| author | paulson |
| Fri, 12 Jul 2002 11:24:40 +0200 | |
| changeset 13352 | 3cd767f8d78b |
| parent 13187 | e5434b822a96 |
| child 13366 | 114b7c14084a |
| permissions | -rw-r--r-- |
| 13147 | 1 |
(* Title:HOL/List.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow |
|
4 |
Copyright 1994 TU Muenchen |
|
| 923 | 5 |
*) |
6 |
||
| 13114 | 7 |
header {* The datatype of finite lists *}
|
| 13122 | 8 |
|
9 |
theory List = PreList: |
|
| 923 | 10 |
|
| 13142 | 11 |
datatype 'a list = |
| 13145 | 12 |
Nil("[]")
|
13 |
| Cons 'a"'a list"(infixr "#" 65) |
|
| 923 | 14 |
|
15 |
consts |
|
| 13145 | 16 |
"@" :: "'a list => 'a list => 'a list"(infixr 65) |
17 |
filter:: "('a => bool) => 'a list => 'a list"
|
|
18 |
concat:: "'a list list => 'a list" |
|
19 |
foldl :: "('b => 'a => 'b) => 'b => 'a list => 'b"
|
|
20 |
foldr :: "('a => 'b => 'b) => 'a list => 'b => 'b"
|
|
21 |
hd:: "'a list => 'a" |
|
22 |
tl:: "'a list => 'a list" |
|
23 |
last:: "'a list => 'a" |
|
24 |
butlast :: "'a list => 'a list" |
|
25 |
set :: "'a list => 'a set" |
|
26 |
list_all:: "('a => bool) => ('a list => bool)"
|
|
27 |
list_all2 :: "('a => 'b => bool) => 'a list => 'b list => bool"
|
|
28 |
map :: "('a=>'b) => ('a list => 'b list)"
|
|
29 |
mem :: "'a => 'a list => bool"(infixl 55) |
|
30 |
nth :: "'a list => nat => 'a" (infixl "!" 100) |
|
31 |
list_update :: "'a list => nat => 'a => 'a list" |
|
32 |
take:: "nat => 'a list => 'a list" |
|
33 |
drop:: "nat => 'a list => 'a list" |
|
34 |
takeWhile :: "('a => bool) => 'a list => 'a list"
|
|
35 |
dropWhile :: "('a => bool) => 'a list => 'a list"
|
|
36 |
rev :: "'a list => 'a list" |
|
37 |
zip :: "'a list => 'b list => ('a * 'b) list"
|
|
38 |
upt :: "nat => nat => nat list" ("(1[_../_'(])")
|
|
39 |
remdups :: "'a list => 'a list" |
|
40 |
null:: "'a list => bool" |
|
41 |
"distinct":: "'a list => bool" |
|
42 |
replicate :: "nat => 'a => 'a list" |
|
| 923 | 43 |
|
| 13146 | 44 |
nonterminals lupdbinds lupdbind |
|
5077
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
4643
diff
changeset
|
45 |
|
| 923 | 46 |
syntax |
| 13145 | 47 |
-- {* list Enumeration *}
|
48 |
"@list" :: "args => 'a list"("[(_)]")
|
|
| 923 | 49 |
|
| 13145 | 50 |
-- {* Special syntax for filter *}
|
51 |
"@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_:_./ _])")
|
|
| 923 | 52 |
|
| 13145 | 53 |
-- {* list update *}
|
54 |
"_lupdbind":: "['a, 'a] => lupdbind"("(2_ :=/ _)")
|
|
55 |
"" :: "lupdbind => lupdbinds" ("_")
|
|
56 |
"_lupdbinds" :: "[lupdbind, lupdbinds] => lupdbinds" ("_,/ _")
|
|
57 |
"_LUpdate" :: "['a, lupdbinds] => 'a" ("_/[(_)]" [900,0] 900)
|
|
|
5077
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
4643
diff
changeset
|
58 |
|
| 13145 | 59 |
upto:: "nat => nat => nat list" ("(1[_../_])")
|
| 5427 | 60 |
|
| 923 | 61 |
translations |
| 13145 | 62 |
"[x, xs]" == "x#[xs]" |
63 |
"[x]" == "x#[]" |
|
64 |
"[x:xs . P]"== "filter (%x. P) xs" |
|
| 923 | 65 |
|
| 13145 | 66 |
"_LUpdate xs (_lupdbinds b bs)"== "_LUpdate (_LUpdate xs b) bs" |
67 |
"xs[i:=x]" == "list_update xs i x" |
|
|
5077
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
4643
diff
changeset
|
68 |
|
| 13145 | 69 |
"[i..j]" == "[i..(Suc j)(]" |
| 5427 | 70 |
|
71 |
||
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10832
diff
changeset
|
72 |
syntax (xsymbols) |
| 13145 | 73 |
"@filter" :: "[pttrn, 'a list, bool] => 'a list"("(1[_\<in>_ ./ _])")
|
|
3342
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3320
diff
changeset
|
74 |
|
|
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3320
diff
changeset
|
75 |
|
| 13142 | 76 |
text {*
|
| 13145 | 77 |
Function @{text size} is overloaded for all datatypes.Users may
|
78 |
refer to the list version as @{text length}. *}
|
|
| 13142 | 79 |
|
80 |
syntax length :: "'a list => nat" |
|
81 |
translations "length" => "size :: _ list => nat" |
|
| 13114 | 82 |
|
| 13142 | 83 |
typed_print_translation {*
|
| 13145 | 84 |
let |
85 |
fun size_tr' _ (Type ("fun", (Type ("list", _) :: _))) [t] =
|
|
86 |
Syntax.const "length" $ t |
|
87 |
| size_tr' _ _ _ = raise Match; |
|
88 |
in [("size", size_tr')] end
|
|
| 13114 | 89 |
*} |
|
3437
bea2faf1641d
Replacing the primrec definition of "length" by a translation to the built-in
paulson
parents:
3401
diff
changeset
|
90 |
|
| 5183 | 91 |
primrec |
| 13145 | 92 |
"hd(x#xs) = x" |
| 5183 | 93 |
primrec |
| 13145 | 94 |
"tl([]) = []" |
95 |
"tl(x#xs) = xs" |
|
| 5183 | 96 |
primrec |
| 13145 | 97 |
"null([]) = True" |
98 |
"null(x#xs) = False" |
|
| 8972 | 99 |
primrec |
| 13145 | 100 |
"last(x#xs) = (if xs=[] then x else last xs)" |
| 5183 | 101 |
primrec |
| 13145 | 102 |
"butlast []= []" |
103 |
"butlast(x#xs) = (if xs=[] then [] else x#butlast xs)" |
|
| 5183 | 104 |
primrec |
| 13145 | 105 |
"x mem [] = False" |
106 |
"x mem (y#ys) = (if y=x then True else x mem ys)" |
|
| 5518 | 107 |
primrec |
| 13145 | 108 |
"set [] = {}"
|
109 |
"set (x#xs) = insert x (set xs)" |
|
| 5183 | 110 |
primrec |
| 13145 | 111 |
list_all_Nil:"list_all P [] = True" |
112 |
list_all_Cons: "list_all P (x#xs) = (P(x) \<and> list_all P xs)" |
|
| 5518 | 113 |
primrec |
| 13145 | 114 |
"map f [] = []" |
115 |
"map f (x#xs) = f(x)#map f xs" |
|
| 5183 | 116 |
primrec |
| 13145 | 117 |
append_Nil:"[]@ys = ys" |
118 |
append_Cons: "(x#xs)@ys = x#(xs@ys)" |
|
| 5183 | 119 |
primrec |
| 13145 | 120 |
"rev([]) = []" |
121 |
"rev(x#xs) = rev(xs) @ [x]" |
|
| 5183 | 122 |
primrec |
| 13145 | 123 |
"filter P [] = []" |
124 |
"filter P (x#xs) = (if P x then x#filter P xs else filter P xs)" |
|
| 5183 | 125 |
primrec |
| 13145 | 126 |
foldl_Nil:"foldl f a [] = a" |
127 |
foldl_Cons: "foldl f a (x#xs) = foldl f (f a x) xs" |
|
| 5183 | 128 |
primrec |
| 13145 | 129 |
"foldr f [] a = a" |
130 |
"foldr f (x#xs) a = f x (foldr f xs a)" |
|
| 8000 | 131 |
primrec |
| 13145 | 132 |
"concat([]) = []" |
133 |
"concat(x#xs) = x @ concat(xs)" |
|
| 5183 | 134 |
primrec |
| 13145 | 135 |
drop_Nil:"drop n [] = []" |
136 |
drop_Cons: "drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)" |
|
137 |
-- {* Warning: simpset does not contain this definition *}
|
|
138 |
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
|
|
| 5183 | 139 |
primrec |
| 13145 | 140 |
take_Nil:"take n [] = []" |
141 |
take_Cons: "take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)" |
|
142 |
-- {* Warning: simpset does not contain this definition *}
|
|
143 |
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
|
|
| 5183 | 144 |
primrec |
| 13145 | 145 |
nth_Cons:"(x#xs)!n = (case n of 0 => x | (Suc k) => xs!k)" |
146 |
-- {* Warning: simpset does not contain this definition *}
|
|
147 |
-- {* but separate theorems for @{text "n = 0"} and @{text "n = Suc k"} *}
|
|
| 13142 | 148 |
primrec |
| 13145 | 149 |
"[][i:=v] = []" |
150 |
"(x#xs)[i:=v] = |
|
151 |
(case i of 0 => v # xs |
|
152 |
| Suc j => x # xs[j:=v])" |
|
| 5183 | 153 |
primrec |
| 13145 | 154 |
"takeWhile P [] = []" |
155 |
"takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])" |
|
| 5183 | 156 |
primrec |
| 13145 | 157 |
"dropWhile P [] = []" |
158 |
