| author | blanchet | 
| Wed, 12 Feb 2014 17:35:59 +0100 | |
| changeset 55443 | 3def821deb70 | 
| parent 55187 | 6d0d93316daf | 
| child 55912 | e12a0ab9917c | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1 | (* Title: HOL/Rings.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 2 | Author: Gertrud Bauer | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 3 | Author: Steven Obua | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 4 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 5 | Author: Lawrence C Paulson | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 6 | Author: Markus Wenzel | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 7 | Author: Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 9 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 10 | header {* Rings *}
 | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 11 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 12 | theory Rings | 
| 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 13 | imports Groups | 
| 15131 | 14 | begin | 
| 14504 | 15 | |
| 22390 | 16 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 17 | assumes distrib_right[algebra_simps, field_simps]: "(a + b) * c = a * c + b * c" | 
| 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 18 | assumes distrib_left[algebra_simps, field_simps]: "a * (b + c) = a * b + a * c" | 
| 25152 | 19 | begin | 
| 20 | ||
| 21 | text{*For the @{text combine_numerals} simproc*}
 | |
| 22 | lemma combine_common_factor: | |
| 23 | "a * e + (b * e + c) = (a + b) * e + c" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 24 | by (simp add: distrib_right add_ac) | 
| 25152 | 25 | |
| 26 | end | |
| 14504 | 27 | |
| 22390 | 28 | class mult_zero = times + zero + | 
| 25062 | 29 | assumes mult_zero_left [simp]: "0 * a = 0" | 
| 30 | assumes mult_zero_right [simp]: "a * 0 = 0" | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 31 | |
| 22390 | 32 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 33 | |
| 29904 | 34 | class semiring_0_cancel = semiring + cancel_comm_monoid_add | 
| 25186 | 35 | begin | 
| 14504 | 36 | |
| 25186 | 37 | subclass semiring_0 | 
| 28823 | 38 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 39 | fix a :: 'a | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 40 | have "0 * a + 0 * a = 0 * a + 0" by (simp add: distrib_right [symmetric]) | 
| 29667 | 41 | thus "0 * a = 0" by (simp only: add_left_cancel) | 
| 25152 | 42 | next | 
| 43 | fix a :: 'a | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 44 | have "a * 0 + a * 0 = a * 0 + 0" by (simp add: distrib_left [symmetric]) | 
| 29667 | 45 | thus "a * 0 = 0" by (simp only: add_left_cancel) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 46 | qed | 
| 14940 | 47 | |
| 25186 | 48 | end | 
| 25152 | 49 | |
| 22390 | 50 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 25062 | 51 | assumes distrib: "(a + b) * c = a * c + b * c" | 
| 25152 | 52 | begin | 
| 14504 | 53 | |
| 25152 | 54 | subclass semiring | 
| 28823 | 55 | proof | 
| 14738 | 56 | fix a b c :: 'a | 
| 57 | show "(a + b) * c = a * c + b * c" by (simp add: distrib) | |
| 58 | have "a * (b + c) = (b + c) * a" by (simp add: mult_ac) | |
| 59 | also have "... = b * a + c * a" by (simp only: distrib) | |
| 60 | also have "... = a * b + a * c" by (simp add: mult_ac) | |
| 61 | finally show "a * (b + c) = a * b + a * c" by blast | |
| 14504 | 62 | qed | 
| 63 | ||
| 25152 | 64 | end | 
| 14504 | 65 | |
| 25152 | 66 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 67 | begin | |
| 68 | ||
| 27516 | 69 | subclass semiring_0 .. | 
| 25152 | 70 | |
| 71 | end | |
| 14504 | 72 | |
| 29904 | 73 | class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add | 
| 25186 | 74 | begin | 
| 14940 | 75 | |
| 27516 | 76 | subclass semiring_0_cancel .. | 
| 14940 | 77 | |
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 78 | subclass comm_semiring_0 .. | 
| 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 79 | |
| 25186 | 80 | end | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 81 | |
| 22390 | 82 | class zero_neq_one = zero + one + | 
| 25062 | 83 | assumes zero_neq_one [simp]: "0 \<noteq> 1" | 
| 26193 | 84 | begin | 
| 85 | ||
| 86 | lemma one_neq_zero [simp]: "1 \<noteq> 0" | |
| 29667 | 87 | by (rule not_sym) (rule zero_neq_one) | 
| 26193 | 88 | |
| 54225 | 89 | definition of_bool :: "bool \<Rightarrow> 'a" | 
| 90 | where | |
| 91 | "of_bool p = (if p then 1 else 0)" | |
| 92 | ||
| 93 | lemma of_bool_eq [simp, code]: | |
| 94 | "of_bool False = 0" | |
| 95 | "of_bool True = 1" | |
| 96 | by (simp_all add: of_bool_def) | |
| 97 | ||
| 98 | lemma of_bool_eq_iff: | |
| 99 | "of_bool p = of_bool q \<longleftrightarrow> p = q" | |
| 100 | by (simp add: of_bool_def) | |
| 101 | ||
| 55187 | 102 | lemma split_of_bool [split]: | 
| 103 | "P (of_bool p) \<longleftrightarrow> (p \<longrightarrow> P 1) \<and> (\<not> p \<longrightarrow> P 0)" | |
| 104 | by (cases p) simp_all | |
| 105 | ||
| 106 | lemma split_of_bool_asm: | |
