| 58419 |      1 | (*  Title:      HOL/ex/SOS.thy
 | 
| 58418 |      2 |     Author:     Amine Chaieb, University of Cambridge
 | 
|  |      3 |     Author:     Philipp Meyer, TU Muenchen
 | 
|  |      4 | 
 | 
| 58419 |      5 | Examples for Sum_of_Squares.
 | 
| 58418 |      6 | *)
 | 
|  |      7 | 
 | 
| 58419 |      8 | theory SOS
 | 
| 58418 |      9 | imports "~~/src/HOL/Library/Sum_of_Squares"
 | 
|  |     10 | begin
 | 
|  |     11 | 
 | 
|  |     12 | lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<Longrightarrow> a < 0"
 | 
| 58630 |     13 |   by sos
 | 
| 58418 |     14 | 
 | 
| 61156 |     15 | lemma "a1 \<ge> 0 \<and> a2 \<ge> 0 \<and> (a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + 2) \<and> (a1 * b1 + a2 * b2 = 0) \<longrightarrow>
 | 
|  |     16 |     a1 * a2 - b1 * b2 \<ge> (0::real)"
 | 
| 58630 |     17 |   by sos
 | 
| 58418 |     18 | 
 | 
| 61156 |     19 | lemma "(3::real) * x + 7 * a < 4 & 3 < 2 * x \<longrightarrow> a < 0"
 | 
| 58630 |     20 |   by sos
 | 
| 58418 |     21 | 
 | 
| 61156 |     22 | lemma "(0::real) \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow>
 | 
|  |     23 |     x\<^sup>2 + y\<^sup>2 < 1 \<or> (x - 1)\<^sup>2 + y\<^sup>2 < 1 \<or> x\<^sup>2 + (y - 1)\<^sup>2 < 1 \<or> (x - 1)\<^sup>2 + (y - 1)\<^sup>2 < 1"
 | 
| 58630 |     24 |   by sos
 | 
| 58418 |     25 | 
 | 
| 61156 |     26 | lemma "(0::real) \<le> x \<and> 0 \<le> y \<and> 0 \<le> z \<and> x + y + z \<le> 3 \<longrightarrow> x * y + x * z + y * z \<ge> 3 * x * y * z"
 | 
| 58630 |     27 |   by sos
 | 
| 58418 |     28 | 
 | 
| 61156 |     29 | lemma "(x::real)\<^sup>2 + y\<^sup>2 + z\<^sup>2 = 1 \<longrightarrow> (x + y + z)\<^sup>2 \<le> 3"
 | 
| 58630 |     30 |   by sos
 | 
| 58418 |     31 | 
 | 
| 61156 |     32 | lemma "w\<^sup>2 + x\<^sup>2 + y\<^sup>2 + z\<^sup>2 = 1 \<longrightarrow> (w + x + y + z)\<^sup>2 \<le> (4::real)"
 | 
| 58630 |     33 |   by sos
 | 
| 58418 |     34 | 
 | 
| 61156 |     35 | lemma "(x::real) \<ge> 1 \<and> y \<ge> 1 \<longrightarrow> x * y \<ge> x + y - 1"
 | 
| 58630 |     36 |   by sos
 | 
| 58418 |     37 | 
 | 
| 61156 |     38 | lemma "(x::real) > 1 \<and> y > 1 \<longrightarrow> x * y > x + y - 1"
 | 
| 58630 |     39 |   by sos
 | 
| 58418 |     40 | 
 | 
| 61156 |     41 | lemma "\<bar>x\<bar> \<le> 1 \<longrightarrow> \<bar>64 * x^7 - 112 * x^5 + 56 * x^3 - 7 * x\<bar> \<le> (1::real)"
 | 
| 58630 |     42 |   by sos
 | 
| 58418 |     43 | 
 | 
|  |     44 | 
 | 
|  |     45 | text \<open>One component of denominator in dodecahedral example.\<close>
 | 
|  |     46 | 
 | 
| 61156 |     47 | lemma "2 \<le> x \<and> x \<le> 125841 / 50000 \<and> 2 \<le> y \<and> y \<le> 125841 / 50000 \<and> 2 \<le> z \<and> z \<le> 125841 / 50000 \<longrightarrow>
