemma continuous_on_prod [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   865
  fixes f :: "'a \<Rightarrow> _ \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   866
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Prod>i\<in>S. f i x)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   867
  unfolding continuous_on_def by (auto intro: tendsto_prod)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   868
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   869
lemma tendsto_of_real_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   870
  "((\<lambda>x. of_real (f x) :: 'a::real_normed_div_algebra) \<longlongrightarrow> of_real c) F \<longleftrightarrow> (f \<longlongrightarrow> c) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   871
  unfolding tendsto_iff by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   872
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   873
lemma tendsto_add_const_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   874
  "((\<lambda>x. c + f x :: 'a::real_normed_vector) \<longlongrightarrow> c + d) F \<longleftrightarrow> (f \<longlongrightarrow> d) F"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   875
  using tendsto_add[OF tendsto_const[of c], of f d]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   876
    and tendsto_add[OF tendsto_const[of "-c"], of "\<lambda>x. c + f x" "c + d"] by auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   877
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   878
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   879
subsubsection \<open>Inverse and division\<close>
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   880
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   881
lemma (in bounded_bilinear) Zfun_prod_Bfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   882
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   883
    and g: "Bfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   884
  shows "Zfun (\<lambda>x. f x ** g x) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   885
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   886
  obtain K where K: "0 \<le> K"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   887
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   888
    using nonneg_bounded by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   889
  obtain B where B: "0 < B"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   890
    and norm_g: "eventually (\<lambda>x. norm (g x) \<le> B) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   891
    using g by (rule BfunE)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   892
  have "eventually (\<lambda>x. norm (f x ** g x) \<le> norm (f x) * (B * K)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   893
  using norm_g proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   894
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   895
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   896
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   897
    also have "\<dots> \<le> norm (f x) * B * K"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   898
      by (intro mult_mono' order_refl norm_g norm_ge_zero mult_nonneg_nonneg K elim)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   899
    also have "\<dots> = norm (f x) * (B * K)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
   900
      by (rule mult.assoc)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   901
    finally show "norm (f x ** g x) \<le> norm (f x) * (B * K)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   902
  qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   903
  with f show ?thesis
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   904
    by (rule Zfun_imp_Zfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   905
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   906
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   907
lemma (in bounded_bilinear) Bfun_prod_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   908
  assumes f: "Bfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   909
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   910
  shows "Zfun (\<lambda>x. f x ** g x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   911
  using flip g f by (rule bounded_bilinear.Zfun_prod_Bfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   912
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   913
lemma Bfun_inverse_lemma:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   914
  fixes x :: "'a::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   915
  shows "r \<le> norm x \<Longrightarrow> 0 < r \<Longrightarrow> norm (inverse x) \<le> inverse r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   916
  apply (subst nonzero_norm_inverse)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   917
  apply clarsimp
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   918
  apply (erule (1) le_imp_inverse_le)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   919
  done
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   920
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   921
lemma Bfun_inverse:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   922
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   923
  assumes f: "(f \<longlongrightarrow> a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   924
  assumes a: "a \<noteq> 0"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   925
  shows "Bfun (\<lambda>x. inverse (f x)) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   926
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   927
  from a have "0 < norm a" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   928
  then have "\<exists>r>0. r < norm a" by (rule dense)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   929
  then obtain r where r1: "0 < r" and r2: "r < norm a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   930
    by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   931
  have "eventually (\<lambda>x. dist (f x) a < r) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   932
    using tendstoD [OF f r1] by blast
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   933
  then have "eventually (\<lambda>x. norm (inverse (f x)) \<le> inverse (norm a - r)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   934
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   935
    case (elim x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   936
    then have 1: "norm (f x - a) < r"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   937
      by (simp add: dist_norm)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   938
    then have 2: "f x \<noteq> 0" using r2 by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   939
    then have "norm (inverse (f x)) = inverse (norm (f x))"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   940
      by (rule nonzero_norm_inverse)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   941
    also have "\<dots> \<le> inverse (norm a - r)"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   942
    proof (rule le_imp_inverse_le)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   943
      show "0 < norm a - r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   944
        using r2 by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   945
      have "norm a - norm (f x) \<le> norm (a - f x)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   946
        by (rule norm_triangle_ineq2)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   947
      also have "\<dots> = norm (f x - a)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   948
        by (rule norm_minus_commute)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   949
      also have "\<dots> < r" using 1 .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   950
      finally show "norm a - r \<le> norm (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   951
        by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   952
    qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   953
    finally show "norm (inverse (f x)) \<le> inverse (norm a - r)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   954
  qed
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   955
  then show ?thesis by (rule BfunI)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   956
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   957
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   958
lemma tendsto_inverse [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   959
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   960
  assumes f: "(f \<longlongrightarrow> a) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   961
    and a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   962
  shows "((\<lambda>x. inverse (f x)) \<longlongrightarrow> inverse a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   963
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   964
  from a have "0 < norm a" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   965
  with f have "eventually (\<lambda>x. dist (f x) a < norm a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   966
    by (rule tendstoD)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   967
  then have "eventually (\<lambda>x. f x \<noteq> 0) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   968
    unfolding dist_norm by (auto elim!: eventually_mono)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   969
  with a have "eventually (\<lambda>x. inverse (f x) - inverse a =
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   970
    - (inverse (f x) * (f x - a) * inverse a)) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
   971
    by (auto elim!: eventually_mono simp: inverse_diff_inverse)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   972
  moreover have "Zfun (\<lambda>x. - (inverse (f x) * (f x - a) * inverse a)) F"
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   973
    by (intro Zfun_minus Zfun_mult_left
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   974
      bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult]
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   975
      Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff])
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   976
  ultimately show ?thesis
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
   977
    unfolding tendsto_Zfun_iff by (rule Zfun_ssubst)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   978
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   979
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   980
lemma continuous_inverse:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   981
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   982
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   983
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   984
  shows "continuous F (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   985
  using assms unfolding continuous_def by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   986
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   987
lemma continuous_at_within_inverse[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   988
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   989
  assumes "continuous (at a within s) f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   990
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   991
  shows "continuous (at a within s) (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   992
  using assms unfolding continuous_within by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   993
66827
c94531b5007d Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
paulson <lp15@cam.ac.uk>
parents: 66793
diff changeset
   994
lemma continuous_at_inverse[continuous_intros, simp]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   995
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   996
  assumes "isCont f a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   997
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   998
  shows "isCont (\<lambda>x. inverse (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   999
  using assms unfolding continuous_at by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1000
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1001
lemma continuous_on_inverse[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1002
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1003
  assumes "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1004
    and "\<forall>x\<in>s. f x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1005
  shows "continuous_on s (\<lambda>x. inverse (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1006
  using assms unfolding continuous_on_def by (blast intro: tendsto_inverse)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1007
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
  1008
lemma tendsto_divide [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1009
  fixes a b :: "'a::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1010
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> ((\<lambda>x. f x / g x) \<longlongrightarrow> a / b) F"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
  1011
  by (simp add: tendsto_mult tendsto_inverse divide_inverse)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1012
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1013
lemma continuous_divide:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1014
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1015
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1016
    and "continuous F g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1017
    and "g (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1018
  shows "continuous F (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1019
  using assms unfolding continuous_def by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1020
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1021
lemma continuous_at_within_divide[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1022
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1023
  assumes "continuous (at a within s) f" "continuous (at a within s) g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1024
    and "g a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1025
  shows "continuous (at a within s) (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1026
  using assms unfolding continuous_within by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1027
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1028
lemma isCont_divide[continuous_intros, simp]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1029
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1030
  assumes "isCont f a" "isCont g a" "g a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1031
  shows "isCont (\<lambda>x. (f x) / g x) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1032
  using assms unfolding continuous_at by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1033
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1034
lemma continuous_on_divide[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1035
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1036
  assumes "continuous_on s f" "continuous_on s g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1037
    and "\<forall>x\<in>s. g x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1038
  shows "continuous_on s (\<lambda>x. (f x) / (g x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1039
  using assms unfolding continuous_on_def by (blast intro: tendsto_divide)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1040
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1041
lemma tendsto_sgn [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> ((\<lambda>x. sgn (f x)) \<longlongrightarrow> sgn l) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1042
  for l :: "'a::real_normed_vector"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
  1043
  unfolding sgn_div_norm by (simp add: tendsto_intros)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
  1044
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1045
lemma continuous_sgn:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1046
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1047
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1048
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1049
  shows "continuous F (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1050
  using assms unfolding continuous_def by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1051
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1052
lemma continuous_at_within_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1053
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1054
  assumes "continuous (at a within s) f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1055
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1056
  shows "continuous (at a within s) (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1057
  using assms unfolding continuous_within by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1058
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1059
lemma isCont_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1060
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1061
  assumes "isCont f a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1062
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1063
  shows "isCont (\<lambda>x. sgn (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1064
  using assms unfolding continuous_at by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1065
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1066
lemma continuous_on_sgn[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1067
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1068
  assumes "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1069
    and "\<forall>x\<in>s. f x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1070
  shows "continuous_on s (\<lambda>x. sgn (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1071
  using assms unfolding continuous_on_def by (blast intro: tendsto_sgn)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1072
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1073
lemma filterlim_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1074
  fixes f :: "_ \<Rightarrow> 'a::real_normed_vector"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1075
  assumes "0 \<le> c"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1076
  shows "(LIM x F. f x :> at_infinity) \<longleftrightarrow> (\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1077
  unfolding filterlim_iff eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1078
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1079
  fix P :: "'a \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1080
  fix b
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1081
  assume *: "\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1082
  assume P: "\<forall>x. b \<le> norm x \<longrightarrow> P x"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1083
  have "max b (c + 1) > c" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1084
  with * have "eventually (\<lambda>x. max b (c + 1) \<le> norm (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1085
    by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1086
  then show "eventually (\<lambda>x. P (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1087
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1088
    case (elim x)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1089
    with P show "P (f x)" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1090
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1091
qed force
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1092
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1093
lemma filterlim_at_infinity_imp_norm_at_top:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1094
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1095
  assumes "filterlim f at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1096
  shows   "filterlim (\<lambda>x. norm (f x)) at_top F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1097
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1098
  {
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1099
    fix r :: real 
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1100
    have "\<forall>\<^sub>F x in F. r \<le> norm (f x)" using filterlim_at_infinity[of 0 f F] assms 
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1101
      by (cases "r > 0") 
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1102
         (auto simp: not_less intro: always_eventually order.trans[OF _ norm_ge_zero])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1103
  }
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1104
  thus ?thesis by (auto simp: filterlim_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1105
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1106
  
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1107
lemma filterlim_norm_at_top_imp_at_infinity:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1108
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1109
  assumes "filterlim (\<lambda>x. norm (f x)) at_top F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1110
  shows   "filterlim f at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1111
  using filterlim_at_infinity[of 0 f F] assms by (auto simp: filterlim_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1112
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1113
lemma filterlim_norm_at_top: "filterlim norm at_top at_infinity"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1114
  by (rule filterlim_at_infinity_imp_norm_at_top) (rule filterlim_ident)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1115
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1116
lemma eventually_not_equal_at_infinity:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1117
  "eventually (\<lambda>x. x \<noteq> (a :: 'a :: {real_normed_vector})) at_infinity"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1118
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1119
  from filterlim_norm_at_top[where 'a = 'a]
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1120
    have "\<forall>\<^sub>F x in at_infinity. norm a < norm (x::'a)" by (auto simp: filterlim_at_top_dense)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1121
  thus ?thesis by eventually_elim auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1122
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1123
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1124
lemma filterlim_int_of_nat_at_topD:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1125
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1126
  assumes "filterlim (\<lambda>x. f (int x)) F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1127
  shows   "filterlim f F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1128
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1129
  have "filterlim (\<lambda>x. f (int (nat x))) F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1130
    by (rule filterlim_compose[OF assms filterlim_nat_sequentially])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1131
  also have "?this \<longleftrightarrow> filterlim f F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1132
    by (intro filterlim_cong refl eventually_mono [OF eventually_ge_at_top[of "0::int"]]) auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1133
  finally show ?thesis .
