| 1478 |      1 | (*  Title:      ZF/Cardinal.thy
 | 
| 435 |      2 |     ID:         $Id$
 | 
| 1478 |      3 |     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
| 435 |      4 |     Copyright   1994  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Cardinals in Zermelo-Fraenkel Set Theory 
 | 
| 13221 |      7 | 
 | 
|  |      8 | This theory does NOT assume the Axiom of Choice
 | 
| 435 |      9 | *)
 | 
|  |     10 | 
 | 
| 13244 |     11 | theory Cardinal = OrderType + Finite + Nat + Sum:
 | 
| 13221 |     12 | 
 | 
|  |     13 | (*** The following really belong in upair ***)
 | 
| 435 |     14 | 
 | 
| 13221 |     15 | lemma eq_imp_not_mem: "a=A ==> a ~: A"
 | 
|  |     16 | by (blast intro: elim: mem_irrefl)
 | 
|  |     17 | 
 | 
|  |     18 | constdefs
 | 
| 435 |     19 | 
 | 
|  |     20 |   (*least ordinal operator*)
 | 
| 13221 |     21 |    Least    :: "(i=>o) => i"    (binder "LEAST " 10)
 | 
|  |     22 |      "Least(P) == THE i. Ord(i) & P(i) & (ALL j. j<i --> ~P(j))"
 | 
| 435 |     23 | 
 | 
| 13221 |     24 |   eqpoll   :: "[i,i] => o"     (infixl "eqpoll" 50)
 | 
|  |     25 |     "A eqpoll B == EX f. f: bij(A,B)"
 | 
| 435 |     26 | 
 | 
| 13221 |     27 |   lepoll   :: "[i,i] => o"     (infixl "lepoll" 50)
 | 
|  |     28 |     "A lepoll B == EX f. f: inj(A,B)"
 | 
| 435 |     29 | 
 | 
| 13221 |     30 |   lesspoll :: "[i,i] => o"     (infixl "lesspoll" 50)
 | 
|  |     31 |     "A lesspoll B == A lepoll B & ~(A eqpoll B)"
 | 
| 832 |     32 | 
 | 
| 13221 |     33 |   cardinal :: "i=>i"           ("|_|")
 | 
|  |     34 |     "|A| == LEAST i. i eqpoll A"
 | 
| 435 |     35 | 
 | 
| 13221 |     36 |   Finite   :: "i=>o"
 | 
|  |     37 |     "Finite(A) == EX n:nat. A eqpoll n"
 | 
| 435 |     38 | 
 | 
| 13221 |     39 |   Card     :: "i=>o"
 | 
|  |     40 |     "Card(i) == (i = |i|)"
 | 
| 435 |     41 | 
 | 
| 9683 |     42 | syntax (xsymbols)
 | 
| 13221 |     43 |   "eqpoll"      :: "[i,i] => o"       (infixl "\<approx>" 50)
 | 
|  |     44 |   "lepoll"      :: "[i,i] => o"       (infixl "\<lesssim>" 50)
 | 
|  |     45 |   "lesspoll"    :: "[i,i] => o"       (infixl "\<prec>" 50)
 | 
|  |     46 |   "LEAST "         :: "[pttrn, o] => i"  ("(3\<mu>_./ _)" [0, 10] 10)
 | 
|  |     47 | 
 | 
|  |     48 | (*** The Schroeder-Bernstein Theorem -- see Davey & Priestly, page 106 ***)
 | 
|  |     49 | 
 | 
|  |     50 | (** Lemma: Banach's Decomposition Theorem **)
 | 
|  |     51 | 
 | 
|  |     52 | lemma decomp_bnd_mono: "bnd_mono(X, %W. X - g``(Y - f``W))"
 | 
|  |     53 | by (rule bnd_monoI, blast+)
 | 
|  |     54 | 
 | 
|  |     55 | lemma Banach_last_equation:
 | 
|  |     56 |     "g: Y->X
 | 
|  |     57 |      ==> g``(Y - f`` lfp(X, %W. X - g``(Y - f``W))) =        
 | 
|  |     58 | 	 X - lfp(X, %W. X - g``(Y - f``W))" 
 | 
|  |     59 | apply (rule_tac P = "%u. ?v = X-u" 
 | 
|  |     60 |        in decomp_bnd_mono [THEN lfp_unfold, THEN ssubst])
 | 
|  |     61 | apply (simp add: double_complement  fun_is_rel [THEN image_subset])
 | 
|  |     62 | done
 | 
|  |     63 | 
 | 
|  |     64 | lemma decomposition:
 | 
|  |     65 |      "[| f: X->Y;  g: Y->X |] ==>    
 | 
|  |     66 |       EX XA XB YA YB. (XA Int XB = 0) & (XA Un XB = X) &     
 | 
|  |     67 |                       (YA Int YB = 0) & (YA Un YB = Y) &     
 | 
|  |     68 |                       f``XA=YA & g``YB=XB"
 | 
|  |     69 | apply (intro exI conjI)
 | 
|  |     70 | apply (rule_tac [6] Banach_last_equation)
 | 
|  |     71 | apply (rule_tac [5] refl)
 | 
|  |     72 | apply (assumption | 
 | 
|  |     73 |        rule  Diff_disjoint Diff_partition fun_is_rel image_subset lfp_subset)+
 | 
|  |     74 | done
 | 
|  |     75 | 
 | 
|  |     76 | lemma schroeder_bernstein:
 | 
|  |     77 |     "[| f: inj(X,Y);  g: inj(Y,X) |] ==> EX h. h: bij(X,Y)"
 | 
|  |     78 | apply (insert decomposition [of f X Y g]) 
 | 
|  |     79 | apply (simp add: inj_is_fun)
 | 
|  |     80 | apply (blast intro!: restrict_bij bij_disjoint_Un intro: bij_converse_bij)
 | 
|  |     81 | (* The instantiation of exI to "restrict(f,XA) Un converse(restrict(g,YB))"
 | 
|  |     82 |    is forced by the context!! *)
 | 
|  |     83 | done
 | 
|  |     84 | 
 | 
|  |     85 | 
 | 
|  |     86 | (** Equipollence is an equivalence relation **)
 | 
|  |     87 | 
 | 
|  |     88 | lemma bij_imp_eqpoll: "f: bij(A,B) ==> A \<approx> B"
 | 
|  |     89 | apply (unfold eqpoll_def)
 | 
|  |     90 | apply (erule exI)
 | 
|  |     91 | done
 | 
|  |     92 | 
 | 
|  |     93 | (*A eqpoll A*)
 | 
|  |     94 | lemmas eqpoll_refl = id_bij [THEN bij_imp_eqpoll, standard, simp]
 | 
|  |     95 | 
 | 
|  |     96 | lemma eqpoll_sym: "X \<approx> Y ==> Y \<approx> X"
 | 
|  |     97 | apply (unfold eqpoll_def)
 | 
|  |     98 | apply (blast intro: bij_converse_bij)
 | 
|  |     99 | done
 | 
|  |    100 | 
 | 
|  |    101 | lemma eqpoll_trans: 
 | 
|  |    102 |     "[| X \<approx> Y;  Y \<approx> Z |] ==> X \<approx> Z"
 | 
|  |    103 | apply (unfold eqpoll_def)
 | 
|  |    104 | apply (blast intro: comp_bij)
 | 
|  |    105 | done
 | 
|  |    106 | 
 | 
|  |    107 | (** Le-pollence is a partial ordering **)
 | 
|  |    108 | 
 | 
|  |    109 | lemma subset_imp_lepoll: "X<=Y ==> X \<lesssim> Y"
 | 
|  |    110 | apply (unfold lepoll_def)
 | 
|  |    111 | apply (rule exI)
 | 
|  |    112 | apply (erule id_subset_inj)
 | 
|  |    113 | done
 | 
|  |    114 | 
 | 
|  |    115 | lemmas lepoll_refl = subset_refl [THEN subset_imp_lepoll, standard, simp]
 | 
|  |    116 | 
 | 
|  |    117 | lemmas le_imp_lepoll = le_imp_subset [THEN subset_imp_lepoll, standard]
 | 
|  |    118 | 
 | 
|  |    119 | lemma eqpoll_imp_lepoll: "X \<approx> Y ==> X \<lesssim> Y"
 | 
|  |    120 | by (unfold eqpoll_def bij_def lepoll_def, blast)
 | 
|  |    121 | 
 | 
|  |    122 | lemma lepoll_trans: "[| X \<lesssim> Y;  Y \<lesssim> Z |] ==> X \<lesssim> Z"
 | 
|  |    123 | apply (unfold lepoll_def)
 | 
|  |    124 | apply (blast intro: comp_inj)
 | 
|  |    125 | done
 | 
|  |    126 | 
 | 
|  |    127 | (*Asymmetry law*)
 | 
|  |    128 | lemma eqpollI: "[| X \<lesssim> Y;  Y \<lesssim> X |] ==> X \<approx> Y"
 | 
|  |    129 | apply (unfold lepoll_def eqpoll_def)
 | 
|  |    130 | apply (elim exE)
 | 
|  |    131 | apply (rule schroeder_bernstein, assumption+)
 | 
|  |    132 | done
 | 
|  |    133 | 
 | 
|  |    134 | lemma eqpollE:
 | 
|  |    135 |     "[| X \<approx> Y; [| X \<lesssim> Y; Y \<lesssim> X |] ==> P |] ==> P"
 | 
|  |    136 | by (blast intro: eqpoll_imp_lepoll eqpoll_sym) 
 | 
|  |    137 | 
 | 
|  |    138 | lemma eqpoll_iff: "X \<approx> Y <-> X \<lesssim> Y & Y \<lesssim> X"
 | 
|  |    139 | by (blast intro: eqpollI elim!: eqpollE)
 | 
|  |    140 | 
 | 
|  |    141 | lemma lepoll_0_is_0: "A \<lesssim> 0 ==> A = 0"
 | 
|  |    142 | apply (unfold lepoll_def inj_def)
 | 
|  |    143 | apply (blast dest: apply_type)
 | 
|  |    144 | done
 | 
|  |    145 | 
 | 
|  |    146 | (*0 \<lesssim> Y*)
 | 
|  |    147 | lemmas empty_lepollI = empty_subsetI [THEN subset_imp_lepoll, standard]
 | 
|  |    148 | 
 | 
|  |    149 | lemma lepoll_0_iff: "A \<lesssim> 0 <-> A=0"
 | 
|  |    150 | by (blast intro: lepoll_0_is_0 lepoll_refl)
 | 
|  |    151 | 
 | 
|  |    152 | lemma Un_lepoll_Un: 
 | 
|  |    153 |     "[| A \<lesssim> B; C \<lesssim> D; B Int D = 0 |] ==> A Un C \<lesssim> B Un D"
 | 
|  |    154 | apply (unfold lepoll_def)
 | 