"dropWhile P (x#xs) = (if P x then dropWhile P xs else x#xs)" |
|
| 5183 | 159 |
primrec |
| 13145 | 160 |
"zip xs [] = []" |
161 |
zip_Cons: "zip xs (y#ys) = (case xs of [] => [] | z#zs => (z,y)#zip zs ys)" |
|
162 |
-- {* Warning: simpset does not contain this definition *}
|
|
163 |
-- {* but separate theorems for @{text "xs = []"} and @{text "xs = z # zs"} *}
|
|
| 5427 | 164 |
primrec |
| 13145 | 165 |
upt_0: "[i..0(] = []" |
166 |
upt_Suc: "[i..(Suc j)(] = (if i <= j then [i..j(] @ [j] else [])" |
|
| 5183 | 167 |
primrec |
| 13145 | 168 |
"distinct [] = True" |
169 |
"distinct (x#xs) = (x ~: set xs \<and> distinct xs)" |
|
| 5183 | 170 |
primrec |
| 13145 | 171 |
"remdups [] = []" |
172 |
"remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)" |
|
| 5183 | 173 |
primrec |
| 13147 | 174 |
replicate_0: "replicate 0 x = []" |
| 13145 | 175 |
replicate_Suc: "replicate (Suc n) x = x # replicate n x" |
| 8115 | 176 |
defs |
| 13114 | 177 |
list_all2_def: |
| 13142 | 178 |
"list_all2 P xs ys == length xs = length ys \<and> (\<forall>(x, y) \<in> set (zip xs ys). P x y)" |
| 8115 | 179 |
|
| 3196 | 180 |
|
| 13142 | 181 |
subsection {* Lexicographic orderings on lists *}
|
| 5281 | 182 |
|
183 |
consts |
|
| 13145 | 184 |
lexn :: "('a * 'a)set => nat => ('a list * 'a list)set"
|
| 5281 | 185 |
primrec |
| 13145 | 186 |
"lexn r 0 = {}"
|
187 |
"lexn r (Suc n) = |
|
188 |
(prod_fun (%(x,xs). x#xs) (%(x,xs). x#xs) ` (r <*lex*> lexn r n)) Int |
|
189 |
{(xs,ys). length xs = Suc n \<and> length ys = Suc n}"
|
|
| 5281 | 190 |
|
191 |
constdefs |
|
| 13145 | 192 |
lex :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
|
193 |
"lex r == \<Union>n. lexn r n" |
|
| 5281 | 194 |
|
| 13145 | 195 |
lexico :: "('a \<times> 'a) set => ('a list \<times> 'a list) set"
|
196 |
"lexico r == inv_image (less_than <*lex*> lex r) (%xs. (length xs, xs))" |
|
| 9336 | 197 |
|
| 13145 | 198 |
sublist :: "'a list => nat set => 'a list" |
199 |
"sublist xs A == map fst (filter (%p. snd p : A) (zip xs [0..size xs(]))" |
|
| 5281 | 200 |
|
| 13114 | 201 |
|
| 13142 | 202 |
lemma not_Cons_self [simp]: "xs \<noteq> x # xs" |
| 13145 | 203 |
by (induct xs) auto |
| 13114 | 204 |
|
| 13142 | 205 |
lemmas not_Cons_self2 [simp] = not_Cons_self [symmetric] |
| 13114 | 206 |
|
| 13142 | 207 |
lemma neq_Nil_conv: "(xs \<noteq> []) = (\<exists>y ys. xs = y # ys)" |
| 13145 | 208 |
by (induct xs) auto |
| 13114 | 209 |
|
| 13142 | 210 |
lemma length_induct: |
| 13145 | 211 |
"(!!xs. \<forall>ys. length ys < length xs --> P ys ==> P xs) ==> P xs" |
212 |
by (rule measure_induct [of length]) rules |
|
| 13114 | 213 |
|
214 |
||
| 13142 | 215 |
subsection {* @{text lists}: the list-forming operator over sets *}
|
| 13114 | 216 |
|
| 13142 | 217 |
consts lists :: "'a set => 'a list set" |
218 |
inductive "lists A" |
|
| 13145 | 219 |
intros |
220 |
Nil [intro!]: "[]: lists A" |
|
221 |
Cons [intro!]: "[| a: A;l: lists A|] ==> a#l : lists A" |
|
| 13114 | 222 |
|
| 13142 | 223 |
inductive_cases listsE [elim!]: "x#l : lists A" |
| 13114 | 224 |
|
| 13142 | 225 |
lemma lists_mono: "A \<subseteq> B ==> lists A \<subseteq> lists B" |
| 13145 | 226 |
by (unfold lists.defs) (blast intro!: lfp_mono) |
| 13114 | 227 |
|
| 13142 | 228 |
lemma lists_IntI [rule_format]: |
| 13145 | 229 |
"l: lists A ==> l: lists B --> l: lists (A Int B)" |
230 |
apply (erule lists.induct) |
|
231 |
apply blast+ |
|
232 |
done |
|
| 13142 | 233 |
|
234 |
lemma lists_Int_eq [simp]: "lists (A \<inter> B) = lists A \<inter> lists B" |
|
| 13145 | 235 |
apply (rule mono_Int [THEN equalityI]) |
236 |
apply (simp add: mono_def lists_mono) |
|
237 |
apply (blast intro!: lists_IntI) |
|
238 |
done |
|
| 13114 | 239 |
|
| 13142 | 240 |
lemma append_in_lists_conv [iff]: |
| 13145 | 241 |
"(xs @ ys : lists A) = (xs : lists A \<and> ys : lists A)" |
242 |
by (induct xs) auto |
|
| 13142 | 243 |
|
244 |
||
245 |
subsection {* @{text length} *}
|
|
| 13114 | 246 |
|
| 13142 | 247 |
text {*
|
| 13145 | 248 |
Needs to come before @{text "@"} because of theorem @{text
|
249 |
append_eq_append_conv}. |
|
| 13142 | 250 |
*} |
| 13114 | 251 |
|
| 13142 | 252 |
lemma length_append [simp]: "length (xs @ ys) = length xs + length ys" |
| 13145 | 253 |
by (induct xs) auto |
| 13114 | 254 |
|
| 13142 | 255 |
lemma length_map [simp]: "length (map f xs) = length xs" |
| 13145 | 256 |
by (induct xs) auto |
| 13114 | 257 |
|
| 13142 | 258 |
lemma length_rev [simp]: "length (rev xs) = length xs" |
| 13145 | 259 |
by (induct xs) auto |
| 13114 | 260 |
|
| 13142 | 261 |
lemma length_tl [simp]: "length (tl xs) = length xs - 1" |
| 13145 | 262 |
by (cases xs) auto |
| 13114 | 263 |
|
| 13142 | 264 |
lemma length_0_conv [iff]: "(length xs = 0) = (xs = [])" |
| 13145 | 265 |
by (induct xs) auto |
| 13114 | 266 |
|
| 13142 | 267 |
lemma length_greater_0_conv [iff]: "(0 < length xs) = (xs \<noteq> [])" |
| 13145 | 268 |
by (induct xs) auto |
| 13114 | 269 |
|
270 |
lemma length_Suc_conv: |
|
| 13145 | 271 |
"(length xs = Suc n) = (\<exists>y ys. xs = y # ys \<and> length ys = n)" |
272 |
by (induct xs) auto |
|
| 13142 | 273 |
|
| 13114 | 274 |
|
| 13142 | 275 |
subsection {* @{text "@"} -- append *}
|
| 13114 | 276 |
|
| 13142 | 277 |
lemma append_assoc [simp]: "(xs @ ys) @ zs = xs @ (ys @ zs)" |
| 13145 | 278 |
by (induct xs) auto |
| 13114 | 279 |
|
| 13142 | 280 |
lemma append_Nil2 [simp]: "xs @ [] = xs" |
| 13145 | 281 |
by (induct xs) auto |
| 3507 | 282 |
|
| 13142 | 283 |
lemma append_is_Nil_conv [iff]: "(xs @ ys = []) = (xs = [] \<and> ys = [])" |
| 13145 | 284 |
by (induct xs) auto |
| 13114 | 285 |
|
| 13142 | 286 |
lemma Nil_is_append_conv [iff]: "([] = xs @ ys) = (xs = [] \<and> ys = [])" |
| 13145 | 287 |
by (induct xs) auto |
| 13114 | 288 |
|
| 13142 | 289 |
lemma append_self_conv [iff]: "(xs @ ys = xs) = (ys = [])" |
| 13145 | 290 |
by (induct xs) auto |
| 13114 | 291 |
|
| 13142 | 292 |
lemma self_append_conv [iff]: "(xs = xs @ ys) = (ys = [])" |
| 13145 | 293 |
by (induct xs) auto |
| 13114 | 294 |
|
| 13142 | 295 |
lemma append_eq_append_conv [rule_format, simp]: |
296 |
"\<forall>ys. length xs = length ys \<or> length us = length vs |
|
| 13145 | 297 |
--> (xs@us = ys@vs) = (xs=ys \<and> us=vs)" |
298 |
apply (induct_tac xs) |
|
299 |
apply(rule allI) |
|
300 |
apply (case_tac ys) |
|
301 |
apply simp |
|
302 |
apply force |
|
303 |
apply (rule allI) |
|
304 |
apply (case_tac ys) |
|
305 |
apply force |
|
306 |
apply simp |
|
307 |
done |
|
| 13142 | 308 |
|
309 |
lemma same_append_eq [iff]: "(xs @ ys = xs @ zs) = (ys = zs)" |
|
| 13145 | 310 |
by simp |
| 13142 | 311 |
|
312 |
lemma append1_eq_conv [iff]: "(xs @ [x] = ys @ [y]) = (xs = ys \<and> x = y)" |
|
| 13145 | 313 |
by simp |
| 13114 | 314 |
|
| 13142 | 315 |
lemma append_same_eq [iff]: "(ys @ xs = zs @ xs) = (ys = zs)" |
| 13145 | 316 |
by simp |
| 13114 | 317 |
|
| 13142 | 318 |
lemma append_self_conv2 [iff]: "(xs @ ys = ys) = (xs = [])" |
| 13145 | 319 |
using append_same_eq [of _ _ "[]"] by auto |
| 3507 | 320 |
|
| 13142 | 321 |
lemma self_append_conv2 [iff]: "(ys = xs @ ys) = (xs = [])" |