| 107 | "P (of_bool p) \<longleftrightarrow> \<not> (p \<and> \<not> P 1 \<or> \<not> p \<and> \<not> P 0)" | |
| 108 | by (cases p) simp_all | |
| 109 | ||
| 54225 | 110 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 111 | |
| 22390 | 112 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 14504 | 113 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 114 | text {* Abstract divisibility *}
 | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 115 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 116 | class dvd = times | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 117 | begin | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 118 | |
| 50420 | 119 | definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) where | 
| 37767 | 120 | "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 121 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 122 | lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 123 | unfolding dvd_def .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 124 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 125 | lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 126 | unfolding dvd_def by blast | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 127 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 128 | end | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 129 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 130 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult + dvd | 
| 22390 | 131 | (*previously almost_semiring*) | 
| 25152 | 132 | begin | 
| 14738 | 133 | |
| 27516 | 134 | subclass semiring_1 .. | 
| 25152 | 135 | |
| 29925 | 136 | lemma dvd_refl[simp]: "a dvd a" | 
| 28559 | 137 | proof | 
| 138 | show "a = a * 1" by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 139 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 140 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 141 | lemma dvd_trans: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 142 | assumes "a dvd b" and "b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 143 | shows "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 144 | proof - | 
| 28559 | 145 | from assms obtain v where "b = a * v" by (auto elim!: dvdE) | 
| 146 | moreover from assms obtain w where "c = b * w" by (auto elim!: dvdE) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 147 | ultimately have "c = a * (v * w)" by (simp add: mult_assoc) | 
| 28559 | 148 | then show ?thesis .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 149 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 150 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 151 | lemma dvd_0_left_iff [simp]: "0 dvd a \<longleftrightarrow> a = 0" | 
| 29667 | 152 | by (auto intro: dvd_refl elim!: dvdE) | 
| 28559 | 153 | |
| 154 | lemma dvd_0_right [iff]: "a dvd 0" | |
| 155 | proof | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 156 | show "0 = a * 0" by simp | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 157 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 158 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 159 | lemma one_dvd [simp]: "1 dvd a" | 
| 29667 | 160 | by (auto intro!: dvdI) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 161 | |
| 30042 | 162 | lemma dvd_mult[simp]: "a dvd c \<Longrightarrow> a dvd (b * c)" | 
| 29667 | 163 | by (auto intro!: mult_left_commute dvdI elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 164 | |
| 30042 | 165 | lemma dvd_mult2[simp]: "a dvd b \<Longrightarrow> a dvd (b * c)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 166 | apply (subst mult_commute) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 167 | apply (erule dvd_mult) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 168 | done | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 169 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 170 | lemma dvd_triv_right [simp]: "a dvd b * a" | 
| 29667 | 171 | by (rule dvd_mult) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 172 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 173 | lemma dvd_triv_left [simp]: "a dvd a * b" | 
| 29667 | 174 | by (rule dvd_mult2) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 175 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 176 | lemma mult_dvd_mono: | 
| 30042 | 177 | assumes "a dvd b" | 
| 178 | and "c dvd d" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 179 | shows "a * c dvd b * d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 180 | proof - | 
| 30042 | 181 | from `a dvd b` obtain b' where "b = a * b'" .. | 
| 182 | moreover from `c dvd d` obtain d' where "d = c * d'" .. | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 183 | ultimately have "b * d = (a * c) * (b' * d')" by (simp add: mult_ac) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 184 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 185 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 186 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 187 | lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c" | 