|  |    155 | apply (blast intro: inj_disjoint_Un)
 | 
|  |    156 | done
 | 
|  |    157 | 
 | 
|  |    158 | (*A eqpoll 0 ==> A=0*)
 | 
|  |    159 | lemmas eqpoll_0_is_0 = eqpoll_imp_lepoll [THEN lepoll_0_is_0, standard]
 | 
|  |    160 | 
 | 
|  |    161 | lemma eqpoll_0_iff: "A \<approx> 0 <-> A=0"
 | 
|  |    162 | by (blast intro: eqpoll_0_is_0 eqpoll_refl)
 | 
|  |    163 | 
 | 
|  |    164 | lemma eqpoll_disjoint_Un: 
 | 
|  |    165 |     "[| A \<approx> B;  C \<approx> D;  A Int C = 0;  B Int D = 0 |]   
 | 
|  |    166 |      ==> A Un C \<approx> B Un D"
 | 
|  |    167 | apply (unfold eqpoll_def)
 | 
|  |    168 | apply (blast intro: bij_disjoint_Un)
 | 
|  |    169 | done
 | 
|  |    170 | 
 | 
|  |    171 | 
 | 
|  |    172 | (*** lesspoll: contributions by Krzysztof Grabczewski ***)
 | 
|  |    173 | 
 | 
|  |    174 | lemma lesspoll_not_refl: "~ (i \<prec> i)"
 | 
|  |    175 | by (simp add: lesspoll_def) 
 | 
|  |    176 | 
 | 
|  |    177 | lemma lesspoll_irrefl [elim!]: "i \<prec> i ==> P"
 | 
|  |    178 | by (simp add: lesspoll_def) 
 | 
|  |    179 | 
 | 
|  |    180 | lemma lesspoll_imp_lepoll: "A \<prec> B ==> A \<lesssim> B"
 | 
|  |    181 | by (unfold lesspoll_def, blast)
 | 
|  |    182 | 
 | 
|  |    183 | lemma lepoll_well_ord: "[| A \<lesssim> B; well_ord(B,r) |] ==> EX s. well_ord(A,s)"
 | 
|  |    184 | apply (unfold lepoll_def)
 | 
|  |    185 | apply (blast intro: well_ord_rvimage)
 | 
|  |    186 | done
 | 
|  |    187 | 
 | 
|  |    188 | lemma lepoll_iff_leqpoll: "A \<lesssim> B <-> A \<prec> B | A \<approx> B"
 | 
|  |    189 | apply (unfold lesspoll_def)
 | 
|  |    190 | apply (blast intro!: eqpollI elim!: eqpollE)
 | 
|  |    191 | done
 | 
|  |    192 | 
 | 
|  |    193 | lemma inj_not_surj_succ: 
 | 
|  |    194 |   "[| f : inj(A, succ(m)); f ~: surj(A, succ(m)) |] ==> EX f. f:inj(A,m)"
 | 
|  |    195 | apply (unfold inj_def surj_def) 
 | 
|  |    196 | apply (safe del: succE) 
 | 
|  |    197 | apply (erule swap, rule exI) 
 | 
|  |    198 | apply (rule_tac a = "lam z:A. if f`z=m then y else f`z" in CollectI)
 | 
|  |    199 | txt{*the typing condition*}
 | 
|  |    200 |  apply (best intro!: if_type [THEN lam_type] elim: apply_funtype [THEN succE])
 | 
|  |    201 | txt{*Proving it's injective*}
 | 
|  |    202 | apply simp
 | 
|  |    203 | apply blast 
 | 
|  |    204 | done
 | 
|  |    205 | 
 | 
|  |    206 | (** Variations on transitivity **)
 | 
|  |    207 | 
 | 
|  |    208 | lemma lesspoll_trans: 
 | 
|  |    209 |       "[| X \<prec> Y; Y \<prec> Z |] ==> X \<prec> Z"
 | 
|  |    210 | apply (unfold lesspoll_def)
 | 
|  |    211 | apply (blast elim!: eqpollE intro: eqpollI lepoll_trans)
 | 
|  |    212 | done
 | 
|  |    213 | 
 | 
|  |    214 | lemma lesspoll_trans1: 
 | 
|  |    215 |       "[| X \<lesssim> Y; Y \<prec> Z |] ==> X \<prec> Z"
 | 
|  |    216 | apply (unfold lesspoll_def)
 | 
|  |    217 | apply (blast elim!: eqpollE intro: eqpollI lepoll_trans)
 | 
|  |    218 | done
 | 
|  |    219 | 
 | 
|  |    220 | lemma lesspoll_trans2: 
 | 
|  |    221 |       "[| X \<prec> Y; Y \<lesssim> Z |] ==> X \<prec> Z"
 | 
|  |    222 | apply (unfold lesspoll_def)
 | 
|  |    223 | apply (blast elim!: eqpollE intro: eqpollI lepoll_trans)
 | 
|  |    224 | done
 | 
|  |    225 | 
 | 
|  |    226 | 
 | 
|  |    227 | (** LEAST -- the least number operator [from HOL/Univ.ML] **)
 | 
|  |    228 | 
 | 
|  |    229 | lemma Least_equality: 
 | 
|  |    230 |     "[| P(i);  Ord(i);  !!x. x<i ==> ~P(x) |] ==> (LEAST x. P(x)) = i"
 | 
|  |    231 | apply (unfold Least_def) 
 | 
|  |    232 | apply (rule the_equality, blast)
 | 
|  |    233 | apply (elim conjE)
 | 
|  |    234 | apply (erule Ord_linear_lt, assumption, blast+)
 | 
|  |    235 | done
 | 
|  |    236 | 
 | 
|  |    237 | lemma LeastI: "[| P(i);  Ord(i) |] ==> P(LEAST x. P(x))"
 | 
|  |    238 | apply (erule rev_mp)
 | 
|  |    239 | apply (erule_tac i=i in trans_induct) 
 | 
|  |    240 | apply (rule impI)
 | 
|  |    241 | apply (rule classical)
 | 
|  |    242 | apply (blast intro: Least_equality [THEN ssubst]  elim!: ltE)
 | 
|  |    243 | done
 | 
|  |    244 | 
 | 
|  |    245 | (*Proof is almost identical to the one above!*)
 | 
|  |    246 | lemma Least_le: "[| P(i);  Ord(i) |] ==> (LEAST x. P(x)) le i"
 | 
|  |    247 | apply (erule rev_mp)
 | 
|  |    248 | apply (erule_tac i=i in trans_induct) 
 | 
|  |    249 | apply (rule impI)
 | 
|  |    250 | apply (rule classical)
 | 
|  |    251 | apply (subst Least_equality, assumption+)
 | 
|  |    252 | apply (erule_tac [2] le_refl)
 | 
|  |    253 | apply (blast elim: ltE intro: leI ltI lt_trans1)
 | 
|  |    254 | done
 | 
|  |    255 | 
 | 
|  |    256 | (*LEAST really is the smallest*)
 | 
|  |    257 | lemma less_LeastE: "[| P(i);  i < (LEAST x. P(x)) |] ==> Q"
 | 
|  |    258 | apply (rule Least_le [THEN [2] lt_trans2, THEN lt_irrefl], assumption+)
 | 
|  |    259 | apply (simp add: lt_Ord) 
 | 
|  |    260 | done
 | 
|  |    261 | 
 | 
|  |    262 | (*Easier to apply than LeastI: conclusion has only one occurrence of P*)
 | 
|  |    263 | lemma LeastI2:
 | 
|  |    264 |     "[| P(i);  Ord(i);  !!j. P(j) ==> Q(j) |] ==> Q(LEAST j. P(j))"
 | 
|  |    265 | by (blast intro: LeastI ) 
 | 
|  |    266 | 
 | 
|  |    267 | (*If there is no such P then LEAST is vacuously 0*)
 | 
|  |    268 | lemma Least_0: 
 | 
|  |    269 |     "[| ~ (EX i. Ord(i) & P(i)) |] ==> (LEAST x. P(x)) = 0"
 | 
|  |    270 | apply (unfold Least_def)
 | 
|  |    271 | apply (rule the_0, blast)
 | 
|  |    272 | done
 | 
|  |    273 | 
 | 
|  |    274 | lemma Ord_Least: "Ord(LEAST x. P(x))"
 | 
|  |    275 | apply (rule_tac P = "EX i. Ord(i) & P(i)" in case_split_thm)  
 | 
|  |    276 |     (*case_tac method not available yet; needs "inductive"*)
 | 
|  |    277 | apply safe
 | 
|  |    278 | apply (rule Least_le [THEN ltE])
 | 
|  |    279 | prefer 3 apply assumption+
 | 
|  |    280 | apply (erule Least_0 [THEN ssubst])
 | 
|  |    281 | apply (rule Ord_0)
 | 
|  |    282 | done
 | 
|  |    283 | 
 | 
|  |    284 | 
 | 
|  |    285 | (** Basic properties of cardinals **)
 | 
|  |    286 | 
 | 
|  |    287 | (*Not needed for simplification, but helpful below*)
 | 
|  |    288 | lemma Least_cong:
 | 
|  |    289 |      "(!!y. P(y) <-> Q(y)) ==> (LEAST x. P(x)) = (LEAST x. Q(x))"
 | 
|  |    290 | by simp
 | 
|  |    291 | 
 | 
|  |    292 | (*Need AC to get X \<lesssim> Y ==> |X| le |Y|;  see well_ord_lepoll_imp_Card_le
 | 
|  |    293 |   Converse also requires AC, but see well_ord_cardinal_eqE*)
 | 
|  |    294 | lemma cardinal_cong: "X \<approx> Y ==> |X| = |Y|"
 | 
|  |    295 | apply (unfold eqpoll_def cardinal_def)
 | 
|  |    296 | apply (rule Least_cong)
 | 
|  |    297 | apply (blast intro: comp_bij bij_converse_bij)
 | 
|  |    298 | done
 | 
|  |    299 | 
 | 
|  |    300 | (*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*)
 | 
|  |    301 | lemma well_ord_cardinal_eqpoll: 
 | 
|  |    302 |     "well_ord(A,r) ==> |A| \<approx> A"
 | 
|  |    303 | apply (unfold cardinal_def)
 | 
|  |    304 | apply (rule LeastI)
 | 
|  |    305 | apply (erule_tac [2] Ord_ordertype)
 | 
|  |    306 | apply (erule ordermap_bij [THEN bij_converse_bij, THEN bij_imp_eqpoll])
 | 
|  |    307 | done
 | 
|  |    308 | 
 | 
|  |    309 | (* Ord(A) ==> |A| \<approx> A *)
 | 
|  |    310 | lemmas Ord_cardinal_eqpoll = well_ord_Memrel [THEN well_ord_cardinal_eqpoll]
 | 
|  |    311 | 