| 13145 | 322 |
using append_same_eq [of "[]"] by auto |
| 13114 | 323 |
|
| 13142 | 324 |
lemma hd_Cons_tl [simp]: "xs \<noteq> [] ==> hd xs # tl xs = xs" |
| 13145 | 325 |
by (induct xs) auto |
| 13114 | 326 |
|
| 13142 | 327 |
lemma hd_append: "hd (xs @ ys) = (if xs = [] then hd ys else hd xs)" |
| 13145 | 328 |
by (induct xs) auto |
| 13114 | 329 |
|
| 13142 | 330 |
lemma hd_append2 [simp]: "xs \<noteq> [] ==> hd (xs @ ys) = hd xs" |
| 13145 | 331 |
by (simp add: hd_append split: list.split) |
| 13114 | 332 |
|
| 13142 | 333 |
lemma tl_append: "tl (xs @ ys) = (case xs of [] => tl ys | z#zs => zs @ ys)" |
| 13145 | 334 |
by (simp split: list.split) |
| 13114 | 335 |
|
| 13142 | 336 |
lemma tl_append2 [simp]: "xs \<noteq> [] ==> tl (xs @ ys) = tl xs @ ys" |
| 13145 | 337 |
by (simp add: tl_append split: list.split) |
| 13114 | 338 |
|
339 |
||
| 13142 | 340 |
text {* Trivial rules for solving @{text "@"}-equations automatically. *}
|
| 13114 | 341 |
|
342 |
lemma eq_Nil_appendI: "xs = ys ==> xs = [] @ ys" |
|
| 13145 | 343 |
by simp |
| 13114 | 344 |
|
| 13142 | 345 |
lemma Cons_eq_appendI: |
| 13145 | 346 |
"[| x # xs1 = ys; xs = xs1 @ zs |] ==> x # xs = ys @ zs" |
347 |
by (drule sym) simp |
|
| 13114 | 348 |
|
| 13142 | 349 |
lemma append_eq_appendI: |
| 13145 | 350 |
"[| xs @ xs1 = zs; ys = xs1 @ us |] ==> xs @ ys = zs @ us" |
351 |
by (drule sym) simp |
|
| 13114 | 352 |
|
353 |
||
| 13142 | 354 |
text {*
|
| 13145 | 355 |
Simplification procedure for all list equalities. |
356 |
Currently only tries to rearrange @{text "@"} to see if
|
|
357 |
- both lists end in a singleton list, |
|
358 |
- or both lists end in the same list. |
|
| 13142 | 359 |
*} |
360 |
||
361 |
ML_setup {*
|
|
| 3507 | 362 |
local |
363 |
||
| 13122 | 364 |
val append_assoc = thm "append_assoc"; |
365 |
val append_Nil = thm "append_Nil"; |
|
366 |
val append_Cons = thm "append_Cons"; |
|
367 |
val append1_eq_conv = thm "append1_eq_conv"; |
|
368 |
val append_same_eq = thm "append_same_eq"; |
|
369 |
||
| 13114 | 370 |
val list_eq_pattern = |
| 13145 | 371 |
Thm.read_cterm (Theory.sign_of (the_context ())) ("(xs::'a list) = ys",HOLogic.boolT)
|
| 13114 | 372 |
|
373 |
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) =
|
|
| 13145 | 374 |
(case xs of Const("List.list.Nil",_) => cons | _ => last xs)
|
375 |
| last (Const("List.op @",_) $ _ $ ys) = last ys
|
|
376 |
| last t = t |
|
| 13114 | 377 |
|
378 |
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true
|
|
| 13145 | 379 |
| list1 _ = false |
| 13114 | 380 |
|
381 |
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) =
|
|
| 13145 | 382 |
(case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs)
|
383 |
| butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys
|
|
384 |
| butlast xs = Const("List.list.Nil",fastype_of xs)
|
|
| 13114 | 385 |
|
386 |
val rearr_tac = |
|
| 13145 | 387 |
simp_tac (HOL_basic_ss addsimps [append_assoc,append_Nil,append_Cons]) |
| 13114 | 388 |
|
389 |
fun list_eq sg _ (F as (eq as Const(_,eqT)) $ lhs $ rhs) = |
|
| 13145 | 390 |
let |
391 |
val lastl = last lhs and lastr = last rhs |
|
392 |
fun rearr conv = |
|
393 |
let val lhs1 = butlast lhs and rhs1 = butlast rhs |
|
394 |
val Type(_,listT::_) = eqT |
|
395 |
val appT = [listT,listT] ---> listT |
|
396 |
val app = Const("List.op @",appT)
|
|
397 |
val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) |
|
398 |
val ct = cterm_of sg (HOLogic.mk_Trueprop(HOLogic.mk_eq(F,F2))) |
|
399 |
val thm = prove_goalw_cterm [] ct (K [rearr_tac 1]) |
|
400 |
handle ERROR => |
|
401 |
error("The error(s) above occurred while trying to prove " ^
|
|
402 |
string_of_cterm ct) |
|
403 |
in Some((conv RS (thm RS trans)) RS eq_reflection) end |
|
| 13114 | 404 |
|
| 13145 | 405 |
in if list1 lastl andalso list1 lastr |
406 |
then rearr append1_eq_conv |
|
407 |
else |
|
408 |
if lastl aconv lastr |
|
409 |
then rearr append_same_eq |
|
410 |
else None |
|
411 |
end |
|
| 13114 | 412 |
in |
413 |
val list_eq_simproc = mk_simproc "list_eq" [list_eq_pattern] list_eq |
|
414 |
end; |
|
415 |
||
416 |
Addsimprocs [list_eq_simproc]; |
|
417 |
*} |
|
418 |
||
419 |
||
| 13142 | 420 |
subsection {* @{text map} *}
|
| 13114 | 421 |
|
| 13142 | 422 |
lemma map_ext: "(!!x. x : set xs --> f x = g x) ==> map f xs = map g xs" |
| 13145 | 423 |
by (induct xs) simp_all |
| 13114 | 424 |
|
| 13142 | 425 |
lemma map_ident [simp]: "map (\<lambda>x. x) = (\<lambda>xs. xs)" |
| 13145 | 426 |
by (rule ext, induct_tac xs) auto |
| 13114 | 427 |
|
| 13142 | 428 |
lemma map_append [simp]: "map f (xs @ ys) = map f xs @ map f ys" |
| 13145 | 429 |
by (induct xs) auto |
| 13114 | 430 |
|
| 13142 | 431 |
lemma map_compose: "map (f o g) xs = map f (map g xs)" |
| 13145 | 432 |
by (induct xs) (auto simp add: o_def) |
| 13114 | 433 |
|
| 13142 | 434 |
lemma rev_map: "rev (map f xs) = map f (rev xs)" |
| 13145 | 435 |
by (induct xs) auto |
| 13114 | 436 |
|
437 |
lemma map_cong: |
|
| 13145 | 438 |
"xs = ys ==> (!!x. x : set ys ==> f x = g x) ==> map f xs = map g ys" |
439 |
-- {* a congruence rule for @{text map} *}
|
|
440 |
by (clarify, induct ys) auto |
|
| 13114 | 441 |
|
| 13142 | 442 |
lemma map_is_Nil_conv [iff]: "(map f xs = []) = (xs = [])" |
| 13145 | 443 |
by (cases xs) auto |
| 13114 | 444 |
|
| 13142 | 445 |
lemma Nil_is_map_conv [iff]: "([] = map f xs) = (xs = [])" |
| 13145 | 446 |
by (cases xs) auto |
| 13114 | 447 |
|
448 |
lemma map_eq_Cons: |
|
| 13145 | 449 |
"(map f xs = y # ys) = (\<exists>x xs'. xs = x # xs' \<and> f x = y \<and> map f xs' = ys)" |
450 |
by (cases xs) auto |
|
| 13114 | 451 |
|
452 |
lemma map_injective: |
|
| 13145 | 453 |
"!!xs. map f xs = map f ys ==> (\<forall>x y. f x = f y --> x = y) ==> xs = ys" |
454 |
by (induct ys) (auto simp add: map_eq_Cons) |
|
| 13114 | 455 |
|
456 |
lemma inj_mapI: "inj f ==> inj (map f)" |
|
| 13145 | 457 |
by (rules dest: map_injective injD intro: injI) |
| 13114 | 458 |
|
459 |
lemma inj_mapD: "inj (map f) ==> inj f" |
|
| 13145 | 460 |
apply (unfold inj_on_def) |
461 |
apply clarify |
|
462 |
apply (erule_tac x = "[x]" in ballE) |
|
463 |
apply (erule_tac x = "[y]" in ballE) |
|
464 |
apply simp |
|
465 |
apply blast |
|
466 |
apply blast |
|
467 |
done |
|
| 13114 | 468 |
|
469 |
lemma inj_map: "inj (map f) = inj f" |
|
| 13145 | 470 |
by (blast dest: inj_mapD intro: inj_mapI) |
| 13114 | 471 |
|
472 |
||
| 13142 | 473 |
subsection {* @{text rev} *}
|
| 13114 | 474 |
|
| 13142 | 475 |
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs" |
| 13145 | 476 |
by (induct xs) auto |
| 13114 | 477 |
|
| 13142 | 478 |
lemma rev_rev_ident [simp]: "rev (rev xs) = xs" |
| 13145 | 479 |
by (induct xs) auto |
| 13114 | 480 |
|
| 13142 | 481 |
lemma rev_is_Nil_conv [iff]: "(rev xs = []) = (xs = [])" |
| 13145 | 482 |
by (induct xs) auto |
| 13114 | 483 |
|
| 13142 | 484 |
lemma Nil_is_rev_conv [iff]: "([] = rev xs) = (xs = [])" |
| 13145 | 485 |
by (induct xs) auto |
| 13114 | 486 |
|
| 13142 | 487 |
lemma rev_is_rev_conv [iff]: "!!ys. (rev xs = rev ys) = (xs = ys)" |
| 13145 | 488 |
apply (induct xs) |
489 |
apply force |
