968
|
1 |
(* Title: Substitutions/unifier.ML
|
|
2 |
Author: Martin Coen, Cambridge University Computer Laboratory
|
|
3 |
Copyright 1993 University of Cambridge
|
|
4 |
|
|
5 |
For unifier.thy.
|
|
6 |
Properties of unifiers.
|
|
7 |
Cases for partial correctness of algorithm and conditions for termination.
|
|
8 |
*)
|
|
9 |
|
|
10 |
open Unifier;
|
|
11 |
|
|
12 |
val unify_defs =
|
|
13 |
[Idem_def,Unifier_def,MoreGeneral_def,MGUnifier_def,MGIUnifier_def];
|
|
14 |
|
|
15 |
(**** Unifiers ****)
|
|
16 |
|
|
17 |
goalw Unifier.thy [Unifier_def] "Unifier s t u = (t <| s = u <| s)";
|
|
18 |
by (rtac refl 1);
|
|
19 |
qed "Unifier_iff";
|
|
20 |
|
|
21 |
goal Unifier.thy
|
|
22 |
"Unifier s (Comb t u) (Comb v w) --> Unifier s t v & Unifier s u w";
|
|
23 |
by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
|
|
24 |
val Unifier_Comb = store_thm("Unifier_Comb", result() RS mp RS conjE);
|
|
25 |
|
|
26 |
goal Unifier.thy
|
|
27 |
"~v : vars_of(t) --> ~v : vars_of(u) -->Unifier s t u --> \
|
|
28 |
\ Unifier (<v,r>#s) t u";
|
|
29 |
by (simp_tac (subst_ss addsimps [Unifier_iff,repl_invariance]) 1);
|
|
30 |
val Cons_Unifier = store_thm("Cons_Unifier", result() RS mp RS mp RS mp);
|
|
31 |
|
|
32 |
(**** Most General Unifiers ****)
|
|
33 |
|
|
34 |
goalw Unifier.thy [MoreGeneral_def] "r >> s = (EX q. s =s= r <> q)";
|
|
35 |
by (rtac refl 1);
|
|
36 |
qed "MoreGen_iff";
|
|
37 |
|
|
38 |
goal Unifier.thy "[] >> s";
|
|
39 |
by (simp_tac (subst_ss addsimps [MoreGen_iff]) 1);
|
|
40 |
by (fast_tac (set_cs addIs [refl RS subst_refl]) 1);
|
|
41 |
qed "MoreGen_Nil";
|
|
42 |
|
|
43 |
goalw Unifier.thy unify_defs
|
|
44 |
"MGUnifier s t u = (ALL r.Unifier r t u = s >> r)";
|
|
45 |
by (REPEAT (ares_tac [iffI,allI] 1 ORELSE
|
|
46 |
eresolve_tac [conjE,allE,mp,exE,ssubst_subst2] 1));
|
|
47 |
by (asm_simp_tac (subst_ss addsimps [subst_comp]) 1);
|
|
48 |
by (fast_tac (set_cs addIs [comp_Nil RS sym RS subst_refl]) 1);
|
|
49 |
qed "MGU_iff";
|
|
50 |
|
|
51 |
val [prem] = goal Unifier.thy
|
|
52 |
"~ Var(v) <: t ==> MGUnifier [<v,t>] (Var v) t";
|
|
53 |
by (simp_tac (subst_ss addsimps [MGU_iff,MoreGen_iff,Unifier_iff]) 1);
|
|
54 |
by (REPEAT_SOME (step_tac set_cs));
|
|
55 |
by (etac subst 1);
|
|
56 |
by (etac ssubst_subst2 2);
|
|
57 |
by (rtac (Cons_trivial RS subst_sym) 1);
|
|
58 |
by (simp_tac (subst_ss addsimps [prem RS Var_not_occs,Var_subst]) 1);
|
|
59 |
qed "MGUnifier_Var";
|
|
60 |
|
|
61 |
(**** Most General Idempotent Unifiers ****)
|
|
62 |
|
|
63 |
goal Unifier.thy "r <> r =s= r --> s =s= r <> q --> r <> s =s= s";
|
|
64 |
by (simp_tac (subst_ss addsimps [subst_eq_iff,subst_comp]) 1);
|
|
65 |
val MGIU_iff_lemma = store_thm("MGIU_iff_lemma", result() RS mp RS mp);
|
|
66 |
|
|
67 |
goalw Unifier.thy unify_defs
|
|
68 |
"MGIUnifier s t u = \
|
|
69 |