 | 
|  |    312 | lemma well_ord_cardinal_eqE:
 | 
|  |    313 |      "[| well_ord(X,r);  well_ord(Y,s);  |X| = |Y| |] ==> X \<approx> Y"
 | 
|  |    314 | apply (rule eqpoll_sym [THEN eqpoll_trans])
 | 
|  |    315 | apply (erule well_ord_cardinal_eqpoll)
 | 
|  |    316 | apply (simp (no_asm_simp) add: well_ord_cardinal_eqpoll)
 | 
|  |    317 | done
 | 
|  |    318 | 
 | 
|  |    319 | lemma well_ord_cardinal_eqpoll_iff:
 | 
|  |    320 |      "[| well_ord(X,r);  well_ord(Y,s) |] ==> |X| = |Y| <-> X \<approx> Y"
 | 
|  |    321 | by (blast intro: cardinal_cong well_ord_cardinal_eqE)
 | 
|  |    322 | 
 | 
|  |    323 | 
 | 
|  |    324 | (** Observations from Kunen, page 28 **)
 | 
|  |    325 | 
 | 
|  |    326 | lemma Ord_cardinal_le: "Ord(i) ==> |i| le i"
 | 
|  |    327 | apply (unfold cardinal_def)
 | 
|  |    328 | apply (erule eqpoll_refl [THEN Least_le])
 | 
|  |    329 | done
 | 
|  |    330 | 
 | 
|  |    331 | lemma Card_cardinal_eq: "Card(K) ==> |K| = K"
 | 
|  |    332 | apply (unfold Card_def)
 | 
|  |    333 | apply (erule sym)
 | 
|  |    334 | done
 | 
|  |    335 | 
 | 
|  |    336 | (* Could replace the  ~(j \<approx> i)  by  ~(i \<lesssim> j) *)
 | 
|  |    337 | lemma CardI: "[| Ord(i);  !!j. j<i ==> ~(j \<approx> i) |] ==> Card(i)"
 | 
|  |    338 | apply (unfold Card_def cardinal_def) 
 | 
|  |    339 | apply (subst Least_equality)
 | 
|  |    340 | apply (blast intro: eqpoll_refl )+
 | 
|  |    341 | done
 | 
|  |    342 | 
 | 
|  |    343 | lemma Card_is_Ord: "Card(i) ==> Ord(i)"
 | 
|  |    344 | apply (unfold Card_def cardinal_def)
 | 
|  |    345 | apply (erule ssubst)
 | 
|  |    346 | apply (rule Ord_Least)
 | 
|  |    347 | done
 | 
|  |    348 | 
 | 
|  |    349 | lemma Card_cardinal_le: "Card(K) ==> K le |K|"
 | 
|  |    350 | apply (simp (no_asm_simp) add: Card_is_Ord Card_cardinal_eq)
 | 
|  |    351 | done
 | 
|  |    352 | 
 | 
|  |    353 | lemma Ord_cardinal [simp,intro!]: "Ord(|A|)"
 | 
|  |    354 | apply (unfold cardinal_def)
 | 
|  |    355 | apply (rule Ord_Least)
 | 
|  |    356 | done
 | 
|  |    357 | 
 | 
|  |    358 | (*The cardinals are the initial ordinals*)
 | 
|  |    359 | lemma Card_iff_initial: "Card(K) <-> Ord(K) & (ALL j. j<K --> ~ j \<approx> K)"
 | 
|  |    360 | apply (safe intro!: CardI Card_is_Ord)
 | 
|  |    361 |  prefer 2 apply blast
 | 
|  |    362 | apply (unfold Card_def cardinal_def)
 | 
|  |    363 | apply (rule less_LeastE)
 | 
|  |    364 | apply (erule_tac [2] subst, assumption+)
 | 
|  |    365 | done
 | 
|  |    366 | 
 | 
|  |    367 | lemma lt_Card_imp_lesspoll: "[| Card(a); i<a |] ==> i \<prec> a"
 | 
|  |    368 | apply (unfold lesspoll_def)
 | 
|  |    369 | apply (drule Card_iff_initial [THEN iffD1])
 | 
|  |    370 | apply (blast intro!: leI [THEN le_imp_lepoll])
 | 
|  |    371 | done
 | 
|  |    372 | 
 | 
|  |    373 | lemma Card_0: "Card(0)"
 | 
|  |    374 | apply (rule Ord_0 [THEN CardI])
 | 
|  |    375 | apply (blast elim!: ltE)
 | 
|  |    376 | done
 | 
|  |    377 | 
 | 
|  |    378 | lemma Card_Un: "[| Card(K);  Card(L) |] ==> Card(K Un L)"
 | 
|  |    379 | apply (rule Ord_linear_le [of K L])
 | 
|  |    380 | apply (simp_all add: subset_Un_iff [THEN iffD1]  Card_is_Ord le_imp_subset
 | 
|  |    381 |                      subset_Un_iff2 [THEN iffD1])
 | 
|  |    382 | done
 | 
|  |    383 | 
 | 
|  |    384 | (*Infinite unions of cardinals?  See Devlin, Lemma 6.7, page 98*)
 | 
|  |    385 | 
 | 
|  |    386 | lemma Card_cardinal: "Card(|A|)"
 | 
|  |    387 | apply (unfold cardinal_def)
 | 
|  |    388 | apply (rule_tac P =  "EX i. Ord (i) & i \<approx> A" in case_split_thm)
 | 
|  |    389 |  txt{*degenerate case*}
 | 
|  |    390 |  prefer 2 apply (erule Least_0 [THEN ssubst], rule Card_0)
 | 
|  |    391 | txt{*real case: A is isomorphic to some ordinal*}
 | 
|  |    392 | apply (rule Ord_Least [THEN CardI], safe)
 | 
|  |    393 | apply (rule less_LeastE)
 | 
|  |    394 | prefer 2 apply assumption
 | 
|  |    395 | apply (erule eqpoll_trans)
 | 
|  |    396 | apply (best intro: LeastI ) 
 | 
|  |    397 | done
 | 
|  |    398 | 
 | 
|  |    399 | (*Kunen's Lemma 10.5*)
 | 
|  |    400 | lemma cardinal_eq_lemma: "[| |i| le j;  j le i |] ==> |j| = |i|"
 | 
|  |    401 | apply (rule eqpollI [THEN cardinal_cong])
 | 
|  |    402 | apply (erule le_imp_lepoll)
 | 
|  |    403 | apply (rule lepoll_trans)
 | 
|  |    404 | apply (erule_tac [2] le_imp_lepoll)
 | 
|  |    405 | apply (rule eqpoll_sym [THEN eqpoll_imp_lepoll])
 | 
|  |    406 | apply (rule Ord_cardinal_eqpoll)
 | 
|  |    407 | apply (elim ltE Ord_succD)
 | 
|  |    408 | done
 | 
|  |    409 | 
 | 
|  |    410 | lemma cardinal_mono: "i le j ==> |i| le |j|"
 | 
|  |    411 | apply (rule_tac i = "|i|" and j = "|j|" in Ord_linear_le)
 | 
|  |    412 | apply (safe intro!: Ord_cardinal le_eqI)
 | 
|  |    413 | apply (rule cardinal_eq_lemma)
 | 
|  |    414 | prefer 2 apply assumption
 | 
|  |    415 | apply (erule le_trans)
 | 
|  |    416 | apply (erule ltE)
 | 
|  |    417 | apply (erule Ord_cardinal_le)
 | 
|  |    418 | done
 | 
|  |    419 | 
 | 
|  |    420 | (*Since we have |succ(nat)| le |nat|, the converse of cardinal_mono fails!*)
 | 
|  |    421 | lemma cardinal_lt_imp_lt: "[| |i| < |j|;  Ord(i);  Ord(j) |] ==> i < j"
 | 
|  |    422 | apply (rule Ord_linear2 [of i j], assumption+)
 | 
|  |    423 | apply (erule lt_trans2 [THEN lt_irrefl])
 | 
|  |    424 | apply (erule cardinal_mono)
 | 
|  |    425 | done
 | 
|  |    426 | 
 | 
|  |    427 | lemma Card_lt_imp_lt: "[| |i| < K;  Ord(i);  Card(K) |] ==> i < K"
 | 
|  |    428 | apply (simp (no_asm_simp) add: cardinal_lt_imp_lt Card_is_Ord Card_cardinal_eq)
 | 
|  |    429 | done
 | 
|  |    430 | 
 | 
|  |    431 | lemma Card_lt_iff: "[| Ord(i);  Card(K) |] ==> (|i| < K) <-> (i < K)"
 | 
|  |    432 | by (blast intro: Card_lt_imp_lt Ord_cardinal_le [THEN lt_trans1])
 | 
|  |    433 | 
 | 
|  |    434 | lemma Card_le_iff: "[| Ord(i);  Card(K) |] ==> (K le |i|) <-> (K le i)"
 | 
| 13269 |    435 | by (simp add: Card_lt_iff Card_is_Ord Ord_cardinal not_lt_iff_le [THEN iff_sym])
 | 
| 13221 |    436 | 
 | 
|  |    437 | (*Can use AC or finiteness to discharge first premise*)
 | 
|  |    438 | lemma well_ord_lepoll_imp_Card_le:
 | 
|  |    439 |      "[| well_ord(B,r);  A \<lesssim> B |] ==> |A| le |B|"
 | 
|  |    440 | apply (rule_tac i = "|A|" and j = "|B|" in Ord_linear_le)
 | 
|  |    441 | apply (safe intro!: Ord_cardinal le_eqI)
 | 
|  |    442 | apply (rule eqpollI [THEN cardinal_cong], assumption)
 | 
|  |    443 | apply (rule lepoll_trans)
 | 
|  |    444 | apply (rule well_ord_cardinal_eqpoll [THEN eqpoll_sym, THEN eqpoll_imp_lepoll], assumption)
 | 
|  |    445 | apply (erule le_imp_lepoll [THEN lepoll_trans])
 | 
|  |    446 | apply (rule eqpoll_imp_lepoll)
 | 
|  |    447 | apply (unfold lepoll_def)
 | 
|  |    448 | apply (erule exE)
 | 
|  |    449 | apply (rule well_ord_cardinal_eqpoll)
 | 
|  |    450 | apply (erule well_ord_rvimage, assumption)
 | 
|  |    451 | done
 | 
|  |    452 | 
 | 
|  |    453 | 
 | 
|  |    454 | lemma lepoll_cardinal_le: "[| A \<lesssim> i; Ord(i) |] ==> |A| le i"
 | 
|  |    455 | apply (rule le_trans)
 | 
|  |    456 | apply (erule well_ord_Memrel [THEN well_ord_lepoll_imp_Card_le], assumption)
 | 
|  |    457 | apply (erule Ord_cardinal_le)
 | 
|  |    458 | done
 | 
|  |    459 | 
 | 
|  |    460 | lemma lepoll_Ord_imp_eqpoll: "[| A \<lesssim> i; Ord(i) |] ==> |A| \<approx> A"