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1134
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1135
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1136
lemma filterlim_int_sequentially [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1137
  "filterlim int at_top sequentially"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1138
  unfolding filterlim_at_top
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1139
proof
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1140
  fix C :: int
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1141
  show "eventually (\<lambda>n. int n \<ge> C) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1142
    using eventually_ge_at_top[of "nat \<lceil>C\<rceil>"] by eventually_elim linarith
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1143
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1144
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1145
lemma filterlim_real_of_int_at_top [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1146
  "filterlim real_of_int at_top at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1147
  unfolding filterlim_at_top
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1148
proof
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1149
  fix C :: real
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1150
  show "eventually (\<lambda>n. real_of_int n \<ge> C) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1151
    using eventually_ge_at_top[of "\<lceil>C\<rceil>"] by eventually_elim linarith
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1152
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1153
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1154
lemma filterlim_abs_real: "filterlim (abs::real \<Rightarrow> real) at_top at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1155
proof (subst filterlim_cong[OF refl refl])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1156
  from eventually_ge_at_top[of "0::real"] show "eventually (\<lambda>x::real. \<bar>x\<bar> = x) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1157
    by eventually_elim simp
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1158
qed (simp_all add: filterlim_ident)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1159
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1160
lemma filterlim_of_real_at_infinity [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1161
  "filterlim (of_real :: real \<Rightarrow> 'a :: real_normed_algebra_1) at_infinity at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1162
  by (intro filterlim_norm_at_top_imp_at_infinity) (auto simp: filterlim_abs_real)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1163
    
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1164
lemma not_tendsto_and_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1165
  fixes c :: "'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1166
  assumes "F \<noteq> bot"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1167
    and "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1168
    and "filterlim f at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1169
  shows False
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1170
proof -
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1171
  from tendstoD[OF assms(2), of "1/2"]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1172
  have "eventually (\<lambda>x. dist (f x) c < 1/2) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1173
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1174
  moreover
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1175
  from filterlim_at_infinity[of "norm c" f F] assms(3)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1176
  have "eventually (\<lambda>x. norm (f x) \<ge> norm c + 1) F" by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1177
  ultimately have "eventually (\<lambda>x. False) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1178
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1179
    fix x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1180
    assume A: "dist (f x) c < 1/2"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1181
    assume "norm (f x) \<ge> norm c + 1"
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1182
    also have "norm (f x) = dist (f x) 0" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1183
    also have "\<dots> \<le> dist (f x) c + dist c 0" by (rule dist_triangle)
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1184
    finally show False using A by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1185
  qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1186
  with assms show False by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1187
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1188
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1189
lemma filterlim_at_infinity_imp_not_convergent:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1190
  assumes "filterlim f at_infinity sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1191
  shows "\<not> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1192
  by (rule notI, rule not_tendsto_and_filterlim_at_infinity[OF _ _ assms])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1193
     (simp_all add: convergent_LIMSEQ_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1194
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1195
lemma filterlim_at_infinity_imp_eventually_ne:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1196
  assumes "filterlim f at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1197
  shows "eventually (\<lambda>z. f z \<noteq> c) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1198
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1199
  have "norm c + 1 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1200
    by (intro add_nonneg_pos) simp_all
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1201
  with filterlim_at_infinity[OF order.refl, of f F] assms
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1202
  have "eventually (\<lambda>z. norm (f z) \<ge> norm c + 1) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1203
    by blast
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1204
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1205
    by eventually_elim auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1206
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1207
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1208
lemma tendsto_of_nat [tendsto_intros]:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1209
  "filterlim (of_nat :: nat \<Rightarrow> 'a::real_normed_algebra_1) at_infinity sequentially"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1210
proof (subst filterlim_at_infinity[OF order.refl], intro allI impI)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1211
  fix r :: real
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1212
  assume r: "r > 0"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1213
  define n where "n = nat \<lceil>r\<rceil>"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1214
  from r have n: "\<forall>m\<ge>n. of_nat m \<ge> r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1215
    unfolding n_def by linarith
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1216
  from eventually_ge_at_top[of n] show "eventually (\<lambda>m. norm (of_nat m :: 'a) \<ge> r) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1217
    by eventually_elim (use n in simp_all)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1218
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1219
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1220
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1221
subsection \<open>Relate @{const at}, @{const at_left} and @{const at_right}\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1222
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1223
text \<open>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1224
  This lemmas are useful for conversion between @{term "at x"} to @{term "at_left x"} and
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1225
  @{term "at_right x"} and also @{term "at_right 0"}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1226
\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1227
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1228
lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real]
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1229
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1230
lemma filtermap_nhds_shift: "filtermap (\<lambda>x. x - d) (nhds a) = nhds (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1231
  for a d :: "'a::real_normed_vector"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1232
  by (rule filtermap_fun_inverse[where g="\<lambda>x. x + d"])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1233
    (auto intro!: tendsto_eq_intros filterlim_ident)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1234
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1235
lemma filtermap_nhds_minus: "filtermap (\<lambda>x. - x) (nhds a) = nhds (- a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1236
  for a :: "'a::real_normed_vector"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1237
  by (rule filtermap_fun_inverse[where g=uminus])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1238
    (auto intro!: tendsto_eq_intros filterlim_ident)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1239
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1240
lemma filtermap_at_shift: "filtermap (\<lambda>x. x - d) (at a) = at (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1241
  for a d :: "'a::real_normed_vector"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1242
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1243
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1244
lemma filtermap_at_right_shift: "filtermap (\<lambda>x. x - d) (at_right a) = at_right (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1245
  for a d :: "real"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1246
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1247
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1248
lemma at_right_to_0: "at_right a = filtermap (\<lambda>x. x + a) (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1249
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1250
  using filtermap_at_right_shift[of "-a" 0] by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1251
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1252
lemma filterlim_at_right_to_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1253
  "filterlim f F (at_right a) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1254
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1255
  unfolding filterlim_def filtermap_filtermap at_right_to_0[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1256
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1257
lemma eventually_at_right_to_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1258
  "eventually P (at_right a) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1259
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1260
  unfolding at_right_to_0[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1261
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1262
lemma at_to_0: "at a = filtermap (\<lambda>x. x + a) (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1263
  for a :: "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1264
  using filtermap_at_shift[of "-a" 0] by simp
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1265
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1266
lemma filterlim_at_to_0:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1267
  "filterlim f F (at a) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1268
  for a :: "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1269
  unfolding filterlim_def filtermap_filtermap at_to_0[of a] ..
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1270
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1271
lemma eventually_at_to_0:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1272
  "eventually P (at a) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1273
  for a ::  "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1274
  unfolding at_to_0[of a] by (simp add: eventually_filtermap)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1275
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1276
lemma filtermap_at_minus: "filtermap (\<lambda>x. - x) (at a) = at (- a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1277
  for a :: "'a::real_normed_vector"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1278
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1279
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1280
lemma at_left_minus: "at_left a = filtermap (\<lambda>x. - x) (at_right (- a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1281
  for a :: real
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1282
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1283
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1284
lemma at_right_minus: "at_right a = filtermap (\<lambda>x. - x) (at_left (- a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1285
  for a :: real
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1286
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1287
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1288
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1289
lemma filterlim_at_left_to_right:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1290
  "filterlim f F (at_left a) \<longleftrightarrow> filterlim (\<lambda>x. f (- x)) F (at_right (-a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1291
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1292
  unfolding filterlim_def filtermap_filtermap at_left_minus[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1293
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1294
lemma eventually_at_left_to_right:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1295
  "eventually P (at_left a) \<longleftrightarrow> eventually (\<lambda>x. P (- x)) (at_right (-a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1296
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1297
  unfolding at_left_minus[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1298
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1299
lemma filterlim_uminus_at_top_at_bot: "LIM x at_bot. - x :: real :> at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1300
  unfolding filterlim_at_top eventually_at_bot_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1301
  by (metis leI minus_less_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1302
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1303
lemma filterlim_uminus_at_bot_at_top: "LIM x at_top. - x :: real :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1304
  unfolding filterlim_at_bot eventually_at_top_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1305
  by (metis leI less_minus_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1306
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1307
lemma at_top_mirror: "at_top = filtermap uminus (at_bot :: real filter)"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1308
  by (rule filtermap_fun_inverse[symmetric, of uminus])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1309
     (auto intro: filterlim_uminus_at_bot_at_top filterlim_uminus_at_top_at_bot)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1310
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1311
lemma at_bot_mirror: "at_bot = filtermap uminus (at_top :: real filter)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1312
  unfolding at_top_mirror filtermap_filtermap by (simp add: filtermap_ident)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1313
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1314
lemma filterlim_at_top_mirror: "(LIM x at_top. f x :> F) \<longleftrightarrow> (LIM x at_bot. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1315
  unfolding filterlim_def at_top_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1316
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1317
lemma filterlim_at_bot_mirror: "(LIM x at_bot. f x :> F) \<longleftrightarrow> (LIM x at_top. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1318
  unfolding filterlim_def at_bot_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1319
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1320
lemma filterlim_uminus_at_top: "(LIM x F. f x :> at_top) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_bot)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1321
  using filterlim_compose[OF filterlim_uminus_at_bot_at_top, of f F]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1322
    and filterlim_compose[OF filterlim_uminus_at_top_at_bot, of "\<lambda>x. - f x" F]
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1323
  by auto
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1324
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1325
lemma filterlim_uminus_at_bot: "(LIM x F. f x :> at_bot) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_top)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1326
  unfolding filterlim_uminus_at_top by simp
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1327
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1328
lemma filterlim_inverse_at_top_right: "LIM x at_right (0::real). inverse x :> at_top"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1329
  unfolding filterlim_at_top_gt[where c=0] eventually_at_filter
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1330
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1331
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1332
  assume [arith]: "0 < Z"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1333
  then have "eventually (\<lambda>x. x < inverse Z) (nhds 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1334