\ (Idem(s) & Unifier s t u & (ALL r.Unifier r t u --> s<>r=s=r))";
|
|
70 |
by (fast_tac (set_cs addEs [subst_sym,MGIU_iff_lemma]) 1);
|
|
71 |
qed "MGIU_iff";
|
|
72 |
|
|
73 |
(**** Idempotence ****)
|
|
74 |
|
|
75 |
goalw Unifier.thy unify_defs "Idem(s) = (s <> s =s= s)";
|
|
76 |
by (rtac refl 1);
|
|
77 |
qed "raw_Idem_iff";
|
|
78 |
|
|
79 |
goal Unifier.thy "Idem(s) = (sdom(s) Int srange(s) = {})";
|
|
80 |
by (simp_tac (subst_ss addsimps [raw_Idem_iff,subst_eq_iff,subst_comp,
|
|
81 |
invariance,dom_range_disjoint])1);
|
|
82 |
qed "Idem_iff";
|
|
83 |
|
|
84 |
goal Unifier.thy "Idem([])";
|
|
85 |
by (simp_tac (subst_ss addsimps [raw_Idem_iff,refl RS subst_refl]) 1);
|
|
86 |
qed "Idem_Nil";
|
|
87 |
|
|
88 |
goal Unifier.thy "~ (Var(v) <: t) --> Idem([<v,t>])";
|
|
89 |
by (simp_tac (subst_ss addsimps [Var_subst,vars_iff_occseq,Idem_iff,srange_iff]
|
|
90 |
setloop (split_tac [expand_if])) 1);
|
|
91 |
by (fast_tac set_cs 1);
|
|
92 |
val Var_Idem = store_thm("Var_Idem", result() RS mp);
|
|
93 |
|
|
94 |
val [prem] = goalw Unifier.thy [Idem_def]
|
|
95 |
"Idem(r) ==> Unifier s (t <| r) (u <| r) --> Unifier (r <> s) (t <| r) (u <| r)";
|
|
96 |
by (simp_tac (subst_ss addsimps
|
|
97 |
[Unifier_iff,subst_comp,prem RS comp_subst_subst]) 1);
|
|
98 |
val Unifier_Idem_subst = store_thm("Unifier_Idem_subst", result() RS mp);
|
|
99 |
|
|
100 |
val [prem] = goal Unifier.thy
|
|
101 |
"r <> s =s= s ==> Unifier s t u --> Unifier s (t <| r) (u <| r)";
|
|
102 |
by (simp_tac (subst_ss addsimps
|
|
103 |
[Unifier_iff,subst_comp,prem RS comp_subst_subst]) 1);
|
|
104 |
val Unifier_comp_subst = store_thm("Unifier_comp_subst", result() RS mp);
|
|
105 |
|
|
106 |
(*** The domain of a MGIU is a subset of the variables in the terms ***)
|
|
107 |
(*** NB this and one for range are only needed for termination ***)
|
|
108 |
|
|
109 |
val [prem] = goal Unifier.thy
|
|
110 |
"~ vars_of(Var(x) <| r) = vars_of(Var(x) <| s) ==> ~r =s= s";
|
|
111 |
by (rtac (prem RS contrapos) 1);
|
|
112 |
by (fast_tac (set_cs addEs [subst_subst2]) 1);
|
|
113 |
qed "lemma_lemma";
|
|
114 |
|
|
115 |
val prems = goal Unifier.thy
|
|
116 |
"x : sdom(s) --> ~x : srange(s) --> \
|
|
117 |
\ ~vars_of(Var(x) <| s<> <x,Var(x)>#s) = \
|
|
118 |
\ vars_of(Var(x) <| <x,Var(x)>#s)";
|
|
119 |
by (simp_tac (subst_ss addsimps [not_equal_iff]) 1);
|
|
120 |
by (REPEAT (resolve_tac [impI,disjI2] 1));
|
|
121 |
by(res_inst_tac [("x","x")] exI 1);
|
|
122 |
br conjI 1;
|
|
123 |
by (asm_simp_tac (subst_ss addsimps [Var_elim,subst_comp,repl_invariance]) 1);
|
|
124 |
by (asm_simp_tac (subst_ss addsimps [Var_subst]) 1);
|
|
125 |
val MGIU_sdom_lemma = store_thm("MGIU_sdom_lemma", result() RS mp RS mp RS lemma_lemma RS notE);
|
|
126 |
|
|
127 |
goal Unifier.thy "MGIUnifier s t u --> sdom(s) <= vars_of(t) Un vars_of(u)";
|
|
128 |
by (subgoal_tac "! P Q.(P | Q) = (~( ~P & ~Q))" 1);