| 29667 | 188 | by (simp add: dvd_def mult_assoc, blast) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 189 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 190 | lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 191 | unfolding mult_ac [of a] by (rule dvd_mult_left) | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 192 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 193 | lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0" | 
| 29667 | 194 | by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 195 | |
| 29925 | 196 | lemma dvd_add[simp]: | 
| 197 | assumes "a dvd b" and "a dvd c" shows "a dvd (b + c)" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 198 | proof - | 
| 29925 | 199 | from `a dvd b` obtain b' where "b = a * b'" .. | 
| 200 | moreover from `a dvd c` obtain c' where "c = a * c'" .. | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 201 | ultimately have "b + c = a * (b' + c')" by (simp add: distrib_left) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 202 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 203 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 204 | |
| 25152 | 205 | end | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 206 | |
| 22390 | 207 | class no_zero_divisors = zero + times + | 
| 25062 | 208 | assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 36719 | 209 | begin | 
| 210 | ||
| 211 | lemma divisors_zero: | |
| 212 | assumes "a * b = 0" | |
| 213 | shows "a = 0 \<or> b = 0" | |
| 214 | proof (rule classical) | |
| 215 | assume "\<not> (a = 0 \<or> b = 0)" | |
| 216 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 217 | with no_zero_divisors have "a * b \<noteq> 0" by blast | |
| 218 | with assms show ?thesis by simp | |
| 219 | qed | |
| 220 | ||
| 221 | end | |
| 14504 | 222 | |
| 29904 | 223 | class semiring_1_cancel = semiring + cancel_comm_monoid_add | 
| 224 | + zero_neq_one + monoid_mult | |
| 25267 | 225 | begin | 
| 14940 | 226 | |
| 27516 | 227 | subclass semiring_0_cancel .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 228 | |
| 27516 | 229 | subclass semiring_1 .. | 
| 25267 | 230 | |
| 231 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 232 | |
| 29904 | 233 | class comm_semiring_1_cancel = comm_semiring + cancel_comm_monoid_add | 
| 234 | + zero_neq_one + comm_monoid_mult | |
| 25267 | 235 | begin | 
| 14738 | 236 | |
| 27516 | 237 | subclass semiring_1_cancel .. | 
| 238 | subclass comm_semiring_0_cancel .. | |
| 239 | subclass comm_semiring_1 .. | |
| 25267 | 240 | |
| 241 | end | |
| 25152 | 242 | |
| 22390 | 243 | class ring = semiring + ab_group_add | 
| 25267 | 244 | begin | 
| 25152 | 245 | |
| 27516 | 246 | subclass semiring_0_cancel .. | 
| 25152 | 247 | |
| 248 | text {* Distribution rules *}
 | |
| 249 | ||
| 250 | lemma minus_mult_left: "- (a * b) = - a * b" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 251 | by (rule minus_unique) (simp add: distrib_right [symmetric]) | 
| 25152 | 252 | |
| 253 | lemma minus_mult_right: "- (a * b) = a * - b" | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 254 | by (rule minus_unique) (simp add: distrib_left [symmetric]) | 
| 25152 | 255 | |
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 256 | text{*Extract signs from products*}
 | 
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 257 | lemmas mult_minus_left [simp] = minus_mult_left [symmetric] | 
| 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 258 | lemmas mult_minus_right [simp] = minus_mult_right [symmetric] | 
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 259 | |
| 25152 | 260 | lemma minus_mult_minus [simp]: "- a * - b = a * b" | 
| 29667 | 261 | by simp | 
| 25152 | 262 | |
| 263 | lemma minus_mult_commute: "- a * b = a * - b" | |
| 29667 | 264 | by simp | 
| 265 | ||
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 266 | lemma right_diff_distrib [algebra_simps, field_simps]: | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 267 | "a * (b - c) = a * b - a * c" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 268 | using distrib_left [of a b "-c "] by simp | 
| 29667 | 269 | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 270 | lemma left_diff_distrib [algebra_simps, field_simps]: | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 271 | "(a - b) * c = a * c - b * c" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 272 | using distrib_right [of a "- b" c] by simp | 
| 25152 | 273 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 274 | lemmas ring_distribs = | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 275 | distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 276 | |
| 25230 | 277 | lemma eq_add_iff1: | 
| 278 | "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" | |
| 29667 | 279 | by (simp add: algebra_simps) | 
| 25230 | 280 | |
| 281 | lemma eq_add_iff2: | |
| 282 | "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" | |
| 29667 | 283 | by (simp add: algebra_simps) | 
| 25230 | 284 | |
| 25152 | 285 | end | 