    by (auto simp add: eventually_nhds_metric dist_real_def intro!: exI[of _ "\<bar>inverse Z\<bar>"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1335
  then show "eventually (\<lambda>x. x \<noteq> 0 \<longrightarrow> x \<in> {0<..} \<longrightarrow> Z \<le> inverse x) (nhds 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1336
    by (auto elim!: eventually_mono simp: inverse_eq_divide field_simps)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1337
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1338
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1339
lemma tendsto_inverse_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1340
  fixes x :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1341
  shows "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1342
  unfolding tendsto_Zfun_iff diff_0_right Zfun_def eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1343
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1344
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1345
  assume "0 < r"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1346
  show "\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> norm (inverse x :: 'a) < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1347
  proof (intro exI[of _ "inverse (r / 2)"] allI impI)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1348
    fix x :: 'a
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1349
    from \<open>0 < r\<close> have "0 < inverse (r / 2)" by simp
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1350
    also assume *: "inverse (r / 2) \<le> norm x"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1351
    finally show "norm (inverse x) < r"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1352
      using * \<open>0 < r\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1353
      by (subst nonzero_norm_inverse) (simp_all add: inverse_eq_divide field_simps)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1354
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1355
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1356
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1357
lemma tendsto_add_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1358
  fixes c :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1359
    and F :: "'a filter"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1360
  assumes "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1361
    and "filterlim g at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1362
  shows "filterlim (\<lambda>x. f x + g x) at_infinity F"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1363
proof (subst filterlim_at_infinity[OF order_refl], safe)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1364
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1365
  assume r: "r > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1366
  from assms(1) have "((\<lambda>x. norm (f x)) \<longlongrightarrow> norm c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1367
    by (rule tendsto_norm)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1368
  then have "eventually (\<lambda>x. norm (f x) < norm c + 1) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1369
    by (rule order_tendstoD) simp_all
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1370
  moreover from r have "r + norm c + 1 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1371
    by (intro add_pos_nonneg) simp_all
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1372
  with assms(2) have "eventually (\<lambda>x. norm (g x) \<ge> r + norm c + 1) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1373
    unfolding filterlim_at_infinity[OF order_refl]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1374
    by (elim allE[of _ "r + norm c + 1"]) simp_all
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1375
  ultimately show "eventually (\<lambda>x. norm (f x + g x) \<ge> r) F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1376
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1377
    fix x :: 'a
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1378
    assume A: "norm (f x) < norm c + 1" and B: "r + norm c + 1 \<le> norm (g x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1379
    from A B have "r \<le> norm (g x) - norm (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1380
      by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1381
    also have "norm (g x) - norm (f x) \<le> norm (g x + f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1382
      by (rule norm_diff_ineq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1383
    finally show "r \<le> norm (f x + g x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1384
      by (simp add: add_ac)
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1385
  qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1386
qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1387
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1388
lemma tendsto_add_filterlim_at_infinity':
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1389
  fixes c :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1390
    and F :: "'a filter"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1391
  assumes "filterlim f at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1392
    and "(g \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1393
  shows "filterlim (\<lambda>x. f x + g x) at_infinity F"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1394
  by (subst add.commute) (rule tendsto_add_filterlim_at_infinity assms)+
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1395
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1396
lemma filterlim_inverse_at_right_top: "LIM x at_top. inverse x :> at_right (0::real)"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1397
  unfolding filterlim_at
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1398
  by (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1399
     (metis tendsto_inverse_0 filterlim_mono at_top_le_at_infinity order_refl)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1400
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1401
lemma filterlim_inverse_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1402
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. 0 < f x) F \<Longrightarrow> LIM x F. inverse (f x) :> at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1403
  by (intro filterlim_compose[OF filterlim_inverse_at_top_right])
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1404
     (simp add: filterlim_def eventually_filtermap eventually_mono at_within_def le_principal)
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1405
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1406
lemma filterlim_inverse_at_bot_neg:
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1407
  "LIM x (at_left (0::real)). inverse x :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1408
  by (simp add: filterlim_inverse_at_top_right filterlim_uminus_at_bot filterlim_at_left_to_right)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1409
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1410
lemma filterlim_inverse_at_bot:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1411
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. f x < 0) F \<Longrightarrow> LIM x F. inverse (f x) :> at_bot"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1412
  unfolding filterlim_uminus_at_bot inverse_minus_eq[symmetric]
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1413
  by (rule filterlim_inverse_at_top) (simp_all add: tendsto_minus_cancel_left[symmetric])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1414
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1415
lemma at_right_to_top: "(at_right (0::real)) = filtermap inverse at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1416
  by (intro filtermap_fun_inverse[symmetric, where g=inverse])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1417
     (auto intro: filterlim_inverse_at_top_right filterlim_inverse_at_right_top)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1418
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1419
lemma eventually_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1420
  "eventually P (at_right (0::real)) \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1421
  unfolding at_right_to_top eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1422
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1423
lemma filterlim_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1424
  "filterlim f F (at_right (0::real)) \<longleftrightarrow> (LIM x at_top. f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1425
  unfolding filterlim_def at_right_to_top filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1426
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1427
lemma at_top_to_right: "at_top = filtermap inverse (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1428
  unfolding at_right_to_top filtermap_filtermap inverse_inverse_eq filtermap_ident ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1429
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1430
lemma eventually_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1431
  "eventually P at_top \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1432
  unfolding at_top_to_right eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1433
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1434
lemma filterlim_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1435
  "filterlim f F at_top \<longleftrightarrow> (LIM x (at_right (0::real)). f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1436
  unfolding filterlim_def at_top_to_right filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1437
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1438
lemma filterlim_inverse_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1439
  fixes x :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1440
  shows "filterlim inverse at_infinity (at (0::'a))"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1441
  unfolding filterlim_at_infinity[OF order_refl]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1442
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1443
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1444
  assume "0 < r"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1445
  then show "eventually (\<lambda>x::'a. r \<le> norm (inverse x)) (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1446
    unfolding eventually_at norm_inverse
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1447
    by (intro exI[of _ "inverse r"])
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1448
       (auto simp: norm_conv_dist[symmetric] field_simps inverse_eq_divide)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1449
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1450
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1451
lemma filterlim_inverse_at_iff:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1452
  fixes g :: "'a \<Rightarrow> 'b::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1453
  shows "(LIM x F. inverse (g x) :> at 0) \<longleftrightarrow> (LIM x F. g x :> at_infinity)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1454
  unfolding filterlim_def filtermap_filtermap[symmetric]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1455
proof
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1456
  assume "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1457
  then have "filtermap inverse (filtermap g F) \<le> filtermap inverse at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1458
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1459
  also have "\<dots> \<le> at 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1460
    using tendsto_inverse_0[where 'a='b]
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1461
    by (auto intro!: exI[of _ 1]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1462
        simp: le_principal eventually_filtermap filterlim_def at_within_def eventually_at_infinity)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1463
  finally show "filtermap inverse (filtermap g F) \<le> at 0" .
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1464
next
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1465
  assume "filtermap inverse (filtermap g F) \<le> at 0"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1466
  then have "filtermap inverse (filtermap inverse (filtermap g F)) \<le> filtermap inverse (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1467
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1468
  with filterlim_inverse_at_infinity show "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1469
    by (auto intro: order_trans simp: filterlim_def filtermap_filtermap)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1470
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1471
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1472
lemma tendsto_mult_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1473
  fixes c :: "'a::real_normed_field"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  1474
  assumes  "(f \<longlongrightarrow> c) F" "c \<noteq> 0"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1475
  assumes "filterlim g at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1476
  shows "filterlim (\<lambda>x. f x * g x) at_infinity F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1477
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1478
  have "((\<lambda>x. inverse (f x) * inverse (g x)) \<longlongrightarrow> inverse c * 0) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1479
    by (intro tendsto_mult tendsto_inverse assms filterlim_compose[OF tendsto_inverse_0])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1480
  then have "filterlim (\<lambda>x. inverse (f x) * inverse (g x)) (at (inverse c * 0)) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1481
    unfolding filterlim_at
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1482
    using assms
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1483
    by (auto intro: filterlim_at_infinity_imp_eventually_ne tendsto_imp_eventually_ne eventually_conj)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1484
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1485
    by (subst filterlim_inverse_at_iff[symmetric]) simp_all
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  1486
qed  
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1487
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1488
lemma tendsto_inverse_0_at_top: "LIM x F. f x :> at_top \<Longrightarrow> ((\<lambda>x. inverse (f x) :: real) \<longlongrightarrow> 0) F"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1489
 by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff)
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1490
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1491
lemma real_tendsto_divide_at_top:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1492
  fixes c::"real"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1493
  assumes "(f \<longlongrightarrow> c) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1494
  assumes "filterlim g at_top F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1495
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1496
  by (auto simp: divide_inverse_commute
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1497
      intro!: tendsto_mult[THEN tendsto_eq_rhs] tendsto_inverse_0_at_top assms)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1498
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1499
lemma mult_nat_left_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. c * x) at_top sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1500
  for c :: nat
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  1501
  by (rule filterlim_subseq) (auto simp: strict_mono_def)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1502
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1503
lemma mult_nat_right_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. x * c) at_top sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1504
  for c :: nat
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  1505
  by (rule filterlim_subseq) (auto simp: strict_mono_def)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1506
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1507
lemma filterlim_times_pos:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1508
  "LIM x F1. c * f x :> at_right l"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1509
  if "filterlim f (at_right p) F1" "0 < c" "l = c * p"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1510
  for c::"'a::{linordered_field, linorder_topology}"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1511
  unfolding filterlim_iff
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1512
proof safe
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1513
  fix P
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1514
  assume "\<forall>\<^sub>F x in at_right l. P x"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1515
  then obtain d where "c * p < d" "\<And>y. y > c * p \<Longrightarrow> y < d \<Longrightarrow> P y"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1516
    unfolding \<open>l = _ \<close> eventually_at_right_field
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1517
    by auto
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1518
  then have "\<forall>\<^sub>F a in at_right p. P (c * a)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1519
    by (auto simp: eventually_at_right_field \<open>0 < c\<close> field_simps intro!: exI[where x="d/c"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1520
  from that(1)[unfolded filterlim_iff, rule_format, OF this]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1521
  show "\<forall>\<^sub>F x in F1. P (c * f x)" .