|
490 |
apply (case_tac ys) |
|
491 |
apply simp |
|
492 |
apply force |
|
493 |
done |
|
| 13114 | 494 |
|
| 13142 | 495 |
lemma rev_induct: "[| P []; !!x xs. P xs ==> P (xs @ [x]) |] ==> P xs" |
| 13145 | 496 |
apply(subst rev_rev_ident[symmetric]) |
497 |
apply(rule_tac list = "rev xs" in list.induct, simp_all) |
|
498 |
done |
|
| 13114 | 499 |
|
| 13145 | 500 |
ML {* val rev_induct_tac = induct_thm_tac (thm "rev_induct") *}-- "compatibility"
|
| 13114 | 501 |
|
| 13145 | 502 |
lemma rev_exhaust: "(xs = [] ==> P) ==>(!!ys y. xs = ys @ [y] ==> P) ==> P" |
503 |
by (induct xs rule: rev_induct) auto |
|
| 13114 | 504 |
|
505 |
||
| 13142 | 506 |
subsection {* @{text set} *}
|
| 13114 | 507 |
|
| 13142 | 508 |
lemma finite_set [iff]: "finite (set xs)" |
| 13145 | 509 |
by (induct xs) auto |
| 13114 | 510 |
|
| 13142 | 511 |
lemma set_append [simp]: "set (xs @ ys) = (set xs \<union> set ys)" |
| 13145 | 512 |
by (induct xs) auto |
| 13114 | 513 |
|
| 13142 | 514 |
lemma set_subset_Cons: "set xs \<subseteq> set (x # xs)" |
| 13145 | 515 |
by auto |
| 13114 | 516 |
|
| 13142 | 517 |
lemma set_empty [iff]: "(set xs = {}) = (xs = [])"
|
| 13145 | 518 |
by (induct xs) auto |
| 13114 | 519 |
|
| 13142 | 520 |
lemma set_rev [simp]: "set (rev xs) = set xs" |
| 13145 | 521 |
by (induct xs) auto |
| 13114 | 522 |
|
| 13142 | 523 |
lemma set_map [simp]: "set (map f xs) = f`(set xs)" |
| 13145 | 524 |
by (induct xs) auto |
| 13114 | 525 |
|
| 13142 | 526 |
lemma set_filter [simp]: "set (filter P xs) = {x. x : set xs \<and> P x}"
|
| 13145 | 527 |
by (induct xs) auto |
| 13114 | 528 |
|
| 13142 | 529 |
lemma set_upt [simp]: "set[i..j(] = {k. i \<le> k \<and> k < j}"
|
| 13145 | 530 |
apply (induct j) |
531 |
apply simp_all |
|
532 |
apply(erule ssubst) |
|
533 |
apply auto |
|
534 |
done |
|
| 13114 | 535 |
|
| 13142 | 536 |
lemma in_set_conv_decomp: "(x : set xs) = (\<exists>ys zs. xs = ys @ x # zs)" |
| 13145 | 537 |
apply (induct xs) |
538 |
apply simp |
|
539 |
apply simp |
|
540 |
apply (rule iffI) |
|
541 |
apply (blast intro: eq_Nil_appendI Cons_eq_appendI) |
|
542 |
apply (erule exE)+ |
|
543 |
apply (case_tac ys) |
|
544 |
apply auto |
|
545 |
done |
|
| 13142 | 546 |
|
547 |
lemma in_lists_conv_set: "(xs : lists A) = (\<forall>x \<in> set xs. x : A)" |
|
| 13145 | 548 |
-- {* eliminate @{text lists} in favour of @{text set} *}
|
549 |
by (induct xs) auto |
|
| 13142 | 550 |
|
551 |
lemma in_listsD [dest!]: "xs \<in> lists A ==> \<forall>x\<in>set xs. x \<in> A" |
|
| 13145 | 552 |
by (rule in_lists_conv_set [THEN iffD1]) |
| 13142 | 553 |
|
554 |
lemma in_listsI [intro!]: "\<forall>x\<in>set xs. x \<in> A ==> xs \<in> lists A" |
|
| 13145 | 555 |
by (rule in_lists_conv_set [THEN iffD2]) |
| 13114 | 556 |
|
557 |
||
| 13142 | 558 |
subsection {* @{text mem} *}
|
| 13114 | 559 |
|
560 |
lemma set_mem_eq: "(x mem xs) = (x : set xs)" |
|
| 13145 | 561 |
by (induct xs) auto |
| 13114 | 562 |
|
563 |
||
| 13142 | 564 |
subsection {* @{text list_all} *}
|
| 13114 | 565 |
|
| 13142 | 566 |
lemma list_all_conv: "list_all P xs = (\<forall>x \<in> set xs. P x)" |
| 13145 | 567 |
by (induct xs) auto |
| 13114 | 568 |
|
| 13142 | 569 |
lemma list_all_append [simp]: |
| 13145 | 570 |
"list_all P (xs @ ys) = (list_all P xs \<and> list_all P ys)" |
571 |
by (induct xs) auto |
|
| 13114 | 572 |
|
573 |
||
| 13142 | 574 |
subsection {* @{text filter} *}
|
| 13114 | 575 |
|
| 13142 | 576 |
lemma filter_append [simp]: "filter P (xs @ ys) = filter P xs @ filter P ys" |
| 13145 | 577 |
by (induct xs) auto |
| 13114 | 578 |
|
| 13142 | 579 |
lemma filter_filter [simp]: "filter P (filter Q xs) = filter (\<lambda>x. Q x \<and> P x) xs" |
| 13145 | 580 |
by (induct xs) auto |
| 13114 | 581 |
|
| 13142 | 582 |
lemma filter_True [simp]: "\<forall>x \<in> set xs. P x ==> filter P xs = xs" |
| 13145 | 583 |
by (induct xs) auto |
| 13114 | 584 |
|
| 13142 | 585 |
lemma filter_False [simp]: "\<forall>x \<in> set xs. \<not> P x ==> filter P xs = []" |
| 13145 | 586 |
by (induct xs) auto |
| 13114 | 587 |
|
| 13142 | 588 |
lemma length_filter [simp]: "length (filter P xs) \<le> length xs" |
| 13145 | 589 |
by (induct xs) (auto simp add: le_SucI) |
| 13114 | 590 |
|
| 13142 | 591 |
lemma filter_is_subset [simp]: "set (filter P xs) \<le> set xs" |
| 13145 | 592 |
by auto |
| 13114 | 593 |
|
594 |
||
| 13142 | 595 |
subsection {* @{text concat} *}
|
| 13114 | 596 |
|
| 13142 | 597 |
lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys" |
| 13145 | 598 |
by (induct xs) auto |
| 13114 | 599 |
|
| 13142 | 600 |
lemma concat_eq_Nil_conv [iff]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])" |
| 13145 | 601 |
by (induct xss) auto |
| 13114 | 602 |
|
| 13142 | 603 |
lemma Nil_eq_concat_conv [iff]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])" |
| 13145 | 604 |
by (induct xss) auto |
| 13114 | 605 |
|
| 13142 | 606 |
lemma set_concat [simp]: "set (concat xs) = \<Union>(set ` set xs)" |
| 13145 | 607 |
by (induct xs) auto |
| 13114 | 608 |
|
| 13142 | 609 |
lemma map_concat: "map f (concat xs) = concat (map (map f) xs)" |
| 13145 | 610 |
by (induct xs) auto |
| 13114 | 611 |
|
| 13142 | 612 |
lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)" |
| 13145 | 613 |
by (induct xs) auto |
| 13114 | 614 |
|
| 13142 | 615 |
lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))" |
| 13145 | 616 |
by (induct xs) auto |
| 13114 | 617 |
|
618 |
||
| 13142 | 619 |
subsection {* @{text nth} *}
|
| 13114 | 620 |
|
| 13142 | 621 |
lemma nth_Cons_0 [simp]: "(x # xs)!0 = x" |
| 13145 | 622 |
by auto |
| 13114 | 623 |
|
| 13142 | 624 |
lemma nth_Cons_Suc [simp]: "(x # xs)!(Suc n) = xs!n" |
| 13145 | 625 |
by auto |
| 13114 | 626 |
|
| 13142 | 627 |
declare nth.simps [simp del] |
| 13114 | 628 |
|
629 |
lemma nth_append: |
|
| 13145 | 630 |
"!!n. (xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))" |
631 |
apply(induct "xs") |
|
632 |
apply simp |
|
633 |
apply (case_tac n) |
|
634 |
apply auto |
|
635 |
done |
|
| 13114 | 636 |
|
| 13142 | 637 |
lemma nth_map [simp]: "!!n. n < length xs ==> (map f xs)!n = f(xs!n)" |
| 13145 | 638 |
apply(induct xs) |
639 |
apply simp |
|
640 |
apply (case_tac n) |
|
641 |
apply auto |
|
642 |
done |
|
| 13114 | 643 |
|
| 13142 | 644 |
lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
|
| 13145 | 645 |
apply (induct_tac xs) |
646 |
apply simp |
|
647 |
apply simp |
|
648 |
apply safe |
|
649 |
apply (rule_tac x = 0 in exI) |
|
650 |
apply simp |
|
651 |
apply (rule_tac x = "Suc i" in exI) |
|
652 |
apply simp |
|
653 |
apply (case_tac i) |
|
654 |
apply simp |
|
655 |
apply (rename_tac j) |
|
656 |
apply (rule_tac x = j in exI) |
|
657 |
apply simp |
|
658 |
done |
|
| 13114 | 659 |
|
| 13145 | 660 |
lemma list_ball_nth: "[| n < length xs; !x : set xs. P x|] ==> P(xs!n)" |
661 |
by (auto simp add: set_conv_nth) |
|
| 13114 | 662 |
|
| 13142 | 663 |
lemma nth_mem [simp]: "n < length xs ==> xs!n : set xs" |
| 13145 | 664 |
by (auto simp add: set_conv_nth) |
| 13114 | 665 |
|
666 |
lemma all_nth_imp_all_set: |
|
| 13145 | 667 |
"[| !i < length xs. P(xs!i); x : set xs|] ==> P x" |