| 286 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 287 | lemmas ring_distribs = | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 288 | distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 289 | |
| 22390 | 290 | class comm_ring = comm_semiring + ab_group_add | 
| 25267 | 291 | begin | 
| 14738 | 292 | |
| 27516 | 293 | subclass ring .. | 
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 294 | subclass comm_semiring_0_cancel .. | 
| 25267 | 295 | |
| 44350 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 296 | lemma square_diff_square_factored: | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 297 | "x * x - y * y = (x + y) * (x - y)" | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 298 | by (simp add: algebra_simps) | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 299 | |
| 25267 | 300 | end | 
| 14738 | 301 | |
| 22390 | 302 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 25267 | 303 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 304 | |
| 27516 | 305 | subclass semiring_1_cancel .. | 
| 25267 | 306 | |
| 44346 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 307 | lemma square_diff_one_factored: | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 308 | "x * x - 1 = (x + 1) * (x - 1)" | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 309 | by (simp add: algebra_simps) | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 310 | |
| 25267 | 311 | end | 
| 25152 | 312 | |
| 22390 | 313 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 314 | (*previously ring*) | |
| 25267 | 315 | begin | 
| 14738 | 316 | |
| 27516 | 317 | subclass ring_1 .. | 
| 318 | subclass comm_semiring_1_cancel .. | |
| 25267 | 319 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 320 | lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 321 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 322 | assume "x dvd - y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 323 | then have "x dvd - 1 * - y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 324 | then show "x dvd y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 325 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 326 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 327 | then have "x dvd - 1 * y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 328 | then show "x dvd - y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 329 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 330 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 331 | lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 332 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 333 | assume "- x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 334 | then obtain k where "y = - x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 335 | then have "y = x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 336 | then show "x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 337 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 338 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 339 | then obtain k where "y = x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 340 | then have "y = - x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 341 | then show "- x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 342 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 343 | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 344 | lemma dvd_diff [simp]: | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 345 | "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" | 
| 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 346 | using dvd_add [of x y "- z"] by simp | 
| 29409 | 347 | |
| 25267 | 348 | end | 
| 25152 | 349 | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 350 | class ring_no_zero_divisors = ring + no_zero_divisors | 
| 25230 | 351 | begin | 
| 352 | ||
| 353 | lemma mult_eq_0_iff [simp]: | |
| 354 | shows "a * b = 0 \<longleftrightarrow> (a = 0 \<or> b = 0)" | |
| 355 | proof (cases "a = 0 \<or> b = 0") | |
| 356 | case False then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 357 | then show ?thesis using no_zero_divisors by simp | |
| 358 | next | |
| 359 | case True then show ?thesis by auto | |
| 360 | qed | |
| 361 | ||
| 26193 | 362 | text{*Cancellation of equalities with a common factor*}
 | 
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 363 | lemma mult_cancel_right [simp]: | 
| 26193 | 364 | "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | 
| 365 | proof - | |
| 366 | have "(a * c = b * c) = ((a - b) * c = 0)" | |
| 35216 | 367 | by (simp add: algebra_simps) | 
| 368 | thus ?thesis by (simp add: disj_commute) | |
| 26193 | 369 | qed | 
| 370 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 371 | lemma mult_cancel_left [simp]: | 
| 26193 | 372 | "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | 
| 373 | proof - | |
| 374 | have "(c * a = c * b) = (c * (a - b) = 0)" | |
| 35216 | 375 | by (simp add: algebra_simps) | 
| 376 | thus ?thesis by simp | |