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1522
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1523
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1524
lemma filtermap_nhds_times: "c \<noteq> 0 \<Longrightarrow> filtermap (times c) (nhds a) = nhds (c * a)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1525
  for a c :: "'a::real_normed_field"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1526
  by (rule filtermap_fun_inverse[where g="\<lambda>x. inverse c * x"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1527
    (auto intro!: tendsto_eq_intros filterlim_ident)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1528
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1529
lemma filtermap_times_pos_at_right:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1530
  fixes c::"'a::{linordered_field, linorder_topology}"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1531
  assumes "c > 0"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1532
  shows "filtermap (times c) (at_right p) = at_right (c * p)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1533
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1534
  by (intro filtermap_fun_inverse[where g="\<lambda>x. inverse c * x"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1535
    (auto intro!: filterlim_ident filterlim_times_pos)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1536
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1537
lemma at_to_infinity: "(at (0::'a::{real_normed_field,field})) = filtermap inverse at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1538
proof (rule antisym)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1539
  have "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1540
    by (fact tendsto_inverse_0)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1541
  then show "filtermap inverse at_infinity \<le> at (0::'a)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1542
    apply (simp add: le_principal eventually_filtermap eventually_at_infinity filterlim_def at_within_def)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1543
    apply (rule_tac x="1" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1544
    apply auto
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1545
    done
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1546
next
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1547
  have "filtermap inverse (filtermap inverse (at (0::'a))) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1548
    using filterlim_inverse_at_infinity unfolding filterlim_def
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1549
    by (rule filtermap_mono)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1550
  then show "at (0::'a) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1551
    by (simp add: filtermap_ident filtermap_filtermap)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1552
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1553
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1554
lemma lim_at_infinity_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1555
  fixes l :: "'a::{real_normed_field,field}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1556
  shows "(f \<longlongrightarrow> l) at_infinity \<longleftrightarrow> ((f \<circ> inverse) \<longlongrightarrow> l) (at (0::'a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1557
  by (simp add: tendsto_compose_filtermap at_to_infinity filtermap_filtermap)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1558
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1559
lemma lim_zero_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1560
  fixes l :: "'a::{real_normed_field,field}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1561
  shows "((\<lambda>x. f(1 / x)) \<longlongrightarrow> l) (at (0::'a)) \<Longrightarrow> (f \<longlongrightarrow> l) at_infinity"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1562
  by (simp add: inverse_eq_divide lim_at_infinity_0 comp_def)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1563
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1564
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1565
text \<open>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1566
  We only show rules for multiplication and addition when the functions are either against a real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1567
  value or against infinity. Further rules are easy to derive by using @{thm
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1568
  filterlim_uminus_at_top}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1569
\<close>
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1570
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1571
lemma filterlim_tendsto_pos_mult_at_top:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1572
  assumes f: "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1573
    and c: "0 < c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1574
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1575
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1576
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1577
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1578
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1579
  assume "0 < Z"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1580
  from f \<open>0 < c\<close> have "eventually (\<lambda>x. c / 2 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1581
    by (auto dest!: tendstoD[where e="c / 2"] elim!: eventually_mono
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1582
        simp: dist_real_def abs_real_def split: if_split_asm)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1583
  moreover from g have "eventually (\<lambda>x. (Z / c * 2) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1584
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1585
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1586
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1587
    case (elim x)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1588
    with \<open>0 < Z\<close> \<open>0 < c\<close> have "c / 2 * (Z / c * 2) \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1589
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1590
    with \<open>0 < c\<close> show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1591
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1592
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1593
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1594
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1595
lemma filterlim_at_top_mult_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1596
  assumes f: "LIM x F. f x :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1597
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1598
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1599
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1600
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1601
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1602
  assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1603
  from f have "eventually (\<lambda>x. 1 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1604
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1605
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1606
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1607
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1608
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1609
    case (elim x)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1610
    with \<open>0 < Z\<close> have "1 * Z \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1611
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1612
    then show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1613
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1614
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1615
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1616
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1617
lemma filterlim_at_top_mult_tendsto_pos:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1618
  assumes f: "(f \<longlongrightarrow> c) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1619
    and c: "0 < c"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1620
    and g: "LIM x F. g x :> at_top"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1621
  shows "LIM x F. (g x * f x:: real) :> at_top"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1622
  by (auto simp: mult.commute intro!: filterlim_tendsto_pos_mult_at_top f c g)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1623
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1624
lemma filterlim_tendsto_pos_mult_at_bot:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1625
  fixes c :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1626
  assumes "(f \<longlongrightarrow> c) F" "0 < c" "filterlim g at_bot F"
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1627
  shows "LIM x F. f x * g x :> at_bot"
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1628
  using filterlim_tendsto_pos_mult_at_top[OF assms(1,2), of "\<lambda>x. - g x"] assms(3)
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1629
  unfolding filterlim_uminus_at_bot by simp
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1630
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1631
lemma filterlim_tendsto_neg_mult_at_bot:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1632
  fixes c :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1633
  assumes c: "(f \<longlongrightarrow> c) F" "c < 0" and g: "filterlim g at_top F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1634
  shows "LIM x F. f x * g x :> at_bot"
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1635
  using c filterlim_tendsto_pos_mult_at_top[of "\<lambda>x. - f x" "- c" F, OF _ _ g]
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1636
  unfolding filterlim_uminus_at_bot tendsto_minus_cancel_left by simp
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1637
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1638
lemma filterlim_pow_at_top:
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63556
diff changeset
  1639
  fixes f :: "'a \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1640
  assumes "0 < n"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1641
    and f: "LIM x F. f x :> at_top"
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1642
  shows "LIM x F. (f x)^n :: real :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1643
  using \<open>0 < n\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1644
proof (induct n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1645
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1646
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1647
next
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1648
  case (Suc n) with f show ?case
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1649
    by (cases "n = 0") (auto intro!: filterlim_at_top_mult_at_top)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1650
qed
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1651
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1652
lemma filterlim_pow_at_bot_even:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1653
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1654
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> even n \<Longrightarrow> LIM x F. (f x)^n :> at_top"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1655
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_top)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1656
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1657
lemma filterlim_pow_at_bot_odd:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1658
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1659
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> odd n \<Longrightarrow> LIM x F. (f x)^n :> at_bot"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1660
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_bot)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1661
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1662
lemma filterlim_power_at_infinity [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1663
  fixes F and f :: "'a \<Rightarrow> 'b :: real_normed_div_algebra"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1664
  assumes "filterlim f at_infinity F" "n > 0"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1665
  shows   "filterlim (\<lambda>x. f x ^ n) at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1666
  by (rule filterlim_norm_at_top_imp_at_infinity)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1667
     (auto simp: norm_power intro!: filterlim_pow_at_top assms 
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1668
           intro: filterlim_at_infinity_imp_norm_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1669
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1670
lemma filterlim_tendsto_add_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1671
  assumes f: "(f \<longlongrightarrow> c) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1672
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1673
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1674
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1675
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1676
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1677
  assume "0 < Z"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1678
  from f have "eventually (\<lambda>x. c - 1 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1679
    by (auto dest!: tendstoD[where e=1] elim!: eventually_mono simp: dist_real_def)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1680
  moreover from g have "eventually (\<lambda>x. Z - (c - 1) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1681
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1682
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1683
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1684
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1685
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1686
lemma LIM_at_top_divide:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1687
  fixes f g :: "'a \<Rightarrow> real"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1688
  assumes f: "(f \<longlongrightarrow> a) F" "0 < a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1689
    and g: "(g \<longlongrightarrow> 0) F" "eventually (\<lambda>x. 0 < g x) F"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1690
  shows "LIM x F. f x / g x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1691
  unfolding divide_inverse
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1692
  by (rule filterlim_tendsto_pos_mult_at_top[OF f]) (rule filterlim_inverse_at_top[OF g])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1693
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1694
lemma filterlim_at_top_add_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1695
  assumes f: "LIM x F. f x :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1696
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1697
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1698
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1699
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1700
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1701
  assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1702
  from f have "eventually (\<lambda>x. 0 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1703
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1704
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1705
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1706
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1707
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1708
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1709
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1710
lemma tendsto_divide_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1711
  fixes f :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1712
  assumes f: "(f \<longlongrightarrow> c) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1713
    and g: "LIM x F. g x :> at_infinity"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1714
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1715
  using tendsto_mult[OF f filterlim_compose[OF tendsto_inverse_0 g]]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1716
  by (simp add: divide_inverse)
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1717
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1718
lemma linear_plus_1_le_power:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1719
  fixes x :: real
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1720
  assumes x: "0 \<le> x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1721
  shows "real n * x + 1 \<le> (x + 1) ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1722
proof (induct n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1723
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1724
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1725
next
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1726
  case (Suc n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1727
  from x have "real (Suc n) * x + 1 \<le> (x + 1) * (real n * x + 1)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1728
    by (simp add: field_simps)
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1729
  also have "\<dots> \<le> (x + 1)^Suc n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1730
    using Suc x by (simp add: mult_left_mono)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1731
  finally show ?case .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1732
qed
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1733
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1734
lemma filterlim_realpow_sequentially_gt1:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1735
  fixes x :: "'a :: real_normed_div_algebra"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1736
  assumes x[arith]: "1 < norm x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1737
  shows "LIM n sequentially. x ^ n :> at_infinity"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1738
proof (intro filterlim_at_infinity[THEN iffD2] allI impI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1739
  fix y :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1740
  assume "0 < y"
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1741
  have "0 < norm x - 1" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1742
  then obtain N :: nat where "y < real N * (norm x - 1)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1743
    by (blast dest: reals_Archimedean3)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1744
  also have "\<dots> \<le> real N * (norm x - 1) + 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1745
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1746
  also have "\<dots> \<le> (norm x - 1 + 1) ^ N"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1747
    by (rule linear_plus_1_le_power) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1748
  also have "\<dots> = norm x ^ N"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1749
    by simp
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1750
  finally have "\<forall>n\<ge>N. y \<le> norm x ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1751
    by (metis order_less_le_trans power_increasing order_less_imp_le x)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1752
  then show "eventually (\<lambda>n. y \<le> norm (x ^ n)) sequentially"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1753
    unfolding eventually_sequentially
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1754
    by (auto simp: norm_power)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1755
qed simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1756
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1757
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1758
lemma filterlim_divide_at_infinity:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1759
  fixes f g :: "'a \<Rightarrow> 'a :: real_normed_field"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1760
  assumes "filterlim f (nhds c) F" "filterlim g (at 0) F" "c \<noteq> 0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1761
  shows   "filterlim (\<lambda>x. f x / g x) at_infinity F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1762
proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1763
  have "filterlim (\<lambda>x. f x * inverse (g x)) at_infinity F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1764
    by (intro tendsto_mult_filterlim_at_infinity[OF assms(1,3)]
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1765
          filterlim_compose [OF filterlim_inverse_at_infinity assms(2)])
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1766
  thus ?thesis by (simp add: field_simps)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1767
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1768
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1769
subsection \<open>Floor and Ceiling\<close>
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1770
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1771
lemma eventually_floor_less:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1772
  fixes f :: "'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1773
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1774
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1775
  shows "\<forall>\<^sub>F x in F. of_int (floor l) < f x"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1776
  by (intro order_tendstoD[OF f]) (metis Ints_of_int antisym_conv2 floor_correct l)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1777
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1778
lemma eventually_less_ceiling:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1779
  fixes f :: "'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1780
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1781
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1782
  shows "\<forall>\<^sub>F x in F. f x < of_int (ceiling l)"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1783
  by (intro order_tendstoD[OF f]) (metis Ints_of_int l le_of_int_ceiling less_le)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1784
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1785
lemma eventually_floor_eq:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1786
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1787
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1788
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1789
  shows "\<forall>\<^sub>F x in F. floor (f x) = floor l"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1790
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1791
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1792
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1793
lemma eventually_ceiling_eq:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1794
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1795
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1796
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1797
  shows "\<forall>\<^sub>F x in F. ceiling (f x) = ceiling l"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1798
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1799
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1800
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1801
lemma tendsto_of_int_floor:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1802
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1803
  assumes "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1804
    and "l \<notin> \<int>"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1805
  shows "((\<lambda>x. of_int (floor (f x)) :: 'c::{ring_1,topological_space}) \<longlongrightarrow> of_int (floor l)) F"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1806
  using eventually_floor_eq[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1807
  by (simp add: eventually_mono topological_tendstoI)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1808
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1809
lemma tendsto_of_int_ceiling:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1810
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1811
  assumes "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1812
    and "l \<notin> \<int>"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1813
  shows "((\<lambda>x. of_int (ceiling (f x)):: 'c::{ring_1,topological_space}) \<longlongrightarrow> of_int (ceiling l)) F"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1814
  using eventually_ceiling_eq[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1815
  by (simp add: eventually_mono topological_tendstoI)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1816
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1817
lemma continuous_on_of_int_floor:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1818
  "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1819
    (\<lambda>x. of_int (floor x)::'b::{ring_1, topological_space})"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1820
  unfolding continuous_on_def
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1821
  by (auto intro!: tendsto_of_int_floor)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1822
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1823
lemma continuous_on_of_int_ceiling:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1824
  "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1825
    (\<lambda>x. of_int (ceiling x)::'b::{ring_1, topological_space})"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1826
  unfolding continuous_on_def
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1827
  by (auto intro!: tendsto_of_int_ceiling)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1828
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1829
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1830
subsection \<open>Limits of Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1831
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
  1832
lemma [trans]: "X = Y \<Longrightarrow> Y \<longlonglongrightarrow> z \<Longrightarrow> X \<longlonglongrightarrow> z"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1833
  by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1834
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1835
lemma LIMSEQ_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1836
  fixes L :: "'a::real_normed_vector"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1837
  shows "(X \<longlonglongrightarrow> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  1838
unfolding lim_sequentially dist_norm ..
