| author | haftmann | 
| Tue, 13 Jul 2010 16:30:13 +0200 | |
| changeset 37807 | 3dc7008e750f | 
| parent 32960 | 69916a850301 | 
| child 39159 | 0dec18004e75 | 
| permissions | -rw-r--r-- | 
| 1478 | 1  | 
(* Title: ZF/Cardinal.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
| 435 | 3  | 
Copyright 1994 University of Cambridge  | 
| 13328 | 4  | 
*)  | 
| 13221 | 5  | 
|
| 13328 | 6  | 
header{*Cardinal Numbers Without the Axiom of Choice*}
 | 
| 435 | 7  | 
|
| 
26056
 
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
 
krauss 
parents: 
24893 
diff
changeset
 | 
8  | 
theory Cardinal imports OrderType Finite Nat_ZF Sum begin  | 
| 13221 | 9  | 
|
| 24893 | 10  | 
definition  | 
| 435 | 11  | 
(*least ordinal operator*)  | 
| 24893 | 12  | 
Least :: "(i=>o) => i" (binder "LEAST " 10) where  | 
| 13221 | 13  | 
"Least(P) == THE i. Ord(i) & P(i) & (ALL j. j<i --> ~P(j))"  | 
| 435 | 14  | 
|
| 24893 | 15  | 
definition  | 
16  | 
eqpoll :: "[i,i] => o" (infixl "eqpoll" 50) where  | 
|
| 13221 | 17  | 
"A eqpoll B == EX f. f: bij(A,B)"  | 
| 435 | 18  | 
|
| 24893 | 19  | 
definition  | 
20  | 
lepoll :: "[i,i] => o" (infixl "lepoll" 50) where  | 
|
| 13221 | 21  | 
"A lepoll B == EX f. f: inj(A,B)"  | 
| 435 | 22  | 
|
| 24893 | 23  | 
definition  | 
24  | 
lesspoll :: "[i,i] => o" (infixl "lesspoll" 50) where  | 
|
| 13221 | 25  | 
"A lesspoll B == A lepoll B & ~(A eqpoll B)"  | 
| 832 | 26  | 
|
| 24893 | 27  | 
definition  | 
28  | 
  cardinal :: "i=>i"           ("|_|")  where
 | 
|
| 13221 | 29  | 
"|A| == LEAST i. i eqpoll A"  | 
| 435 | 30  | 
|
| 24893 | 31  | 
definition  | 
32  | 
Finite :: "i=>o" where  | 
|
| 13221 | 33  | 
"Finite(A) == EX n:nat. A eqpoll n"  | 
| 435 | 34  | 
|
| 24893 | 35  | 
definition  | 
36  | 
Card :: "i=>o" where  | 
|
| 13221 | 37  | 
"Card(i) == (i = |i|)"  | 
| 435 | 38  | 
|
| 21524 | 39  | 
notation (xsymbols)  | 
40  | 
eqpoll (infixl "\<approx>" 50) and  | 
|
41  | 
lepoll (infixl "\<lesssim>" 50) and  | 
|
42  | 
lesspoll (infixl "\<prec>" 50) and  | 
|
43  | 
Least (binder "\<mu>" 10)  | 
|
| 13221 | 44  | 
|
| 21524 | 45  | 
notation (HTML output)  | 
46  | 
eqpoll (infixl "\<approx>" 50) and  | 
|
47  | 
Least (binder "\<mu>" 10)  | 
|
48  | 
||
| 14565 | 49  | 
|
| 13357 | 50  | 
subsection{*The Schroeder-Bernstein Theorem*}
 | 
51  | 
text{*See Davey and Priestly, page 106*}
 | 
|
| 13221 | 52  | 
|
53  | 
(** Lemma: Banach's Decomposition Theorem **)  | 
|
54  | 
||
55  | 
lemma decomp_bnd_mono: "bnd_mono(X, %W. X - g``(Y - f``W))"  | 
|
56  | 
by (rule bnd_monoI, blast+)  | 
|
57  | 
||
58  | 
lemma Banach_last_equation:  | 
|
59  | 
"g: Y->X  | 
|
60  | 
==> g``(Y - f`` lfp(X, %W. X - g``(Y - f``W))) =  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
26056 
diff
changeset
 | 
61  | 
X - lfp(X, %W. X - g``(Y - f``W))"  | 
| 13221 | 62  | 
apply (rule_tac P = "%u. ?v = X-u"  | 
63  | 
in decomp_bnd_mono [THEN lfp_unfold, THEN ssubst])  | 
|
64  | 
apply (simp add: double_complement fun_is_rel [THEN image_subset])  | 
|
65  | 
done  | 
|
66  | 
||
67  | 
lemma decomposition:  | 
|
68  | 
"[| f: X->Y; g: Y->X |] ==>  | 
|
69  | 
EX XA XB YA YB. (XA Int XB = 0) & (XA Un XB = X) &  | 
|
70  | 
(YA Int YB = 0) & (YA Un YB = Y) &  | 
|
71  | 
f``XA=YA & g``YB=XB"  | 
|
72  | 
apply (intro exI conjI)  | 
|
73  | 
apply (rule_tac [6] Banach_last_equation)  | 
|
74  | 
apply (rule_tac [5] refl)  | 
|
75  | 
apply (assumption |  | 
|
76  | 
rule Diff_disjoint Diff_partition fun_is_rel image_subset lfp_subset)+  | 
|
77  | 
done  | 
|
78  | 
||
79  | 
lemma schroeder_bernstein:  | 
|
80  | 
"[| f: inj(X,Y); g: inj(Y,X) |] ==> EX h. h: bij(X,Y)"  | 
|
81  | 
apply (insert decomposition [of f X Y g])  | 
|
82  | 
apply (simp add: inj_is_fun)  | 
|
83  | 
apply (blast intro!: restrict_bij bij_disjoint_Un intro: bij_converse_bij)  | 
|
84  | 
(* The instantiation of exI to "restrict(f,XA) Un converse(restrict(g,YB))"  | 
|
85  | 
is forced by the context!! *)  | 
|
86  | 
done  | 
|
87  | 
||
88  | 
||
89  | 
(** Equipollence is an equivalence relation **)  | 
|
90  | 
||
91  | 
lemma bij_imp_eqpoll: "f: bij(A,B) ==> A \<approx> B"  | 
|
92  | 
apply (unfold eqpoll_def)  | 
|
93  | 
apply (erule exI)  | 
|
94  | 
done  | 
|
95  | 
||
96  | 
(*A eqpoll A*)  | 
|
97  | 
lemmas eqpoll_refl = id_bij [THEN bij_imp_eqpoll, standard, simp]  | 
|
98  | 
||
99  | 
lemma eqpoll_sym: "X \<approx> Y ==> Y \<approx> X"  | 
|
100  | 
apply (unfold eqpoll_def)  | 
|
101  | 
apply (blast intro: bij_converse_bij)  | 
|
102  | 
done  | 
|
103  | 
||
104  | 
lemma eqpoll_trans:  | 
|
105  | 
"[| X \<approx> Y; Y \<approx> Z |] ==> X \<approx> Z"  | 
|
106  | 
apply (unfold eqpoll_def)  | 
|
107  | 
apply (blast intro: comp_bij)  | 
|
108  | 
done  | 
|
109  | 
||
110  | 
(** Le-pollence is a partial ordering **)  | 
|
111  | 
||
112  | 
lemma subset_imp_lepoll: "X<=Y ==> X \<lesssim> Y"  | 
|
113  | 
apply (unfold lepoll_def)  | 
|
114  | 
apply (rule exI)  | 
|
115  | 
apply (erule id_subset_inj)  | 
|
116  | 
done  | 
|
117  | 
||
118  | 
lemmas lepoll_refl = subset_refl [THEN subset_imp_lepoll, standard, simp]  | 
|
119  | 
||
120  | 
lemmas le_imp_lepoll = le_imp_subset [THEN subset_imp_lepoll, standard]  | 
|
121  | 
||
122  | 
lemma eqpoll_imp_lepoll: "X \<approx> Y ==> X \<lesssim> Y"  | 
|
123  | 
by (unfold eqpoll_def bij_def lepoll_def, blast)  | 
|
124  | 
||
125  | 
lemma lepoll_trans: "[| X \<lesssim> Y; Y \<lesssim> Z |] ==> X \<lesssim> Z"  | 
|
126  | 
apply (unfold lepoll_def)  | 
|
127  | 
apply (blast intro: comp_inj)  | 
|
128  | 
done  | 
|
129  | 
||
130  | 
(*Asymmetry law*)  | 
|
131  | 
lemma eqpollI: "[| X \<lesssim> Y; Y \<lesssim> X |] ==> X \<approx> Y"  | 
|
132  | 
apply (unfold lepoll_def eqpoll_def)  | 
|
133  | 
apply (elim exE)  | 
|
134  | 
apply (rule schroeder_bernstein, assumption+)  | 
|
135  | 
done  | 
|
136  | 
||
137  | 
lemma eqpollE:  | 
|
138  | 
"[| X \<approx> Y; [| X \<lesssim> Y; Y \<lesssim> X |] ==> P |] ==> P"  | 
|
139  | 
by (blast intro: eqpoll_imp_lepoll eqpoll_sym)  | 
|
140  | 
||
141  | 
lemma eqpoll_iff: "X \<approx> Y <-> X \<lesssim> Y & Y \<lesssim> X"  | 
|
142  | 
by (blast intro: eqpollI elim!: eqpollE)  | 
|
143  | 
||
144  | 
lemma lepoll_0_is_0: "A \<lesssim> 0 ==> A = 0"  | 
|
145  | 
apply (unfold lepoll_def inj_def)  | 
|
146  | 
apply (blast dest: apply_type)  | 
|
147  | 
done  | 
|
148  | 
||
149  | 
(*0 \<lesssim> Y*)  | 
|
150  | 
lemmas empty_lepollI = empty_subsetI [THEN subset_imp_lepoll, standard]  | 
|
151  | 
||
152  | 
lemma lepoll_0_iff: "A \<lesssim> 0 <-> A=0"  | 
|
153  | 
by (blast intro: lepoll_0_is_0 lepoll_refl)  | 
|
154  | 
||
155  | 
lemma Un_lepoll_Un:  | 
|
156  | 
"[| A \<lesssim> B; C \<lesssim> D; B Int D = 0 |] ==> A Un C \<lesssim> B Un D"  | 
|
157  | 
apply (unfold lepoll_def)  | 
|
158  | 
apply (blast intro: inj_disjoint_Un)  | 
|
159  | 