 | 
|  |    461 | by (blast intro: lepoll_cardinal_le well_ord_Memrel well_ord_cardinal_eqpoll dest!: lepoll_well_ord)
 | 
|  |    462 | 
 | 
|  |    463 | lemma lesspoll_imp_eqpoll: 
 | 
|  |    464 |      "[| A \<prec> i; Ord(i) |] ==> |A| \<approx> A"
 | 
|  |    465 | apply (unfold lesspoll_def)
 | 
|  |    466 | apply (blast intro: lepoll_Ord_imp_eqpoll)
 | 
|  |    467 | done
 | 
|  |    468 | 
 | 
|  |    469 | 
 | 
|  |    470 | (*** The finite cardinals ***)
 | 
|  |    471 | 
 | 
|  |    472 | lemma cons_lepoll_consD: 
 | 
|  |    473 |  "[| cons(u,A) \<lesssim> cons(v,B);  u~:A;  v~:B |] ==> A \<lesssim> B"
 | 
|  |    474 | apply (unfold lepoll_def inj_def, safe)
 | 
|  |    475 | apply (rule_tac x = "lam x:A. if f`x=v then f`u else f`x" in exI)
 | 
|  |    476 | apply (rule CollectI)
 | 
|  |    477 | (*Proving it's in the function space A->B*)
 | 
|  |    478 | apply (rule if_type [THEN lam_type])
 | 
|  |    479 | apply (blast dest: apply_funtype)
 | 
|  |    480 | apply (blast elim!: mem_irrefl dest: apply_funtype)
 | 
|  |    481 | (*Proving it's injective*)
 | 
|  |    482 | apply (simp (no_asm_simp))
 | 
|  |    483 | apply blast
 | 
|  |    484 | done
 | 
|  |    485 | 
 | 
|  |    486 | lemma cons_eqpoll_consD: "[| cons(u,A) \<approx> cons(v,B);  u~:A;  v~:B |] ==> A \<approx> B"
 | 
|  |    487 | apply (simp add: eqpoll_iff)
 | 
|  |    488 | apply (blast intro: cons_lepoll_consD)
 | 
|  |    489 | done
 | 
|  |    490 | 
 | 
|  |    491 | (*Lemma suggested by Mike Fourman*)
 | 
|  |    492 | lemma succ_lepoll_succD: "succ(m) \<lesssim> succ(n) ==> m \<lesssim> n"
 | 
|  |    493 | apply (unfold succ_def)
 | 
|  |    494 | apply (erule cons_lepoll_consD)
 | 
|  |    495 | apply (rule mem_not_refl)+
 | 
|  |    496 | done
 | 
|  |    497 | 
 | 
|  |    498 | lemma nat_lepoll_imp_le [rule_format]:
 | 
|  |    499 |      "m:nat ==> ALL n: nat. m \<lesssim> n --> m le n"
 | 
| 13244 |    500 | apply (induct_tac m)
 | 
| 13221 |    501 | apply (blast intro!: nat_0_le)
 | 
|  |    502 | apply (rule ballI)
 | 
|  |    503 | apply (erule_tac n = "n" in natE)
 | 
|  |    504 | apply (simp (no_asm_simp) add: lepoll_def inj_def)
 | 
|  |    505 | apply (blast intro!: succ_leI dest!: succ_lepoll_succD)
 | 
|  |    506 | done
 | 
|  |    507 | 
 | 
|  |    508 | lemma nat_eqpoll_iff: "[| m:nat; n: nat |] ==> m \<approx> n <-> m = n"
 | 
|  |    509 | apply (rule iffI)
 | 
|  |    510 | apply (blast intro: nat_lepoll_imp_le le_anti_sym elim!: eqpollE)
 | 
|  |    511 | apply (simp add: eqpoll_refl)
 | 
|  |    512 | done
 | 
|  |    513 | 
 | 
|  |    514 | (*The object of all this work: every natural number is a (finite) cardinal*)
 | 
|  |    515 | lemma nat_into_Card: 
 | 
|  |    516 |     "n: nat ==> Card(n)"
 | 
|  |    517 | apply (unfold Card_def cardinal_def)
 | 
|  |    518 | apply (subst Least_equality)
 | 
|  |    519 | apply (rule eqpoll_refl)
 | 
|  |    520 | apply (erule nat_into_Ord) 
 | 
|  |    521 | apply (simp (no_asm_simp) add: lt_nat_in_nat [THEN nat_eqpoll_iff])
 | 
|  |    522 | apply (blast elim!: lt_irrefl)+
 | 
|  |    523 | done
 | 
|  |    524 | 
 | 
|  |    525 | lemmas cardinal_0 = nat_0I [THEN nat_into_Card, THEN Card_cardinal_eq, iff]
 | 
|  |    526 | lemmas cardinal_1 = nat_1I [THEN nat_into_Card, THEN Card_cardinal_eq, iff]
 | 
|  |    527 | 
 | 
|  |    528 | 
 | 
|  |    529 | (*Part of Kunen's Lemma 10.6*)
 | 
|  |    530 | lemma succ_lepoll_natE: "[| succ(n) \<lesssim> n;  n:nat |] ==> P"
 | 
|  |    531 | by (rule nat_lepoll_imp_le [THEN lt_irrefl], auto)
 | 
|  |    532 | 
 | 
|  |    533 | lemma n_lesspoll_nat: "n \<in> nat ==> n \<prec> nat"
 | 
|  |    534 | apply (unfold lesspoll_def)
 | 
|  |    535 | apply (fast elim!: Ord_nat [THEN [2] ltI [THEN leI, THEN le_imp_lepoll]]
 | 
|  |    536 |                    eqpoll_sym [THEN eqpoll_imp_lepoll] 
 | 
|  |    537 |     intro: Ord_nat [THEN [2] nat_succI [THEN ltI], THEN leI, 
 | 
|  |    538 |                  THEN le_imp_lepoll, THEN lepoll_trans, THEN succ_lepoll_natE])
 | 
|  |    539 | done
 | 
|  |    540 | 
 | 
|  |    541 | lemma nat_lepoll_imp_ex_eqpoll_n: 
 | 
|  |    542 |      "[| n \<in> nat;  nat \<lesssim> X |] ==> \<exists>Y. Y \<subseteq> X & n \<approx> Y"
 | 
|  |    543 | apply (unfold lepoll_def eqpoll_def)
 | 
|  |    544 | apply (fast del: subsetI subsetCE
 | 
|  |    545 |             intro!: subset_SIs
 | 
|  |    546 |             dest!: Ord_nat [THEN [2] OrdmemD, THEN [2] restrict_inj]
 | 
|  |    547 |             elim!: restrict_bij 
 | 
|  |    548 |                    inj_is_fun [THEN fun_is_rel, THEN image_subset])
 | 
|  |    549 | done
 | 
|  |    550 | 
 | 
|  |    551 | 
 | 
|  |    552 | (** lepoll, \<prec> and natural numbers **)
 | 
|  |    553 | 
 | 
|  |    554 | lemma lepoll_imp_lesspoll_succ: 
 | 
|  |    555 |      "[| A \<lesssim> m; m:nat |] ==> A \<prec> succ(m)"
 | 
|  |    556 | apply (unfold lesspoll_def)
 | 
|  |    557 | apply (rule conjI)
 | 
|  |    558 | apply (blast intro: subset_imp_lepoll [THEN [2] lepoll_trans])
 | 
|  |    559 | apply (rule notI)
 | 
|  |    560 | apply (drule eqpoll_sym [THEN eqpoll_imp_lepoll])
 | 
|  |    561 | apply (drule lepoll_trans, assumption)
 | 
|  |    562 | apply (erule succ_lepoll_natE, assumption)
 | 
|  |    563 | done
 | 
|  |    564 | 
 | 
|  |    565 | lemma lesspoll_succ_imp_lepoll: 
 | 
|  |    566 |      "[| A \<prec> succ(m); m:nat |] ==> A \<lesssim> m"
 | 
|  |    567 | apply (unfold lesspoll_def lepoll_def eqpoll_def bij_def, clarify)
 | 
|  |    568 | apply (blast intro!: inj_not_surj_succ)
 | 
|  |    569 | done
 | 
|  |    570 | 
 | 
|  |    571 | lemma lesspoll_succ_iff: "m:nat ==> A \<prec> succ(m) <-> A \<lesssim> m"
 | 
|  |    572 | by (blast intro!: lepoll_imp_lesspoll_succ lesspoll_succ_imp_lepoll)
 | 
|  |    573 | 
 | 
|  |    574 | lemma lepoll_succ_disj: "[| A \<lesssim> succ(m);  m:nat |] ==> A \<lesssim> m | A \<approx> succ(m)"
 | 
|  |    575 | apply (rule disjCI)
 | 
|  |    576 | apply (rule lesspoll_succ_imp_lepoll)
 | 
|  |    577 | prefer 2 apply assumption
 | 
|  |    578 | apply (simp (no_asm_simp) add: lesspoll_def)
 | 
|  |    579 | done
 | 
|  |    580 | 
 | 
|  |    581 | lemma lesspoll_cardinal_lt: "[| A \<prec> i; Ord(i) |] ==> |A| < i"
 | 
|  |    582 | apply (unfold lesspoll_def, clarify)
 | 
|  |    583 | apply (frule lepoll_cardinal_le, assumption)
 | 
|  |    584 | apply (blast intro: well_ord_Memrel well_ord_cardinal_eqpoll [THEN eqpoll_sym]
 | 
|  |    585 |              dest: lepoll_well_ord  elim!: leE)
 | 
|  |    586 | done
 | 
|  |    587 | 
 | 
|  |    588 | 
 | 
|  |    589 | (*** The first infinite cardinal: Omega, or nat ***)
 | 
|  |    590 | 
 | 
|  |    591 | (*This implies Kunen's Lemma 10.6*)
 | 
|  |    592 | lemma lt_not_lepoll: "[| n<i;  n:nat |] ==> ~ i \<lesssim> n"
 | 
|  |    593 | apply (rule notI)
 | 
|  |    594 | apply (rule succ_lepoll_natE [of n])
 | 
|  |    595 | apply (rule lepoll_trans [of _ i])
 | 
|  |    596 | apply (erule ltE)
 | 
|  |    597 | apply (rule Ord_succ_subsetI [THEN subset_imp_lepoll], assumption+)
 | 
|  |    598 | done
 | 
|  |    599 | 
 | 
|  |    600 | lemma Ord_nat_eqpoll_iff: "[| Ord(i);  n:nat |] ==> i \<approx> n <-> i=n"
 | 
|  |    601 | apply (rule iffI)
 | 
|  |    602 |  prefer 2 apply (simp add: eqpoll_refl)
 | 
|  |    603 | apply (rule Ord_linear_lt [of i n])
 | 