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1839
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1840
lemma LIMSEQ_I: "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X \<longlonglongrightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1841
  for L :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1842
  by (simp add: LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1843
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1844
lemma LIMSEQ_D: "X \<longlonglongrightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1845
  for L :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1846
  by (simp add: LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1847
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1848
lemma LIMSEQ_linear: "X \<longlonglongrightarrow> x \<Longrightarrow> l > 0 \<Longrightarrow> (\<lambda> n. X (n * l)) \<longlonglongrightarrow> x"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1849
  unfolding tendsto_def eventually_sequentially
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
  1850
  by (metis div_le_dividend div_mult_self1_is_m le_trans mult.commute)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1851
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
  1852
lemma norm_inverse_le_norm: "r \<le> norm x \<Longrightarrow> 0 < r \<Longrightarrow> norm (inverse x) \<le> inverse r"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1853
  for x :: "'a::real_normed_div_algebra"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1854
  apply (subst nonzero_norm_inverse, clarsimp)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1855
  apply (erule (1) le_imp_inverse_le)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1856
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1857
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1858
lemma Bseq_inverse: "X \<longlonglongrightarrow> a \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> Bseq (\<lambda>n. inverse (X n))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1859
  for a :: "'a::real_normed_div_algebra"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1860
  by (rule Bfun_inverse)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1861
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1862
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1863
text \<open>Transformation of limit.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1864
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1865
lemma Lim_transform: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1866
  for a b :: "'a::real_normed_vector"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1867
  using tendsto_add [of g a F "\<lambda>x. f x - g x" 0] by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1868
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1869
lemma Lim_transform2: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1870
  for a b :: "'a::real_normed_vector"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1871
  by (erule Lim_transform) (simp add: tendsto_minus_cancel)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1872
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1873
proposition Lim_transform_eq: "((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F \<longleftrightarrow> (g \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1874
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1875
  using Lim_transform Lim_transform2 by blast
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1876
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1877
lemma Lim_transform_eventually:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1878
  "eventually (\<lambda>x. f x = g x) net \<Longrightarrow> (f \<longlongrightarrow> l) net \<Longrightarrow> (g \<longlongrightarrow> l) net"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1879
  apply (rule topological_tendstoI)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1880
  apply (drule (2) topological_tendstoD)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1881
  apply (erule (1) eventually_elim2)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1882
  apply simp
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1883
  done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1884
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1885
lemma Lim_transform_within:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1886
  assumes "(f \<longlongrightarrow> l) (at x within S)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1887
    and "0 < d"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1888
    and "\<And>x'. x'\<in>S \<Longrightarrow> 0 < dist x' x \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x'"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1889
  shows "(g \<longlongrightarrow> l) (at x within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1890
proof (rule Lim_transform_eventually)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1891
  show "eventually (\<lambda>x. f x = g x) (at x within S)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1892
    using assms by (auto simp: eventually_at)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1893
  show "(f \<longlongrightarrow> l) (at x within S)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1894
    by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1895
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1896
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1897
lemma filterlim_transform_within:
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1898
  assumes "filterlim g G (at x within S)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1899
  assumes "G \<le> F" "0<d" "(\<And>x'. x' \<in> S \<Longrightarrow> 0 < dist x' x \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') "
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1900
  shows "filterlim f F (at x within S)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1901
  using assms
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1902
  apply (elim filterlim_mono_eventually)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1903
  unfolding eventually_at by auto
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1904
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1905
text \<open>Common case assuming being away from some crucial point like 0.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1906
lemma Lim_transform_away_within:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1907
  fixes a b :: "'a::t1_space"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1908
  assumes "a \<noteq> b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1909
    and "\<forall>x\<in>S. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1910
    and "(f \<longlongrightarrow> l) (at a within S)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1911
  shows "(g \<longlongrightarrow> l) (at a within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1912
proof (rule Lim_transform_eventually)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1913
  show "(f \<longlongrightarrow> l) (at a within S)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1914
    by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1915
  show "eventually (\<lambda>x. f x = g x) (at a within S)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1916
    unfolding eventually_at_topological
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1917
    by (rule exI [where x="- {b}"]) (simp add: open_Compl assms)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1918
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1919
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1920
lemma Lim_transform_away_at:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1921
  fixes a b :: "'a::t1_space"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1922
  assumes ab: "a \<noteq> b"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1923
    and fg: "\<forall>x. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1924
    and fl: "(f \<longlongrightarrow> l) (at a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1925
  shows "(g \<longlongrightarrow> l) (at a)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1926
  using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1927
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1928
text \<open>Alternatively, within an open set.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1929
lemma Lim_transform_within_open:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1930
  assumes "(f \<longlongrightarrow> l) (at a within T)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1931
    and "open s" and "a \<in> s"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1932
    and "\<And>x. x\<in>s \<Longrightarrow> x \<noteq> a \<Longrightarrow> f x = g x"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1933
  shows "(g \<longlongrightarrow> l) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1934
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1935
  show "eventually (\<lambda>x. f x = g x) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1936
    unfolding eventually_at_topological
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1937
    using assms by auto
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1938
  show "(f \<longlongrightarrow> l) (at a within T)" by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1939
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1940
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1941
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1942
text \<open>A congruence rule allowing us to transform limits assuming not at point.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1943
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1944
(* FIXME: Only one congruence rule for tendsto can be used at a time! *)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1945
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1946
lemma Lim_cong_within(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1947
  assumes "a = b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1948
    and "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1949
    and "S = T"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1950
    and "\<And>x. x \<noteq> b \<Longrightarrow> x \<in> T \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1951
  shows "(f \<longlongrightarrow> x) (at a within S) \<longleftrightarrow> (g \<longlongrightarrow> y) (at b within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1952
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1953
  using assms by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1954
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1955
lemma Lim_cong_at(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1956
  assumes "a = b" "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1957
    and "\<And>x. x \<noteq> a \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1958
  shows "((\<lambda>x. f x) \<longlongrightarrow> x) (at a) \<longleftrightarrow> ((g \<longlongrightarrow> y) (at a))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1959
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1960
  using assms by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1961
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1962
text \<open>An unbounded sequence's inverse tends to 0.\<close>
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  1963
lemma LIMSEQ_inverse_zero:
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  1964
  assumes "\<And>r::real. \<exists>N. \<forall>n\<ge>N. r < X n"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  1965
  shows "(\<lambda>n. inverse (X n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1966
  apply (rule filterlim_compose[OF tendsto_inverse_0])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1967
  apply (simp add: filterlim_at_infinity[OF order_refl] eventually_sequentially)
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  1968
  apply (metis assms abs_le_D1 linorder_le_cases linorder_not_le)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1969
  done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1970
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1971
text \<open>The sequence @{term "1/n"} tends to 0 as @{term n} tends to infinity.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1972
lemma LIMSEQ_inverse_real_of_nat: "(\<lambda>n. inverse (real (Suc n))) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1973
  by (metis filterlim_compose tendsto_inverse_0 filterlim_mono order_refl filterlim_Suc
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1974
      filterlim_compose[OF filterlim_real_sequentially] at_top_le_at_infinity)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1975
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1976
text \<open>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1977
  The sequence @{term "r + 1/n"} tends to @{term r} as @{term n} tends to
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1978
  infinity is now easily proved.
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1979
\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1980
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1981
lemma LIMSEQ_inverse_real_of_nat_add: "(\<lambda>n. r + inverse (real (Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1982
  using tendsto_add [OF tendsto_const LIMSEQ_inverse_real_of_nat] by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1983
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1984
lemma LIMSEQ_inverse_real_of_nat_add_minus: "(\<lambda>n. r + -inverse (real (Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1985
  using tendsto_add [OF tendsto_const tendsto_minus [OF LIMSEQ_inverse_real_of_nat]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1986
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1987
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1988
lemma LIMSEQ_inverse_real_of_nat_add_minus_mult: "(\<lambda>n. r * (1 + - inverse (real (Suc n)))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1989
  using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1990
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1991
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1992
lemma lim_inverse_n: "((\<lambda>n. inverse(of_nat n)) \<longlongrightarrow> (0::'a::real_normed_field)) sequentially"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1993
  using lim_1_over_n by (simp add: inverse_eq_divide)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  1994
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1995
lemma lim_inverse_n': "((\<lambda>n. 1 / n) \<longlongrightarrow> 0) sequentially"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1996
  using lim_inverse_n
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1997
  by (simp add: inverse_eq_divide)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1998
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1999
lemma LIMSEQ_Suc_n_over_n: "(\<lambda>n. of_nat (Suc n) / of_nat n :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2000
proof (rule Lim_transform_eventually)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2001
  show "eventually (\<lambda>n. 1 + inverse (of_nat n :: 'a) = of_nat (Suc n) / of_nat n) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2002
    using eventually_gt_at_top[of "0::nat"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2003
    by eventually_elim (simp add: field_simps)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2004
  have "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1 + 0"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2005
    by (intro tendsto_add tendsto_const lim_inverse_n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2006
  then show "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2007
    by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2008
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2009
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2010
lemma LIMSEQ_n_over_Suc_n: "(\<lambda>n. of_nat n / of_nat (Suc n) :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2011
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2012
  show "eventually (\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a) =
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2013
      of_nat n / of_nat (Suc n)) sequentially"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2014
    using eventually_gt_at_top[of "0::nat"]
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2015
    by eventually_elim (simp add: field_simps del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2016
  have "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> inverse 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2017
    by (intro tendsto_inverse LIMSEQ_Suc_n_over_n) simp_all
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2018
  then show "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2019
    by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2020
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2021
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2022
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2023
subsection \<open>Convergence on sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2024
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2025
lemma convergent_cong:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2026
  assumes "eventually (\<lambda>x. f x = g x) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2027
  shows "convergent f \<longleftrightarrow> convergent g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2028
  unfolding convergent_def
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2029
  by (subst filterlim_cong[OF refl refl assms]) (rule refl)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2030
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2031
lemma convergent_Suc_iff: "convergent (\<lambda>n. f (Suc n)) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2032
  by (auto simp: convergent_def LIMSEQ_Suc_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2033
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2034
lemma convergent_ignore_initial_segment: "convergent (\<lambda>n. f (n + m)) = convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2035
proof (induct m arbitrary: f)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2036
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2037
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2038
next
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2039
  case (Suc m)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2040
  have "convergent (\<lambda>n. f (n + Suc m)) \<longleftrightarrow> convergent (\<lambda>n. f (Suc n + m))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2041
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2042
  also have "\<dots> \<longleftrightarrow> convergent (\<lambda>n. f (n + m))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2043
    by (rule convergent_Suc_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2044
  also have "\<dots> \<longleftrightarrow> convergent f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2045
    by (rule Suc)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2046
  finally show ?case .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2047
qed
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2048
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2049
lemma convergent_add:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2050
  fixes X Y :: "nat \<Rightarrow> 'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2051
  assumes "convergent (\<lambda>n. X n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2052
    and "convergent (\<lambda>n. Y n)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2053
  shows "convergent (\<lambda>n. X n + Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2054
  using assms unfolding convergent_def by (blast intro: tendsto_add)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2055
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2056
lemma convergent_sum:
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2057
  fixes X :: "'a \<Rightarrow> nat \<Rightarrow> 'b::real_normed_vector"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
  2058
  shows "(\<And>i. i \<in> A \<Longrightarrow> convergent (\<lambda>n. X i n)) \<Longrightarrow> convergent (\<lambda>n. \<Sum>i\<in>A. X i n)"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
  2059
  by (induct A rule: infinite_finite_induct) (simp_all add: convergent_const convergent_add)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2060
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2061
lemma (in bounded_linear) convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2062
  assumes "convergent (\<lambda>n. X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2063
  shows "convergent (\<lambda>n. f (X n))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2064
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2065
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2066
lemma (in bounded_bilinear) convergent:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2067
  assumes "convergent (\<lambda>n. X n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2068
    and "convergent (\<lambda>n. Y n)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2069
  shows "convergent (\<lambda>n. X n ** Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2070
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2071
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2072
lemma convergent_minus_iff: "convergent X \<longleftrightarrow> convergent (\<lambda>n. - X n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2073
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2074
  apply (simp add: convergent_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2075
  apply (auto dest: tendsto_minus)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2076
  apply (drule tendsto_minus)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2077
  apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2078
  done
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2079
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2080
lemma convergent_diff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2081
  fixes X Y :: "nat \<Rightarrow> 'a::real_normed_vector"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2082
  assumes "convergent (\<lambda>n. X n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2083
  assumes "convergent (\<lambda>n. Y n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2084