|
|
129 |
by (asm_simp_tac (subst_ss addsimps [MGIU_iff,Idem_iff,subset_iff]) 1);
|
|
130 |
by (safe_tac set_cs);
|
|
131 |
by (eresolve_tac ([spec] RL [impE]) 1);
|
|
132 |
by (rtac Cons_Unifier 1);
|
|
133 |
by (ALLGOALS (fast_tac (set_cs addIs [Cons_Unifier,MGIU_sdom_lemma])));
|
|
134 |
val MGIU_sdom = store_thm("MGIU_sdom", result() RS mp);
|
|
135 |
|
|
136 |
(*** The range of a MGIU is a subset of the variables in the terms ***)
|
|
137 |
|
|
138 |
val prems = goal HOL.thy "P = Q ==> (~P) = (~Q)";
|
|
139 |
by (simp_tac (set_ss addsimps prems) 1);
|
|
140 |
qed "not_cong";
|
|
141 |
|
|
142 |
val prems = goal Unifier.thy
|
|
143 |
"~w=x --> x : vars_of(Var(w) <| s) --> w : sdom(s) --> ~w : srange(s) --> \
|
|
144 |
\ ~vars_of(Var(w) <| s<> <x,Var(w)>#s) = \
|
|
145 |
\ vars_of(Var(w) <| <x,Var(w)>#s)";
|
|
146 |
by (simp_tac (subst_ss addsimps [not_equal_iff]) 1);
|
|
147 |
by (REPEAT (resolve_tac [impI,disjI1] 1));
|
|
148 |
by(res_inst_tac [("x","w")] exI 1);
|
|
149 |
by (ALLGOALS (asm_simp_tac (subst_ss addsimps [Var_elim,subst_comp,
|
|
150 |
vars_var_iff RS not_cong RS iffD2 RS repl_invariance]) ));
|
|
151 |
by (fast_tac (set_cs addIs [Var_in_subst]) 1);
|
|
152 |
val MGIU_srange_lemma = store_thm("MGIU_srange_lemma", result() RS mp RS mp RS mp RS mp RS lemma_lemma RS notE);
|
|
153 |
|
|
154 |
goal Unifier.thy "MGIUnifier s t u --> srange(s) <= vars_of(t) Un vars_of(u)";
|
|
155 |
by (subgoal_tac "! P Q.(P | Q) = (~( ~P & ~Q))" 1);
|
|
156 |
by (asm_simp_tac (subst_ss addsimps [MGIU_iff,srange_iff,subset_iff]) 1);
|
|
157 |
by (simp_tac (subst_ss addsimps [Idem_iff]) 1);
|
|
158 |
by (safe_tac set_cs);
|
|
159 |
by (eresolve_tac ([spec] RL [impE]) 1);
|
|
160 |
by (rtac Cons_Unifier 1);
|
|
161 |
by (imp_excluded_middle_tac "w=ta" 4);
|
|
162 |
by (fast_tac (set_cs addEs [MGIU_srange_lemma]) 5);
|
|
163 |
by (ALLGOALS (fast_tac (set_cs addIs [Var_elim2])));
|
|
164 |
val MGIU_srange = store_thm("MGIU_srange", result() RS mp);
|
|
165 |
|
|
166 |
(*************** Correctness of a simple unification algorithm ***************)
|
|
167 |
(* *)
|
|
168 |
(* fun unify Const(m) Const(n) = if m=n then Nil else Fail *)
|
|
169 |
(* | unify Const(m) _ = Fail *)
|
|
170 |
(* | unify Var(v) t = if Var(v)<:t then Fail else <v,t>#Nil *)
|
|
171 |
(* | unify Comb(t,u) Const(n) = Fail *)
|
|
172 |
(* | unify Comb(t,u) Var(v) = if Var(v) <: Comb(t,u) then Fail *)
|
|
173 |
(* else <v,Comb(t,u>#Nil *)
|
|
174 |
(* | unify Comb(t,u) Comb(v,w) = let s = unify t v *)
|
|
175 |
(* in if s=Fail then Fail *)
|
|
176 |
(* else unify (u<|s) (w<|s); *)
|
|
177 |
|
|
178 |
(**** Cases for the partial correctness of the algorithm ****)
|
|
179 |
|
|
180 |
goalw Unifier.thy unify_defs "MGIUnifier s t u = MGIUnifier s u t";
|
|
181 |
by (safe_tac (HOL_cs addSEs ([sym]@([spec] RL [mp]))));
|
|