|  |    604 | apply (simp_all add: nat_into_Ord)
 | 
|  |    605 | apply (erule lt_nat_in_nat [THEN nat_eqpoll_iff, THEN iffD1], assumption+)
 | 
|  |    606 | apply (rule lt_not_lepoll [THEN notE], assumption+)
 | 
|  |    607 | apply (erule eqpoll_imp_lepoll)
 | 
|  |    608 | done
 | 
|  |    609 | 
 | 
|  |    610 | lemma Card_nat: "Card(nat)"
 | 
|  |    611 | apply (unfold Card_def cardinal_def)
 | 
|  |    612 | apply (subst Least_equality)
 | 
|  |    613 | apply (rule eqpoll_refl) 
 | 
|  |    614 | apply (rule Ord_nat) 
 | 
|  |    615 | apply (erule ltE)
 | 
|  |    616 | apply (simp_all add: eqpoll_iff lt_not_lepoll ltI)
 | 
|  |    617 | done
 | 
|  |    618 | 
 | 
|  |    619 | (*Allows showing that |i| is a limit cardinal*)
 | 
|  |    620 | lemma nat_le_cardinal: "nat le i ==> nat le |i|"
 | 
|  |    621 | apply (rule Card_nat [THEN Card_cardinal_eq, THEN subst])
 | 
|  |    622 | apply (erule cardinal_mono)
 | 
|  |    623 | done
 | 
|  |    624 | 
 | 
|  |    625 | 
 | 
|  |    626 | (*** Towards Cardinal Arithmetic ***)
 | 
|  |    627 | (** Congruence laws for successor, cardinal addition and multiplication **)
 | 
|  |    628 | 
 | 
|  |    629 | (*Congruence law for  cons  under equipollence*)
 | 
|  |    630 | lemma cons_lepoll_cong: 
 | 
|  |    631 |     "[| A \<lesssim> B;  b ~: B |] ==> cons(a,A) \<lesssim> cons(b,B)"
 | 
|  |    632 | apply (unfold lepoll_def, safe)
 | 
|  |    633 | apply (rule_tac x = "lam y: cons (a,A) . if y=a then b else f`y" in exI)
 | 
|  |    634 | apply (rule_tac d = "%z. if z:B then converse (f) `z else a" in lam_injective)
 | 
|  |    635 | apply (safe elim!: consE') 
 | 
|  |    636 |    apply simp_all
 | 
|  |    637 | apply (blast intro: inj_is_fun [THEN apply_type])+ 
 | 
|  |    638 | done
 | 
|  |    639 | 
 | 
|  |    640 | lemma cons_eqpoll_cong:
 | 
|  |    641 |      "[| A \<approx> B;  a ~: A;  b ~: B |] ==> cons(a,A) \<approx> cons(b,B)"
 | 
|  |    642 | by (simp add: eqpoll_iff cons_lepoll_cong)
 | 
|  |    643 | 
 | 
|  |    644 | lemma cons_lepoll_cons_iff:
 | 
|  |    645 |      "[| a ~: A;  b ~: B |] ==> cons(a,A) \<lesssim> cons(b,B)  <->  A \<lesssim> B"
 | 
|  |    646 | by (blast intro: cons_lepoll_cong cons_lepoll_consD)
 | 
|  |    647 | 
 | 
|  |    648 | lemma cons_eqpoll_cons_iff:
 | 
|  |    649 |      "[| a ~: A;  b ~: B |] ==> cons(a,A) \<approx> cons(b,B)  <->  A \<approx> B"
 | 
|  |    650 | by (blast intro: cons_eqpoll_cong cons_eqpoll_consD)
 | 
|  |    651 | 
 | 
|  |    652 | lemma singleton_eqpoll_1: "{a} \<approx> 1"
 | 
|  |    653 | apply (unfold succ_def)
 | 
|  |    654 | apply (blast intro!: eqpoll_refl [THEN cons_eqpoll_cong])
 | 
|  |    655 | done
 | 
|  |    656 | 
 | 
|  |    657 | lemma cardinal_singleton: "|{a}| = 1"
 | 
|  |    658 | apply (rule singleton_eqpoll_1 [THEN cardinal_cong, THEN trans])
 | 
|  |    659 | apply (simp (no_asm) add: nat_into_Card [THEN Card_cardinal_eq])
 | 
|  |    660 | done
 | 
|  |    661 | 
 | 
|  |    662 | lemma not_0_is_lepoll_1: "A ~= 0 ==> 1 \<lesssim> A"
 | 
|  |    663 | apply (erule not_emptyE)
 | 
|  |    664 | apply (rule_tac a = "cons (x, A-{x}) " in subst)
 | 
|  |    665 | apply (rule_tac [2] a = "cons(0,0)" and P= "%y. y \<lesssim> cons (x, A-{x})" in subst)
 | 
|  |    666 | prefer 3 apply (blast intro: cons_lepoll_cong subset_imp_lepoll, auto)
 | 
|  |    667 | done
 | 
|  |    668 | 
 | 
|  |    669 | (*Congruence law for  succ  under equipollence*)
 | 
|  |    670 | lemma succ_eqpoll_cong: "A \<approx> B ==> succ(A) \<approx> succ(B)"
 | 
|  |    671 | apply (unfold succ_def)
 | 
|  |    672 | apply (simp add: cons_eqpoll_cong mem_not_refl)
 | 
|  |    673 | done
 | 
|  |    674 | 
 | 
|  |    675 | (*Congruence law for + under equipollence*)
 | 
|  |    676 | lemma sum_eqpoll_cong: "[| A \<approx> C;  B \<approx> D |] ==> A+B \<approx> C+D"
 | 
|  |    677 | apply (unfold eqpoll_def)
 | 
|  |    678 | apply (blast intro!: sum_bij)
 | 
|  |    679 | done
 | 
|  |    680 | 
 | 
|  |    681 | (*Congruence law for * under equipollence*)
 | 
|  |    682 | lemma prod_eqpoll_cong: 
 | 
|  |    683 |     "[| A \<approx> C;  B \<approx> D |] ==> A*B \<approx> C*D"
 | 
|  |    684 | apply (unfold eqpoll_def)
 | 
|  |    685 | apply (blast intro!: prod_bij)
 | 
|  |    686 | done
 | 
|  |    687 | 
 | 
|  |    688 | lemma inj_disjoint_eqpoll: 
 | 
|  |    689 |     "[| f: inj(A,B);  A Int B = 0 |] ==> A Un (B - range(f)) \<approx> B"
 | 
|  |    690 | apply (unfold eqpoll_def)
 | 
|  |    691 | apply (rule exI)
 | 
|  |    692 | apply (rule_tac c = "%x. if x:A then f`x else x" 
 | 
|  |    693 |             and d = "%y. if y: range (f) then converse (f) `y else y" 
 | 
|  |    694 |        in lam_bijective)
 | 
|  |    695 | apply (blast intro!: if_type inj_is_fun [THEN apply_type])
 | 
|  |    696 | apply (simp (no_asm_simp) add: inj_converse_fun [THEN apply_funtype])
 | 
|  |    697 | apply (safe elim!: UnE') 
 | 
|  |    698 |    apply (simp_all add: inj_is_fun [THEN apply_rangeI])
 | 
|  |    699 | apply (blast intro: inj_converse_fun [THEN apply_type])+ 
 | 
|  |    700 | done
 | 
|  |    701 | 
 | 
|  |    702 | 
 | 
|  |    703 | (*** Lemmas by Krzysztof Grabczewski.  New proofs using cons_lepoll_cons.
 | 
|  |    704 |      Could easily generalise from succ to cons. ***)
 | 
|  |    705 | 
 | 
|  |    706 | (*If A has at most n+1 elements and a:A then A-{a} has at most n.*)
 | 
|  |    707 | lemma Diff_sing_lepoll: 
 | 
|  |    708 |       "[| a:A;  A \<lesssim> succ(n) |] ==> A - {a} \<lesssim> n"
 | 
|  |    709 | apply (unfold succ_def)
 | 
|  |    710 | apply (rule cons_lepoll_consD)
 | 
|  |    711 | apply (rule_tac [3] mem_not_refl)
 | 
|  |    712 | apply (erule cons_Diff [THEN ssubst], safe)
 | 
|  |    713 | done
 | 
|  |    714 | 
 | 
|  |    715 | (*If A has at least n+1 elements then A-{a} has at least n.*)
 | 
|  |    716 | lemma lepoll_Diff_sing: 
 | 
|  |    717 |       "[| succ(n) \<lesssim> A |] ==> n \<lesssim> A - {a}"
 | 
|  |    718 | apply (unfold succ_def)
 | 
|  |    719 | apply (rule cons_lepoll_consD)
 | 
|  |    720 | apply (rule_tac [2] mem_not_refl)
 | 
|  |    721 | prefer 2 apply blast
 | 
|  |    722 | apply (blast intro: subset_imp_lepoll [THEN [2] lepoll_trans])
 | 
|  |    723 | done
 | 
|  |    724 | 
 | 
|  |    725 | lemma Diff_sing_eqpoll: "[| a:A; A \<approx> succ(n) |] ==> A - {a} \<approx> n"
 | 
|  |    726 | by (blast intro!: eqpollI 
 | 
|  |    727 |           elim!: eqpollE 
 | 
|  |    728 |           intro: Diff_sing_lepoll lepoll_Diff_sing)
 | 
|  |    729 | 
 | 
|  |    730 | lemma lepoll_1_is_sing: "[| A \<lesssim> 1; a:A |] ==> A = {a}"
 | 
|  |    731 | apply (frule Diff_sing_lepoll, assumption)
 | 
|  |    732 | apply (drule lepoll_0_is_0)
 | 
|  |    733 | apply (blast elim: equalityE)
 | 
|  |    734 | done
 | 
|  |    735 | 
 | 
|  |    736 | lemma Un_lepoll_sum: "A Un B \<lesssim> A+B"
 | 
|  |    737 | apply (unfold lepoll_def)
 | 
|  |    738 | apply (rule_tac x = "lam x: A Un B. if x:A then Inl (x) else Inr (x) " in exI)
 | 
|  |    739 | apply (rule_tac d = "%z. snd (z) " in lam_injective)
 | 
|  |    740 | apply force 
 | 
|  |    741 | apply (simp add: Inl_def Inr_def)
 | 
|  |    742 | done
 | 
|  |    743 | 
 | 
|  |    744 | lemma well_ord_Un:
 | 
|  |    745 |      "[| well_ord(X,R); well_ord(Y,S) |] ==> EX T. well_ord(X Un Y, T)"
 | 
|  |    746 | by (erule well_ord_radd [THEN Un_lepoll_sum [THEN lepoll_well_ord]], 