done  | 
|
160  | 
||
161  | 
(*A eqpoll 0 ==> A=0*)  | 
|
162  | 
lemmas eqpoll_0_is_0 = eqpoll_imp_lepoll [THEN lepoll_0_is_0, standard]  | 
|
163  | 
||
164  | 
lemma eqpoll_0_iff: "A \<approx> 0 <-> A=0"  | 
|
165  | 
by (blast intro: eqpoll_0_is_0 eqpoll_refl)  | 
|
166  | 
||
167  | 
lemma eqpoll_disjoint_Un:  | 
|
168  | 
"[| A \<approx> B; C \<approx> D; A Int C = 0; B Int D = 0 |]  | 
|
169  | 
==> A Un C \<approx> B Un D"  | 
|
170  | 
apply (unfold eqpoll_def)  | 
|
171  | 
apply (blast intro: bij_disjoint_Un)  | 
|
172  | 
done  | 
|
173  | 
||
174  | 
||
| 13356 | 175  | 
subsection{*lesspoll: contributions by Krzysztof Grabczewski *}
 | 
| 13221 | 176  | 
|
177  | 
lemma lesspoll_not_refl: "~ (i \<prec> i)"  | 
|
178  | 
by (simp add: lesspoll_def)  | 
|
179  | 
||
180  | 
lemma lesspoll_irrefl [elim!]: "i \<prec> i ==> P"  | 
|
181  | 
by (simp add: lesspoll_def)  | 
|
182  | 
||
183  | 
lemma lesspoll_imp_lepoll: "A \<prec> B ==> A \<lesssim> B"  | 
|
184  | 
by (unfold lesspoll_def, blast)  | 
|
185  | 
||
186  | 
lemma lepoll_well_ord: "[| A \<lesssim> B; well_ord(B,r) |] ==> EX s. well_ord(A,s)"  | 
|
187  | 
apply (unfold lepoll_def)  | 
|
188  | 
apply (blast intro: well_ord_rvimage)  | 
|
189  | 
done  | 
|
190  | 
||
191  | 
lemma lepoll_iff_leqpoll: "A \<lesssim> B <-> A \<prec> B | A \<approx> B"  | 
|
192  | 
apply (unfold lesspoll_def)  | 
|
193  | 
apply (blast intro!: eqpollI elim!: eqpollE)  | 
|
194  | 
done  | 
|
195  | 
||
196  | 
lemma inj_not_surj_succ:  | 
|
197  | 
"[| f : inj(A, succ(m)); f ~: surj(A, succ(m)) |] ==> EX f. f:inj(A,m)"  | 
|
198  | 
apply (unfold inj_def surj_def)  | 
|
199  | 
apply (safe del: succE)  | 
|
200  | 
apply (erule swap, rule exI)  | 
|
201  | 
apply (rule_tac a = "lam z:A. if f`z=m then y else f`z" in CollectI)  | 
|
202  | 
txt{*the typing condition*}
 | 
|
203  | 
apply (best intro!: if_type [THEN lam_type] elim: apply_funtype [THEN succE])  | 
|
204  | 
txt{*Proving it's injective*}
 | 
|
205  | 
apply simp  | 
|
206  | 
apply blast  | 
|
207  | 
done  | 
|
208  | 
||
209  | 
(** Variations on transitivity **)  | 
|
210  | 
||
211  | 
lemma lesspoll_trans:  | 
|
212  | 
"[| X \<prec> Y; Y \<prec> Z |] ==> X \<prec> Z"  | 
|
213  | 
apply (unfold lesspoll_def)  | 
|
214  | 
apply (blast elim!: eqpollE intro: eqpollI lepoll_trans)  | 
|
215  | 
done  | 
|
216  | 
||
217  | 
lemma lesspoll_trans1:  | 
|
218  | 
"[| X \<lesssim> Y; Y \<prec> Z |] ==> X \<prec> Z"  | 
|
219  | 
apply (unfold lesspoll_def)  | 
|
220  | 
apply (blast elim!: eqpollE intro: eqpollI lepoll_trans)  | 
|
221  | 
done  | 
|
222  | 
||
223  | 
lemma lesspoll_trans2:  | 
|
224  | 
"[| X \<prec> Y; Y \<lesssim> Z |] ==> X \<prec> Z"  | 
|
225  | 
apply (unfold lesspoll_def)  | 
|
226  | 
apply (blast elim!: eqpollE intro: eqpollI lepoll_trans)  | 
|
227  | 
done  | 
|
228  | 
||
229  | 
||
230  | 
(** LEAST -- the least number operator [from HOL/Univ.ML] **)  | 
|
231  | 
||
232  | 
lemma Least_equality:  | 
|
233  | 
"[| P(i); Ord(i); !!x. x<i ==> ~P(x) |] ==> (LEAST x. P(x)) = i"  | 
|
234  | 
apply (unfold Least_def)  | 
|
235  | 
apply (rule the_equality, blast)  | 
|
236  | 
apply (elim conjE)  | 
|
237  | 
apply (erule Ord_linear_lt, assumption, blast+)  | 
|
238  | 
done  | 
|
239  | 
||
240  | 
lemma LeastI: "[| P(i); Ord(i) |] ==> P(LEAST x. P(x))"  | 
|
241  | 
apply (erule rev_mp)  | 
|
242  | 
apply (erule_tac i=i in trans_induct)  | 
|
243  | 
apply (rule impI)  | 
|
244  | 
apply (rule classical)  | 
|
245  | 
apply (blast intro: Least_equality [THEN ssubst] elim!: ltE)  | 
|
246  | 
done  | 
|
247  | 
||
248  | 
(*Proof is almost identical to the one above!*)  | 
|
249  | 
lemma Least_le: "[| P(i); Ord(i) |] ==> (LEAST x. P(x)) le i"  | 
|
250  | 
apply (erule rev_mp)  | 
|
251  | 
apply (erule_tac i=i in trans_induct)  | 
|
252  | 
apply (rule impI)  | 
|
253  | 
apply (rule classical)  | 
|
254  | 
apply (subst Least_equality, assumption+)  | 
|
255  | 
apply (erule_tac [2] le_refl)  | 
|
256  | 
apply (blast elim: ltE intro: leI ltI lt_trans1)  | 
|
257  | 
done  | 
|
258  | 
||
259  | 
(*LEAST really is the smallest*)  | 
|
260  | 
lemma less_LeastE: "[| P(i); i < (LEAST x. P(x)) |] ==> Q"  | 
|
261  | 
apply (rule Least_le [THEN [2] lt_trans2, THEN lt_irrefl], assumption+)  | 
|
262  | 
apply (simp add: lt_Ord)  | 
|
263  | 
done  | 
|
264  | 
||
265  | 
(*Easier to apply than LeastI: conclusion has only one occurrence of P*)  | 
|
266  | 
lemma LeastI2:  | 
|
267  | 
"[| P(i); Ord(i); !!j. P(j) ==> Q(j) |] ==> Q(LEAST j. P(j))"  | 
|
268  | 
by (blast intro: LeastI )  | 
|
269  | 
||
270  | 
(*If there is no such P then LEAST is vacuously 0*)  | 
|
271  | 
lemma Least_0:  | 
|
272  | 
"[| ~ (EX i. Ord(i) & P(i)) |] ==> (LEAST x. P(x)) = 0"  | 
|
273  | 
apply (unfold Least_def)  | 
|
274  | 
apply (rule the_0, blast)  | 
|
275  | 
done  | 
|
276  | 
||
| 13356 | 277  | 
lemma Ord_Least [intro,simp,TC]: "Ord(LEAST x. P(x))"  | 
| 14153 | 278  | 
apply (case_tac "\<exists>i. Ord(i) & P(i)")  | 
| 13221 | 279  | 
apply safe  | 
280  | 
apply (rule Least_le [THEN ltE])  | 
|
281  | 
prefer 3 apply assumption+  | 
|
282  | 
apply (erule Least_0 [THEN ssubst])  | 
|
283  | 
apply (rule Ord_0)  | 
|
284  | 
done  | 
|
285  | 
||
286  | 
||
287  | 
(** Basic properties of cardinals **)  | 
|
288  | 
||
289  | 
(*Not needed for simplification, but helpful below*)  | 
|
290  | 
lemma Least_cong:  | 
|
291  | 
"(!!y. P(y) <-> Q(y)) ==> (LEAST x. P(x)) = (LEAST x. Q(x))"  | 
|
292  | 
by simp  | 
|
293  | 
||
294  | 
(*Need AC to get X \<lesssim> Y ==> |X| le |Y|; see well_ord_lepoll_imp_Card_le  | 
|
295  | 
Converse also requires AC, but see well_ord_cardinal_eqE*)  | 
|
296  | 
lemma cardinal_cong: "X \<approx> Y ==> |X| = |Y|"  | 
|
297  | 
apply (unfold eqpoll_def cardinal_def)  | 
|
298  | 
apply (rule Least_cong)  | 
|
299  | 
apply (blast intro: comp_bij bij_converse_bij)  | 
|
300  | 
done  | 
|
301  | 
||
302  | 
(*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*)  | 
|
303  | 
lemma well_ord_cardinal_eqpoll:  | 
|
304  | 
"well_ord(A,r) ==> |A| \<approx> A"  | 
|
305  | 
apply (unfold cardinal_def)  | 
|
306  | 
apply (rule LeastI)  | 
|
307  | 
apply (erule_tac [2] Ord_ordertype)  | 
|
308  | 
apply (erule ordermap_bij [THEN bij_converse_bij, THEN bij_imp_eqpoll])  | 
|
309  | 
done  | 
|
310  | 
||
311  | 
(* Ord(A) ==> |A| \<approx> A *)  | 
|
312  | 
lemmas Ord_cardinal_eqpoll = well_ord_Memrel [THEN well_ord_cardinal_eqpoll]  | 
|
313  | 
||
314  | 
lemma well_ord_cardinal_eqE:  | 
|
315  | 
"[| well_ord(X,r); well_ord(Y,s); |X| = |Y| |] ==> X \<approx> Y"  | 
|
316  | 
apply (rule eqpoll_sym [THEN eqpoll_trans])  | 
|
317  | 
apply (erule well_ord_cardinal_eqpoll)  | 
|
318  | 
apply (simp (no_asm_simp) add: well_ord_cardinal_eqpoll)  | 
|
319  | 
done  | 
|
320  | 
||
321  | 
lemma well_ord_cardinal_eqpoll_iff:  | 