 | 
|  |     48 |     2 * (x * z + x * y + y * z) - (x * x + y * y + z * z) \<ge> (0::real)"
 | 
| 58630 |     49 |   by sos
 | 
| 58418 |     50 | 
 | 
|  |     51 | 
 | 
|  |     52 | text \<open>Over a larger but simpler interval.\<close>
 | 
|  |     53 | 
 | 
| 61156 |     54 | lemma "(2::real) \<le> x \<and> x \<le> 4 \<and> 2 \<le> y \<and> y \<le> 4 \<and> 2 \<le> z \<and> z \<le> 4 \<longrightarrow>
 | 
|  |     55 |     0 \<le> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
 | 
| 58630 |     56 |   by sos
 | 
| 58418 |     57 | 
 | 
|  |     58 | 
 | 
|  |     59 | text \<open>We can do 12. I think 12 is a sharp bound; see PP's certificate.\<close>
 | 
|  |     60 | 
 | 
| 61156 |     61 | lemma "2 \<le> (x::real) \<and> x \<le> 4 \<and> 2 \<le> y \<and> y \<le> 4 \<and> 2 \<le> z \<and> z \<le> 4 \<longrightarrow>
 | 
|  |     62 |     12 \<le> 2 * (x * z + x * y + y * z) - (x * x + y * y + z * z)"
 | 
| 58630 |     63 |   by sos
 | 
| 58418 |     64 | 
 | 
|  |     65 | 
 | 
|  |     66 | text \<open>Inequality from sci.math (see "Leon-Sotelo, por favor").\<close>
 | 
|  |     67 | 
 | 
| 61156 |     68 | lemma "0 \<le> (x::real) \<and> 0 \<le> y \<and> x * y = 1 \<longrightarrow> x + y \<le> x\<^sup>2 + y\<^sup>2"
 | 
| 58630 |     69 |   by sos
 | 
| 58418 |     70 | 
 | 
| 61156 |     71 | lemma "0 \<le> (x::real) \<and> 0 \<le> y \<and> x * y = 1 \<longrightarrow> x * y * (x + y) \<le> x\<^sup>2 + y\<^sup>2"
 | 
| 58630 |     72 |   by sos
 | 
| 58418 |     73 | 
 | 
| 61156 |     74 | lemma "0 \<le> (x::real) \<and> 0 \<le> y \<longrightarrow> x * y * (x + y)\<^sup>2 \<le> (x\<^sup>2 + y\<^sup>2)\<^sup>2"
 | 
| 58630 |     75 |   by sos
 | 
| 58418 |     76 | 
 | 
| 61156 |     77 | lemma "(0::real) \<le> a \<and> 0 \<le> b \<and> 0 \<le> c \<and> c * (2 * a + b)^3 / 27 \<le> x \<longrightarrow> c * a\<^sup>2 * b \<le> x"
 | 
| 58630 |     78 |   by sos
 | 
| 58418 |     79 | 
 | 
| 61156 |     80 | lemma "(0::real) < x \<longrightarrow> 0 < 1 + x + x\<^sup>2"
 | 
| 58630 |     81 |   by sos
 | 
| 58418 |     82 | 
 | 
| 61156 |     83 | lemma "(0::real) \<le> x \<longrightarrow> 0 < 1 + x + x\<^sup>2"
 | 
| 58630 |     84 |   by sos
 | 
| 58418 |     85 | 
 | 
| 61156 |     86 | lemma "(0::real) < 1 + x\<^sup>2"
 | 
| 58630 |     87 |   by sos
 | 
| 58418 |     88 | 
 | 
| 61156 |     89 | lemma "(0::real) \<le> 1 + 2 * x + x\<^sup>2"
 | 
| 58630 |     90 |   by sos
 | 
| 58418 |     91 | 
 | 
| 61156 |     92 | lemma "(0::real) < 1 + \<bar>x\<bar>"
 | 
| 58630 |     93 |   by sos
 | 
| 58418 |     94 | 
 | 
| 61156 |     95 | lemma "(0::real) < 1 + (1 + x)\<^sup>2 * \<bar>x\<bar>"
 | 
| 58630 |     96 |   by sos