182 |
qed "Unify_comm";
|
|
183 |
|
|
184 |
goal Unifier.thy "MGIUnifier [] (Const n) (Const n)";
|
|
185 |
by (simp_tac (subst_ss addsimps
|
|
186 |
[MGIU_iff,MGU_iff,Unifier_iff,subst_eq_iff,Idem_Nil]) 1);
|
|
187 |
qed "Unify1";
|
|
188 |
|
|
189 |
goal Unifier.thy "~m=n --> (ALL l.~Unifier l (Const m) (Const n))";
|
|
190 |
by (simp_tac (subst_ss addsimps[Unifier_iff]) 1);
|
|
191 |
val Unify2 = store_thm("Unify2", result() RS mp);
|
|
192 |
|
|
193 |
val [prem] = goalw Unifier.thy [MGIUnifier_def]
|
|
194 |
"~Var(v) <: t ==> MGIUnifier [<v,t>] (Var v) t";
|
|
195 |
by (fast_tac (HOL_cs addSIs [prem RS MGUnifier_Var,prem RS Var_Idem]) 1);
|
|
196 |
qed "Unify3";
|
|
197 |
|
|
198 |
val [prem] = goal Unifier.thy "Var(v) <: t ==> (ALL l.~Unifier l (Var v) t)";
|
|
199 |
by (simp_tac (subst_ss addsimps
|
|
200 |
[Unifier_iff,prem RS subst_mono RS occs_irrefl2]) 1);
|
|
201 |
qed "Unify4";
|
|
202 |
|
|
203 |
goal Unifier.thy "ALL l.~Unifier l (Const m) (Comb t u)";
|
|
204 |
by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
|
|
205 |
qed "Unify5";
|
|
206 |
|
|
207 |
goal Unifier.thy
|
|
208 |
"(ALL l.~Unifier l t v) --> (ALL l.~Unifier l (Comb t u) (Comb v w))";
|
|
209 |
by (simp_tac (subst_ss addsimps [Unifier_iff]) 1);
|
|
210 |
val Unify6 = store_thm("Unify6", result() RS mp);
|
|
211 |
|
|
212 |
goal Unifier.thy "MGIUnifier s t v --> (ALL l.~Unifier l (u <| s) (w <| s)) \
|
|
213 |
\ --> (ALL l.~Unifier l (Comb t u) (Comb v w))";
|
|
214 |
by (simp_tac (subst_ss addsimps [MGIU_iff]) 1);
|
|
215 |
by (fast_tac (set_cs addIs [Unifier_comp_subst] addSEs [Unifier_Comb]) 1);
|
|
216 |
val Unify7 = store_thm("Unify7", result() RS mp RS mp);
|
|
217 |
|
|
218 |
val [p1,p2,p3] = goal Unifier.thy
|
|
219 |
"[| Idem(r); Unifier s (t <| r) (u <| r); \
|
|
220 |
\ (! q.Unifier q (t <| r) (u <| r) --> s <> q =s= q) |] ==> \
|
|
221 |
\ Idem(r <> s)";
|
|
222 |
by (cut_facts_tac [p1,
|
|
223 |
p2 RS (p1 RS Unifier_Idem_subst RS (p3 RS spec RS mp))] 1);
|
|
224 |
by (REPEAT_SOME (etac rev_mp));
|
|
225 |
by (simp_tac (subst_ss addsimps [raw_Idem_iff,subst_eq_iff,subst_comp]) 1);
|
|
226 |
qed "Unify8_lemma1";
|
|
227 |
|
|
228 |
val [p1,p2,p3,p4] = goal Unifier.thy
|
|
229 |
"[| Unifier q t v; Unifier q u w; (! q.Unifier q t v --> r <> q =s= q); \
|
|
230 |
\ (! q.Unifier q (u <| r) (w <| r) --> s <> q =s= q) |] ==> \
|
|
231 |
\ r <> s <> q =s= q";
|
|
232 |
val pp = p1 RS (p3 RS spec RS mp);
|
|
233 |
by (cut_facts_tac [pp,
|
|
234 |
p2 RS (pp RS Unifier_comp_subst) RS (p4 RS spec RS mp)] 1);
|
|
235 |
by (REPEAT_SOME (etac rev_mp));
|
|
236 |
by (simp_tac (subst_ss addsimps [subst_eq_iff,subst_comp]) 1);
|
|
237 |
qed "Unify8_lemma2";
|
|
238 |
|
|
239 |
goal Unifier.thy "MGIUnifier r t v --> MGIUnifier s (u <| r) (w <| r) --> \
|
|
240 |
\ MGIUnifier (r <> s) (Comb t u) (Comb v w)";
|
|
241 |