|
322  | 
"[| well_ord(X,r); well_ord(Y,s) |] ==> |X| = |Y| <-> X \<approx> Y"  | 
|
323  | 
by (blast intro: cardinal_cong well_ord_cardinal_eqE)  | 
|
324  | 
||
325  | 
||
326  | 
(** Observations from Kunen, page 28 **)  | 
|
327  | 
||
328  | 
lemma Ord_cardinal_le: "Ord(i) ==> |i| le i"  | 
|
329  | 
apply (unfold cardinal_def)  | 
|
330  | 
apply (erule eqpoll_refl [THEN Least_le])  | 
|
331  | 
done  | 
|
332  | 
||
333  | 
lemma Card_cardinal_eq: "Card(K) ==> |K| = K"  | 
|
334  | 
apply (unfold Card_def)  | 
|
335  | 
apply (erule sym)  | 
|
336  | 
done  | 
|
337  | 
||
338  | 
(* Could replace the ~(j \<approx> i) by ~(i \<lesssim> j) *)  | 
|
339  | 
lemma CardI: "[| Ord(i); !!j. j<i ==> ~(j \<approx> i) |] ==> Card(i)"  | 
|
340  | 
apply (unfold Card_def cardinal_def)  | 
|
341  | 
apply (subst Least_equality)  | 
|
342  | 
apply (blast intro: eqpoll_refl )+  | 
|
343  | 
done  | 
|
344  | 
||
345  | 
lemma Card_is_Ord: "Card(i) ==> Ord(i)"  | 
|
346  | 
apply (unfold Card_def cardinal_def)  | 
|
347  | 
apply (erule ssubst)  | 
|
348  | 
apply (rule Ord_Least)  | 
|
349  | 
done  | 
|
350  | 
||
351  | 
lemma Card_cardinal_le: "Card(K) ==> K le |K|"  | 
|
352  | 
apply (simp (no_asm_simp) add: Card_is_Ord Card_cardinal_eq)  | 
|
353  | 
done  | 
|
354  | 
||
355  | 
lemma Ord_cardinal [simp,intro!]: "Ord(|A|)"  | 
|
356  | 
apply (unfold cardinal_def)  | 
|
357  | 
apply (rule Ord_Least)  | 
|
358  | 
done  | 
|
359  | 
||
360  | 
(*The cardinals are the initial ordinals*)  | 
|
361  | 
lemma Card_iff_initial: "Card(K) <-> Ord(K) & (ALL j. j<K --> ~ j \<approx> K)"  | 
|
362  | 
apply (safe intro!: CardI Card_is_Ord)  | 
|
363  | 
prefer 2 apply blast  | 
|
364  | 
apply (unfold Card_def cardinal_def)  | 
|
365  | 
apply (rule less_LeastE)  | 
|
366  | 
apply (erule_tac [2] subst, assumption+)  | 
|
367  | 
done  | 
|
368  | 
||
369  | 
lemma lt_Card_imp_lesspoll: "[| Card(a); i<a |] ==> i \<prec> a"  | 
|
370  | 
apply (unfold lesspoll_def)  | 
|
371  | 
apply (drule Card_iff_initial [THEN iffD1])  | 
|
372  | 
apply (blast intro!: leI [THEN le_imp_lepoll])  | 
|
373  | 
done  | 
|
374  | 
||
375  | 
lemma Card_0: "Card(0)"  | 
|
376  | 
apply (rule Ord_0 [THEN CardI])  | 
|
377  | 
apply (blast elim!: ltE)  | 
|
378  | 
done  | 
|
379  | 
||
380  | 
lemma Card_Un: "[| Card(K); Card(L) |] ==> Card(K Un L)"  | 
|
381  | 
apply (rule Ord_linear_le [of K L])  | 
|
382  | 
apply (simp_all add: subset_Un_iff [THEN iffD1] Card_is_Ord le_imp_subset  | 
|
383  | 
subset_Un_iff2 [THEN iffD1])  | 
|
384  | 
done  | 
|
385  | 
||
386  | 
(*Infinite unions of cardinals? See Devlin, Lemma 6.7, page 98*)  | 
|
387  | 
||
388  | 
lemma Card_cardinal: "Card(|A|)"  | 
|
389  | 
apply (unfold cardinal_def)  | 
|
| 14153 | 390  | 
apply (case_tac "EX i. Ord (i) & i \<approx> A")  | 
| 13221 | 391  | 
 txt{*degenerate case*}
 | 
392  | 
prefer 2 apply (erule Least_0 [THEN ssubst], rule Card_0)  | 
|
393  | 
txt{*real case: A is isomorphic to some ordinal*}
 | 
|
394  | 
apply (rule Ord_Least [THEN CardI], safe)  | 
|
395  | 
apply (rule less_LeastE)  | 
|
396  | 
prefer 2 apply assumption  | 
|
397  | 
apply (erule eqpoll_trans)  | 
|
398  | 
apply (best intro: LeastI )  | 
|
399  | 
done  | 
|
400  | 
||
401  | 
(*Kunen's Lemma 10.5*)  | 
|
402  | 
lemma cardinal_eq_lemma: "[| |i| le j; j le i |] ==> |j| = |i|"  | 
|
403  | 
apply (rule eqpollI [THEN cardinal_cong])  | 
|
404  | 
apply (erule le_imp_lepoll)  | 
|
405  | 
apply (rule lepoll_trans)  | 
|
406  | 
apply (erule_tac [2] le_imp_lepoll)  | 
|
407  | 
apply (rule eqpoll_sym [THEN eqpoll_imp_lepoll])  | 
|
408  | 
apply (rule Ord_cardinal_eqpoll)  | 
|
409  | 
apply (elim ltE Ord_succD)  | 
|
410  | 
done  | 
|
411  | 
||
412  | 
lemma cardinal_mono: "i le j ==> |i| le |j|"  | 
|
413  | 
apply (rule_tac i = "|i|" and j = "|j|" in Ord_linear_le)  | 
|
414  | 
apply (safe intro!: Ord_cardinal le_eqI)  | 
|
415  | 
apply (rule cardinal_eq_lemma)  | 
|
416  | 
prefer 2 apply assumption  | 
|
417  | 
apply (erule le_trans)  | 
|
418  | 
apply (erule ltE)  | 
|
419  | 
apply (erule Ord_cardinal_le)  | 
|
420  | 
done  | 
|
421  | 
||
422  | 
(*Since we have |succ(nat)| le |nat|, the converse of cardinal_mono fails!*)  | 
|
423  | 
lemma cardinal_lt_imp_lt: "[| |i| < |j|; Ord(i); Ord(j) |] ==> i < j"  | 
|
424  | 
apply (rule Ord_linear2 [of i j], assumption+)  | 
|
425  | 
apply (erule lt_trans2 [THEN lt_irrefl])  | 
|
426  | 
apply (erule cardinal_mono)  | 
|
427  | 
done  | 
|
428  | 
||
429  | 
lemma Card_lt_imp_lt: "[| |i| < K; Ord(i); Card(K) |] ==> i < K"  | 
|
430  | 
apply (simp (no_asm_simp) add: cardinal_lt_imp_lt Card_is_Ord Card_cardinal_eq)  | 
|
431  | 
done  | 
|
432  | 
||
433  | 
lemma Card_lt_iff: "[| Ord(i); Card(K) |] ==> (|i| < K) <-> (i < K)"  | 
|
434  | 
by (blast intro: Card_lt_imp_lt Ord_cardinal_le [THEN lt_trans1])  | 
|
435  | 
||
436  | 
lemma Card_le_iff: "[| Ord(i); Card(K) |] ==> (K le |i|) <-> (K le i)"  | 
|
| 13269 | 437  | 
by (simp add: Card_lt_iff Card_is_Ord Ord_cardinal not_lt_iff_le [THEN iff_sym])  | 
| 13221 | 438  | 
|
439  | 
(*Can use AC or finiteness to discharge first premise*)  | 
|
440  | 
lemma well_ord_lepoll_imp_Card_le:  | 
|
441  | 
"[| well_ord(B,r); A \<lesssim> B |] ==> |A| le |B|"  | 
|
442  | 
apply (rule_tac i = "|A|" and j = "|B|" in Ord_linear_le)  | 
|
443  | 
apply (safe intro!: Ord_cardinal le_eqI)  | 
|
444  | 
apply (rule eqpollI [THEN cardinal_cong], assumption)  | 
|
445  | 
apply (rule lepoll_trans)  | 
|
446  | 
apply (rule well_ord_cardinal_eqpoll [THEN eqpoll_sym, THEN eqpoll_imp_lepoll], assumption)  | 
|
447  | 
apply (erule le_imp_lepoll [THEN lepoll_trans])  | 
|
448  | 
apply (rule eqpoll_imp_lepoll)  | 
|
449  | 
apply (unfold lepoll_def)  | 
|
450  | 
apply (erule exE)  | 
|
451  | 
apply (rule well_ord_cardinal_eqpoll)  | 
|
452  | 
apply (erule well_ord_rvimage, assumption)  | 
|
453  | 
done  | 
|
454  | 
||
455  | 
lemma lepoll_cardinal_le: "[| A \<lesssim> i; Ord(i) |] ==> |A| le i"  | 
|
456  | 
apply (rule le_trans)  | 
|
457  | 
apply (erule well_ord_Memrel [THEN well_ord_lepoll_imp_Card_le], assumption)  | 
|
458  | 
apply (erule Ord_cardinal_le)  | 
|
459  | 
done  | 
|
460  | 
||
461  | 
lemma lepoll_Ord_imp_eqpoll: "[| A \<lesssim> i; Ord(i) |] ==> |A| \<approx> A"  | 
|
462  | 
by (blast intro: lepoll_cardinal_le well_ord_Memrel well_ord_cardinal_eqpoll dest!: lepoll_well_ord)  | 
|
463  | 
||
| 14046 | 464  | 
lemma lesspoll_imp_eqpoll: "[| A \<prec> i; Ord(i) |] ==> |A| \<approx> A"  | 
| 13221 | 465  | 
apply (unfold lesspoll_def)  | 
466  | 
apply (blast intro: lepoll_Ord_imp_eqpoll)  | 
|
467  | 
done  | 
|
468  | 
||
| 14046 | 469  | 
lemma cardinal_subset_Ord: "[|A<=i; Ord(i)|] ==> |A| <= i"  | 
470  | 
apply (drule subset_imp_lepoll [THEN lepoll_cardinal_le])  | 
|
471  | 
apply (auto simp add: lt_def)  | 
|
472  | 