 | 
| 58418 |     97 | 
 | 
|  |     98 | 
 | 
| 61156 |     99 | lemma "\<bar>(1::real) + x\<^sup>2\<bar> = (1::real) + x\<^sup>2"
 | 
| 58630 |    100 |   by sos
 | 
| 61156 |    101 | 
 | 
| 58418 |    102 | lemma "(3::real) * x + 7 * a < 4 \<and> 3 < 2 * x \<longrightarrow> a < 0"
 | 
| 58630 |    103 |   by sos
 | 
| 58418 |    104 | 
 | 
| 61156 |    105 | lemma "(0::real) < x \<longrightarrow> 1 < y \<longrightarrow> y * x \<le> z \<longrightarrow> x < z"
 | 
| 58630 |    106 |   by sos
 | 
| 61156 |    107 | 
 | 
|  |    108 | lemma "(1::real) < x \<longrightarrow> x\<^sup>2 < y \<longrightarrow> 1 < y"
 | 
| 58630 |    109 |   by sos
 | 
| 61156 |    110 | 
 | 
|  |    111 | lemma "(b::real)\<^sup>2 < 4 * a * c \<longrightarrow> a * x\<^sup>2 + b * x + c \<noteq> 0"
 | 
| 58630 |    112 |   by sos
 | 
| 61156 |    113 | 
 | 
|  |    114 | lemma "(b::real)\<^sup>2 < 4 * a * c \<longrightarrow> a * x\<^sup>2 + b * x + c \<noteq> 0"
 | 
| 58630 |    115 |   by sos
 | 
| 61156 |    116 | 
 | 
|  |    117 | lemma "(a::real) * x\<^sup>2 + b * x + c = 0 \<longrightarrow> b\<^sup>2 \<ge> 4 * a * c"
 | 
| 58630 |    118 |   by sos
 | 
| 61156 |    119 | 
 | 
|  |    120 | lemma "(0::real) \<le> b \<and> 0 \<le> c \<and> 0 \<le> x \<and> 0 \<le> y \<and> x\<^sup>2 = c \<and> y\<^sup>2 = a\<^sup>2 * c + b \<longrightarrow> a * c \<le> y * x"
 | 
| 58630 |    121 |   by sos
 | 
| 58418 |    122 | 
 | 
| 61156 |    123 | lemma "\<bar>x - z\<bar> \<le> e \<and> \<bar>y - z\<bar> \<le> e \<and> 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1 --> \<bar>(u * x + v * y) - z\<bar> \<le> (e::real)"
 | 
|  |    124 |   by sos
 | 
| 58418 |    125 | 
 | 
| 61156 |    126 | lemma "(x::real) - y - 2 * x^4 = 0 \<and> 0 \<le> x \<and> x \<le> 2 \<and> 0 \<le> y \<and> y \<le> 3 \<longrightarrow> y\<^sup>2 - 7 * y - 12 * x + 17 \<ge> 0"
 | 
|  |    127 |   oops (*Too hard?*)
 | 
| 58418 |    128 | 
 | 
| 61156 |    129 | lemma "(0::real) \<le> x \<longrightarrow> (1 + x + x\<^sup>2) / (1 + x\<^sup>2) \<le> 1 + x"
 | 
| 58630 |    130 |   by sos
 | 
| 58418 |    131 | 
 | 
| 61156 |    132 | lemma "(0::real) \<le> x \<longrightarrow> 1 - x \<le> 1 / (1 + x + x\<^sup>2)"
 | 
| 58630 |    133 |   by sos
 | 
| 58418 |    134 | 
 | 
| 61156 |    135 | lemma "(x::real) \<le> 1 / 2 \<longrightarrow> - x - 2 * x\<^sup>2 \<le> - x / (1 - x)"
 | 
| 58630 |    136 |   by sos
 | 
| 58418 |    137 | 
 | 
| 61156 |    138 | lemma "4 * r\<^sup>2 = p\<^sup>2 - 4 * q \<and> r \<ge> (0::real) \<and> x\<^sup>2 + p * x + q = 0 \<longrightarrow>
 | 
|  |    139 |     2 * (x::real) = - p + 2 * r \<or> 2 * x = - p - 2 * r"
 | 
| 58630 |    140 |   by sos
 | 
| 58418 |    141 | 
 | 
|  |    142 | end
 |