| 26193 | 377 | qed | 
| 378 | ||
| 25230 | 379 | end | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 380 | |
| 23544 | 381 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 26274 | 382 | begin | 
| 383 | ||
| 36970 | 384 | lemma square_eq_1_iff: | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 385 | "x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 386 | proof - | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 387 | have "(x - 1) * (x + 1) = x * x - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 388 | by (simp add: algebra_simps) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 389 | hence "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 390 | by simp | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 391 | thus ?thesis | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 392 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 393 | qed | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 394 | |
| 26274 | 395 | lemma mult_cancel_right1 [simp]: | 
| 396 | "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 397 | by (insert mult_cancel_right [of 1 c b], force) | 
| 26274 | 398 | |
| 399 | lemma mult_cancel_right2 [simp]: | |
| 400 | "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 401 | by (insert mult_cancel_right [of a c 1], simp) | 
| 26274 | 402 | |
| 403 | lemma mult_cancel_left1 [simp]: | |
| 404 | "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" | |
| 29667 | 405 | by (insert mult_cancel_left [of c 1 b], force) | 
| 26274 | 406 | |
| 407 | lemma mult_cancel_left2 [simp]: | |
| 408 | "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" | |
| 29667 | 409 | by (insert mult_cancel_left [of c a 1], simp) | 
| 26274 | 410 | |
| 411 | end | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 412 | |
| 22390 | 413 | class idom = comm_ring_1 + no_zero_divisors | 
| 25186 | 414 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 415 | |
| 27516 | 416 | subclass ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 417 | |
| 29915 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 418 | lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> (a = b \<or> a = - b)" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 419 | proof | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 420 | assume "a * a = b * b" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 421 | then have "(a - b) * (a + b) = 0" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 422 | by (simp add: algebra_simps) | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 423 | then show "a = b \<or> a = - b" | 
| 35216 | 424 | by (simp add: eq_neg_iff_add_eq_0) | 
| 29915 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 425 | next | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 426 | assume "a = b \<or> a = - b" | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 427 | then show "a * a = b * b" by auto | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 428 | qed | 
| 
2146e512cec9
generalize lemma fps_square_eq_iff, move to Ring_and_Field
 huffman parents: 
29904diff
changeset | 429 | |
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 430 | lemma dvd_mult_cancel_right [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 431 | "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 432 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 433 | have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 434 | unfolding dvd_def by (simp add: mult_ac) | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 435 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 436 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 437 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 438 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 439 | |
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 440 | lemma dvd_mult_cancel_left [simp]: | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 441 | "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 442 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 443 | have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 444 | unfolding dvd_def by (simp add: mult_ac) | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 445 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 446 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 447 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 448 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 449 | |
| 25186 | 450 | end | 
| 25152 | 451 | |
| 35302 | 452 | text {*
 | 
| 453 | The theory of partially ordered rings is taken from the books: | |
| 454 |   \begin{itemize}
 | |
| 455 |   \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
 | |
| 456 |   \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
 | |
| 457 |   \end{itemize}
 | |
| 458 | Most of the used notions can also be looked up in | |
| 459 |   \begin{itemize}
 | |
| 54703 | 460 |   \item @{url "http://www.mathworld.com"} by Eric Weisstein et. al.
 | 
| 35302 | 461 |   \item \emph{Algebra I} by van der Waerden, Springer.