  shows "convergent (\<lambda>n. X n - Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2085
  using assms unfolding convergent_def by (blast intro: tendsto_diff)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2086
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2087
lemma convergent_norm:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2088
  assumes "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2089
  shows "convergent (\<lambda>n. norm (f n))"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2090
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2091
  from assms have "f \<longlonglongrightarrow> lim f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2092
    by (simp add: convergent_LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2093
  then have "(\<lambda>n. norm (f n)) \<longlonglongrightarrow> norm (lim f)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2094
    by (rule tendsto_norm)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2095
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2096
    by (auto simp: convergent_def)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2097
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2098
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2099
lemma convergent_of_real:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2100
  "convergent f \<Longrightarrow> convergent (\<lambda>n. of_real (f n) :: 'a::real_normed_algebra_1)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2101
  unfolding convergent_def by (blast intro!: tendsto_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2102
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2103
lemma convergent_add_const_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2104
  "convergent (\<lambda>n. c + f n :: 'a::real_normed_vector) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2105
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2106
  assume "convergent (\<lambda>n. c + f n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2107
  from convergent_diff[OF this convergent_const[of c]] show "convergent f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2108
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2109
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2110
  assume "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2111
  from convergent_add[OF convergent_const[of c] this] show "convergent (\<lambda>n. c + f n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2112
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2113
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2114
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2115
lemma convergent_add_const_right_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2116
  "convergent (\<lambda>n. f n + c :: 'a::real_normed_vector) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2117
  using convergent_add_const_iff[of c f] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2118
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2119
lemma convergent_diff_const_right_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2120
  "convergent (\<lambda>n. f n - c :: 'a::real_normed_vector) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2121
  using convergent_add_const_right_iff[of f "-c"] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2122
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2123
lemma convergent_mult:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2124
  fixes X Y :: "nat \<Rightarrow> 'a::real_normed_field"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2125
  assumes "convergent (\<lambda>n. X n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2126
    and "convergent (\<lambda>n. Y n)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2127
  shows "convergent (\<lambda>n. X n * Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2128
  using assms unfolding convergent_def by (blast intro: tendsto_mult)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2129
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2130
lemma convergent_mult_const_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2131
  assumes "c \<noteq> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2132
  shows "convergent (\<lambda>n. c * f n :: 'a::real_normed_field) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2133
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2134
  assume "convergent (\<lambda>n. c * f n)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2135
  from assms convergent_mult[OF this convergent_const[of "inverse c"]]
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2136
    show "convergent f" by (simp add: field_simps)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2137
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2138
  assume "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2139
  from convergent_mult[OF convergent_const[of c] this] show "convergent (\<lambda>n. c * f n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2140
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2141
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2142
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2143
lemma convergent_mult_const_right_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2144
  fixes c :: "'a::real_normed_field"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2145
  assumes "c \<noteq> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2146
  shows "convergent (\<lambda>n. f n * c) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2147
  using convergent_mult_const_iff[OF assms, of f] by (simp add: mult_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2148
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2149
lemma convergent_imp_Bseq: "convergent f \<Longrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2150
  by (simp add: Cauchy_Bseq convergent_Cauchy)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2151
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2152
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2153
text \<open>A monotone sequence converges to its least upper bound.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2154
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2155
lemma LIMSEQ_incseq_SUP:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2156
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder,linorder_topology}"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2157
  assumes u: "bdd_above (range X)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2158
    and X: "incseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2159
  shows "X \<longlonglongrightarrow> (SUP i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2160
  by (rule order_tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2161
    (auto simp: eventually_sequentially u less_cSUP_iff
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2162
      intro: X[THEN incseqD] less_le_trans cSUP_lessD[OF u])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2163
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2164
lemma LIMSEQ_decseq_INF:
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2165
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology}"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2166
  assumes u: "bdd_below (range X)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2167
    and X: "decseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2168
  shows "X \<longlonglongrightarrow> (INF i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2169
  by (rule order_tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2170
     (auto simp: eventually_sequentially u cINF_less_iff
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2171
       intro: X[THEN decseqD] le_less_trans less_cINF_D[OF u])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2172
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2173
text \<open>Main monotonicity theorem.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2174
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2175
lemma Bseq_monoseq_convergent: "Bseq X \<Longrightarrow> monoseq X \<Longrightarrow> convergent X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2176
  for X :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2177
  by (auto simp: monoseq_iff convergent_def intro: LIMSEQ_decseq_INF LIMSEQ_incseq_SUP
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2178
      dest: Bseq_bdd_above Bseq_bdd_below)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2179
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2180
lemma Bseq_mono_convergent: "Bseq X \<Longrightarrow> (\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n) \<Longrightarrow> convergent X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2181
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2182
  by (auto intro!: Bseq_monoseq_convergent incseq_imp_monoseq simp: incseq_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2183
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2184
lemma monoseq_imp_convergent_iff_Bseq: "monoseq f \<Longrightarrow> convergent f \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2185
  for f :: "nat \<Rightarrow> real"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2186
  using Bseq_monoseq_convergent[of f] convergent_imp_Bseq[of f] by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2187
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2188
lemma Bseq_monoseq_convergent'_inc:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2189
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2190
  shows "Bseq (\<lambda>n. f (n + M)) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<le> f n) \<Longrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2191
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2192
     (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2193
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2194
lemma Bseq_monoseq_convergent'_dec:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2195
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2196
  shows "Bseq (\<lambda>n. f (n + M)) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<ge> f n) \<Longrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2197
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2198
    (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2199
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2200
lemma Cauchy_iff: "Cauchy X \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2201
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2202
  unfolding Cauchy_def dist_norm ..
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2203
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2204
lemma CauchyI: "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2205
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2206
  by (simp add: Cauchy_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2207
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2208
lemma CauchyD: "Cauchy X \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2209
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2210
  by (simp add: Cauchy_iff)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2211
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2212
lemma incseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2213
  fixes X :: "nat \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2214
  assumes "incseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2215
    and "\<forall>i. X i \<le> B"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2216
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. X i \<le> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2217
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2218
  from incseq_bounded[OF assms] \<open>incseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2219
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2220
    by (auto simp: convergent_def monoseq_def incseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2221
  with \<open>incseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. X i \<le> L)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2222
    by (auto intro!: exI[of _ L] incseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2223
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2224
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2225
lemma decseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2226
  fixes X :: "nat \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2227
  assumes "decseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2228
    and "\<forall>i. B \<le> X i"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2229
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. L \<le> X i"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2230
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2231
  from decseq_bounded[OF assms] \<open>decseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2232
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2233
    by (auto simp: convergent_def monoseq_def decseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2234
  with \<open>decseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. L \<le> X i)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2235
    by (auto intro!: exI[of _ L] decseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2236
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2237
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2238
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2239
subsection \<open>Power Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2240
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2241
text \<open>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2242
  The sequence @{term "x^n"} tends to 0 if @{term "0\<le>x"} and @{term
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2243
  "x<1"}.  Proof will use (NS) Cauchy equivalence for convergence and
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2244
  also fact that bounded and monotonic sequence converges.
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2245
\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2246
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2247
lemma Bseq_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> Bseq (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2248
  for x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2249
  apply (simp add: Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2250
  apply (rule_tac x = 1 in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2251
  apply (simp add: power_abs)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2252
  apply (auto dest: power_mono)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2253
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2254
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2255
lemma monoseq_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> monoseq (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2256
  for x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2257
  apply (clarify intro!: mono_SucI2)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2258
  apply (cut_tac n = n and N = "Suc n" and a = x in power_decreasing)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2259
     apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2260
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2261
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2262
lemma convergent_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> convergent (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2263
  for x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2264
  by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2265
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2266
lemma LIMSEQ_inverse_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2267
  for x :: real
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2268
  by (rule filterlim_compose[OF tendsto_inverse_0 filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2269
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2270
lemma LIMSEQ_realpow_zero:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2271
  fixes x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2272
  assumes "0 \<le> x" "x < 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2273
  shows "(\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2274
proof (cases "x = 0")
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2275
  case False
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2276
  with \<open>0 \<le> x\<close> have x0: "0 < x" by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2277
  then have "1 < inverse x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2278
    using \<open>x < 1\<close> by (rule one_less_inverse)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2279
  then have "(\<lambda>n. inverse (inverse x ^ n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2280
    by (rule LIMSEQ_inverse_realpow_zero)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2281
  then show ?thesis by (simp add: power_inverse)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2282
next
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2283
  case True
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2284
  show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2285
    by (rule LIMSEQ_imp_Suc) (simp add: True)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2286
qed
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2287
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2288
lemma LIMSEQ_power_zero: "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2289
  for x :: "'a::real_normed_algebra_1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2290
  apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2291
  apply (simp only: tendsto_Zfun_iff, erule Zfun_le)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2292
  apply (simp add: power_abs norm_power_ineq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2293
  done
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2294
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2295
lemma LIMSEQ_divide_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. a / (x ^ n) :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2296
  by (rule tendsto_divide_0 [OF tendsto_const filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2297
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2298
lemma
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2299
  tendsto_power_zero:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2300
  fixes x::"'a::real_normed_algebra_1"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2301
  assumes "filterlim f at_top F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2302
  assumes "norm x < 1"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2303
  shows "((\<lambda>y. x ^ (f y)) \<longlongrightarrow> 0) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2304
proof (rule tendstoI)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2305
  fix e::real assume "0 < e"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2306
  from tendstoD[OF LIMSEQ_power_zero[OF \<open>norm x < 1\<close>] \<open>0 < e\<close>]
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2307
  have "\<forall>\<^sub>F xa in sequentially. norm (x ^ xa) < e"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2308
    by simp
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2309
  then obtain N where N: "norm (x ^ n) < e" if "n \<ge> N" for n
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2310
    by (auto simp: eventually_sequentially)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2311
  have "\<forall>\<^sub>F i in F. f i \<ge> N"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2312
    using \<open>filterlim f sequentially F\<close>
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2313
    by (simp add: filterlim_at_top)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2314
  then show "\<forall>\<^sub>F i in F. dist (x ^ f i) 0 < e"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2315
    by (eventually_elim) (auto simp: N)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2316
qed
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2317
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2318
text \<open>Limit of @{term "c^n"} for @{term"\<bar>c\<bar> < 1"}.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2319
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2320
lemma LIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. \<bar>c\<bar> ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2321
  by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2322
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2323
lemma LIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. c ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2324
  by (rule LIMSEQ_power_zero) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2325
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2326
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2327
subsection \<open>Limits of Functions\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2328
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2329
lemma LIM_eq: "f \<midarrow>a\<rightarrow> L = (\<forall>r>0. \<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2330
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2331
  by (simp add: LIM_def dist_norm)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2332
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2333
lemma LIM_I:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2334
  "(\<And>r. 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r) \<Longrightarrow> f \<midarrow>a\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2335
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2336
  by (simp add: LIM_eq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2337
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2338
lemma LIM_D: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>s>0.\<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2339
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2340
  by (simp add: LIM_eq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2341
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2342
lemma LIM_offset: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>x. f (x + k)) \<midarrow>(a - k)\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2343
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2344
  by (simp add: filtermap_at_shift[symmetric, of a k] filterlim_def filtermap_filtermap)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2345
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2346
