author | wenzelm |
Fri, 05 Oct 2001 21:52:39 +0200 | |
changeset 11701 | 3d51fbf81c17 |
parent 11275 | 71498de45241 |
child 11704 | 3c50a2cd6f00 |
permissions | -rw-r--r-- |
10343 | 1 |
(* Title: HOL/IMP/Compiler.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, TUM |
|
4 |
Copyright 1996 TUM |
|
5 |
||
6 |
A simple compiler for a simplistic machine. |
|
7 |
*) |
|
8 |
||
10342 | 9 |
theory Compiler = Natural: |
10 |
||
11 |
datatype instr = ASIN loc aexp | JMPF bexp nat | JMPB nat |
|
12 |
||
13 |
consts stepa1 :: "instr list => ((state*nat) * (state*nat))set" |
|
14 |
||
15 |
syntax |
|
16 |
"@stepa1" :: "[instr list,state,nat,state,nat] => bool" |
|
17 |
("_ |- <_,_>/ -1-> <_,_>" [50,0,0,0,0] 50) |
|
18 |
"@stepa" :: "[instr list,state,nat,state,nat] => bool" |
|
19 |
("_ |-/ <_,_>/ -*-> <_,_>" [50,0,0,0,0] 50) |
|
20 |
||
21 |
translations "P |- <s,m> -1-> <t,n>" == "((s,m),t,n) : stepa1 P" |
|
22 |
"P |- <s,m> -*-> <t,n>" == "((s,m),t,n) : ((stepa1 P)^*)" |
|
23 |
||
24 |
||
25 |
inductive "stepa1 P" |
|
26 |
intros |
|
11275 | 27 |
ASIN: |
28 |
"\<lbrakk> n<size P; P!n = ASIN x a \<rbrakk> \<Longrightarrow> P |- <s,n> -1-> <s[x::= a s],Suc n>" |
|
29 |
JMPFT: |
|
30 |
"\<lbrakk> n<size P; P!n = JMPF b i; b s \<rbrakk> \<Longrightarrow> P |- <s,n> -1-> <s,Suc n>" |
|
31 |
JMPFF: |
|
32 |
"\<lbrakk> n<size P; P!n = JMPF b i; ~b s; m=n+i \<rbrakk> \<Longrightarrow> P |- <s,n> -1-> <s,m>" |
|
33 |
JMPB: |
|
34 |
"\<lbrakk> n<size P; P!n = JMPB i; i <= n \<rbrakk> \<Longrightarrow> P |- <s,n> -1-> <s,n-i>" |
|
10342 | 35 |
|
36 |
consts compile :: "com => instr list" |
|
37 |
primrec |
|
38 |
"compile SKIP = []" |
|
39 |
"compile (x:==a) = [ASIN x a]" |
|
40 |
"compile (c1;c2) = compile c1 @ compile c2" |
|
41 |
"compile (IF b THEN c1 ELSE c2) = |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11275
diff
changeset
|
42 |
[JMPF b (length(compile c1) + # 2)] @ compile c1 @ |
10342 | 43 |
[JMPF (%x. False) (length(compile c2)+1)] @ compile c2" |
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11275
diff
changeset
|
44 |
"compile (WHILE b DO c) = [JMPF b (length(compile c) + # 2)] @ compile c @ |
10342 | 45 |
[JMPB (length(compile c)+1)]" |
46 |
||
47 |
declare nth_append[simp]; |
|
48 |
||
11275 | 49 |
(* Lemmas for lifting an execution into a prefix and suffix |
50 |
of instructions; only needed for the first proof *) |
|
51 |
||
52 |
lemma app_right_1: |
|
53 |
"is1 |- <s1,i1> -1-> <s2,i2> \<Longrightarrow> is1 @ is2 |- <s1,i1> -1-> <s2,i2>" |
|
54 |
apply(erule stepa1.induct); |
|
55 |
apply (simp add:ASIN) |
|
56 |
apply (force intro!:JMPFT) |
|
57 |
apply (force intro!:JMPFF) |
|
58 |
apply (simp add: JMPB) |
|
59 |
done |
|
60 |
||
61 |
lemma app_left_1: |
|
62 |
"is2 |- <s1,i1> -1-> <s2,i2> \<Longrightarrow> |
|
63 |
is1 @ is2 |- <s1,size is1+i1> -1-> <s2,size is1+i2>" |
|
64 |
apply(erule stepa1.induct); |
|
65 |
apply (simp add:ASIN) |
|
66 |
apply (fastsimp intro!:JMPFT) |
|
67 |
apply (fastsimp intro!:JMPFF) |
|
68 |
apply (simp add: JMPB) |
|
69 |
done |
|
70 |
||
71 |
lemma app_right: |
|
72 |
"is1 |- <s1,i1> -*-> <s2,i2> \<Longrightarrow> is1 @ is2 |- <s1,i1> -*-> <s2,i2>" |
|
73 |
apply(erule rtrancl_induct2); |
|
74 |
apply simp |
|
75 |
apply(blast intro:app_right_1 rtrancl_trans) |
|
76 |
done |
|
77 |
||
78 |
lemma app_left: |
|
79 |
"is2 |- <s1,i1> -*-> <s2,i2> \<Longrightarrow> |
|
80 |
is1 @ is2 |- <s1,size is1+i1> -*-> <s2,size is1+i2>" |
|
81 |
apply(erule rtrancl_induct2); |
|
82 |
apply simp |
|
83 |
apply(blast intro:app_left_1 rtrancl_trans) |
|
84 |
done |
|
85 |
||
86 |
lemma app_left2: |
|
87 |
"\<lbrakk> is2 |- <s1,i1> -*-> <s2,i2>; j1 = size is1+i1; j2 = size is1+i2 \<rbrakk> \<Longrightarrow> |
|
88 |
is1 @ is2 |- <s1,j1> -*-> <s2,j2>" |
|
89 |
by (simp add:app_left) |
|
10342 | 90 |
|
11275 | 91 |
lemma app1_left: |
92 |