 | 
| 462 |   \end{itemize}
 | |
| 463 | *} | |
| 464 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 465 | class ordered_semiring = semiring + comm_monoid_add + ordered_ab_semigroup_add + | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 466 | assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 467 | assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | 
| 25230 | 468 | begin | 
| 469 | ||
| 470 | lemma mult_mono: | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 471 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 25230 | 472 | apply (erule mult_right_mono [THEN order_trans], assumption) | 
| 473 | apply (erule mult_left_mono, assumption) | |
| 474 | done | |
| 475 | ||
| 476 | lemma mult_mono': | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 477 | "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 25230 | 478 | apply (rule mult_mono) | 
| 479 | apply (fast intro: order_trans)+ | |
| 480 | done | |
| 481 | ||
| 482 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 483 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 484 | class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add | 
| 25267 | 485 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 486 | |
| 27516 | 487 | subclass semiring_0_cancel .. | 
| 23521 | 488 | |
| 25230 | 489 | lemma mult_nonneg_nonneg: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 490 | using mult_left_mono [of 0 b a] by simp | 
| 25230 | 491 | |
| 492 | lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 493 | using mult_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 494 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 495 | lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 496 | using mult_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 497 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 498 | text {* Legacy - use @{text mult_nonpos_nonneg} *}
 | 
| 25230 | 499 | lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 500 | by (drule mult_right_mono [of b 0], auto) | 
| 25230 | 501 | |
| 26234 | 502 | lemma split_mult_neg_le: "(0 \<le> a & b \<le> 0) | (a \<le> 0 & 0 \<le> b) \<Longrightarrow> a * b \<le> 0" | 
| 29667 | 503 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 25230 | 504 | |
| 505 | end | |
| 506 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 507 | class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add | 
| 25267 | 508 | begin | 
| 25230 | 509 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 510 | subclass ordered_cancel_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 511 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 512 | subclass ordered_comm_monoid_add .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 513 | |
| 25230 | 514 | lemma mult_left_less_imp_less: | 
| 515 | "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 516 | by (force simp add: mult_left_mono not_le [symmetric]) | 
| 25230 | 517 | |
| 518 | lemma mult_right_less_imp_less: | |
| 519 | "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | |
| 29667 | 520 | by (force simp add: mult_right_mono not_le [symmetric]) | 
| 23521 | 521 | |
| 25186 | 522 | end | 
| 25152 | 523 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 524 | class linordered_semiring_1 = linordered_semiring + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 525 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 526 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 527 | lemma convex_bound_le: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 528 | assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 529 | shows "u * x + v * y \<le> a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 530 | proof- | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 531 | from assms have "u * x + v * y \<le> u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 532 | by (simp add: add_mono mult_left_mono) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 533 | thus ?thesis using assms unfolding distrib_right[symmetric] by simp | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 534 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 535 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 536 | end | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 537 | |
| 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 538 | class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + | 
| 25062 | 539 | assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 540 | assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" | |
| 25267 | 541 | begin | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 542 | |
| 27516 | 543 | subclass semiring_0_cancel .. | 
| 14940 | 544 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 545 | subclass linordered_semiring | 
| 28823 | 546 | proof | 
| 23550 | 547 | fix a b c :: 'a | 
| 548 | assume A: "a \<le> b" "0 \<le> c" | |
| 549 | from A show "c * a \<le> c * b" | |
| 25186 | 550 | unfolding le_less | 
| 551 | using mult_strict_left_mono by (cases "c = 0") auto | |
| 23550 | 552 | from A show "a * c \<le> b * c" | 
| 25152 | 553 | unfolding le_less | 
| 25186 | 554 | using mult_strict_right_mono by (cases "c = 0") auto | 
| 25152 | 555 | qed | 
| 556 | ||
| 25230 | 557 | lemma mult_left_le_imp_le: | 
| 558 | "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 559 | by (force simp add: mult_strict_left_mono _not_less [symmetric]) | 
| 25230 | 560 | |
| 561 | lemma mult_right_le_imp_le: | |
| 562 | "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | |
| 29667 | 563 | by (force simp add: mult_strict_right_mono not_less [symmetric]) | 
| 25230 | 564 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 565 | lemma mult_pos_pos: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 566 | using mult_strict_left_mono [of 0 b a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 567 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 568 | lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 569 | using mult_strict_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 570 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 571 | lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 572 | using mult_strict_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 573 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 574 | text {* Legacy - use @{text mult_neg_pos} *}
 | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 575 | lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 576 | by (drule mult_strict_right_mono [of b 0], auto) | 
| 25230 | 577 | |
| 578 | lemma zero_less_mult_pos: | |
| 579 | "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 580 | apply (cases "b\<le>0") | 
| 25230 | 581 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 582 | apply (drule_tac mult_pos_neg [of a b]) | 
| 25230 | 583 | apply (auto dest: less_not_sym) | 
| 584 | done | |
| 585 | ||
| 586 | lemma zero_less_mult_pos2: | |
| 587 | "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 588 | apply (cases "b\<le>0") | 
| 25230 | 589 | apply (auto simp add: le_less not_less) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 590 | apply (drule_tac mult_pos_neg2 [of a b]) | 
| 25230 | 591 | apply (auto dest: less_not_sym) | 
| 592 | done | |
| 593 | ||
| 26193 | 594 | text{*Strict monotonicity in both arguments*}
 | 
| 595 | lemma mult_strict_mono: | |
| 596 | assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c" | |
| 597 | shows "a * c < b * d" | |
| 598 | using assms apply (cases "c=0") | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 599 | apply (simp add: mult_pos_pos) | 
| 26193 | 600 | apply (erule mult_strict_right_mono [THEN less_trans]) | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 601 | apply (force simp add: le_less) | 
| 26193 | 602 | apply (erule mult_strict_left_mono, assumption) | 
| 603 | done | |
| 604 | ||
| 605 | text{*This weaker variant has more natural premises*}
 | |
| 606 | lemma mult_strict_mono': | |
| 607 | assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" | |
| 608 | shows "a * c < b * d" | |
| 29667 | 609 | by (rule mult_strict_mono) (insert assms, auto) | 
| 26193 | 610 | |
| 611 | lemma mult_less_le_imp_less: | |
| 612 | assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" | |
| 613 | shows "a * c < b * d" | |
| 614 | using assms apply (subgoal_tac "a * c < b * c") | |
| 615 | apply (erule less_le_trans) | |
| 616 | apply (erule mult_left_mono) | |
| 617 | apply simp | |
| 618 | apply (erule mult_strict_right_mono) | |
| 619 | apply assumption | |
| 620 | done | |
| 621 | ||
| 622 | lemma mult_le_less_imp_less: | |
| 623 | assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" | |
| 624 | shows "a * c < b * d" | |
| 625 | using assms apply (subgoal_tac "a * c \<le> b * c") | |
| 626 | apply (erule le_less_trans) | |
| 627 | apply (erule mult_strict_left_mono) | |
| 628 | apply simp | |
| 629 | apply (erule mult_right_mono) | |
| 630 | apply simp | |
| 631 | done | |
| 632 | ||
| 633 | lemma mult_less_imp_less_left: | |
| 634 | assumes less: "c * a < c * b" and nonneg: "0 \<le> c" | |
| 635 | shows "a < b" | |
| 636 | proof (rule ccontr) | |
| 637 | assume "\<not> a < b" | |
| 638 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 639 | hence "c * b \<le> c * a" using nonneg by (rule mult_left_mono) | |
| 29667 | 640 | with this and less show False by (simp add: not_less [symmetric]) | 
| 26193 | 641 | qed | 
| 642 | ||
| 643 | lemma mult_less_imp_less_right: | |
| 644 | assumes less: "a * c < b * c" and nonneg: "0 \<le> c" | |
| 645 | shows "a < b" | |
| 646 | proof (rule ccontr) | |
| 647 | assume "\<not> a < b" | |
| 648 | hence "b \<le> a" by (simp add: linorder_not_less) | |
| 649 | hence "b * c \<le> a * c" using nonneg by (rule mult_right_mono) | |
| 29667 | 650 | with this and less show False by (simp add: not_less [symmetric]) | 
| 26193 | 651 | qed | 
| 652 | ||
| 25230 | 653 | end | 
| 654 | ||
| 35097 
4554bb2abfa3
dropped last occurence of the linlinordered accident
 haftmann parents: 
35092diff
changeset | 655 | class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 656 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 657 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 658 | subclass linordered_semiring_1 .. | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 659 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 660 | lemma convex_bound_lt: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 661 | assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 662 | shows "u * x + v * y < a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 663 | proof - | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 664 | from assms have "u * x + v * y < u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 665 | by (cases "u = 0") | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 666 | (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
44921diff
changeset | 667 | thus ?thesis using assms unfolding distrib_right[symmetric] by simp | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 668 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 669 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 670 | end | 
| 33319 | 671 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 672 | class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add + | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 673 | assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 25186 | 674 | begin | 
| 25152 | 675 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 676 | subclass ordered_semiring | 
| 28823 | 677 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 678 | fix a b c :: 'a | 
| 23550 | 679 | assume "a \<le> b" "0 \<le> c" | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 680 | thus "c * a \<le> c * b" by (rule comm_mult_left_mono) | 
| 23550 | 681 | thus "a * c \<le> b * c" by (simp only: mult_commute) | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 682 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 683 | |
| 25267 | 684 | end | 
| 685 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 686 | class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add | 