 | 
|  |    747 |     assumption)
 | 
|  |    748 | 
 | 
|  |    749 | (*Krzysztof Grabczewski*)
 | 
|  |    750 | lemma disj_Un_eqpoll_sum: "A Int B = 0 ==> A Un B \<approx> A + B"
 | 
|  |    751 | apply (unfold eqpoll_def)
 | 
|  |    752 | apply (rule_tac x = "lam a:A Un B. if a:A then Inl (a) else Inr (a) " in exI)
 | 
|  |    753 | apply (rule_tac d = "%z. case (%x. x, %x. x, z) " in lam_bijective)
 | 
|  |    754 | apply auto
 | 
|  |    755 | done
 | 
|  |    756 | 
 | 
|  |    757 | 
 | 
| 13244 |    758 | subsection {*Finite and infinite sets*}
 | 
| 13221 |    759 | 
 | 
| 13244 |    760 | lemma Finite_0 [simp]: "Finite(0)"
 | 
| 13221 |    761 | apply (unfold Finite_def)
 | 
|  |    762 | apply (blast intro!: eqpoll_refl nat_0I)
 | 
|  |    763 | done
 | 
|  |    764 | 
 | 
|  |    765 | lemma lepoll_nat_imp_Finite: "[| A \<lesssim> n;  n:nat |] ==> Finite(A)"
 | 
|  |    766 | apply (unfold Finite_def)
 | 
|  |    767 | apply (erule rev_mp)
 | 
|  |    768 | apply (erule nat_induct)
 | 
|  |    769 | apply (blast dest!: lepoll_0_is_0 intro!: eqpoll_refl nat_0I)
 | 
|  |    770 | apply (blast dest!: lepoll_succ_disj)
 | 
|  |    771 | done
 | 
|  |    772 | 
 | 
|  |    773 | lemma lesspoll_nat_is_Finite: 
 | 
|  |    774 |      "A \<prec> nat ==> Finite(A)"
 | 
|  |    775 | apply (unfold Finite_def)
 | 
|  |    776 | apply (blast dest: ltD lesspoll_cardinal_lt 
 | 
|  |    777 |                    lesspoll_imp_eqpoll [THEN eqpoll_sym])
 | 
|  |    778 | done
 | 
|  |    779 | 
 | 
|  |    780 | lemma lepoll_Finite: 
 | 
|  |    781 |      "[| Y \<lesssim> X;  Finite(X) |] ==> Finite(Y)"
 | 
|  |    782 | apply (unfold Finite_def)
 | 
|  |    783 | apply (blast elim!: eqpollE
 | 
|  |    784 |              intro: lepoll_trans [THEN lepoll_nat_imp_Finite
 | 
|  |    785 |                                        [unfolded Finite_def]])
 | 
|  |    786 | done
 | 
|  |    787 | 
 | 
|  |    788 | lemmas subset_Finite = subset_imp_lepoll [THEN lepoll_Finite, standard]
 | 
|  |    789 | 
 | 
|  |    790 | lemmas Finite_Diff = Diff_subset [THEN subset_Finite, standard]
 | 
|  |    791 | 
 | 
|  |    792 | lemma Finite_cons: "Finite(x) ==> Finite(cons(y,x))"
 | 
|  |    793 | apply (unfold Finite_def)
 | 
|  |    794 | apply (rule_tac P =  "y:x" in case_split_thm)
 | 
|  |    795 | apply (simp add: cons_absorb)
 | 
|  |    796 | apply (erule bexE)
 | 
|  |    797 | apply (rule bexI)
 | 
|  |    798 | apply (erule_tac [2] nat_succI)
 | 
|  |    799 | apply (simp (no_asm_simp) add: succ_def cons_eqpoll_cong mem_not_refl)
 | 
|  |    800 | done
 | 
|  |    801 | 
 | 
|  |    802 | lemma Finite_succ: "Finite(x) ==> Finite(succ(x))"
 | 
|  |    803 | apply (unfold succ_def)
 | 
|  |    804 | apply (erule Finite_cons)
 | 
|  |    805 | done
 | 
|  |    806 | 
 | 
| 13269 |    807 | lemma Finite_cons_iff [iff]: "Finite(cons(y,x)) <-> Finite(x)"
 | 
| 13244 |    808 | by (blast intro: Finite_cons subset_Finite)
 | 
|  |    809 | 
 | 
| 13269 |    810 | lemma Finite_succ_iff [iff]: "Finite(succ(x)) <-> Finite(x)"
 | 
| 13244 |    811 | by (simp add: succ_def)
 | 
|  |    812 | 
 | 
| 13221 |    813 | lemma nat_le_infinite_Ord: 
 | 
|  |    814 |       "[| Ord(i);  ~ Finite(i) |] ==> nat le i"
 | 
|  |    815 | apply (unfold Finite_def)
 | 
|  |    816 | apply (erule Ord_nat [THEN [2] Ord_linear2])
 | 
|  |    817 | prefer 2 apply assumption
 | 
|  |    818 | apply (blast intro!: eqpoll_refl elim!: ltE)
 | 
|  |    819 | done
 | 
|  |    820 | 
 | 
|  |    821 | lemma Finite_imp_well_ord: 
 | 
|  |    822 |     "Finite(A) ==> EX r. well_ord(A,r)"
 | 
|  |    823 | apply (unfold Finite_def eqpoll_def)
 | 
|  |    824 | apply (blast intro: well_ord_rvimage bij_is_inj well_ord_Memrel nat_into_Ord)
 | 
|  |    825 | done
 | 
|  |    826 | 
 | 
| 13244 |    827 | lemma succ_lepoll_imp_not_empty: "succ(x) \<lesssim> y ==> y \<noteq> 0"
 | 
|  |    828 | by (fast dest!: lepoll_0_is_0)
 | 
|  |    829 | 
 | 
|  |    830 | lemma eqpoll_succ_imp_not_empty: "x \<approx> succ(n) ==> x \<noteq> 0"
 | 
|  |    831 | by (fast elim!: eqpoll_sym [THEN eqpoll_0_is_0, THEN succ_neq_0])
 | 
|  |    832 | 
 | 
|  |    833 | lemma Finite_Fin_lemma [rule_format]:
 | 
|  |    834 |      "n \<in> nat ==> \<forall>A. (A\<approx>n & A \<subseteq> X) --> A \<in> Fin(X)"
 | 
|  |    835 | apply (induct_tac n)
 | 
|  |    836 | apply (rule allI)
 | 
|  |    837 | apply (fast intro!: Fin.emptyI dest!: eqpoll_imp_lepoll [THEN lepoll_0_is_0])
 | 
|  |    838 | apply (rule allI)
 | 
|  |    839 | apply (rule impI)
 | 
|  |    840 | apply (erule conjE)
 | 
|  |    841 | apply (rule eqpoll_succ_imp_not_empty [THEN not_emptyE], assumption)
 | 
|  |    842 | apply (frule Diff_sing_eqpoll, assumption)
 | 
|  |    843 | apply (erule allE)
 | 
|  |    844 | apply (erule impE, fast)
 | 
|  |    845 | apply (drule subsetD, assumption)
 | 
|  |    846 | apply (drule Fin.consI, assumption)
 | 
|  |    847 | apply (simp add: cons_Diff)
 | 
|  |    848 | done
 | 
|  |    849 | 
 | 
|  |    850 | lemma Finite_Fin: "[| Finite(A); A \<subseteq> X |] ==> A \<in> Fin(X)"
 | 
|  |    851 | by (unfold Finite_def, blast intro: Finite_Fin_lemma) 
 | 
|  |    852 | 
 | 
|  |    853 | lemma eqpoll_imp_Finite_iff: "A \<approx> B ==> Finite(A) <-> Finite(B)"
 | 
|  |    854 | apply (unfold Finite_def) 
 | 
|  |    855 | apply (blast intro: eqpoll_trans eqpoll_sym) 
 | 
|  |    856 | done
 | 
|  |    857 | 
 | 
|  |    858 | lemma Fin_lemma [rule_format]: "n: nat ==> ALL A. A \<approx> n --> A : Fin(A)"
 | 
|  |    859 | apply (induct_tac n)
 | 
|  |    860 | apply (simp add: eqpoll_0_iff, clarify)
 | 
|  |    861 | apply (subgoal_tac "EX u. u:A")
 | 
|  |    862 | apply (erule exE)
 | 
|  |    863 | apply (rule Diff_sing_eqpoll [THEN revcut_rl])
 | 
|  |    864 | prefer 2 apply assumption
 | 
|  |    865 | apply assumption
 | 
|  |    866 | apply (rule_tac b = "A" in cons_Diff [THEN subst], assumption)
 | 
|  |    867 | apply (rule Fin.consI, blast)
 | 
|  |    868 | apply (blast intro: subset_consI [THEN Fin_mono, THEN subsetD])
 | 
|  |    869 | (*Now for the lemma assumed above*)
 | 
|  |    870 | apply (unfold eqpoll_def)
 | 
|  |    871 | apply (blast intro: bij_converse_bij [THEN bij_is_fun, THEN apply_type])
 | 
|  |    872 | done
 | 
|  |    873 | 
 | 
|  |    874 | lemma Finite_into_Fin: "Finite(A) ==> A : Fin(A)"
 | 
|  |    875 | apply (unfold Finite_def)
 | 
|  |    876 | apply (blast intro: Fin_lemma)
 | 
|  |    877 | done
 | 
|  |    878 | 
 | 
|  |    879 | lemma Fin_into_Finite: "A : Fin(U) ==> Finite(A)"
 | 
|  |    880 | by (fast intro!: Finite_0 Finite_cons elim: Fin_induct)
 | 
|  |    881 | 
 | 
|  |    882 | lemma Finite_Fin_iff: "Finite(A) <-> A : Fin(A)"
 | 
|  |    883 | by (blast intro: Finite_into_Fin Fin_into_Finite)
 | 
|  |    884 | 
 | 
|  |    885 | lemma Finite_Un: "[| Finite(A); Finite(B) |] ==> Finite(A Un B)"
 | 
|  |    886 | by (blast intro!: Fin_into_Finite Fin_UnI 
 | 
|  |    887 |           dest!: Finite_into_Fin
 | 
|  |    888 |           intro: Un_upper1 [THEN Fin_mono, THEN subsetD] 
 | 
|  |    889 |                  Un_upper2 [THEN Fin_mono, THEN subsetD])
 | 
|  |    890 | 
 | 
|  |    891 | lemma Finite_Union: "[| ALL y:X. Finite(y);  Finite(X) |] ==> Finite(Union(X))"
 | 
|  |    892 | apply (simp add: Finite_Fin_iff)
 | 
|  |    893 | apply (rule Fin_UnionI)
 | 
|  |    894 | apply (erule Fin_induct, simp)
 | 