668 |
by (auto simp add: set_conv_nth) |
|
| 13114 | 669 |
|
670 |
lemma all_set_conv_all_nth: |
|
| 13145 | 671 |
"(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs --> P (xs ! i))" |
672 |
by (auto simp add: set_conv_nth) |
|
| 13114 | 673 |
|
674 |
||
| 13142 | 675 |
subsection {* @{text list_update} *}
|
| 13114 | 676 |
|
| 13142 | 677 |
lemma length_list_update [simp]: "!!i. length(xs[i:=x]) = length xs" |
| 13145 | 678 |
by (induct xs) (auto split: nat.split) |
| 13114 | 679 |
|
680 |
lemma nth_list_update: |
|
| 13145 | 681 |
"!!i j. i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)" |
682 |
by (induct xs) (auto simp add: nth_Cons split: nat.split) |
|
| 13114 | 683 |
|
| 13142 | 684 |
lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x" |
| 13145 | 685 |
by (simp add: nth_list_update) |
| 13114 | 686 |
|
| 13142 | 687 |
lemma nth_list_update_neq [simp]: "!!i j. i \<noteq> j ==> xs[i:=x]!j = xs!j" |
| 13145 | 688 |
by (induct xs) (auto simp add: nth_Cons split: nat.split) |
| 13114 | 689 |
|
| 13142 | 690 |
lemma list_update_overwrite [simp]: |
| 13145 | 691 |
"!!i. i < size xs ==> xs[i:=x, i:=y] = xs[i:=y]" |
692 |
by (induct xs) (auto split: nat.split) |
|
| 13114 | 693 |
|
694 |
lemma list_update_same_conv: |
|
| 13145 | 695 |
"!!i. i < length xs ==> (xs[i := x] = xs) = (xs!i = x)" |
696 |
by (induct xs) (auto split: nat.split) |
|
| 13114 | 697 |
|
698 |
lemma update_zip: |
|
| 13145 | 699 |
"!!i xy xs. length xs = length ys ==> |
700 |
(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])" |
|
701 |
by (induct ys) (auto, case_tac xs, auto split: nat.split) |
|
| 13114 | 702 |
|
703 |
lemma set_update_subset_insert: "!!i. set(xs[i:=x]) <= insert x (set xs)" |
|
| 13145 | 704 |
by (induct xs) (auto split: nat.split) |
| 13114 | 705 |
|
706 |
lemma set_update_subsetI: "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A" |
|
| 13145 | 707 |
by (blast dest!: set_update_subset_insert [THEN subsetD]) |
| 13114 | 708 |
|
709 |
||
| 13142 | 710 |
subsection {* @{text last} and @{text butlast} *}
|
| 13114 | 711 |
|
| 13142 | 712 |
lemma last_snoc [simp]: "last (xs @ [x]) = x" |
| 13145 | 713 |
by (induct xs) auto |
| 13114 | 714 |
|
| 13142 | 715 |
lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs" |
| 13145 | 716 |
by (induct xs) auto |
| 13114 | 717 |
|
| 13142 | 718 |
lemma length_butlast [simp]: "length (butlast xs) = length xs - 1" |
| 13145 | 719 |
by (induct xs rule: rev_induct) auto |
| 13114 | 720 |
|
721 |
lemma butlast_append: |
|
| 13145 | 722 |
"!!ys. butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)" |
723 |
by (induct xs) auto |
|
| 13114 | 724 |
|
| 13142 | 725 |
lemma append_butlast_last_id [simp]: |
| 13145 | 726 |
"xs \<noteq> [] ==> butlast xs @ [last xs] = xs" |
727 |
by (induct xs) auto |
|
| 13114 | 728 |
|
| 13142 | 729 |
lemma in_set_butlastD: "x : set (butlast xs) ==> x : set xs" |
| 13145 | 730 |
by (induct xs) (auto split: split_if_asm) |
| 13114 | 731 |
|
732 |
lemma in_set_butlast_appendI: |
|
| 13145 | 733 |
"x : set (butlast xs) | x : set (butlast ys) ==> x : set (butlast (xs @ ys))" |
734 |
by (auto dest: in_set_butlastD simp add: butlast_append) |
|
| 13114 | 735 |
|
| 13142 | 736 |
|
737 |
subsection {* @{text take} and @{text drop} *}
|
|
| 13114 | 738 |
|
| 13142 | 739 |
lemma take_0 [simp]: "take 0 xs = []" |
| 13145 | 740 |
by (induct xs) auto |
| 13114 | 741 |
|
| 13142 | 742 |
lemma drop_0 [simp]: "drop 0 xs = xs" |
| 13145 | 743 |
by (induct xs) auto |
| 13114 | 744 |
|
| 13142 | 745 |
lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs" |
| 13145 | 746 |
by simp |
| 13114 | 747 |
|
| 13142 | 748 |
lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs" |
| 13145 | 749 |
by simp |
| 13114 | 750 |
|
| 13142 | 751 |
declare take_Cons [simp del] and drop_Cons [simp del] |
| 13114 | 752 |
|
| 13142 | 753 |
lemma length_take [simp]: "!!xs. length (take n xs) = min (length xs) n" |
| 13145 | 754 |
by (induct n) (auto, case_tac xs, auto) |
| 13114 | 755 |
|
| 13142 | 756 |
lemma length_drop [simp]: "!!xs. length (drop n xs) = (length xs - n)" |
| 13145 | 757 |
by (induct n) (auto, case_tac xs, auto) |
| 13114 | 758 |
|
| 13142 | 759 |
lemma take_all [simp]: "!!xs. length xs <= n ==> take n xs = xs" |
| 13145 | 760 |
by (induct n) (auto, case_tac xs, auto) |
| 13114 | 761 |
|
| 13142 | 762 |
lemma drop_all [simp]: "!!xs. length xs <= n ==> drop n xs = []" |
| 13145 | 763 |
by (induct n) (auto, case_tac xs, auto) |
| 13114 | 764 |
|
| 13142 | 765 |
lemma take_append [simp]: |
| 13145 | 766 |
"!!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)" |
767 |
by (induct n) (auto, case_tac xs, auto) |
|
| 13114 | 768 |
|
| 13142 | 769 |
lemma drop_append [simp]: |
| 13145 | 770 |
"!!xs. drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys" |
771 |
by (induct n) (auto, case_tac xs, auto) |
|
| 13114 | 772 |
|
| 13142 | 773 |
lemma take_take [simp]: "!!xs n. take n (take m xs) = take (min n m) xs" |
| 13145 | 774 |
apply (induct m) |
775 |
apply auto |
|
776 |
apply (case_tac xs) |
|
777 |
apply auto |
|
778 |
apply (case_tac na) |
|
779 |
apply auto |
|
780 |
done |
|
| 13114 | 781 |
|
| 13142 | 782 |
lemma drop_drop [simp]: "!!xs. drop n (drop m xs) = drop (n + m) xs" |
| 13145 | 783 |
apply (induct m) |
784 |
apply auto |
|
785 |
apply (case_tac xs) |
|
786 |
apply auto |
|
787 |
done |
|
| 13114 | 788 |
|
789 |
lemma take_drop: "!!xs n. take n (drop m xs) = drop m (take (n + m) xs)" |
|
| 13145 | 790 |
apply (induct m) |
791 |
apply auto |
|
792 |
apply (case_tac xs) |
|
793 |
apply auto |
|
794 |
done |
|
| 13114 | 795 |
|
| 13142 | 796 |
lemma append_take_drop_id [simp]: "!!xs. take n xs @ drop n xs = xs" |
| 13145 | 797 |
apply (induct n) |
798 |
apply auto |
|
799 |
apply (case_tac xs) |
|
800 |
apply auto |
|
801 |
done |
|
| 13114 | 802 |
|
803 |
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)" |
|
| 13145 | 804 |
apply (induct n) |
805 |
apply auto |
|
806 |
apply (case_tac xs) |
|
807 |
apply auto |
|
808 |
done |
|
| 13114 | 809 |
|
| 13142 | 810 |
lemma drop_map: "!!xs. drop n (map f xs) = map f (drop n xs)" |
| 13145 | 811 |
apply (induct n) |
812 |
apply auto |
|
813 |
apply (case_tac xs) |
|
814 |
apply auto |
|
815 |
done |
|
| 13114 | 816 |
|
817 |
lemma rev_take: "!!i. rev (take i xs) = drop (length xs - i) (rev xs)" |
|
| 13145 | 818 |
apply (induct xs) |
819 |
apply auto |
|
820 |
apply (case_tac i) |
|
821 |
apply auto |
|
822 |
done |
|
| 13114 | 823 |
|
824 |
lemma rev_drop: "!!i. rev (drop i xs) = take (length xs - i) (rev xs)" |
|
| 13145 | 825 |
apply (induct xs) |
826 |
apply auto |
|
827 |
apply (case_tac i) |
|
828 |
apply auto |
|
829 |
done |
|
| 13114 | 830 |
|
| 13142 | 831 |
lemma nth_take [simp]: "!!n i. i < n ==> (take n xs)!i = xs!i" |
| 13145 | 832 |
apply (induct xs) |
833 |
apply auto |
|
834 |
apply (case_tac n) |
|
835 |
apply(blast ) |
|
836 |
apply (case_tac i) |
|
837 |
apply auto |
|
838 |
done |
|
| 13114 | 839 |
|
| 13142 | 840 |
lemma nth_drop [simp]: |
| 13145 | 841 |
"!!xs i. n + i <= length xs ==> (drop n xs)!i = xs!(n + i)" |