apply (blast intro: Ord_trans)  | 
|
473  | 
done  | 
|
| 13221 | 474  | 
|
| 13356 | 475  | 
subsection{*The finite cardinals *}
 | 
| 13221 | 476  | 
|
477  | 
lemma cons_lepoll_consD:  | 
|
478  | 
"[| cons(u,A) \<lesssim> cons(v,B); u~:A; v~:B |] ==> A \<lesssim> B"  | 
|
479  | 
apply (unfold lepoll_def inj_def, safe)  | 
|
480  | 
apply (rule_tac x = "lam x:A. if f`x=v then f`u else f`x" in exI)  | 
|
481  | 
apply (rule CollectI)  | 
|
482  | 
(*Proving it's in the function space A->B*)  | 
|
483  | 
apply (rule if_type [THEN lam_type])  | 
|
484  | 
apply (blast dest: apply_funtype)  | 
|
485  | 
apply (blast elim!: mem_irrefl dest: apply_funtype)  | 
|
486  | 
(*Proving it's injective*)  | 
|
487  | 
apply (simp (no_asm_simp))  | 
|
488  | 
apply blast  | 
|
489  | 
done  | 
|
490  | 
||
491  | 
lemma cons_eqpoll_consD: "[| cons(u,A) \<approx> cons(v,B); u~:A; v~:B |] ==> A \<approx> B"  | 
|
492  | 
apply (simp add: eqpoll_iff)  | 
|
493  | 
apply (blast intro: cons_lepoll_consD)  | 
|
494  | 
done  | 
|
495  | 
||
496  | 
(*Lemma suggested by Mike Fourman*)  | 
|
497  | 
lemma succ_lepoll_succD: "succ(m) \<lesssim> succ(n) ==> m \<lesssim> n"  | 
|
498  | 
apply (unfold succ_def)  | 
|
499  | 
apply (erule cons_lepoll_consD)  | 
|
500  | 
apply (rule mem_not_refl)+  | 
|
501  | 
done  | 
|
502  | 
||
503  | 
lemma nat_lepoll_imp_le [rule_format]:  | 
|
504  | 
"m:nat ==> ALL n: nat. m \<lesssim> n --> m le n"  | 
|
| 13244 | 505  | 
apply (induct_tac m)  | 
| 13221 | 506  | 
apply (blast intro!: nat_0_le)  | 
507  | 
apply (rule ballI)  | 
|
| 13784 | 508  | 
apply (erule_tac n = n in natE)  | 
| 13221 | 509  | 
apply (simp (no_asm_simp) add: lepoll_def inj_def)  | 
510  | 
apply (blast intro!: succ_leI dest!: succ_lepoll_succD)  | 
|
511  | 
done  | 
|
512  | 
||
513  | 
lemma nat_eqpoll_iff: "[| m:nat; n: nat |] ==> m \<approx> n <-> m = n"  | 
|
514  | 
apply (rule iffI)  | 
|
515  | 
apply (blast intro: nat_lepoll_imp_le le_anti_sym elim!: eqpollE)  | 
|
516  | 
apply (simp add: eqpoll_refl)  | 
|
517  | 
done  | 
|
518  | 
||
519  | 
(*The object of all this work: every natural number is a (finite) cardinal*)  | 
|
520  | 
lemma nat_into_Card:  | 
|
521  | 
"n: nat ==> Card(n)"  | 
|
522  | 
apply (unfold Card_def cardinal_def)  | 
|
523  | 
apply (subst Least_equality)  | 
|
524  | 
apply (rule eqpoll_refl)  | 
|
525  | 
apply (erule nat_into_Ord)  | 
|
526  | 
apply (simp (no_asm_simp) add: lt_nat_in_nat [THEN nat_eqpoll_iff])  | 
|
527  | 
apply (blast elim!: lt_irrefl)+  | 
|
528  | 
done  | 
|
529  | 
||
530  | 
lemmas cardinal_0 = nat_0I [THEN nat_into_Card, THEN Card_cardinal_eq, iff]  | 
|
531  | 
lemmas cardinal_1 = nat_1I [THEN nat_into_Card, THEN Card_cardinal_eq, iff]  | 
|
532  | 
||
533  | 
||
534  | 
(*Part of Kunen's Lemma 10.6*)  | 
|
535  | 
lemma succ_lepoll_natE: "[| succ(n) \<lesssim> n; n:nat |] ==> P"  | 
|
536  | 
by (rule nat_lepoll_imp_le [THEN lt_irrefl], auto)  | 
|
537  | 
||
538  | 
lemma n_lesspoll_nat: "n \<in> nat ==> n \<prec> nat"  | 
|
539  | 
apply (unfold lesspoll_def)  | 
|
540  | 
apply (fast elim!: Ord_nat [THEN [2] ltI [THEN leI, THEN le_imp_lepoll]]  | 
|
541  | 
eqpoll_sym [THEN eqpoll_imp_lepoll]  | 
|
542  | 
intro: Ord_nat [THEN [2] nat_succI [THEN ltI], THEN leI,  | 
|
543  | 
THEN le_imp_lepoll, THEN lepoll_trans, THEN succ_lepoll_natE])  | 
|
544  | 
done  | 
|
545  | 
||
546  | 
lemma nat_lepoll_imp_ex_eqpoll_n:  | 
|
547  | 
"[| n \<in> nat; nat \<lesssim> X |] ==> \<exists>Y. Y \<subseteq> X & n \<approx> Y"  | 
|
548  | 
apply (unfold lepoll_def eqpoll_def)  | 
|
549  | 
apply (fast del: subsetI subsetCE  | 
|
550  | 
intro!: subset_SIs  | 
|
551  | 
dest!: Ord_nat [THEN [2] OrdmemD, THEN [2] restrict_inj]  | 
|
552  | 
elim!: restrict_bij  | 
|
553  | 
inj_is_fun [THEN fun_is_rel, THEN image_subset])  | 
|
554  | 
done  | 
|
555  | 
||
556  | 
||
557  | 
(** lepoll, \<prec> and natural numbers **)  | 
|
558  | 
||
559  | 
lemma lepoll_imp_lesspoll_succ:  | 
|
560  | 
"[| A \<lesssim> m; m:nat |] ==> A \<prec> succ(m)"  | 
|
561  | 
apply (unfold lesspoll_def)  | 
|
562  | 
apply (rule conjI)  | 
|
563  | 
apply (blast intro: subset_imp_lepoll [THEN [2] lepoll_trans])  | 
|
564  | 
apply (rule notI)  | 
|
565  | 
apply (drule eqpoll_sym [THEN eqpoll_imp_lepoll])  | 
|
566  | 
apply (drule lepoll_trans, assumption)  | 
|
567  | 
apply (erule succ_lepoll_natE, assumption)  | 
|
568  | 
done  | 
|
569  | 
||
570  | 
lemma lesspoll_succ_imp_lepoll:  | 
|
571  | 
"[| A \<prec> succ(m); m:nat |] ==> A \<lesssim> m"  | 
|
572  | 
apply (unfold lesspoll_def lepoll_def eqpoll_def bij_def, clarify)  | 
|
573  | 
apply (blast intro!: inj_not_surj_succ)  | 
|
574  | 
done  | 
|
575  | 
||
576  | 
lemma lesspoll_succ_iff: "m:nat ==> A \<prec> succ(m) <-> A \<lesssim> m"  | 
|
577  | 
by (blast intro!: lepoll_imp_lesspoll_succ lesspoll_succ_imp_lepoll)  | 
|
578  | 
||
579  | 
lemma lepoll_succ_disj: "[| A \<lesssim> succ(m); m:nat |] ==> A \<lesssim> m | A \<approx> succ(m)"  | 
|
580  | 
apply (rule disjCI)  | 
|
581  | 
apply (rule lesspoll_succ_imp_lepoll)  | 
|
582  | 
prefer 2 apply assumption  | 
|
583  | 
apply (simp (no_asm_simp) add: lesspoll_def)  | 
|
584  | 
done  | 
|
585  | 
||
586  | 
lemma lesspoll_cardinal_lt: "[| A \<prec> i; Ord(i) |] ==> |A| < i"  | 
|
587  | 
apply (unfold lesspoll_def, clarify)  | 
|
588  | 
apply (frule lepoll_cardinal_le, assumption)  | 
|
589  | 
apply (blast intro: well_ord_Memrel well_ord_cardinal_eqpoll [THEN eqpoll_sym]  | 
|
590  | 
dest: lepoll_well_ord elim!: leE)  | 
|
591  | 
done  | 
|
592  | 
||
593  | 
||
| 13356 | 594  | 
subsection{*The first infinite cardinal: Omega, or nat *}
 | 
| 13221 | 595  | 
|
596  | 
(*This implies Kunen's Lemma 10.6*)  | 
|
597  | 
lemma lt_not_lepoll: "[| n<i; n:nat |] ==> ~ i \<lesssim> n"  | 
|
598  | 
apply (rule notI)  | 
|
599  | 
apply (rule succ_lepoll_natE [of n])  | 
|
600  | 
apply (rule lepoll_trans [of _ i])  | 
|
601  | 
apply (erule ltE)  | 
|
602  | 
apply (rule Ord_succ_subsetI [THEN subset_imp_lepoll], assumption+)  | 
|
603  | 
done  | 
|
604  | 
||
605  | 
lemma Ord_nat_eqpoll_iff: "[| Ord(i); n:nat |] ==> i \<approx> n <-> i=n"  | 
|
606  | 
apply (rule iffI)  | 
|
607  | 
prefer 2 apply (simp add: eqpoll_refl)  | 
|
608  | 
apply (rule Ord_linear_lt [of i n])  | 
|
609  | 
apply (simp_all add: nat_into_Ord)  | 
|
610  | 
apply (erule lt_nat_in_nat [THEN nat_eqpoll_iff, THEN iffD1], assumption+)  | 
|
611  | 
apply (rule lt_not_lepoll [THEN notE], assumption+)  | 
|
612  | 
apply (erule eqpoll_imp_lepoll)  | 
|
613  | 
done  | 
|
614  | 
||
615  | 
lemma Card_nat: "Card(nat)"  | 
|
616  | 
apply (unfold Card_def cardinal_def)  | 
|
617  | 
apply (subst Least_equality)  | 
|
618  | 
apply (rule eqpoll_refl)  | 
|
619  | 
apply (rule Ord_nat)  | 
|
620  | 
apply (erule ltE)  | 
|
621  | 
apply (simp_all add: eqpoll_iff lt_not_lepoll ltI)  | 