by (simp_tac (subst_ss addsimps [MGIU_iff,subst_comp,comp_assoc]) 1);
|
|
242 |
by (safe_tac HOL_cs);
|
|
243 |
by (REPEAT (etac rev_mp 2));
|
|
244 |
by (simp_tac (subst_ss addsimps
|
|
245 |
[Unifier_iff,MGIU_iff,subst_comp,comp_assoc]) 2);
|
|
246 |
by (ALLGOALS (fast_tac (set_cs addEs
|
|
247 |
[Unifier_Comb,Unify8_lemma1,Unify8_lemma2])));
|
|
248 |
qed "Unify8";
|
|
249 |
|
|
250 |
|
|
251 |
(********************** Termination of the algorithm *************************)
|
|
252 |
(* *)
|
|
253 |
(*UWFD is a well-founded relation that orders the 2 recursive calls in unify *)
|
|
254 |
(* NB well-foundedness of UWFD isn't proved *)
|
|
255 |
|
|
256 |
|
|
257 |
goalw Unifier.thy [UWFD_def] "UWFD t t' (Comb t u) (Comb t' u')";
|
|
258 |
by (simp_tac subst_ss 1);
|
|
259 |
by (fast_tac set_cs 1);
|
|
260 |
qed "UnifyWFD1";
|
|
261 |
|
|
262 |
val [prem] = goal Unifier.thy
|
|
263 |
"MGIUnifier s t t' ==> vars_of(u <| s) Un vars_of(u' <| s) <= \
|
|
264 |
\ vars_of (Comb t u) Un vars_of (Comb t' u')";
|
|
265 |
by (subgoal_tac "vars_of(u <| s) Un vars_of(u' <| s) <= \
|
|
266 |
\ srange(s) Un vars_of(u) Un srange(s) Un vars_of(u')" 1);
|
|
267 |
by (etac subset_trans 1);
|
|
268 |
by (ALLGOALS (simp_tac (subst_ss addsimps [Var_intro,subset_iff])));
|
|
269 |
by (ALLGOALS (fast_tac (set_cs addDs
|
|
270 |
[Var_intro,prem RS MGIU_srange RS subsetD])));
|
|
271 |
qed "UWFD2_lemma1";
|
|
272 |
|
|
273 |
val [major,minor] = goal Unifier.thy
|
|
274 |
"[| MGIUnifier s t t'; ~ u <| s = u |] ==> \
|
|
275 |
\ ~ vars_of(u <| s) Un vars_of(u' <| s) = \
|
|
276 |
\ (vars_of(t) Un vars_of(u)) Un (vars_of(t') Un vars_of(u'))";
|
|
277 |
by (cut_facts_tac
|
|
278 |
[major RS (MGIU_iff RS iffD1) RS conjunct1 RS (Idem_iff RS iffD1)] 1);
|
|
279 |
by (rtac (minor RS subst_not_empty RS exE) 1);
|
|
280 |
by (rtac (make_elim ((major RS MGIU_sdom) RS subsetD)) 1 THEN assume_tac 1);
|
|
281 |
by (rtac (disjI2 RS (not_equal_iff RS iffD2)) 1);
|
|
282 |
by (REPEAT (etac rev_mp 1));
|
|
283 |
by (asm_simp_tac subst_ss 1);
|
|
284 |
by (fast_tac (set_cs addIs [Var_elim2]) 1);
|
|
285 |
qed "UWFD2_lemma2";
|
|
286 |
|
|
287 |
val [prem] = goalw Unifier.thy [UWFD_def]
|
|
288 |
"MGIUnifier s t t' ==> UWFD (u <| s) (u' <| s) (Comb t u) (Comb t' u')";
|
|
289 |
by (cut_facts_tac
|
|
290 |
[prem RS UWFD2_lemma1 RS (subseteq_iff_subset_eq RS iffD1)] 1);
|
|
291 |
by (imp_excluded_middle_tac "u <| s = u" 1);
|
|
292 |
by (simp_tac (set_ss addsimps [occs_Comb2] ) 1);
|
|
293 |
by (rtac impI 1 THEN etac subst 1 THEN assume_tac 1);
|
|
294 |
by (rtac impI 1);
|
|
295 |
by (rtac (conjI RS (ssubset_iff RS iffD2) RS disjI1) 1);
|
|
296 |
by (asm_simp_tac (set_ss addsimps [subseteq_iff_subset_eq]) 1);
|
|
297 |
by (asm_simp_tac subst_ss 1);
|
|
298 |
by (fast_tac (set_cs addDs [prem RS UWFD2_lemma2]) 1);
|
|
299 |
qed "UnifyWFD2";
|