|  |    895 | apply (blast intro: Fin.consI Fin_mono [THEN [2] rev_subsetD])
 | 
|  |    896 | done
 | 
|  |    897 | 
 | 
|  |    898 | (* Induction principle for Finite(A), by Sidi Ehmety *)
 | 
|  |    899 | lemma Finite_induct:
 | 
|  |    900 | "[| Finite(A); P(0);
 | 
|  |    901 |     !! x B.   [| Finite(B); x ~: B; P(B) |] ==> P(cons(x, B)) |]
 | 
|  |    902 |  ==> P(A)"
 | 
|  |    903 | apply (erule Finite_into_Fin [THEN Fin_induct]) 
 | 
|  |    904 | apply (blast intro: Fin_into_Finite)+
 | 
|  |    905 | done
 | 
|  |    906 | 
 | 
|  |    907 | (*Sidi Ehmety.  The contrapositive says ~Finite(A) ==> ~Finite(A-{a}) *)
 | 
|  |    908 | lemma Diff_sing_Finite: "Finite(A - {a}) ==> Finite(A)"
 | 
|  |    909 | apply (unfold Finite_def)
 | 
|  |    910 | apply (case_tac "a:A")
 | 
|  |    911 | apply (subgoal_tac [2] "A-{a}=A", auto)
 | 
|  |    912 | apply (rule_tac x = "succ (n) " in bexI)
 | 
|  |    913 | apply (subgoal_tac "cons (a, A - {a}) = A & cons (n, n) = succ (n) ")
 | 
|  |    914 | apply (drule_tac a = "a" and b = "n" in cons_eqpoll_cong)
 | 
|  |    915 | apply (auto dest: mem_irrefl)
 | 
|  |    916 | done
 | 
|  |    917 | 
 | 
|  |    918 | (*Sidi Ehmety.  And the contrapositive of this says
 | 
|  |    919 |    [| ~Finite(A); Finite(B) |] ==> ~Finite(A-B) *)
 | 
|  |    920 | lemma Diff_Finite [rule_format]: "Finite(B) ==> Finite(A-B) --> Finite(A)"
 | 
|  |    921 | apply (erule Finite_induct, auto)
 | 
|  |    922 | apply (case_tac "x:A")
 | 
|  |    923 |  apply (subgoal_tac [2] "A-cons (x, B) = A - B")
 | 
|  |    924 | apply (subgoal_tac "A - cons (x, B) = (A - B) - {x}")
 | 
|  |    925 | apply (rotate_tac -1, simp)
 | 
|  |    926 | apply (drule Diff_sing_Finite, auto)
 | 
|  |    927 | done
 | 
|  |    928 | 
 | 
|  |    929 | lemma Finite_RepFun: "Finite(A) ==> Finite(RepFun(A,f))"
 | 
|  |    930 | by (erule Finite_induct, simp_all)
 | 
|  |    931 | 
 | 
|  |    932 | lemma Finite_RepFun_iff_lemma [rule_format]:
 | 
|  |    933 |      "[|Finite(x); !!x y. f(x)=f(y) ==> x=y|] 
 | 
|  |    934 |       ==> \<forall>A. x = RepFun(A,f) --> Finite(A)" 
 | 
|  |    935 | apply (erule Finite_induct)
 | 
|  |    936 |  apply clarify 
 | 
|  |    937 |  apply (case_tac "A=0", simp)
 | 
|  |    938 |  apply (blast del: allE, clarify) 
 | 
|  |    939 | apply (subgoal_tac "\<exists>z\<in>A. x = f(z)") 
 | 
|  |    940 |  prefer 2 apply (blast del: allE elim: equalityE, clarify) 
 | 
|  |    941 | apply (subgoal_tac "B = {f(u) . u \<in> A - {z}}")
 | 
|  |    942 |  apply (blast intro: Diff_sing_Finite) 
 | 
|  |    943 | apply (thin_tac "\<forall>A. ?P(A) --> Finite(A)") 
 | 
|  |    944 | apply (rule equalityI) 
 | 
|  |    945 |  apply (blast intro: elim: equalityE) 
 | 
|  |    946 | apply (blast intro: elim: equalityCE) 
 | 
|  |    947 | done
 | 
|  |    948 | 
 | 
|  |    949 | text{*I don't know why, but if the premise is expressed using meta-connectives
 | 
|  |    950 | then  the simplifier cannot prove it automatically in conditional rewriting.*}
 | 
|  |    951 | lemma Finite_RepFun_iff:
 | 
|  |    952 |      "(\<forall>x y. f(x)=f(y) --> x=y) ==> Finite(RepFun(A,f)) <-> Finite(A)"
 | 
|  |    953 | by (blast intro: Finite_RepFun Finite_RepFun_iff_lemma [of _ f]) 
 | 
|  |    954 | 
 | 
|  |    955 | lemma Finite_Pow: "Finite(A) ==> Finite(Pow(A))"
 | 
|  |    956 | apply (erule Finite_induct) 
 | 
|  |    957 | apply (simp_all add: Pow_insert Finite_Un Finite_RepFun) 
 | 
|  |    958 | done
 | 
|  |    959 | 
 | 
|  |    960 | lemma Finite_Pow_imp_Finite: "Finite(Pow(A)) ==> Finite(A)"
 | 
|  |    961 | apply (subgoal_tac "Finite({{x} . x \<in> A})")
 | 
|  |    962 |  apply (simp add: Finite_RepFun_iff ) 
 | 
|  |    963 | apply (blast intro: subset_Finite) 
 | 
|  |    964 | done
 | 
|  |    965 | 
 | 
|  |    966 | lemma Finite_Pow_iff [iff]: "Finite(Pow(A)) <-> Finite(A)"
 | 
|  |    967 | by (blast intro: Finite_Pow Finite_Pow_imp_Finite)
 | 
|  |    968 | 
 | 
|  |    969 | 
 | 
| 13221 |    970 | 
 | 
|  |    971 | (*Krzysztof Grabczewski's proof that the converse of a finite, well-ordered
 | 
|  |    972 |   set is well-ordered.  Proofs simplified by lcp. *)
 | 
|  |    973 | 
 | 
|  |    974 | lemma nat_wf_on_converse_Memrel: "n:nat ==> wf[n](converse(Memrel(n)))"
 | 
|  |    975 | apply (erule nat_induct)
 | 
|  |    976 | apply (blast intro: wf_onI)
 | 
|  |    977 | apply (rule wf_onI)
 | 
|  |    978 | apply (simp add: wf_on_def wf_def)
 | 
|  |    979 | apply (rule_tac P =  "x:Z" in case_split_thm)
 | 
|  |    980 |  txt{*x:Z case*}
 | 
|  |    981 |  apply (drule_tac x = x in bspec, assumption)
 | 
|  |    982 |  apply (blast elim: mem_irrefl mem_asym)
 | 
|  |    983 | txt{*other case*} 
 | 
|  |    984 | apply (drule_tac x = "Z" in spec, blast) 
 | 
|  |    985 | done
 | 
|  |    986 | 
 | 
|  |    987 | lemma nat_well_ord_converse_Memrel: "n:nat ==> well_ord(n,converse(Memrel(n)))"
 | 
|  |    988 | apply (frule Ord_nat [THEN Ord_in_Ord, THEN well_ord_Memrel])
 | 
|  |    989 | apply (unfold well_ord_def)
 | 
|  |    990 | apply (blast intro!: tot_ord_converse nat_wf_on_converse_Memrel)
 | 
|  |    991 | done
 | 
|  |    992 | 
 | 
|  |    993 | lemma well_ord_converse:
 | 
|  |    994 |      "[|well_ord(A,r);      
 | 
|  |    995 |         well_ord(ordertype(A,r), converse(Memrel(ordertype(A, r)))) |]
 | 
|  |    996 |       ==> well_ord(A,converse(r))"
 | 
|  |    997 | apply (rule well_ord_Int_iff [THEN iffD1])
 | 
|  |    998 | apply (frule ordermap_bij [THEN bij_is_inj, THEN well_ord_rvimage], assumption)
 | 
|  |    999 | apply (simp add: rvimage_converse converse_Int converse_prod
 | 
|  |   1000 |                  ordertype_ord_iso [THEN ord_iso_rvimage_eq])
 | 
|  |   1001 | done
 | 
|  |   1002 | 
 | 
|  |   1003 | lemma ordertype_eq_n:
 | 
|  |   1004 |      "[| well_ord(A,r);  A \<approx> n;  n:nat |] ==> ordertype(A,r)=n"
 | 
|  |   1005 | apply (rule Ord_ordertype [THEN Ord_nat_eqpoll_iff, THEN iffD1], assumption+)
 | 
|  |   1006 | apply (rule eqpoll_trans)
 | 
|  |   1007 |  prefer 2 apply assumption
 | 
|  |   1008 | apply (unfold eqpoll_def)
 | 
|  |   1009 | apply (blast intro!: ordermap_bij [THEN bij_converse_bij])
 | 
|  |   1010 | done
 | 
|  |   1011 | 
 | 
|  |   1012 | lemma Finite_well_ord_converse: 
 | 
|  |   1013 |     "[| Finite(A);  well_ord(A,r) |] ==> well_ord(A,converse(r))"
 | 
|  |   1014 | apply (unfold Finite_def)
 | 
|  |   1015 | apply (rule well_ord_converse, assumption)
 | 
|  |   1016 | apply (blast dest: ordertype_eq_n intro!: nat_well_ord_converse_Memrel)
 | 
|  |   1017 | done
 | 
|  |   1018 | 
 | 
|  |   1019 | lemma nat_into_Finite: "n:nat ==> Finite(n)"
 | 
|  |   1020 | apply (unfold Finite_def)
 | 
|  |   1021 | apply (fast intro!: eqpoll_refl)
 | 
|  |   1022 | done
 | 
|  |   1023 | 
 | 
|  |   1024 | ML
 | 
|  |   1025 | {*
 | 
|  |   1026 | val Least_def = thm "Least_def";
 | 
|  |   1027 | val eqpoll_def = thm "eqpoll_def";
 | 
|  |   1028 | val lepoll_def = thm "lepoll_def";
 | 
|  |   1029 | val lesspoll_def = thm "lesspoll_def";
 | 
|  |   1030 | val cardinal_def = thm "cardinal_def";
 | 
|  |   1031 | val Finite_def = thm "Finite_def";
 | 
|  |   1032 | val Card_def = thm "Card_def";
 | 
|  |   1033 | val eq_imp_not_mem = thm "eq_imp_not_mem";
 | 
|  |   1034 | val decomp_bnd_mono = thm "decomp_bnd_mono";
 | 
|  |   1035 | val Banach_last_equation = thm "Banach_last_equation";
 | 