|
622  | 
done  | 
|
623  | 
||
624  | 
(*Allows showing that |i| is a limit cardinal*)  | 
|
625  | 
lemma nat_le_cardinal: "nat le i ==> nat le |i|"  | 
|
626  | 
apply (rule Card_nat [THEN Card_cardinal_eq, THEN subst])  | 
|
627  | 
apply (erule cardinal_mono)  | 
|
628  | 
done  | 
|
629  | 
||
630  | 
||
| 13356 | 631  | 
subsection{*Towards Cardinal Arithmetic *}
 | 
| 13221 | 632  | 
(** Congruence laws for successor, cardinal addition and multiplication **)  | 
633  | 
||
634  | 
(*Congruence law for cons under equipollence*)  | 
|
635  | 
lemma cons_lepoll_cong:  | 
|
636  | 
"[| A \<lesssim> B; b ~: B |] ==> cons(a,A) \<lesssim> cons(b,B)"  | 
|
637  | 
apply (unfold lepoll_def, safe)  | 
|
638  | 
apply (rule_tac x = "lam y: cons (a,A) . if y=a then b else f`y" in exI)  | 
|
639  | 
apply (rule_tac d = "%z. if z:B then converse (f) `z else a" in lam_injective)  | 
|
640  | 
apply (safe elim!: consE')  | 
|
641  | 
apply simp_all  | 
|
642  | 
apply (blast intro: inj_is_fun [THEN apply_type])+  | 
|
643  | 
done  | 
|
644  | 
||
645  | 
lemma cons_eqpoll_cong:  | 
|
646  | 
"[| A \<approx> B; a ~: A; b ~: B |] ==> cons(a,A) \<approx> cons(b,B)"  | 
|
647  | 
by (simp add: eqpoll_iff cons_lepoll_cong)  | 
|
648  | 
||
649  | 
lemma cons_lepoll_cons_iff:  | 
|
650  | 
"[| a ~: A; b ~: B |] ==> cons(a,A) \<lesssim> cons(b,B) <-> A \<lesssim> B"  | 
|
651  | 
by (blast intro: cons_lepoll_cong cons_lepoll_consD)  | 
|
652  | 
||
653  | 
lemma cons_eqpoll_cons_iff:  | 
|
654  | 
"[| a ~: A; b ~: B |] ==> cons(a,A) \<approx> cons(b,B) <-> A \<approx> B"  | 
|
655  | 
by (blast intro: cons_eqpoll_cong cons_eqpoll_consD)  | 
|
656  | 
||
657  | 
lemma singleton_eqpoll_1: "{a} \<approx> 1"
 | 
|
658  | 
apply (unfold succ_def)  | 
|
659  | 
apply (blast intro!: eqpoll_refl [THEN cons_eqpoll_cong])  | 
|
660  | 
done  | 
|
661  | 
||
662  | 
lemma cardinal_singleton: "|{a}| = 1"
 | 
|
663  | 
apply (rule singleton_eqpoll_1 [THEN cardinal_cong, THEN trans])  | 
|
664  | 
apply (simp (no_asm) add: nat_into_Card [THEN Card_cardinal_eq])  | 
|
665  | 
done  | 
|
666  | 
||
667  | 
lemma not_0_is_lepoll_1: "A ~= 0 ==> 1 \<lesssim> A"  | 
|
668  | 
apply (erule not_emptyE)  | 
|
669  | 
apply (rule_tac a = "cons (x, A-{x}) " in subst)
 | 
|
670  | 
apply (rule_tac [2] a = "cons(0,0)" and P= "%y. y \<lesssim> cons (x, A-{x})" in subst)
 | 
|
671  | 
prefer 3 apply (blast intro: cons_lepoll_cong subset_imp_lepoll, auto)  | 
|
672  | 
done  | 
|
673  | 
||
674  | 
(*Congruence law for succ under equipollence*)  | 
|
675  | 
lemma succ_eqpoll_cong: "A \<approx> B ==> succ(A) \<approx> succ(B)"  | 
|
676  | 
apply (unfold succ_def)  | 
|
677  | 
apply (simp add: cons_eqpoll_cong mem_not_refl)  | 
|
678  | 
done  | 
|
679  | 
||
680  | 
(*Congruence law for + under equipollence*)  | 
|
681  | 
lemma sum_eqpoll_cong: "[| A \<approx> C; B \<approx> D |] ==> A+B \<approx> C+D"  | 
|
682  | 
apply (unfold eqpoll_def)  | 
|
683  | 
apply (blast intro!: sum_bij)  | 
|
684  | 
done  | 
|
685  | 
||
686  | 
(*Congruence law for * under equipollence*)  | 
|
687  | 
lemma prod_eqpoll_cong:  | 
|
688  | 
"[| A \<approx> C; B \<approx> D |] ==> A*B \<approx> C*D"  | 
|
689  | 
apply (unfold eqpoll_def)  | 
|
690  | 
apply (blast intro!: prod_bij)  | 
|
691  | 
done  | 
|
692  | 
||
693  | 
lemma inj_disjoint_eqpoll:  | 
|
694  | 
"[| f: inj(A,B); A Int B = 0 |] ==> A Un (B - range(f)) \<approx> B"  | 
|
695  | 
apply (unfold eqpoll_def)  | 
|
696  | 
apply (rule exI)  | 
|
697  | 
apply (rule_tac c = "%x. if x:A then f`x else x"  | 
|
698  | 
and d = "%y. if y: range (f) then converse (f) `y else y"  | 
|
699  | 
in lam_bijective)  | 
|
700  | 
apply (blast intro!: if_type inj_is_fun [THEN apply_type])  | 
|
701  | 
apply (simp (no_asm_simp) add: inj_converse_fun [THEN apply_funtype])  | 
|
702  | 
apply (safe elim!: UnE')  | 
|
703  | 
apply (simp_all add: inj_is_fun [THEN apply_rangeI])  | 
|
704  | 
apply (blast intro: inj_converse_fun [THEN apply_type])+  | 
|
705  | 
done  | 
|
706  | 
||
707  | 
||
| 13356 | 708  | 
subsection{*Lemmas by Krzysztof Grabczewski*}
 | 
709  | 
||
710  | 
(*New proofs using cons_lepoll_cons. Could generalise from succ to cons.*)  | 
|
| 13221 | 711  | 
|
712  | 
(*If A has at most n+1 elements and a:A then A-{a} has at most n.*)
 | 
|
713  | 
lemma Diff_sing_lepoll:  | 
|
714  | 
      "[| a:A;  A \<lesssim> succ(n) |] ==> A - {a} \<lesssim> n"
 | 
|
715  | 
apply (unfold succ_def)  | 
|
716  | 
apply (rule cons_lepoll_consD)  | 
|
717  | 
apply (rule_tac [3] mem_not_refl)  | 
|
718  | 
apply (erule cons_Diff [THEN ssubst], safe)  | 
|
719  | 
done  | 
|
720  | 
||
721  | 
(*If A has at least n+1 elements then A-{a} has at least n.*)
 | 
|
722  | 
lemma lepoll_Diff_sing:  | 
|
723  | 
      "[| succ(n) \<lesssim> A |] ==> n \<lesssim> A - {a}"
 | 
|
724  | 
apply (unfold succ_def)  | 
|
725  | 
apply (rule cons_lepoll_consD)  | 
|
726  | 
apply (rule_tac [2] mem_not_refl)  | 
|
727  | 
prefer 2 apply blast  | 
|
728  | 
apply (blast intro: subset_imp_lepoll [THEN [2] lepoll_trans])  | 
|
729  | 
done  | 
|
730  | 
||
731  | 
lemma Diff_sing_eqpoll: "[| a:A; A \<approx> succ(n) |] ==> A - {a} \<approx> n"
 | 
|
732  | 
by (blast intro!: eqpollI  | 
|
733  | 
elim!: eqpollE  | 
|
734  | 
intro: Diff_sing_lepoll lepoll_Diff_sing)  | 
|
735  | 
||
736  | 
lemma lepoll_1_is_sing: "[| A \<lesssim> 1; a:A |] ==> A = {a}"
 | 
|
737  | 
apply (frule Diff_sing_lepoll, assumption)  | 
|
738  | 
apply (drule lepoll_0_is_0)  | 
|
739  | 
apply (blast elim: equalityE)  | 
|
740  | 
done  | 
|
741  | 
||
742  | 
lemma Un_lepoll_sum: "A Un B \<lesssim> A+B"  | 
|
743  | 
apply (unfold lepoll_def)  | 
|
744  | 
apply (rule_tac x = "lam x: A Un B. if x:A then Inl (x) else Inr (x) " in exI)  | 
|
745  | 
apply (rule_tac d = "%z. snd (z) " in lam_injective)  | 
|
746  | 
apply force  | 
|
747  | 
apply (simp add: Inl_def Inr_def)  | 
|
748  | 
done  | 
|
749  | 
||
750  | 
lemma well_ord_Un:  | 
|
751  | 
"[| well_ord(X,R); well_ord(Y,S) |] ==> EX T. well_ord(X Un Y, T)"  | 
|
752  | 
by (erule well_ord_radd [THEN Un_lepoll_sum [THEN lepoll_well_ord]],  | 
|
753  | 
assumption)  | 
|
754  | 
||
755  | 
(*Krzysztof Grabczewski*)  | 
|
756  | 
lemma disj_Un_eqpoll_sum: "A Int B = 0 ==> A Un B \<approx> A + B"  | 
|
757  | 
apply (unfold eqpoll_def)  | 
|
758  | 
apply (rule_tac x = "lam a:A Un B. if a:A then Inl (a) else Inr (a) " in exI)  | 
|
759  | 
apply (rule_tac d = "%z. case (%x. x, %x. x, z) " in lam_bijective)  | 
|
760  | 
apply auto  | 
|
761  | 
done  | 
|
762  | 
||
763  | 
||
| 13244 | 764  | 
subsection {*Finite and infinite sets*}
 | 
| 13221 | 765  | 
|
| 13244 | 766  | 
lemma Finite_0 [simp]: "Finite(0)"  | 
| 13221 | 767  | 
apply (unfold Finite_def)  | 
768  | 
apply (blast intro!: eqpoll_refl nat_0I)  | 
|
769  | 
done  | 
|
770  | 
||
771  | 