842 |
apply (induct n) |
|
843 |
apply auto |
|
844 |
apply (case_tac xs) |
|
845 |
apply auto |
|
846 |
done |
|
| 3507 | 847 |
|
| 13114 | 848 |
lemma append_eq_conv_conj: |
| 13145 | 849 |
"!!zs. (xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)" |
850 |
apply(induct xs) |
|
851 |
apply simp |
|
852 |
apply clarsimp |
|
853 |
apply (case_tac zs) |
|
854 |
apply auto |
|
855 |
done |
|
| 13142 | 856 |
|
| 13114 | 857 |
|
| 13142 | 858 |
subsection {* @{text takeWhile} and @{text dropWhile} *}
|
| 13114 | 859 |
|
| 13142 | 860 |
lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs" |
| 13145 | 861 |
by (induct xs) auto |
| 13114 | 862 |
|
| 13142 | 863 |
lemma takeWhile_append1 [simp]: |
| 13145 | 864 |
"[| x:set xs; ~P(x)|] ==> takeWhile P (xs @ ys) = takeWhile P xs" |
865 |
by (induct xs) auto |
|
| 13114 | 866 |
|
| 13142 | 867 |
lemma takeWhile_append2 [simp]: |
| 13145 | 868 |
"(!!x. x : set xs ==> P x) ==> takeWhile P (xs @ ys) = xs @ takeWhile P ys" |
869 |
by (induct xs) auto |
|
| 13114 | 870 |
|
| 13142 | 871 |
lemma takeWhile_tail: "\<not> P x ==> takeWhile P (xs @ (x#l)) = takeWhile P xs" |
| 13145 | 872 |
by (induct xs) auto |
| 13114 | 873 |
|
| 13142 | 874 |
lemma dropWhile_append1 [simp]: |
| 13145 | 875 |
"[| x : set xs; ~P(x)|] ==> dropWhile P (xs @ ys) = (dropWhile P xs)@ys" |
876 |
by (induct xs) auto |
|
| 13114 | 877 |
|
| 13142 | 878 |
lemma dropWhile_append2 [simp]: |
| 13145 | 879 |
"(!!x. x:set xs ==> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys" |
880 |
by (induct xs) auto |
|
| 13114 | 881 |
|
| 13142 | 882 |
lemma set_take_whileD: "x : set (takeWhile P xs) ==> x : set xs \<and> P x" |
| 13145 | 883 |
by (induct xs) (auto split: split_if_asm) |
| 13114 | 884 |
|
885 |
||
| 13142 | 886 |
subsection {* @{text zip} *}
|
| 13114 | 887 |
|
| 13142 | 888 |
lemma zip_Nil [simp]: "zip [] ys = []" |
| 13145 | 889 |
by (induct ys) auto |
| 13114 | 890 |
|
| 13142 | 891 |
lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys" |
| 13145 | 892 |
by simp |
| 13114 | 893 |
|
| 13142 | 894 |
declare zip_Cons [simp del] |
| 13114 | 895 |
|
| 13142 | 896 |
lemma length_zip [simp]: |
| 13145 | 897 |
"!!xs. length (zip xs ys) = min (length xs) (length ys)" |
898 |
apply(induct ys) |
|
899 |
apply simp |
|
900 |
apply (case_tac xs) |
|
901 |
apply auto |
|
902 |
done |
|
| 13114 | 903 |
|
904 |
lemma zip_append1: |
|
| 13145 | 905 |
"!!xs. zip (xs @ ys) zs = |
906 |
zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)" |
|
907 |
apply (induct zs) |
|
908 |
apply simp |
|
909 |
apply (case_tac xs) |
|
910 |
apply simp_all |
|
911 |
done |
|
| 13114 | 912 |
|
913 |
lemma zip_append2: |
|
| 13145 | 914 |
"!!ys. zip xs (ys @ zs) = |
915 |
zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs" |
|
916 |
apply (induct xs) |
|
917 |
apply simp |
|
918 |
apply (case_tac ys) |
|
919 |
apply simp_all |
|
920 |
done |
|
| 13114 | 921 |
|
| 13142 | 922 |
lemma zip_append [simp]: |
923 |
"[| length xs = length us; length ys = length vs |] ==> |
|
| 13145 | 924 |
zip (xs@ys) (us@vs) = zip xs us @ zip ys vs" |
925 |
by (simp add: zip_append1) |
|
| 13114 | 926 |
|
927 |
lemma zip_rev: |
|
| 13145 | 928 |
"!!xs. length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)" |
929 |
apply(induct ys) |
|
930 |
apply simp |
|
931 |
apply (case_tac xs) |
|
932 |
apply simp_all |
|
933 |
done |
|
| 13114 | 934 |
|
| 13142 | 935 |
lemma nth_zip [simp]: |
| 13145 | 936 |
"!!i xs. [| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)" |
937 |
apply (induct ys) |
|
938 |
apply simp |
|
939 |
apply (case_tac xs) |
|
940 |
apply (simp_all add: nth.simps split: nat.split) |
|
941 |
done |
|
| 13114 | 942 |
|
943 |
lemma set_zip: |
|
| 13145 | 944 |
"set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
|
945 |
by (simp add: set_conv_nth cong: rev_conj_cong) |
|
| 13114 | 946 |
|
947 |
lemma zip_update: |
|
| 13145 | 948 |
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]" |
949 |
by (rule sym, simp add: update_zip) |
|
| 13114 | 950 |
|
| 13142 | 951 |
lemma zip_replicate [simp]: |
| 13145 | 952 |
"!!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)" |
953 |
apply (induct i) |
|
954 |
apply auto |
|
955 |
apply (case_tac j) |
|
956 |
apply auto |
|
957 |
done |
|
| 13114 | 958 |
|
| 13142 | 959 |
|
960 |
subsection {* @{text list_all2} *}
|
|
| 13114 | 961 |
|
962 |
lemma list_all2_lengthD: "list_all2 P xs ys ==> length xs = length ys" |
|
| 13145 | 963 |
by (simp add: list_all2_def) |
| 13114 | 964 |
|
| 13142 | 965 |
lemma list_all2_Nil [iff]: "list_all2 P [] ys = (ys = [])" |
| 13145 | 966 |
by (simp add: list_all2_def) |
| 13114 | 967 |
|
| 13142 | 968 |
lemma list_all2_Nil2[iff]: "list_all2 P xs [] = (xs = [])" |
| 13145 | 969 |
by (simp add: list_all2_def) |
| 13114 | 970 |
|
| 13142 | 971 |
lemma list_all2_Cons [iff]: |
| 13145 | 972 |
"list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)" |
973 |
by (auto simp add: list_all2_def) |
|
| 13114 | 974 |
|
975 |
lemma list_all2_Cons1: |
|
| 13145 | 976 |
"list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)" |
977 |
by (cases ys) auto |
|
| 13114 | 978 |
|
979 |
lemma list_all2_Cons2: |
|
| 13145 | 980 |
"list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)" |
981 |
by (cases xs) auto |
|
| 13114 | 982 |
|
| 13142 | 983 |
lemma list_all2_rev [iff]: |
| 13145 | 984 |
"list_all2 P (rev xs) (rev ys) = list_all2 P xs ys" |
985 |
by (simp add: list_all2_def zip_rev cong: conj_cong) |
|
| 13114 | 986 |
|
987 |
lemma list_all2_append1: |
|
| 13145 | 988 |
"list_all2 P (xs @ ys) zs = |
989 |
(EX us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and> |
|
990 |
list_all2 P xs us \<and> list_all2 P ys vs)" |
|
991 |
apply (simp add: list_all2_def zip_append1) |
|
992 |
apply (rule iffI) |
|
993 |
apply (rule_tac x = "take (length xs) zs" in exI) |
|
994 |
apply (rule_tac x = "drop (length xs) zs" in exI) |
|
995 |
apply (force split: nat_diff_split simp add: min_def) |
|
996 |
apply clarify |
|
997 |
apply (simp add: ball_Un) |
|
998 |
done |
|
| 13114 | 999 |
|
1000 |
lemma list_all2_append2: |
|
| 13145 | 1001 |
"list_all2 P xs (ys @ zs) = |
1002 |
(EX us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and> |
|
1003 |
list_all2 P us ys \<and> list_all2 P vs zs)" |
|
1004 |
apply (simp add: list_all2_def zip_append2) |
|
1005 |
apply (rule iffI) |
|
1006 |
apply (rule_tac x = "take (length ys) xs" in exI) |
|
1007 |
apply (rule_tac x = "drop (length ys) xs" in exI) |
|
1008 |
apply (force split: nat_diff_split simp add: min_def) |
|
1009 |
apply clarify |
|
1010 |
apply (simp add: ball_Un) |
|
1011 |
done |
|
| 13114 | 1012 |
|
1013 |
lemma list_all2_conv_all_nth: |
|
| 13145 | 1014 |
"list_all2 P xs ys = |
1015 |
(length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))" |
|
1016 |
by (force simp add: list_all2_def set_zip) |
|
| 13114 | 1017 |
|
1018 |
lemma list_all2_trans[rule_format]: |
|
| 13145 | 1019 |
"\<forall>a b c. P1 a b --> P2 b c --> P3 a c ==> |
1020 |
\<forall>bs cs. list_all2 P1 as bs --> list_all2 P2 bs cs --> list_all2 P3 as cs" |
|
1021 |