|  |   1036 | val decomposition = thm "decomposition";
 | 
|  |   1037 | val schroeder_bernstein = thm "schroeder_bernstein";
 | 
|  |   1038 | val bij_imp_eqpoll = thm "bij_imp_eqpoll";
 | 
|  |   1039 | val eqpoll_refl = thm "eqpoll_refl";
 | 
|  |   1040 | val eqpoll_sym = thm "eqpoll_sym";
 | 
|  |   1041 | val eqpoll_trans = thm "eqpoll_trans";
 | 
|  |   1042 | val subset_imp_lepoll = thm "subset_imp_lepoll";
 | 
|  |   1043 | val lepoll_refl = thm "lepoll_refl";
 | 
|  |   1044 | val le_imp_lepoll = thm "le_imp_lepoll";
 | 
|  |   1045 | val eqpoll_imp_lepoll = thm "eqpoll_imp_lepoll";
 | 
|  |   1046 | val lepoll_trans = thm "lepoll_trans";
 | 
|  |   1047 | val eqpollI = thm "eqpollI";
 | 
|  |   1048 | val eqpollE = thm "eqpollE";
 | 
|  |   1049 | val eqpoll_iff = thm "eqpoll_iff";
 | 
|  |   1050 | val lepoll_0_is_0 = thm "lepoll_0_is_0";
 | 
|  |   1051 | val empty_lepollI = thm "empty_lepollI";
 | 
|  |   1052 | val lepoll_0_iff = thm "lepoll_0_iff";
 | 
|  |   1053 | val Un_lepoll_Un = thm "Un_lepoll_Un";
 | 
|  |   1054 | val eqpoll_0_is_0 = thm "eqpoll_0_is_0";
 | 
|  |   1055 | val eqpoll_0_iff = thm "eqpoll_0_iff";
 | 
|  |   1056 | val eqpoll_disjoint_Un = thm "eqpoll_disjoint_Un";
 | 
|  |   1057 | val lesspoll_not_refl = thm "lesspoll_not_refl";
 | 
|  |   1058 | val lesspoll_irrefl = thm "lesspoll_irrefl";
 | 
|  |   1059 | val lesspoll_imp_lepoll = thm "lesspoll_imp_lepoll";
 | 
|  |   1060 | val lepoll_well_ord = thm "lepoll_well_ord";
 | 
|  |   1061 | val lepoll_iff_leqpoll = thm "lepoll_iff_leqpoll";
 | 
|  |   1062 | val inj_not_surj_succ = thm "inj_not_surj_succ";
 | 
|  |   1063 | val lesspoll_trans = thm "lesspoll_trans";
 | 
|  |   1064 | val lesspoll_trans1 = thm "lesspoll_trans1";
 | 
|  |   1065 | val lesspoll_trans2 = thm "lesspoll_trans2";
 | 
|  |   1066 | val Least_equality = thm "Least_equality";
 | 
|  |   1067 | val LeastI = thm "LeastI";
 | 
|  |   1068 | val Least_le = thm "Least_le";
 | 
|  |   1069 | val less_LeastE = thm "less_LeastE";
 | 
|  |   1070 | val LeastI2 = thm "LeastI2";
 | 
|  |   1071 | val Least_0 = thm "Least_0";
 | 
|  |   1072 | val Ord_Least = thm "Ord_Least";
 | 
|  |   1073 | val Least_cong = thm "Least_cong";
 | 
|  |   1074 | val cardinal_cong = thm "cardinal_cong";
 | 
|  |   1075 | val well_ord_cardinal_eqpoll = thm "well_ord_cardinal_eqpoll";
 | 
|  |   1076 | val Ord_cardinal_eqpoll = thm "Ord_cardinal_eqpoll";
 | 
|  |   1077 | val well_ord_cardinal_eqE = thm "well_ord_cardinal_eqE";
 | 
|  |   1078 | val well_ord_cardinal_eqpoll_iff = thm "well_ord_cardinal_eqpoll_iff";
 | 
|  |   1079 | val Ord_cardinal_le = thm "Ord_cardinal_le";
 | 
|  |   1080 | val Card_cardinal_eq = thm "Card_cardinal_eq";
 | 
|  |   1081 | val CardI = thm "CardI";
 | 
|  |   1082 | val Card_is_Ord = thm "Card_is_Ord";
 | 
|  |   1083 | val Card_cardinal_le = thm "Card_cardinal_le";
 | 
|  |   1084 | val Ord_cardinal = thm "Ord_cardinal";
 | 
|  |   1085 | val Card_iff_initial = thm "Card_iff_initial";
 | 
|  |   1086 | val lt_Card_imp_lesspoll = thm "lt_Card_imp_lesspoll";
 | 
|  |   1087 | val Card_0 = thm "Card_0";
 | 
|  |   1088 | val Card_Un = thm "Card_Un";
 | 
|  |   1089 | val Card_cardinal = thm "Card_cardinal";
 | 
|  |   1090 | val cardinal_mono = thm "cardinal_mono";
 | 
|  |   1091 | val cardinal_lt_imp_lt = thm "cardinal_lt_imp_lt";
 | 
|  |   1092 | val Card_lt_imp_lt = thm "Card_lt_imp_lt";
 | 
|  |   1093 | val Card_lt_iff = thm "Card_lt_iff";
 | 
|  |   1094 | val Card_le_iff = thm "Card_le_iff";
 | 
|  |   1095 | val well_ord_lepoll_imp_Card_le = thm "well_ord_lepoll_imp_Card_le";
 | 
|  |   1096 | val lepoll_cardinal_le = thm "lepoll_cardinal_le";
 | 
|  |   1097 | val lepoll_Ord_imp_eqpoll = thm "lepoll_Ord_imp_eqpoll";
 | 
|  |   1098 | val lesspoll_imp_eqpoll = thm "lesspoll_imp_eqpoll";
 | 
|  |   1099 | val cons_lepoll_consD = thm "cons_lepoll_consD";
 | 
|  |   1100 | val cons_eqpoll_consD = thm "cons_eqpoll_consD";
 | 
|  |   1101 | val succ_lepoll_succD = thm "succ_lepoll_succD";
 | 
|  |   1102 | val nat_lepoll_imp_le = thm "nat_lepoll_imp_le";
 | 
|  |   1103 | val nat_eqpoll_iff = thm "nat_eqpoll_iff";
 | 
|  |   1104 | val nat_into_Card = thm "nat_into_Card";
 | 
|  |   1105 | val cardinal_0 = thm "cardinal_0";
 | 
|  |   1106 | val cardinal_1 = thm "cardinal_1";
 | 
|  |   1107 | val succ_lepoll_natE = thm "succ_lepoll_natE";
 | 
|  |   1108 | val n_lesspoll_nat = thm "n_lesspoll_nat";
 | 
|  |   1109 | val nat_lepoll_imp_ex_eqpoll_n = thm "nat_lepoll_imp_ex_eqpoll_n";
 | 
|  |   1110 | val lepoll_imp_lesspoll_succ = thm "lepoll_imp_lesspoll_succ";
 | 
|  |   1111 | val lesspoll_succ_imp_lepoll = thm "lesspoll_succ_imp_lepoll";
 | 
|  |   1112 | val lesspoll_succ_iff = thm "lesspoll_succ_iff";
 | 
|  |   1113 | val lepoll_succ_disj = thm "lepoll_succ_disj";
 | 
|  |   1114 | val lesspoll_cardinal_lt = thm "lesspoll_cardinal_lt";
 | 
|  |   1115 | val lt_not_lepoll = thm "lt_not_lepoll";
 | 
|  |   1116 | val Ord_nat_eqpoll_iff = thm "Ord_nat_eqpoll_iff";
 | 
|  |   1117 | val Card_nat = thm "Card_nat";
 | 
|  |   1118 | val nat_le_cardinal = thm "nat_le_cardinal";
 | 
|  |   1119 | val cons_lepoll_cong = thm "cons_lepoll_cong";
 | 
|  |   1120 | val cons_eqpoll_cong = thm "cons_eqpoll_cong";
 | 
|  |   1121 | val cons_lepoll_cons_iff = thm "cons_lepoll_cons_iff";
 | 
|  |   1122 | val cons_eqpoll_cons_iff = thm "cons_eqpoll_cons_iff";
 | 
|  |   1123 | val singleton_eqpoll_1 = thm "singleton_eqpoll_1";
 | 
|  |   1124 | val cardinal_singleton = thm "cardinal_singleton";
 | 
|  |   1125 | val not_0_is_lepoll_1 = thm "not_0_is_lepoll_1";
 | 
|  |   1126 | val succ_eqpoll_cong = thm "succ_eqpoll_cong";
 | 
|  |   1127 | val sum_eqpoll_cong = thm "sum_eqpoll_cong";
 | 
|  |   1128 | val prod_eqpoll_cong = thm "prod_eqpoll_cong";
 | 
|  |   1129 | val inj_disjoint_eqpoll = thm "inj_disjoint_eqpoll";
 | 
|  |   1130 | val Diff_sing_lepoll = thm "Diff_sing_lepoll";
 | 
|  |   1131 | val lepoll_Diff_sing = thm "lepoll_Diff_sing";
 | 
|  |   1132 | val Diff_sing_eqpoll = thm "Diff_sing_eqpoll";
 | 
|  |   1133 | val lepoll_1_is_sing = thm "lepoll_1_is_sing";
 | 
|  |   1134 | val Un_lepoll_sum = thm "Un_lepoll_sum";
 | 
|  |   1135 | val well_ord_Un = thm "well_ord_Un";
 | 
|  |   1136 | val disj_Un_eqpoll_sum = thm "disj_Un_eqpoll_sum";
 | 
|  |   1137 | val Finite_0 = thm "Finite_0";
 | 
|  |   1138 | val lepoll_nat_imp_Finite = thm "lepoll_nat_imp_Finite";
 | 
|  |   1139 | val lesspoll_nat_is_Finite = thm "lesspoll_nat_is_Finite";
 | 
|  |   1140 | val lepoll_Finite = thm "lepoll_Finite";
 | 
|  |   1141 | val subset_Finite = thm "subset_Finite";
 | 
|  |   1142 | val Finite_Diff = thm "Finite_Diff";
 | 
|  |   1143 | val Finite_cons = thm "Finite_cons";
 | 
|  |   1144 | val Finite_succ = thm "Finite_succ";
 | 
|  |   1145 | val nat_le_infinite_Ord = thm "nat_le_infinite_Ord";
 | 
|  |   1146 | val Finite_imp_well_ord = thm "Finite_imp_well_ord";
 | 
|  |   1147 | val nat_wf_on_converse_Memrel = thm "nat_wf_on_converse_Memrel";
 | 
|  |   1148 | val nat_well_ord_converse_Memrel = thm "nat_well_ord_converse_Memrel";
 | 
|  |   1149 | val well_ord_converse = thm "well_ord_converse";
 | 
|  |   1150 | val ordertype_eq_n = thm "ordertype_eq_n";
 | 
|  |   1151 | val Finite_well_ord_converse = thm "Finite_well_ord_converse";
 | 
|  |   1152 | val nat_into_Finite = thm "nat_into_Finite";
 | 
|  |   1153 | *}
 | 
| 9683 |   1154 | 
 | 
| 435 |   1155 | end
 |