lemma lepoll_nat_imp_Finite: "[| A \<lesssim> n; n:nat |] ==> Finite(A)"  | 
|
772  | 
apply (unfold Finite_def)  | 
|
773  | 
apply (erule rev_mp)  | 
|
774  | 
apply (erule nat_induct)  | 
|
775  | 
apply (blast dest!: lepoll_0_is_0 intro!: eqpoll_refl nat_0I)  | 
|
776  | 
apply (blast dest!: lepoll_succ_disj)  | 
|
777  | 
done  | 
|
778  | 
||
779  | 
lemma lesspoll_nat_is_Finite:  | 
|
780  | 
"A \<prec> nat ==> Finite(A)"  | 
|
781  | 
apply (unfold Finite_def)  | 
|
782  | 
apply (blast dest: ltD lesspoll_cardinal_lt  | 
|
783  | 
lesspoll_imp_eqpoll [THEN eqpoll_sym])  | 
|
784  | 
done  | 
|
785  | 
||
786  | 
lemma lepoll_Finite:  | 
|
787  | 
"[| Y \<lesssim> X; Finite(X) |] ==> Finite(Y)"  | 
|
788  | 
apply (unfold Finite_def)  | 
|
789  | 
apply (blast elim!: eqpollE  | 
|
790  | 
intro: lepoll_trans [THEN lepoll_nat_imp_Finite  | 
|
791  | 
[unfolded Finite_def]])  | 
|
792  | 
done  | 
|
793  | 
||
794  | 
lemmas subset_Finite = subset_imp_lepoll [THEN lepoll_Finite, standard]  | 
|
795  | 
||
| 14883 | 796  | 
lemma Finite_Int: "Finite(A) | Finite(B) ==> Finite(A Int B)"  | 
797  | 
by (blast intro: subset_Finite)  | 
|
798  | 
||
| 13221 | 799  | 
lemmas Finite_Diff = Diff_subset [THEN subset_Finite, standard]  | 
800  | 
||
801  | 
lemma Finite_cons: "Finite(x) ==> Finite(cons(y,x))"  | 
|
802  | 
apply (unfold Finite_def)  | 
|
| 14153 | 803  | 
apply (case_tac "y:x")  | 
| 13221 | 804  | 
apply (simp add: cons_absorb)  | 
805  | 
apply (erule bexE)  | 
|
806  | 
apply (rule bexI)  | 
|
807  | 
apply (erule_tac [2] nat_succI)  | 
|
808  | 
apply (simp (no_asm_simp) add: succ_def cons_eqpoll_cong mem_not_refl)  | 
|
809  | 
done  | 
|
810  | 
||
811  | 
lemma Finite_succ: "Finite(x) ==> Finite(succ(x))"  | 
|
812  | 
apply (unfold succ_def)  | 
|
813  | 
apply (erule Finite_cons)  | 
|
814  | 
done  | 
|
815  | 
||
| 13269 | 816  | 
lemma Finite_cons_iff [iff]: "Finite(cons(y,x)) <-> Finite(x)"  | 
| 13244 | 817  | 
by (blast intro: Finite_cons subset_Finite)  | 
818  | 
||
| 13269 | 819  | 
lemma Finite_succ_iff [iff]: "Finite(succ(x)) <-> Finite(x)"  | 
| 13244 | 820  | 
by (simp add: succ_def)  | 
821  | 
||
| 13221 | 822  | 
lemma nat_le_infinite_Ord:  | 
823  | 
"[| Ord(i); ~ Finite(i) |] ==> nat le i"  | 
|
824  | 
apply (unfold Finite_def)  | 
|
825  | 
apply (erule Ord_nat [THEN [2] Ord_linear2])  | 
|
826  | 
prefer 2 apply assumption  | 
|
827  | 
apply (blast intro!: eqpoll_refl elim!: ltE)  | 
|
828  | 
done  | 
|
829  | 
||
830  | 
lemma Finite_imp_well_ord:  | 
|
831  | 
"Finite(A) ==> EX r. well_ord(A,r)"  | 
|
832  | 
apply (unfold Finite_def eqpoll_def)  | 
|
833  | 
apply (blast intro: well_ord_rvimage bij_is_inj well_ord_Memrel nat_into_Ord)  | 
|
834  | 
done  | 
|
835  | 
||
| 13244 | 836  | 
lemma succ_lepoll_imp_not_empty: "succ(x) \<lesssim> y ==> y \<noteq> 0"  | 
837  | 
by (fast dest!: lepoll_0_is_0)  | 
|
838  | 
||
839  | 
lemma eqpoll_succ_imp_not_empty: "x \<approx> succ(n) ==> x \<noteq> 0"  | 
|
840  | 
by (fast elim!: eqpoll_sym [THEN eqpoll_0_is_0, THEN succ_neq_0])  | 
|
841  | 
||
842  | 
lemma Finite_Fin_lemma [rule_format]:  | 
|
843  | 
"n \<in> nat ==> \<forall>A. (A\<approx>n & A \<subseteq> X) --> A \<in> Fin(X)"  | 
|
844  | 
apply (induct_tac n)  | 
|
845  | 
apply (rule allI)  | 
|
846  | 
apply (fast intro!: Fin.emptyI dest!: eqpoll_imp_lepoll [THEN lepoll_0_is_0])  | 
|
847  | 
apply (rule allI)  | 
|
848  | 
apply (rule impI)  | 
|
849  | 
apply (erule conjE)  | 
|
850  | 
apply (rule eqpoll_succ_imp_not_empty [THEN not_emptyE], assumption)  | 
|
851  | 
apply (frule Diff_sing_eqpoll, assumption)  | 
|
852  | 
apply (erule allE)  | 
|
853  | 
apply (erule impE, fast)  | 
|
854  | 
apply (drule subsetD, assumption)  | 
|
855  | 
apply (drule Fin.consI, assumption)  | 
|
856  | 
apply (simp add: cons_Diff)  | 
|
857  | 
done  | 
|
858  | 
||
859  | 
lemma Finite_Fin: "[| Finite(A); A \<subseteq> X |] ==> A \<in> Fin(X)"  | 
|
860  | 
by (unfold Finite_def, blast intro: Finite_Fin_lemma)  | 
|
861  | 
||
862  | 
lemma eqpoll_imp_Finite_iff: "A \<approx> B ==> Finite(A) <-> Finite(B)"  | 
|
863  | 
apply (unfold Finite_def)  | 
|
864  | 
apply (blast intro: eqpoll_trans eqpoll_sym)  | 
|
865  | 
done  | 
|
866  | 
||
867  | 
lemma Fin_lemma [rule_format]: "n: nat ==> ALL A. A \<approx> n --> A : Fin(A)"  | 
|
868  | 
apply (induct_tac n)  | 
|
869  | 
apply (simp add: eqpoll_0_iff, clarify)  | 
|
870  | 
apply (subgoal_tac "EX u. u:A")  | 
|
871  | 
apply (erule exE)  | 
|
872  | 
apply (rule Diff_sing_eqpoll [THEN revcut_rl])  | 
|
873  | 
prefer 2 apply assumption  | 
|
874  | 
apply assumption  | 
|
| 13784 | 875  | 
apply (rule_tac b = A in cons_Diff [THEN subst], assumption)  | 
| 13244 | 876  | 
apply (rule Fin.consI, blast)  | 
877  | 
apply (blast intro: subset_consI [THEN Fin_mono, THEN subsetD])  | 
|
878  | 
(*Now for the lemma assumed above*)  | 
|
879  | 
apply (unfold eqpoll_def)  | 
|
880  | 
apply (blast intro: bij_converse_bij [THEN bij_is_fun, THEN apply_type])  | 
|
881  | 
done  | 
|
882  | 
||
883  | 
lemma Finite_into_Fin: "Finite(A) ==> A : Fin(A)"  | 
|
884  | 
apply (unfold Finite_def)  | 
|
885  | 
apply (blast intro: Fin_lemma)  | 
|
886  | 
done  | 
|
887  | 
||
888  | 
lemma Fin_into_Finite: "A : Fin(U) ==> Finite(A)"  | 
|
889  | 
by (fast intro!: Finite_0 Finite_cons elim: Fin_induct)  | 
|
890  | 
||
891  | 
lemma Finite_Fin_iff: "Finite(A) <-> A : Fin(A)"  | 
|
892  | 
by (blast intro: Finite_into_Fin Fin_into_Finite)  | 
|
893  | 
||
894  | 
lemma Finite_Un: "[| Finite(A); Finite(B) |] ==> Finite(A Un B)"  | 
|
895  | 
by (blast intro!: Fin_into_Finite Fin_UnI  | 
|
896  | 
dest!: Finite_into_Fin  | 
|
897  | 
intro: Un_upper1 [THEN Fin_mono, THEN subsetD]  | 
|
898  | 
Un_upper2 [THEN Fin_mono, THEN subsetD])  | 
|
899  | 
||
| 14883 | 900  | 
lemma Finite_Un_iff [simp]: "Finite(A Un B) <-> (Finite(A) & Finite(B))"  | 
901  | 
by (blast intro: subset_Finite Finite_Un)  | 
|
902  | 
||
903  | 
text{*The converse must hold too.*}
 | 
|
| 13244 | 904  | 
lemma Finite_Union: "[| ALL y:X. Finite(y); Finite(X) |] ==> Finite(Union(X))"  | 
905  | 
apply (simp add: Finite_Fin_iff)  | 
|
906  | 
apply (rule Fin_UnionI)  | 
|
907  | 
apply (erule Fin_induct, simp)  | 
|
908  | 
apply (blast intro: Fin.consI Fin_mono [THEN [2] rev_subsetD])  | 
|
909  | 
done  | 
|
910  | 
||
911  | 
(* Induction principle for Finite(A), by Sidi Ehmety *)  | 
|
| 13524 | 912  | 
lemma Finite_induct [case_names 0 cons, induct set: Finite]:  | 
| 13244 | 913  | 
"[| Finite(A); P(0);  | 
914  | 
!! x B. [| Finite(B); x ~: B; P(B) |] ==> P(cons(x, B)) |]  | 
|
915  | 
==> P(A)"  | 
|
916  | 
apply (erule Finite_into_Fin [THEN Fin_induct])  | 
|
917  | 
apply (blast intro: Fin_into_Finite)+  | 
|
918  | 
done  | 
|
919  | 
||
920  | 
(*Sidi Ehmety.  The contrapositive says ~Finite(A) ==> ~Finite(A-{a}) *)
 | 
|
921  | 