apply(induct_tac as) |
|
1022 |
apply simp |
|
1023 |
apply(rule allI) |
|
1024 |
apply(induct_tac bs) |
|
1025 |
apply simp |
|
1026 |
apply(rule allI) |
|
1027 |
apply(induct_tac cs) |
|
1028 |
apply auto |
|
1029 |
done |
|
| 13142 | 1030 |
|
1031 |
||
1032 |
subsection {* @{text foldl} *}
|
|
1033 |
||
1034 |
lemma foldl_append [simp]: |
|
| 13145 | 1035 |
"!!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys" |
1036 |
by (induct xs) auto |
|
| 13142 | 1037 |
|
1038 |
text {*
|
|
| 13145 | 1039 |
Note: @{text "n \<le> foldl (op +) n ns"} looks simpler, but is more
|
1040 |
difficult to use because it requires an additional transitivity step. |
|
| 13142 | 1041 |
*} |
1042 |
||
1043 |
lemma start_le_sum: "!!n::nat. m <= n ==> m <= foldl (op +) n ns" |
|
| 13145 | 1044 |
by (induct ns) auto |
| 13142 | 1045 |
|
1046 |
lemma elem_le_sum: "!!n::nat. n : set ns ==> n <= foldl (op +) 0 ns" |
|
| 13145 | 1047 |
by (force intro: start_le_sum simp add: in_set_conv_decomp) |
| 13142 | 1048 |
|
1049 |
lemma sum_eq_0_conv [iff]: |
|
| 13145 | 1050 |
"!!m::nat. (foldl (op +) m ns = 0) = (m = 0 \<and> (\<forall>n \<in> set ns. n = 0))" |
1051 |
by (induct ns) auto |
|
| 13114 | 1052 |
|
1053 |
||
| 13142 | 1054 |
subsection {* @{text upto} *}
|
| 13114 | 1055 |
|
| 13142 | 1056 |
lemma upt_rec: "[i..j(] = (if i<j then i#[Suc i..j(] else [])" |
| 13145 | 1057 |
-- {* Does not terminate! *}
|
1058 |
by (induct j) auto |
|
| 13142 | 1059 |
|
1060 |
lemma upt_conv_Nil [simp]: "j <= i ==> [i..j(] = []" |
|
| 13145 | 1061 |
by (subst upt_rec) simp |
| 13114 | 1062 |
|
| 13142 | 1063 |
lemma upt_Suc_append: "i <= j ==> [i..(Suc j)(] = [i..j(]@[j]" |
| 13145 | 1064 |
-- {* Only needed if @{text upt_Suc} is deleted from the simpset. *}
|
1065 |
by simp |
|
| 13114 | 1066 |
|
| 13142 | 1067 |
lemma upt_conv_Cons: "i < j ==> [i..j(] = i # [Suc i..j(]" |
| 13145 | 1068 |
apply(rule trans) |
1069 |
apply(subst upt_rec) |
|
1070 |
prefer 2 apply(rule refl) |
|
1071 |
apply simp |
|
1072 |
done |
|
| 13114 | 1073 |
|
| 13142 | 1074 |
lemma upt_add_eq_append: "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]" |
| 13145 | 1075 |
-- {* LOOPS as a simprule, since @{text "j <= j"}. *}
|
1076 |
by (induct k) auto |
|
| 13114 | 1077 |
|
| 13142 | 1078 |
lemma length_upt [simp]: "length [i..j(] = j - i" |
| 13145 | 1079 |
by (induct j) (auto simp add: Suc_diff_le) |
| 13114 | 1080 |
|
| 13142 | 1081 |
lemma nth_upt [simp]: "i + k < j ==> [i..j(] ! k = i + k" |
| 13145 | 1082 |
apply (induct j) |
1083 |
apply (auto simp add: less_Suc_eq nth_append split: nat_diff_split) |
|
1084 |
done |
|
| 13114 | 1085 |
|
| 13142 | 1086 |
lemma take_upt [simp]: "!!i. i+m <= n ==> take m [i..n(] = [i..i+m(]" |
| 13145 | 1087 |
apply (induct m) |
1088 |
apply simp |
|
1089 |
apply (subst upt_rec) |
|
1090 |
apply (rule sym) |
|
1091 |
apply (subst upt_rec) |
|
1092 |
apply (simp del: upt.simps) |
|
1093 |
done |
|
| 3507 | 1094 |
|
| 13114 | 1095 |
lemma map_Suc_upt: "map Suc [m..n(] = [Suc m..n]" |
| 13145 | 1096 |
by (induct n) auto |
| 13114 | 1097 |
|
1098 |
lemma nth_map_upt: "!!i. i < n-m ==> (map f [m..n(]) ! i = f(m+i)" |
|
| 13145 | 1099 |
apply (induct n m rule: diff_induct) |
1100 |
prefer 3 apply (subst map_Suc_upt[symmetric]) |
|
1101 |
apply (auto simp add: less_diff_conv nth_upt) |
|
1102 |
done |
|
| 13114 | 1103 |
|
| 13142 | 1104 |
lemma nth_take_lemma [rule_format]: |
| 13145 | 1105 |
"ALL xs ys. k <= length xs --> k <= length ys |
1106 |
--> (ALL i. i < k --> xs!i = ys!i) |
|
1107 |
--> take k xs = take k ys" |
|
1108 |
apply (induct k) |
|
1109 |
apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib) |
|
1110 |
apply clarify |
|
1111 |
txt {* Both lists must be non-empty *}
|
|
1112 |
apply (case_tac xs) |
|
1113 |
apply simp |
|
1114 |
apply (case_tac ys) |
|
1115 |
apply clarify |
|
1116 |
apply (simp (no_asm_use)) |
|
1117 |
apply clarify |
|
1118 |
txt {* prenexing's needed, not miniscoping *}
|
|
1119 |
apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps) |
|
1120 |
apply blast |
|
1121 |
done |
|
| 13114 | 1122 |
|
1123 |
lemma nth_equalityI: |
|
1124 |
"[| length xs = length ys; ALL i < length xs. xs!i = ys!i |] ==> xs = ys" |
|
| 13145 | 1125 |
apply (frule nth_take_lemma [OF le_refl eq_imp_le]) |
1126 |
apply (simp_all add: take_all) |
|
1127 |
done |
|
| 13142 | 1128 |
|
1129 |
lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys" |
|
| 13145 | 1130 |
-- {* The famous take-lemma. *}
|
1131 |
apply (drule_tac x = "max (length xs) (length ys)" in spec) |
|
1132 |
apply (simp add: le_max_iff_disj take_all) |
|
1133 |
done |
|
| 13142 | 1134 |
|
1135 |
||
1136 |
subsection {* @{text "distinct"} and @{text remdups} *}
|
|
1137 |
||
1138 |
lemma distinct_append [simp]: |
|
| 13145 | 1139 |
"distinct (xs @ ys) = (distinct xs \<and> distinct ys \<and> set xs \<inter> set ys = {})"
|
1140 |
by (induct xs) auto |
|
| 13142 | 1141 |
|
1142 |
lemma set_remdups [simp]: "set (remdups xs) = set xs" |
|
| 13145 | 1143 |
by (induct xs) (auto simp add: insert_absorb) |
| 13142 | 1144 |
|
1145 |
lemma distinct_remdups [iff]: "distinct (remdups xs)" |
|
| 13145 | 1146 |
by (induct xs) auto |
| 13142 | 1147 |
|
1148 |
lemma distinct_filter [simp]: "distinct xs ==> distinct (filter P xs)" |
|
| 13145 | 1149 |
by (induct xs) auto |
| 13114 | 1150 |
|
| 13142 | 1151 |
text {*
|
| 13145 | 1152 |
It is best to avoid this indexed version of distinct, but sometimes |
1153 |
it is useful. *} |
|
| 13142 | 1154 |
lemma distinct_conv_nth: |
| 13145 | 1155 |
"distinct xs = (\<forall>i j. i < size xs \<and> j < size xs \<and> i \<noteq> j --> xs!i \<noteq> xs!j)" |
1156 |
apply (induct_tac xs) |
|
1157 |
apply simp |
|
1158 |
apply simp |
|
1159 |
apply (rule iffI) |
|
1160 |
apply clarsimp |
|
1161 |
apply (case_tac i) |
|
1162 |
apply (case_tac j) |
|
1163 |
apply simp |
|
1164 |
apply (simp add: set_conv_nth) |
|
1165 |
apply (case_tac j) |
|
1166 |
apply (clarsimp simp add: set_conv_nth) |
|
1167 |
apply simp |
|
1168 |
apply (rule conjI) |
|
1169 |
apply (clarsimp simp add: set_conv_nth) |
|
1170 |
apply (erule_tac x = 0 in allE) |
|
1171 |
apply (erule_tac x = "Suc i" in allE) |
|
1172 |
apply simp |
|
1173 |
apply clarsimp |
|
1174 |
apply (erule_tac x = "Suc i" in allE) |
|
1175 |
apply (erule_tac x = "Suc j" in allE) |
|
1176 |
apply simp |
|
1177 |
done |
|
| 13114 | 1178 |
|
1179 |
||
| 13142 | 1180 |
subsection {* @{text replicate} *}
|
| 13114 | 1181 |
|
| 13142 | 1182 |
lemma length_replicate [simp]: "length (replicate n x) = n" |
| 13145 | 1183 |
by (induct n) auto |
| 13124 | 1184 |
|
| 13142 | 1185 |
lemma map_replicate [simp]: "map f (replicate n x) = replicate n (f x)" |
| 13145 | 1186 |
by (induct n) auto |
| 13114 | 1187 |
|
1188 |
lemma replicate_app_Cons_same: |
|
| 13145 | 1189 |
"(replicate n x) @ (x # xs) = x # replicate n x @ xs" |
1190 |
by (induct n) auto |
|
| 13114 | 1191 |
|
| 13142 | 1192 |
lemma rev_replicate [simp]: "rev (replicate n x) = replicate n x" |
| 13145 | 1193 |
apply(induct n) |
1194 |
apply simp |
|
1195 |
apply (simp add: replicate_app_Cons_same) |