lemma LIM_offset_zero: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2347
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2348
  by (drule LIM_offset [where k = a]) (simp add: add.commute)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2349
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2350
lemma LIM_offset_zero_cancel: "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L \<Longrightarrow> f \<midarrow>a\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2351
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2352
  by (drule LIM_offset [where k = "- a"]) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2353
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2354
lemma LIM_offset_zero_iff: "f \<midarrow>a\<rightarrow> L \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2355
  for f :: "'a :: real_normed_vector \<Rightarrow> _"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2356
  using LIM_offset_zero_cancel[of f a L] LIM_offset_zero[of f L a] by auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2357
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2358
lemma LIM_zero: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. f x - l) \<longlongrightarrow> 0) F"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2359
  for f :: "'a \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2360
  unfolding tendsto_iff dist_norm by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2361
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2362
lemma LIM_zero_cancel:
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2363
  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2364
  shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> l) F"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2365
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2366
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2367
lemma LIM_zero_iff: "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F = (f \<longlongrightarrow> l) F"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2368
  for f :: "'a \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2369
  unfolding tendsto_iff dist_norm by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2370
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2371
lemma LIM_imp_LIM:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2372
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2373
  fixes g :: "'a::topological_space \<Rightarrow> 'c::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2374
  assumes f: "f \<midarrow>a\<rightarrow> l"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2375
    and le: "\<And>x. x \<noteq> a \<Longrightarrow> norm (g x - m) \<le> norm (f x - l)"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2376
  shows "g \<midarrow>a\<rightarrow> m"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2377
  by (rule metric_LIM_imp_LIM [OF f]) (simp add: dist_norm le)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2378
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2379
lemma LIM_equal2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2380
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2381
  assumes "0 < R"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2382
    and "\<And>x. x \<noteq> a \<Longrightarrow> norm (x - a) < R \<Longrightarrow> f x = g x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2383
  shows "g \<midarrow>a\<rightarrow> l \<Longrightarrow> f \<midarrow>a\<rightarrow> l"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2384
  by (rule metric_LIM_equal2 [OF assms]) (simp_all add: dist_norm)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2385
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2386
lemma LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2387
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2388
  assumes f: "f \<midarrow>a\<rightarrow> b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2389
    and g: "g \<midarrow>b\<rightarrow> c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2390
    and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> b"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2391
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> c"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2392
  by (rule metric_LIM_compose2 [OF f g inj [folded dist_norm]])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2393
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2394
lemma real_LIM_sandwich_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2395
  fixes f g :: "'a::topological_space \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2396
  assumes f: "f \<midarrow>a\<rightarrow> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2397
    and 1: "\<And>x. x \<noteq> a \<Longrightarrow> 0 \<le> g x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2398
    and 2: "\<And>x. x \<noteq> a \<Longrightarrow> g x \<le> f x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2399
  shows "g \<midarrow>a\<rightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2400
proof (rule LIM_imp_LIM [OF f]) (* FIXME: use tendsto_sandwich *)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2401
  fix x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2402
  assume x: "x \<noteq> a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2403
  with 1 have "norm (g x - 0) = g x" by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2404
  also have "g x \<le> f x" by (rule 2 [OF x])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2405
  also have "f x \<le> \<bar>f x\<bar>" by (rule abs_ge_self)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2406
  also have "\<bar>f x\<bar> = norm (f x - 0)" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2407
  finally show "norm (g x - 0) \<le> norm (f x - 0)" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2408
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2409
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2410
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2411
subsection \<open>Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2412
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2413
lemma LIM_isCont_iff: "(f \<midarrow>a\<rightarrow> f a) = ((\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> f a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2414
  for f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2415
  by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2416
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2417
lemma isCont_iff: "isCont f x = (\<lambda>h. f (x + h)) \<midarrow>0\<rightarrow> f x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2418
  for f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2419
  by (simp add: isCont_def LIM_isCont_iff)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2420
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2421
lemma isCont_LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2422
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2423
  assumes f [unfolded isCont_def]: "isCont f a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2424
    and g: "g \<midarrow>f a\<rightarrow> l"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2425
    and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> f a"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2426
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> l"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2427
  by (rule LIM_compose2 [OF f g inj])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2428
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2429
lemma isCont_norm [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. norm (f x)) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2430
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2431
  by (fact continuous_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2432
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2433
lemma isCont_rabs [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. \<bar>f x\<bar>) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2434
  for f :: "'a::t2_space \<Rightarrow> real"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2435
  by (fact continuous_rabs)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2436
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2437
lemma isCont_add [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x + g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2438
  for f :: "'a::t2_space \<Rightarrow> 'b::topological_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2439
  by (fact continuous_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2440
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2441
lemma isCont_minus [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. - f x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2442
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2443
  by (fact continuous_minus)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2444
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2445
lemma isCont_diff [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x - g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2446
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2447
  by (fact continuous_diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2448
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2449
lemma isCont_mult [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x * g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2450
  for f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_algebra"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2451
  by (fact continuous_mult)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2452
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2453
lemma (in bounded_linear) isCont: "isCont g a \<Longrightarrow> isCont (\<lambda>x. f (g x)) a"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2454
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2455
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2456
lemma (in bounded_bilinear) isCont: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x ** g x) a"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2457
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2458
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2459
lemmas isCont_scaleR [simp] =
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2460
  bounded_bilinear.isCont [OF bounded_bilinear_scaleR]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2461
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2462
lemmas isCont_of_real [simp] =
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2463
  bounded_linear.isCont [OF bounded_linear_of_real]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2464
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2465
lemma isCont_power [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. f x ^ n) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2466
  for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2467
  by (fact continuous_power)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2468
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2469
lemma isCont_sum [simp]: "\<forall>i\<in>A. isCont (f i) a \<Longrightarrow> isCont (\<lambda>x. \<Sum>i\<in>A. f i x) a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2470
  for f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2471
  by (auto intro: continuous_sum)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2472
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2473
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2474
subsection \<open>Uniform Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2475
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2476
lemma uniformly_continuous_on_def:
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2477
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2478
  shows "uniformly_continuous_on s f \<longleftrightarrow>
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2479
    (\<forall>e>0. \<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2480
  unfolding uniformly_continuous_on_uniformity
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2481
    uniformity_dist filterlim_INF filterlim_principal eventually_inf_principal
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2482
  by (force simp: Ball_def uniformity_dist[symmetric] eventually_uniformity_metric)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2483
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2484
abbreviation isUCont :: "['a::metric_space \<Rightarrow> 'b::metric_space] \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2485
  where "isUCont f \<equiv> uniformly_continuous_on UNIV f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2486
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2487
lemma isUCont_def: "isUCont f \<longleftrightarrow> (\<forall>r>0. \<exists>s>0. \<forall>x y. dist x y < s \<longrightarrow> dist (f x) (f y) < r)"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2488
  by (auto simp: uniformly_continuous_on_def dist_commute)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2489
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2490
lemma isUCont_isCont: "isUCont f \<Longrightarrow> isCont f x"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2491
  by (drule uniformly_continuous_imp_continuous) (simp add: continuous_on_eq_continuous_at)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2492
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2493
lemma uniformly_continuous_on_Cauchy:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2494
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2495
  assumes "uniformly_continuous_on S f" "Cauchy X" "\<And>n. X n \<in> S"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2496
  shows "Cauchy (\<lambda>n. f (X n))"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2497
  using assms
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2498
  apply (simp only: uniformly_continuous_on_def)
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2499
  apply (rule metric_CauchyI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2500
  apply (drule_tac x=e in spec)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2501
  apply safe
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2502
  apply (drule_tac e=d in metric_CauchyD)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2503
   apply safe
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2504
  apply (rule_tac x=M in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2505
  apply simp
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2506
  done
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2507
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2508
lemma isUCont_Cauchy: "isUCont f \<Longrightarrow> Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2509
  by (rule uniformly_continuous_on_Cauchy[where S=UNIV and f=f]) simp_all
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2510
  
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2511
lemma uniformly_continuous_imp_Cauchy_continuous:
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2512
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
67091
1393c2340eec more symbols;
wenzelm
parents: 66827
diff changeset
  2513
  shows "\<lbrakk>uniformly_continuous_on S f; Cauchy \<sigma>; \<And>n. (\<sigma> n) \<in> S\<rbrakk> \<Longrightarrow> Cauchy(f \<circ> \<sigma>)"
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2514
  by (simp add: uniformly_continuous_on_def Cauchy_def) meson
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2515
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2516
lemma (in bounded_linear) isUCont: "isUCont f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2517
  unfolding isUCont_def dist_norm
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2518
proof (intro allI impI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2519
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2520
  assume r: "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2521
  obtain K where K: "0 < K" and norm_le: "norm (f x) \<le> norm x * K" for x
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2522
    using pos_bounded by blast
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2523
  show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2524
  proof (rule exI, safe)
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
  2525
    from r K show "0 < r / K" by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2526
  next
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2527
    fix x y :: 'a
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2528
    assume xy: "norm (x - y) < r / K"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2529
    have "norm (f x - f y) = norm (f (x - y))" by (simp only: diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2530
    also have "\<dots> \<le> norm (x - y) * K" by (rule norm_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2531
    also from K xy have "\<dots> < r" by (simp only: pos_less_divide_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2532
    finally show "norm (f x - f y) < r" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2533
  qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2534
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2535
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2536
lemma (in bounded_linear) Cauchy: "Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2537
  by (rule isUCont [THEN isUCont_Cauchy])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2538
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2539
lemma LIM_less_bound:
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2540
  fixes f :: "real \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2541
  assumes ev: "b < x" "\<forall> x' \<in> { b <..< x}. 0 \<le> f x'" and "isCont f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2542
  shows "0 \<le> f x"
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63915
diff changeset
  2543
proof (rule tendsto_lowerbound)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2544
  show "(f \<longlongrightarrow> f x) (at_left x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2545
    using \<open>isCont f x\<close> by (simp add: filterlim_at_split isCont_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2546
  show "eventually (\<lambda>x. 0 \<le> f x) (at_left x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  2547
    using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2548
qed simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  2549
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2550
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2551
subsection \<open>Nested Intervals and Bisection -- Needed for Compactness\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2552
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2553
lemma nested_sequence_unique:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2554
  assumes "\<forall>n. f n \<le> f (Suc n)" "\<forall>n. g (Suc n) \<le> g n" "\<forall>n. f n \<le> g n" "(\<lambda>n. f n - g n) \<longlonglongrightarrow> 0"
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2555
  shows "\<exists>l::real. ((\<forall>n. f n \<le> l) \<and> f \<longlonglongrightarrow> l) \<and> ((\<forall>n. l \<le> g n) \<and> g \<longlonglongrightarrow> l)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2556
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2557
  have "incseq f" unfolding incseq_Suc_iff by fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2558
  have "decseq g" unfolding decseq_Suc_iff by fact
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2559
  have "f n \<le> g 0" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2560
  proof -
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2561
    from \<open>decseq g\<close> have "g n \<le> g 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2562
      by (rule decseqD) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2563
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2564
      by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2565
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2566
  then obtain u where "f \<longlonglongrightarrow> u" "\<forall>i. f i \<le> u"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2567
    using incseq_convergent[OF \<open>incseq f\<close>] by auto
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2568
  moreover have "f 0 \<le> g n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2569
  proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2570
    from \<open>incseq f\<close> have "f 0 \<le> f n" by (rule incseqD) simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2571
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2572
      by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2573
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2574
  then obtain l where "g \<longlonglongrightarrow> l" "\<forall>i. l \<le> g i"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2575
    using decseq_convergent[OF \<open>decseq g\<close>] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2576
  moreover note LIMSEQ_unique[OF assms(4) tendsto_diff[OF \<open>f \<longlonglongrightarrow> u\<close> \<open>g \<longlonglongrightarrow> l\<close>]]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2577
  ultimately show ?thesis by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2578
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2579
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2580
lemma Bolzano[consumes 1, case_names trans local]:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2581
  fixes P :: "real \<Rightarrow> real \<Rightarrow> bool"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2582
  assumes [arith]: "a \<le> b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2583
    and trans: "\<And>a b c. P a b \<Longrightarrow> P b c \<Longrightarrow> a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> P a c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2584
    and local: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<exists>d>0. \<forall>a b. a \<le> x \<and> x \<le> b \<and> b - a < d \<longrightarrow> P a b"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2585
  shows "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2586
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2587
  define bisect where "bisect =
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2588
    rec_nat (a, b) (\<lambda>n (x, y). if P x ((x+y) / 2) then ((x+y)/2, y) else (x, (x+y)/2))"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2589
  define l u where "l n = fst (bisect n)" and "u n = snd (bisect n)" for n