lemma Diff_sing_Finite: "Finite(A - {a}) ==> Finite(A)"
 | 
|
922  | 
apply (unfold Finite_def)  | 
|
923  | 
apply (case_tac "a:A")  | 
|
924  | 
apply (subgoal_tac [2] "A-{a}=A", auto)
 | 
|
925  | 
apply (rule_tac x = "succ (n) " in bexI)  | 
|
926  | 
apply (subgoal_tac "cons (a, A - {a}) = A & cons (n, n) = succ (n) ")
 | 
|
| 13784 | 927  | 
apply (drule_tac a = a and b = n in cons_eqpoll_cong)  | 
| 13244 | 928  | 
apply (auto dest: mem_irrefl)  | 
929  | 
done  | 
|
930  | 
||
931  | 
(*Sidi Ehmety. And the contrapositive of this says  | 
|
932  | 
[| ~Finite(A); Finite(B) |] ==> ~Finite(A-B) *)  | 
|
933  | 
lemma Diff_Finite [rule_format]: "Finite(B) ==> Finite(A-B) --> Finite(A)"  | 
|
934  | 
apply (erule Finite_induct, auto)  | 
|
935  | 
apply (case_tac "x:A")  | 
|
936  | 
apply (subgoal_tac [2] "A-cons (x, B) = A - B")  | 
|
| 
13615
 
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
 
paulson 
parents: 
13524 
diff
changeset
 | 
937  | 
apply (subgoal_tac "A - cons (x, B) = (A - B) - {x}", simp)
 | 
| 13244 | 938  | 
apply (drule Diff_sing_Finite, auto)  | 
939  | 
done  | 
|
940  | 
||
941  | 
lemma Finite_RepFun: "Finite(A) ==> Finite(RepFun(A,f))"  | 
|
942  | 
by (erule Finite_induct, simp_all)  | 
|
943  | 
||
944  | 
lemma Finite_RepFun_iff_lemma [rule_format]:  | 
|
945  | 
"[|Finite(x); !!x y. f(x)=f(y) ==> x=y|]  | 
|
946  | 
==> \<forall>A. x = RepFun(A,f) --> Finite(A)"  | 
|
947  | 
apply (erule Finite_induct)  | 
|
948  | 
apply clarify  | 
|
949  | 
apply (case_tac "A=0", simp)  | 
|
950  | 
apply (blast del: allE, clarify)  | 
|
951  | 
apply (subgoal_tac "\<exists>z\<in>A. x = f(z)")  | 
|
952  | 
prefer 2 apply (blast del: allE elim: equalityE, clarify)  | 
|
953  | 
apply (subgoal_tac "B = {f(u) . u \<in> A - {z}}")
 | 
|
954  | 
apply (blast intro: Diff_sing_Finite)  | 
|
955  | 
apply (thin_tac "\<forall>A. ?P(A) --> Finite(A)")  | 
|
956  | 
apply (rule equalityI)  | 
|
957  | 
apply (blast intro: elim: equalityE)  | 
|
958  | 
apply (blast intro: elim: equalityCE)  | 
|
959  | 
done  | 
|
960  | 
||
961  | 
text{*I don't know why, but if the premise is expressed using meta-connectives
 | 
|
962  | 
then the simplifier cannot prove it automatically in conditional rewriting.*}  | 
|
963  | 
lemma Finite_RepFun_iff:  | 
|
964  | 
"(\<forall>x y. f(x)=f(y) --> x=y) ==> Finite(RepFun(A,f)) <-> Finite(A)"  | 
|
965  | 
by (blast intro: Finite_RepFun Finite_RepFun_iff_lemma [of _ f])  | 
|
966  | 
||
967  | 
lemma Finite_Pow: "Finite(A) ==> Finite(Pow(A))"  | 
|
968  | 
apply (erule Finite_induct)  | 
|
969  | 
apply (simp_all add: Pow_insert Finite_Un Finite_RepFun)  | 
|
970  | 
done  | 
|
971  | 
||
972  | 
lemma Finite_Pow_imp_Finite: "Finite(Pow(A)) ==> Finite(A)"  | 
|
973  | 
apply (subgoal_tac "Finite({{x} . x \<in> A})")
 | 
|
974  | 
apply (simp add: Finite_RepFun_iff )  | 
|
975  | 
apply (blast intro: subset_Finite)  | 
|
976  | 
done  | 
|
977  | 
||
978  | 
lemma Finite_Pow_iff [iff]: "Finite(Pow(A)) <-> Finite(A)"  | 
|
979  | 
by (blast intro: Finite_Pow Finite_Pow_imp_Finite)  | 
|
980  | 
||
981  | 
||
| 13221 | 982  | 
|
983  | 
(*Krzysztof Grabczewski's proof that the converse of a finite, well-ordered  | 
|
984  | 
set is well-ordered. Proofs simplified by lcp. *)  | 
|
985  | 
||
986  | 
lemma nat_wf_on_converse_Memrel: "n:nat ==> wf[n](converse(Memrel(n)))"  | 
|
987  | 
apply (erule nat_induct)  | 
|
988  | 
apply (blast intro: wf_onI)  | 
|
989  | 
apply (rule wf_onI)  | 
|
990  | 
apply (simp add: wf_on_def wf_def)  | 
|
| 14153 | 991  | 
apply (case_tac "x:Z")  | 
| 13221 | 992  | 
 txt{*x:Z case*}
 | 
993  | 
apply (drule_tac x = x in bspec, assumption)  | 
|
994  | 
apply (blast elim: mem_irrefl mem_asym)  | 
|
995  | 
txt{*other case*} 
 | 
|
| 13784 | 996  | 
apply (drule_tac x = Z in spec, blast)  | 
| 13221 | 997  | 
done  | 
998  | 
||
999  | 
lemma nat_well_ord_converse_Memrel: "n:nat ==> well_ord(n,converse(Memrel(n)))"  | 
|
1000  | 
apply (frule Ord_nat [THEN Ord_in_Ord, THEN well_ord_Memrel])  | 
|
1001  | 
apply (unfold well_ord_def)  | 
|
1002  | 
apply (blast intro!: tot_ord_converse nat_wf_on_converse_Memrel)  | 
|
1003  | 
done  | 
|
1004  | 
||
1005  | 
lemma well_ord_converse:  | 
|
1006  | 
"[|well_ord(A,r);  | 
|
1007  | 
well_ord(ordertype(A,r), converse(Memrel(ordertype(A, r)))) |]  | 
|
1008  | 
==> well_ord(A,converse(r))"  | 
|
1009  | 
apply (rule well_ord_Int_iff [THEN iffD1])  | 
|
1010  | 
apply (frule ordermap_bij [THEN bij_is_inj, THEN well_ord_rvimage], assumption)  | 
|
1011  | 
apply (simp add: rvimage_converse converse_Int converse_prod  | 
|
1012  | 
ordertype_ord_iso [THEN ord_iso_rvimage_eq])  | 
|
1013  | 
done  | 
|
1014  | 
||
1015  | 
lemma ordertype_eq_n:  | 
|
1016  | 
"[| well_ord(A,r); A \<approx> n; n:nat |] ==> ordertype(A,r)=n"  | 
|
1017  | 
apply (rule Ord_ordertype [THEN Ord_nat_eqpoll_iff, THEN iffD1], assumption+)  | 
|
1018  | 
apply (rule eqpoll_trans)  | 
|
1019  | 
prefer 2 apply assumption  | 
|
1020  | 
apply (unfold eqpoll_def)  | 
|
1021  | 
apply (blast intro!: ordermap_bij [THEN bij_converse_bij])  | 
|
1022  | 
done  | 
|
1023  | 
||
1024  | 
lemma Finite_well_ord_converse:  | 
|
1025  | 
"[| Finite(A); well_ord(A,r) |] ==> well_ord(A,converse(r))"  | 
|
1026  | 
apply (unfold Finite_def)  | 
|
1027  | 
apply (rule well_ord_converse, assumption)  | 
|
1028  | 
apply (blast dest: ordertype_eq_n intro!: nat_well_ord_converse_Memrel)  | 
|
1029  | 
done  | 
|
1030  | 
||
1031  | 
lemma nat_into_Finite: "n:nat ==> Finite(n)"  | 
|
1032  | 
apply (unfold Finite_def)  | 
|
1033  | 
apply (fast intro!: eqpoll_refl)  | 
|
1034  | 
done  | 
|
1035  | 
||
| 14076 | 1036  | 
lemma nat_not_Finite: "~Finite(nat)"  | 
1037  | 
apply (unfold Finite_def, clarify)  | 
|
1038  | 
apply (drule eqpoll_imp_lepoll [THEN lepoll_cardinal_le], simp)  | 
|
1039  | 
apply (insert Card_nat)  | 
|
1040  | 
apply (simp add: Card_def)  | 
|
1041  | 
apply (drule le_imp_subset)  | 
|
1042  | 
apply (blast elim: mem_irrefl)  | 
|
1043  | 
done  | 
|
1044  | 
||
| 13221 | 1045  | 
ML  | 
1046  | 
{*
 | 
|
1047  | 
val Least_def = thm "Least_def";  | 
|
1048  | 
val eqpoll_def = thm "eqpoll_def";  | 
|
1049  | 
val lepoll_def = thm "lepoll_def";  | 
|
1050  | 
val lesspoll_def = thm "lesspoll_def";  | 
|
1051  | 
val cardinal_def = thm "cardinal_def";  | 
|
1052  | 
val Finite_def = thm "Finite_def";  | 
|
1053  | 
val Card_def = thm "Card_def";  | 
|
1054  | 
val eq_imp_not_mem = thm "eq_imp_not_mem";  | 
|
1055  | 
val decomp_bnd_mono = thm "decomp_bnd_mono";  | 
|
1056  | 
val Banach_last_equation = thm "Banach_last_equation";  | 
|
1057  | 
val decomposition = thm "decomposition";  | 
|
1058  | 
val schroeder_bernstein = thm "schroeder_bernstein";  | 
|
1059  | 
val bij_imp_eqpoll = thm "bij_imp_eqpoll";  | 
|
1060  | 
val eqpoll_refl = thm "eqpoll_refl";  | 
|
1061  | 
val eqpoll_sym = thm "eqpoll_sym";  | 
|