|
1196 |
done |
|
| 13114 | 1197 |
|
| 13142 | 1198 |
lemma replicate_add: "replicate (n + m) x = replicate n x @ replicate m x" |
| 13145 | 1199 |
by (induct n) auto |
| 13114 | 1200 |
|
| 13142 | 1201 |
lemma hd_replicate [simp]: "n \<noteq> 0 ==> hd (replicate n x) = x" |
| 13145 | 1202 |
by (induct n) auto |
| 13114 | 1203 |
|
| 13142 | 1204 |
lemma tl_replicate [simp]: "n \<noteq> 0 ==> tl (replicate n x) = replicate (n - 1) x" |
| 13145 | 1205 |
by (induct n) auto |
| 13114 | 1206 |
|
| 13142 | 1207 |
lemma last_replicate [simp]: "n \<noteq> 0 ==> last (replicate n x) = x" |
| 13145 | 1208 |
by (atomize (full), induct n) auto |
| 13114 | 1209 |
|
| 13142 | 1210 |
lemma nth_replicate[simp]: "!!i. i < n ==> (replicate n x)!i = x" |
| 13145 | 1211 |
apply(induct n) |
1212 |
apply simp |
|
1213 |
apply (simp add: nth_Cons split: nat.split) |
|
1214 |
done |
|
| 13114 | 1215 |
|
| 13142 | 1216 |
lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
|
| 13145 | 1217 |
by (induct n) auto |
| 13114 | 1218 |
|
| 13142 | 1219 |
lemma set_replicate [simp]: "n \<noteq> 0 ==> set (replicate n x) = {x}"
|
| 13145 | 1220 |
by (fast dest!: not0_implies_Suc intro!: set_replicate_Suc) |
| 13114 | 1221 |
|
| 13142 | 1222 |
lemma set_replicate_conv_if: "set (replicate n x) = (if n = 0 then {} else {x})"
|
| 13145 | 1223 |
by auto |
| 13114 | 1224 |
|
| 13142 | 1225 |
lemma in_set_replicateD: "x : set (replicate n y) ==> x = y" |
| 13145 | 1226 |
by (simp add: set_replicate_conv_if split: split_if_asm) |
| 13114 | 1227 |
|
1228 |
||
| 13142 | 1229 |
subsection {* Lexcicographic orderings on lists *}
|
| 3507 | 1230 |
|
| 13142 | 1231 |
lemma wf_lexn: "wf r ==> wf (lexn r n)" |
| 13145 | 1232 |
apply (induct_tac n) |
1233 |
apply simp |
|
1234 |
apply simp |
|
1235 |
apply(rule wf_subset) |
|
1236 |
prefer 2 apply (rule Int_lower1) |
|
1237 |
apply(rule wf_prod_fun_image) |
|
1238 |
prefer 2 apply (rule injI) |
|
1239 |
apply auto |
|
1240 |
done |
|
| 13114 | 1241 |
|
1242 |
lemma lexn_length: |
|
| 13145 | 1243 |
"!!xs ys. (xs, ys) : lexn r n ==> length xs = n \<and> length ys = n" |
1244 |
by (induct n) auto |
|
| 13114 | 1245 |
|
| 13142 | 1246 |
lemma wf_lex [intro!]: "wf r ==> wf (lex r)" |
| 13145 | 1247 |
apply (unfold lex_def) |
1248 |
apply (rule wf_UN) |
|
1249 |
apply (blast intro: wf_lexn) |
|
1250 |
apply clarify |
|
1251 |
apply (rename_tac m n) |
|
1252 |
apply (subgoal_tac "m \<noteq> n") |
|
1253 |
prefer 2 apply blast |
|
1254 |
apply (blast dest: lexn_length not_sym) |
|
1255 |
done |
|
| 13114 | 1256 |
|
1257 |
lemma lexn_conv: |
|
| 13145 | 1258 |
"lexn r n = |
1259 |
{(xs,ys). length xs = n \<and> length ys = n \<and>
|
|
1260 |
(\<exists>xys x y xs' ys'. xs= xys @ x#xs' \<and> ys= xys @ y # ys' \<and> (x, y):r)}" |
|
1261 |
apply (induct_tac n) |
|
1262 |
apply simp |
|
1263 |
apply blast |
|
1264 |
apply (simp add: image_Collect lex_prod_def) |
|
1265 |
apply auto |
|
1266 |
apply blast |
|
1267 |
apply (rename_tac a xys x xs' y ys') |
|
1268 |
apply (rule_tac x = "a # xys" in exI) |
|
1269 |
apply simp |
|
1270 |
apply (case_tac xys) |
|
1271 |
apply simp_all |
|
1272 |
apply blast |
|
1273 |
done |
|
| 13114 | 1274 |
|
1275 |
lemma lex_conv: |
|
| 13145 | 1276 |
"lex r = |
1277 |
{(xs,ys). length xs = length ys \<and>
|
|
1278 |
(\<exists>xys x y xs' ys'. xs = xys @ x # xs' \<and> ys = xys @ y # ys' \<and> (x, y):r)}" |
|
1279 |
by (force simp add: lex_def lexn_conv) |
|
| 13114 | 1280 |
|
| 13142 | 1281 |
lemma wf_lexico [intro!]: "wf r ==> wf (lexico r)" |
| 13145 | 1282 |
by (unfold lexico_def) blast |
| 13114 | 1283 |
|
1284 |
lemma lexico_conv: |
|
| 13145 | 1285 |
"lexico r = {(xs,ys). length xs < length ys |
|
1286 |
length xs = length ys \<and> (xs, ys) : lex r}" |
|
1287 |
by (simp add: lexico_def diag_def lex_prod_def measure_def inv_image_def) |
|
| 13114 | 1288 |
|
| 13142 | 1289 |
lemma Nil_notin_lex [iff]: "([], ys) \<notin> lex r" |
| 13145 | 1290 |
by (simp add: lex_conv) |
| 13114 | 1291 |
|
| 13142 | 1292 |
lemma Nil2_notin_lex [iff]: "(xs, []) \<notin> lex r" |
| 13145 | 1293 |
by (simp add:lex_conv) |
| 13114 | 1294 |
|
| 13142 | 1295 |
lemma Cons_in_lex [iff]: |
| 13145 | 1296 |
"((x # xs, y # ys) : lex r) = |
1297 |
((x, y) : r \<and> length xs = length ys | x = y \<and> (xs, ys) : lex r)" |
|
1298 |
apply (simp add: lex_conv) |
|
1299 |
apply (rule iffI) |
|
1300 |
prefer 2 apply (blast intro: Cons_eq_appendI) |
|
1301 |
apply clarify |
|
1302 |
apply (case_tac xys) |
|
1303 |
apply simp |
|
1304 |
apply simp |
|
1305 |
apply blast |
|
1306 |
done |
|
| 13114 | 1307 |
|
1308 |
||
| 13142 | 1309 |
subsection {* @{text sublist} --- a generalization of @{text nth} to sets *}
|
| 13114 | 1310 |
|
| 13142 | 1311 |
lemma sublist_empty [simp]: "sublist xs {} = []"
|
| 13145 | 1312 |
by (auto simp add: sublist_def) |
| 13114 | 1313 |
|
| 13142 | 1314 |
lemma sublist_nil [simp]: "sublist [] A = []" |
| 13145 | 1315 |
by (auto simp add: sublist_def) |
| 13114 | 1316 |
|
1317 |
lemma sublist_shift_lemma: |
|
| 13145 | 1318 |
"map fst [p:zip xs [i..i + length xs(] . snd p : A] = |
1319 |
map fst [p:zip xs [0..length xs(] . snd p + i : A]" |
|
1320 |
by (induct xs rule: rev_induct) (simp_all add: add_commute) |
|
| 13114 | 1321 |
|
1322 |
lemma sublist_append: |
|
| 13145 | 1323 |
"sublist (l @ l') A = sublist l A @ sublist l' {j. j + length l : A}"
|
1324 |
apply (unfold sublist_def) |
|
1325 |
apply (induct l' rule: rev_induct) |
|
1326 |
apply simp |
|
1327 |
apply (simp add: upt_add_eq_append[of 0] zip_append sublist_shift_lemma) |
|
1328 |
apply (simp add: add_commute) |
|
1329 |
done |
|
| 13114 | 1330 |
|
1331 |
lemma sublist_Cons: |
|
| 13145 | 1332 |
"sublist (x # l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"
|
1333 |
apply (induct l rule: rev_induct) |
|
1334 |
apply (simp add: sublist_def) |
|
1335 |
apply (simp del: append_Cons add: append_Cons[symmetric] sublist_append) |
|
1336 |
done |
|
| 13114 | 1337 |
|
| 13142 | 1338 |
lemma sublist_singleton [simp]: "sublist [x] A = (if 0 : A then [x] else [])" |
| 13145 | 1339 |
by (simp add: sublist_Cons) |
| 13114 | 1340 |
|
| 13142 | 1341 |
lemma sublist_upt_eq_take [simp]: "sublist l {..n(} = take n l"
|
| 13145 | 1342 |
apply (induct l rule: rev_induct) |
1343 |
apply simp |
|
1344 |
apply (simp split: nat_diff_split add: sublist_append) |
|
1345 |
done |
|
| 13114 | 1346 |
|
1347 |
||
| 13142 | 1348 |
lemma take_Cons': |
| 13145 | 1349 |
"take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)" |
1350 |
by (cases n) simp_all |
|
| 13114 | 1351 |
|
| 13142 | 1352 |
lemma drop_Cons': |
| 13145 | 1353 |
"drop n (x # xs) = (if n = 0 then x # xs else drop (n - 1) xs)" |
1354 |
by (cases n) simp_all |
|
| 13114 | 1355 |
|
| 13142 | 1356 |
lemma nth_Cons': "(x # xs)!n = (if n = 0 then x else xs!(n - 1))" |
| 13145 | 1357 |
by (cases n) simp_all |
| 13142 | 1358 |
|
| 13145 | 1359 |
lemmas [simp] = take_Cons'[of "number_of v",standard] |
1360 |
drop_Cons'[of "number_of v",standard] |
|
1361 |
nth_Cons'[of _ _ "number_of v",standard] |
|
| 3507 | 1362 |
|
| 13122 | 1363 |
end |