"is |- <s1,i1> -*-> <s2,i2> \<Longrightarrow> |
|
93 |
instr # is |- <s1,Suc i1> -*-> <s2,Suc i2>" |
|
94 |
by(erule app_left[of _ _ _ _ _ "[instr]",simplified]) |
|
95 |
||
96 |
||
97 |
(* The first proof; statement very intuitive, |
|
98 |
but application of induction hypothesis requires the above lifting lemmas |
|
99 |
*) |
|
100 |
theorem "<c,s> -c-> t ==> compile c |- <s,0> -*-> <t,length(compile c)>" |
|
101 |
apply(erule evalc.induct); |
|
102 |
apply simp; |
|
103 |
apply(force intro!: ASIN); |
|
104 |
apply simp |
|
105 |
apply(rule rtrancl_trans) |
|
106 |
apply(erule app_right) |
|
107 |
apply(erule app_left[of _ 0,simplified]) |
|
108 |
(* IF b THEN c0 ELSE c1; case b is true *) |
|
109 |
apply(simp); |
|
110 |
(* execute JMPF: *) |
|
111 |
apply (rule rtrancl_into_rtrancl2) |
|
112 |
apply(force intro!: JMPFT); |
|
113 |
(* execute compile c0: *) |
|
114 |
apply(rule app1_left) |
|
115 |
apply(rule rtrancl_into_rtrancl); |
|
116 |
apply(erule app_right) |
|
117 |
(* execute JMPF: *) |
|
118 |
apply(force intro!: JMPFF); |
|
119 |
(* end of case b is true *) |
|
120 |
apply simp |
|
121 |
apply (rule rtrancl_into_rtrancl2) |
|
122 |
apply(force intro!: JMPFF) |
|
123 |
apply(force intro!: app_left2 app1_left) |
|
124 |
(* WHILE False *) |
|
125 |
apply(force intro: JMPFF); |
|
126 |
(* WHILE True *) |
|
127 |
apply(simp) |
|
128 |
apply(rule rtrancl_into_rtrancl2); |
|
129 |
apply(force intro!: JMPFT); |
|
130 |
apply(rule rtrancl_trans); |
|
131 |
apply(rule app1_left) |
|
132 |
apply(erule app_right) |
|
133 |
apply(rule rtrancl_into_rtrancl2); |
|
134 |
apply(force intro!: JMPB) |
|
135 |
apply(simp) |
|
136 |
done |
|
137 |
||
138 |
(* Second proof; statement is generalized to cater for prefixes and suffixes; |
|
139 |
needs none of the lifting lemmas, but instantiations of pre/suffix. |
|
140 |
*) |
|
10342 | 141 |
theorem "<c,s> -c-> t ==> |
142 |
!a z. a@compile c@z |- <s,length a> -*-> <t,length a + length(compile c)>"; |
|
143 |
apply(erule evalc.induct); |
|
144 |
apply simp; |
|
145 |
apply(force intro!: ASIN); |
|
146 |
apply(intro strip); |
|
147 |
apply(erule_tac x = a in allE); |
|
148 |
apply(erule_tac x = "a@compile c0" in allE); |
|
149 |
apply(erule_tac x = "compile c1@z" in allE); |
|
150 |
apply(erule_tac x = z in allE); |
|
151 |
apply(simp add:add_assoc[THEN sym]); |
|
152 |
apply(blast intro:rtrancl_trans); |
|
153 |
(* IF b THEN c0 ELSE c1; case b is true *) |
|
154 |
apply(intro strip); |
|
155 |
(* instantiate assumption sufficiently for later: *) |
|
156 |
apply(erule_tac x = "a@[?I]" in allE); |
|
157 |
apply(simp); |
|
158 |
(* execute JMPF: *) |
|
159 |
apply(rule rtrancl_into_rtrancl2); |
|
11275 | 160 |
apply(force intro!: JMPFT); |
10342 | 161 |
(* execute compile c0: *) |
162 |
apply(rule rtrancl_trans); |
|
163 |
apply(erule allE); |
|
164 |
apply assumption; |
|
165 |
(* execute JMPF: *) |
|
166 |
apply(rule r_into_rtrancl); |
|
11275 | 167 |
apply(force intro!: JMPFF); |
10342 | 168 |
(* end of case b is true *) |
169 |
apply(intro strip); |
|
170 |
apply(erule_tac x = "a@[?I]@compile c0@[?J]" in allE); |
|
171 |
apply(simp add:add_assoc); |
|
172 |
apply(rule rtrancl_into_rtrancl2); |
|
11275 | 173 |
apply(force intro!: JMPFF); |
10342 | 174 |
apply(blast); |
175 |
apply(force intro: JMPFF); |
|
176 |
apply(intro strip); |
|
177 |
apply(erule_tac x = "a@[?I]" in allE); |
|
178 |
apply(erule_tac x = a in allE); |
|
179 |
apply(simp); |
|
180 |
apply(rule rtrancl_into_rtrancl2); |
|
11275 | 181 |
apply(force intro!: JMPFT); |
10342 | 182 |
apply(rule rtrancl_trans); |
183 |
apply(erule allE); |
|
184 |
apply assumption; |
|
185 |
apply(rule rtrancl_into_rtrancl2); |
|
11275 | 186 |
apply(force intro!: JMPB); |
10342 | 187 |
apply(simp); |
188 |
done |
|
189 |
||
190 |
(* Missing: the other direction! *) |
|
191 |
||
192 |
end |