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2590
  have l[simp]: "l 0 = a" "\<And>n. l (Suc n) = (if P (l n) ((l n + u n) / 2) then (l n + u n) / 2 else l n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2591
    and u[simp]: "u 0 = b" "\<And>n. u (Suc n) = (if P (l n) ((l n + u n) / 2) then u n else (l n + u n) / 2)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2592
    by (simp_all add: l_def u_def bisect_def split: prod.split)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2593
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2594
  have [simp]: "l n \<le> u n" for n by (induct n) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2595
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2596
  have "\<exists>x. ((\<forall>n. l n \<le> x) \<and> l \<longlonglongrightarrow> x) \<and> ((\<forall>n. x \<le> u n) \<and> u \<longlonglongrightarrow> x)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2597
  proof (safe intro!: nested_sequence_unique)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2598
    show "l n \<le> l (Suc n)" "u (Suc n) \<le> u n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2599
      by (induct n) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2600
  next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2601
    have "l n - u n = (a - b) / 2^n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2602
      by (induct n) (auto simp: field_simps)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2603
    then show "(\<lambda>n. l n - u n) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2604
      by (simp add: LIMSEQ_divide_realpow_zero)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2605
  qed fact
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2606
  then obtain x where x: "\<And>n. l n \<le> x" "\<And>n. x \<le> u n" and "l \<longlonglongrightarrow> x" "u \<longlonglongrightarrow> x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2607
    by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2608
  obtain d where "0 < d" and d: "a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> b - a < d \<Longrightarrow> P a b" for a b
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2609
    using \<open>l 0 \<le> x\<close> \<open>x \<le> u 0\<close> local[of x] by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2610
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2611
  show "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2612
  proof (rule ccontr)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2613
    assume "\<not> P a b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2614
    have "\<not> P (l n) (u n)" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2615
    proof (induct n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2616
      case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2617
      then show ?case
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2618
        by (simp add: \<open>\<not> P a b\<close>)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2619
    next
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2620
      case (Suc n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2621
      with trans[of "l n" "(l n + u n) / 2" "u n"] show ?case
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2622
        by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2623
    qed
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2624
    moreover
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2625
    {
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2626
      have "eventually (\<lambda>n. x - d / 2 < l n) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2627
        using \<open>0 < d\<close> \<open>l \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2628
      moreover have "eventually (\<lambda>n. u n < x + d / 2) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2629
        using \<open>0 < d\<close> \<open>u \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2630
      ultimately have "eventually (\<lambda>n. P (l n) (u n)) sequentially"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2631
      proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2632
        case (elim n)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2633
        from add_strict_mono[OF this] have "u n - l n < d" by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2634
        with x show "P (l n) (u n)" by (rule d)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2635
      qed
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2636
    }
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2637
    ultimately show False by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2638
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2639
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2640
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2641
lemma compact_Icc[simp, intro]: "compact {a .. b::real}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2642
proof (cases "a \<le> b", rule compactI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2643
  fix C
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2644
  assume C: "a \<le> b" "\<forall>t\<in>C. open t" "{a..b} \<subseteq> \<Union>C"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2645
  define T where "T = {a .. b}"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2646
  from C(1,3) show "\<exists>C'\<subseteq>C. finite C' \<and> {a..b} \<subseteq> \<Union>C'"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2647
  proof (induct rule: Bolzano)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2648
    case (trans a b c)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2649
    then have *: "{a..c} = {a..b} \<union> {b..c}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2650
      by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2651
    with trans obtain C1 C2
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2652
      where "C1\<subseteq>C" "finite C1" "{a..b} \<subseteq> \<Union>C1" "C2\<subseteq>C" "finite C2" "{b..c} \<subseteq> \<Union>C2"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2653
      by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2654
    with trans show ?case
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2655
      unfolding * by (intro exI[of _ "C1 \<union> C2"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2656
  next
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2657
    case (local x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2658
    with C have "x \<in> \<Union>C" by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2659
    with C(2) obtain c where "x \<in> c" "open c" "c \<in> C"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2660
      by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2661
    then obtain e where "0 < e" "{x - e <..< x + e} \<subseteq> c"
62101
26c0a70f78a3 add uniform spaces
hoelzl
parents: 62087
diff changeset
  2662
      by (auto simp: open_dist dist_real_def subset_eq Ball_def abs_less_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2663
    with \<open>c \<in> C\<close> show ?case
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2664
      by (safe intro!: exI[of _ "e/2"] exI[of _ "{c}"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2665
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2666
qed simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2667
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2668
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2669
lemma continuous_image_closed_interval:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2670
  fixes a b and f :: "real \<Rightarrow> real"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2671
  defines "S \<equiv> {a..b}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2672
  assumes "a \<le> b" and f: "continuous_on S f"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2673
  shows "\<exists>c d. f`S = {c..d} \<and> c \<le> d"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2674
proof -
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2675
  have S: "compact S" "S \<noteq> {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2676
    using \<open>a \<le> b\<close> by (auto simp: S_def)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2677
  obtain c where "c \<in> S" "\<forall>d\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2678
    using continuous_attains_sup[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2679
  moreover obtain d where "d \<in> S" "\<forall>c\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2680
    using continuous_attains_inf[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2681
  moreover have "connected (f`S)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2682
    using connected_continuous_image[OF f] connected_Icc by (auto simp: S_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2683
  ultimately have "f ` S = {f d .. f c} \<and> f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2684
    by (auto simp: connected_iff_interval)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2685
  then show ?thesis
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2686
    by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2687
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2688
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2689
lemma open_Collect_positive:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2690
  fixes f :: "'a::t2_space \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2691
  assumes f: "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2692
  shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. 0 < f x}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2693
  using continuous_on_open_invariant[THEN iffD1, OF f, rule_format, of "{0 <..}"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2694
  by (auto simp: Int_def field_simps)
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2695
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2696
lemma open_Collect_less_Int:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2697
  fixes f g :: "'a::t2_space \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2698
  assumes f: "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2699
    and g: "continuous_on s g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2700
  shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. f x < g x}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2701
  using open_Collect_positive[OF continuous_on_diff[OF g f]] by (simp add: field_simps)
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2702
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2703
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2704
subsection \<open>Boundedness of continuous functions\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2705
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2706
text\<open>By bisection, function continuous on closed interval is bounded above\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2707
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2708
lemma isCont_eq_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2709
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2710
  shows "a \<le> b \<Longrightarrow> \<forall>x::real. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2711
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2712
  using continuous_attains_sup[of "{a..b}" f]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2713
  by (auto simp add: continuous_at_imp_continuous_on Ball_def Bex_def)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2714
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2715
lemma isCont_eq_Lb:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2716
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2717
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2718
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> M \<le> f x) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2719
  using continuous_attains_inf[of "{a..b}" f]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2720
  by (auto simp add: continuous_at_imp_continuous_on Ball_def Bex_def)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2721
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2722
lemma isCont_bounded:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2723
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2724
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2725
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2726
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2727
lemma isCont_has_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2728
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2729
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2730
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<forall>N. N < M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2731
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2732
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2733
(*HOL style here: object-level formulations*)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2734
lemma IVT_objl:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2735
  "(f a \<le> y \<and> y \<le> f b \<and> a \<le> b \<and> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x)) \<longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2736
    (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2737
  for a y :: real
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2738
  by (blast intro: IVT)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2739
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2740
lemma IVT2_objl:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2741
  "(f b \<le> y \<and> y \<le> f a \<and> a \<le> b \<and> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x)) \<longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2742
    (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2743
  for b y :: real
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2744
  by (blast intro: IVT2)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2745
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2746
lemma isCont_Lb_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2747
  fixes f :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2748
  assumes "a \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2749
  shows "\<exists>L M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> L \<le> f x \<and> f x \<le> M) \<and>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2750
    (\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> (f x = y)))"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2751
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2752
  obtain M where M: "a \<le> M" "M \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> f M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2753
    using isCont_eq_Ub[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2754
  obtain L where L: "a \<le> L" "L \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2755
    using isCont_eq_Lb[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2756
  show ?thesis
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2757
    using IVT[of f L _ M] IVT2[of f L _ M] M L assms
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2758
    apply (rule_tac x="f L" in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2759
    apply (rule_tac x="f M" in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2760
    apply (cases "L \<le> M")
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2761
     apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2762
     apply (metis order_trans)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2763
    apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2764
    apply (metis order_trans)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2765
    done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2766
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2767
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2768
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2769
text \<open>Continuity of inverse function.\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2770
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2771
lemma isCont_inverse_function:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2772
  fixes f g :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2773
  assumes d: "0 < d"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2774
    and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d \<longrightarrow> g (f z) = z"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2775
    and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d \<longrightarrow> isCont f z"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2776
  shows "isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2777
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2778
  let ?A = "f (x - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2779
  let ?B = "f (x + d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2780
  let ?D = "{x - d..x + d}"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2781
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2782
  have f: "continuous_on ?D f"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2783
    using cont by (intro continuous_at_imp_continuous_on ballI) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2784
  then have g: "continuous_on (f`?D) g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2785
    using inj by (intro continuous_on_inv) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2786
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2787
  from d f have "{min ?A ?B <..< max ?A ?B} \<subseteq> f ` ?D"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2788
    by (intro connected_contains_Ioo connected_continuous_image) (auto split: split_min split_max)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2789
  with g have "continuous_on {min ?A ?B <..< max ?A ?B} g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2790
    by (rule continuous_on_subset)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2791
  moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2792
  have "(?A < f x \<and> f x < ?B) \<or> (?B < f x \<and> f x < ?A)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2793
    using d inj by (intro continuous_inj_imp_mono[OF _ _ f] inj_on_imageI2[of g, OF inj_onI]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2794
  then have "f x \<in> {min ?A ?B <..< max ?A ?B}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2795
    by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2796
  ultimately
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2797
  show ?thesis
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2798
    by (simp add: continuous_on_eq_continuous_at)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2799
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2800
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2801
lemma isCont_inverse_function2:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2802
  fixes f g :: "real \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2803
  shows
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2804
    "a < x \<Longrightarrow> x < b \<Longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2805
      \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z \<Longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2806
      \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z \<Longrightarrow> isCont g (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2807
  apply (rule isCont_inverse_function [where f=f and d="min (x - a) (b - x)"])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2808
  apply (simp_all add: abs_le_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2809
  done
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2810
66827
c94531b5007d Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
paulson <lp15@cam.ac.uk>
parents: 66793
diff changeset
  2811
(* need to rename second continuous_at_inverse *)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2812
lemma isCont_inv_fun:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2813
  fixes f g :: "real \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2814
  shows "0 < d \<Longrightarrow> (\<forall>z. \<bar>z - x\<bar> \<le> d \<longrightarrow> g (f z) = z) \<Longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2815
    \<forall>z. \<bar>z - x\<bar> \<le> d \<longrightarrow> isCont f z \<Longrightarrow> isCont g (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2816
  by (rule isCont_inverse_function)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2817
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2818
text \<open>Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2819
lemma LIM_fun_gt_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> 0 < f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2820
  for f :: "real \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2821
  apply (drule (1) LIM_D)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2822
  apply clarify
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2823
  apply (rule_tac x = s in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2824
  apply (simp add: abs_less_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2825
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2826
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2827
lemma LIM_fun_less_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x < 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2828
  for f :: "real \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2829
  apply (drule LIM_D [where r="-l"])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2830
   apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2831
  apply clarify
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2832
  apply (rule_tac x = s in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2833
  apply (simp add: abs_less_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2834
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2835
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2836
lemma LIM_fun_not_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x \<noteq> 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2837
  for f :: "real \<Rightarrow> real"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2838
  using LIM_fun_gt_zero[of f l c] LIM_fun_less_zero[of f l c] by (auto simp add: neq_iff)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2839
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
  2840
end