1062  | 
val eqpoll_trans = thm "eqpoll_trans";  | 
|
1063  | 
val subset_imp_lepoll = thm "subset_imp_lepoll";  | 
|
1064  | 
val lepoll_refl = thm "lepoll_refl";  | 
|
1065  | 
val le_imp_lepoll = thm "le_imp_lepoll";  | 
|
1066  | 
val eqpoll_imp_lepoll = thm "eqpoll_imp_lepoll";  | 
|
1067  | 
val lepoll_trans = thm "lepoll_trans";  | 
|
1068  | 
val eqpollI = thm "eqpollI";  | 
|
1069  | 
val eqpollE = thm "eqpollE";  | 
|
1070  | 
val eqpoll_iff = thm "eqpoll_iff";  | 
|
1071  | 
val lepoll_0_is_0 = thm "lepoll_0_is_0";  | 
|
1072  | 
val empty_lepollI = thm "empty_lepollI";  | 
|
1073  | 
val lepoll_0_iff = thm "lepoll_0_iff";  | 
|
1074  | 
val Un_lepoll_Un = thm "Un_lepoll_Un";  | 
|
1075  | 
val eqpoll_0_is_0 = thm "eqpoll_0_is_0";  | 
|
1076  | 
val eqpoll_0_iff = thm "eqpoll_0_iff";  | 
|
1077  | 
val eqpoll_disjoint_Un = thm "eqpoll_disjoint_Un";  | 
|
1078  | 
val lesspoll_not_refl = thm "lesspoll_not_refl";  | 
|
1079  | 
val lesspoll_irrefl = thm "lesspoll_irrefl";  | 
|
1080  | 
val lesspoll_imp_lepoll = thm "lesspoll_imp_lepoll";  | 
|
1081  | 
val lepoll_well_ord = thm "lepoll_well_ord";  | 
|
1082  | 
val lepoll_iff_leqpoll = thm "lepoll_iff_leqpoll";  | 
|
1083  | 
val inj_not_surj_succ = thm "inj_not_surj_succ";  | 
|
1084  | 
val lesspoll_trans = thm "lesspoll_trans";  | 
|
1085  | 
val lesspoll_trans1 = thm "lesspoll_trans1";  | 
|
1086  | 
val lesspoll_trans2 = thm "lesspoll_trans2";  | 
|
1087  | 
val Least_equality = thm "Least_equality";  | 
|
1088  | 
val LeastI = thm "LeastI";  | 
|
1089  | 
val Least_le = thm "Least_le";  | 
|
1090  | 
val less_LeastE = thm "less_LeastE";  | 
|
1091  | 
val LeastI2 = thm "LeastI2";  | 
|
1092  | 
val Least_0 = thm "Least_0";  | 
|
1093  | 
val Ord_Least = thm "Ord_Least";  | 
|
1094  | 
val Least_cong = thm "Least_cong";  | 
|
1095  | 
val cardinal_cong = thm "cardinal_cong";  | 
|
1096  | 
val well_ord_cardinal_eqpoll = thm "well_ord_cardinal_eqpoll";  | 
|
1097  | 
val Ord_cardinal_eqpoll = thm "Ord_cardinal_eqpoll";  | 
|
1098  | 
val well_ord_cardinal_eqE = thm "well_ord_cardinal_eqE";  | 
|
1099  | 
val well_ord_cardinal_eqpoll_iff = thm "well_ord_cardinal_eqpoll_iff";  | 
|
1100  | 
val Ord_cardinal_le = thm "Ord_cardinal_le";  | 
|
1101  | 
val Card_cardinal_eq = thm "Card_cardinal_eq";  | 
|
1102  | 
val CardI = thm "CardI";  | 
|
1103  | 
val Card_is_Ord = thm "Card_is_Ord";  | 
|
1104  | 
val Card_cardinal_le = thm "Card_cardinal_le";  | 
|
1105  | 
val Ord_cardinal = thm "Ord_cardinal";  | 
|
1106  | 
val Card_iff_initial = thm "Card_iff_initial";  | 
|
1107  | 
val lt_Card_imp_lesspoll = thm "lt_Card_imp_lesspoll";  | 
|
1108  | 
val Card_0 = thm "Card_0";  | 
|
1109  | 
val Card_Un = thm "Card_Un";  | 
|
1110  | 
val Card_cardinal = thm "Card_cardinal";  | 
|
1111  | 
val cardinal_mono = thm "cardinal_mono";  | 
|
1112  | 
val cardinal_lt_imp_lt = thm "cardinal_lt_imp_lt";  | 
|
1113  | 
val Card_lt_imp_lt = thm "Card_lt_imp_lt";  | 
|
1114  | 
val Card_lt_iff = thm "Card_lt_iff";  | 
|
1115  | 
val Card_le_iff = thm "Card_le_iff";  | 
|
1116  | 
val well_ord_lepoll_imp_Card_le = thm "well_ord_lepoll_imp_Card_le";  | 
|
1117  | 
val lepoll_cardinal_le = thm "lepoll_cardinal_le";  | 
|
1118  | 
val lepoll_Ord_imp_eqpoll = thm "lepoll_Ord_imp_eqpoll";  | 
|
1119  | 
val lesspoll_imp_eqpoll = thm "lesspoll_imp_eqpoll";  | 
|
| 14046 | 1120  | 
val cardinal_subset_Ord = thm "cardinal_subset_Ord";  | 
| 13221 | 1121  | 
val cons_lepoll_consD = thm "cons_lepoll_consD";  | 
1122  | 
val cons_eqpoll_consD = thm "cons_eqpoll_consD";  | 
|
1123  | 
val succ_lepoll_succD = thm "succ_lepoll_succD";  | 
|
1124  | 
val nat_lepoll_imp_le = thm "nat_lepoll_imp_le";  | 
|
1125  | 
val nat_eqpoll_iff = thm "nat_eqpoll_iff";  | 
|
1126  | 
val nat_into_Card = thm "nat_into_Card";  | 
|
1127  | 
val cardinal_0 = thm "cardinal_0";  | 
|
1128  | 
val cardinal_1 = thm "cardinal_1";  | 
|
1129  | 
val succ_lepoll_natE = thm "succ_lepoll_natE";  | 
|
1130  | 
val n_lesspoll_nat = thm "n_lesspoll_nat";  | 
|
1131  | 
val nat_lepoll_imp_ex_eqpoll_n = thm "nat_lepoll_imp_ex_eqpoll_n";  | 
|
1132  | 
val lepoll_imp_lesspoll_succ = thm "lepoll_imp_lesspoll_succ";  | 
|
1133  | 
val lesspoll_succ_imp_lepoll = thm "lesspoll_succ_imp_lepoll";  | 
|
1134  | 
val lesspoll_succ_iff = thm "lesspoll_succ_iff";  | 
|
1135  | 
val lepoll_succ_disj = thm "lepoll_succ_disj";  | 
|
1136  | 
val lesspoll_cardinal_lt = thm "lesspoll_cardinal_lt";  | 
|
1137  | 
val lt_not_lepoll = thm "lt_not_lepoll";  | 
|
1138  | 
val Ord_nat_eqpoll_iff = thm "Ord_nat_eqpoll_iff";  | 
|
1139  | 
val Card_nat = thm "Card_nat";  | 
|
1140  | 
val nat_le_cardinal = thm "nat_le_cardinal";  | 
|
1141  | 
val cons_lepoll_cong = thm "cons_lepoll_cong";  | 
|
1142  | 
val cons_eqpoll_cong = thm "cons_eqpoll_cong";  | 
|
1143  | 
val cons_lepoll_cons_iff = thm "cons_lepoll_cons_iff";  | 
|
1144  | 
val cons_eqpoll_cons_iff = thm "cons_eqpoll_cons_iff";  | 
|
1145  | 
val singleton_eqpoll_1 = thm "singleton_eqpoll_1";  | 
|
1146  | 
val cardinal_singleton = thm "cardinal_singleton";  | 
|
1147  | 
val not_0_is_lepoll_1 = thm "not_0_is_lepoll_1";  | 
|
1148  | 
val succ_eqpoll_cong = thm "succ_eqpoll_cong";  | 
|
1149  | 
val sum_eqpoll_cong = thm "sum_eqpoll_cong";  | 
|
1150  | 
val prod_eqpoll_cong = thm "prod_eqpoll_cong";  | 
|
1151  | 
val inj_disjoint_eqpoll = thm "inj_disjoint_eqpoll";  | 
|
1152  | 
val Diff_sing_lepoll = thm "Diff_sing_lepoll";  | 
|
1153  | 
val lepoll_Diff_sing = thm "lepoll_Diff_sing";  | 
|
1154  | 
val Diff_sing_eqpoll = thm "Diff_sing_eqpoll";  | 
|
1155  | 
val lepoll_1_is_sing = thm "lepoll_1_is_sing";  | 
|
1156  | 
val Un_lepoll_sum = thm "Un_lepoll_sum";  | 
|
1157  | 
val well_ord_Un = thm "well_ord_Un";  | 
|
1158  | 
val disj_Un_eqpoll_sum = thm "disj_Un_eqpoll_sum";  | 
|
1159  | 
val Finite_0 = thm "Finite_0";  | 
|
1160  | 
val lepoll_nat_imp_Finite = thm "lepoll_nat_imp_Finite";  | 
|
1161  | 
val lesspoll_nat_is_Finite = thm "lesspoll_nat_is_Finite";  | 
|
1162  | 
val lepoll_Finite = thm "lepoll_Finite";  | 
|
1163  | 
val subset_Finite = thm "subset_Finite";  | 
|
1164  | 
val Finite_Diff = thm "Finite_Diff";  | 
|
1165  | 
val Finite_cons = thm "Finite_cons";  | 
|
1166  | 
val Finite_succ = thm "Finite_succ";  | 
|
1167  | 
val nat_le_infinite_Ord = thm "nat_le_infinite_Ord";  | 
|
1168  | 
val Finite_imp_well_ord = thm "Finite_imp_well_ord";  | 
|
1169  | 
val nat_wf_on_converse_Memrel = thm "nat_wf_on_converse_Memrel";  | 
|
1170  | 
val nat_well_ord_converse_Memrel = thm "nat_well_ord_converse_Memrel";  | 
|
1171  | 
val well_ord_converse = thm "well_ord_converse";  | 
|
1172  | 
val ordertype_eq_n = thm "ordertype_eq_n";  | 
|
1173  | 
val Finite_well_ord_converse = thm "Finite_well_ord_converse";  | 
|
1174  | 
val nat_into_Finite = thm "nat_into_Finite";  | 
|
1175  | 
*}  | 
|
| 9683 | 1176  | 
|
| 435 | 1177  | 
end  |