| 25267 | 687 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 688 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 689 | subclass comm_semiring_0_cancel .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 690 | subclass ordered_comm_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 691 | subclass ordered_cancel_semiring .. | 
| 25267 | 692 | |
| 693 | end | |
| 694 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 695 | class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 696 | assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 25267 | 697 | begin | 
| 698 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 699 | subclass linordered_semiring_strict | 
| 28823 | 700 | proof | 
| 23550 | 701 | fix a b c :: 'a | 
| 702 | assume "a < b" "0 < c" | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 703 | thus "c * a < c * b" by (rule comm_mult_strict_left_mono) | 
| 23550 | 704 | thus "a * c < b * c" by (simp only: mult_commute) | 
| 705 | qed | |
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 706 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 707 | subclass ordered_cancel_comm_semiring | 
| 28823 | 708 | proof | 
| 23550 | 709 | fix a b c :: 'a | 
| 710 | assume "a \<le> b" "0 \<le> c" | |
| 711 | thus "c * a \<le> c * b" | |
| 25186 | 712 | unfolding le_less | 
| 26193 | 713 | using mult_strict_left_mono by (cases "c = 0") auto | 
| 23550 | 714 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 715 | |
| 25267 | 716 | end | 
| 25230 | 717 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 718 | class ordered_ring = ring + ordered_cancel_semiring | 
| 25267 | 719 | begin | 
| 25230 | 720 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 721 | subclass ordered_ab_group_add .. | 
| 14270 | 722 | |
| 25230 | 723 | lemma less_add_iff1: | 
| 724 | "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" | |
| 29667 | 725 | by (simp add: algebra_simps) | 
| 25230 | 726 | |
| 727 | lemma less_add_iff2: | |
| 728 | "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" | |
| 29667 | 729 | by (simp add: algebra_simps) | 
| 25230 | 730 | |
| 731 | lemma le_add_iff1: | |
| 732 | "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" | |
| 29667 | 733 | by (simp add: algebra_simps) | 
| 25230 | 734 | |
| 735 | lemma le_add_iff2: | |
| 736 | "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" | |
| 29667 | 737 | by (simp add: algebra_simps) | 
| 25230 | 738 | |
| 739 | lemma mult_left_mono_neg: | |
| 740 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 741 | apply (drule mult_left_mono [of _ _ "- c"]) | 
| 35216 | 742 | apply simp_all | 
| 25230 | 743 | done | 
| 744 | ||
| 745 | lemma mult_right_mono_neg: | |
| 746 | "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 747 | apply (drule mult_right_mono [of _ _ "- c"]) | 
| 35216 | 748 | apply simp_all | 
| 25230 | 749 | done | 
| 750 | ||
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 751 | lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 752 | using mult_right_mono_neg [of a 0 b] by simp | 
| 25230 | 753 | |
| 754 | lemma split_mult_pos_le: | |
| 755 | "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" | |
| 29667 | 756 | by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 25186 | 757 | |
| 758 | end | |
| 14270 | 759 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 760 | class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 761 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 762 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 763 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 764 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 765 | subclass ordered_ab_group_add_abs | 
| 28823 | 766 | proof | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 767 | fix a b | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 768 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 769 | by (auto simp add: abs_if not_le not_less algebra_simps simp del: add.commute dest: add_neg_neg add_nonneg_nonneg) | 
| 35216 | 770 | qed (auto simp add: abs_if) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 771 | |
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 772 | lemma zero_le_square [simp]: "0 \<le> a * a" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 773 | using linear [of 0 a] | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 774 | by (auto simp add: mult_nonneg_nonneg mult_nonpos_nonpos) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 775 | |
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 776 | lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 777 | by (simp add: not_less) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 778 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 779 | end | 
| 23521 | 780 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 781 | (* The "strict" suffix can be seen as describing the combination of linordered_ring and no_zero_divisors. | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 782 | Basically, linordered_ring + no_zero_divisors = linordered_ring_strict. | 
| 25230 | 783 | *) | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 784 | class linordered_ring_strict = ring + linordered_semiring_strict | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 785 | + ordered_ab_group_add + abs_if | 
| 25230 | 786 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 787 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 788 | subclass linordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 789 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 790 | lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 791 | using mult_strict_left_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 792 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 793 | lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 794 | using mult_strict_right_mono [of b a "- c"] by simp | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 795 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 796 | lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 797 | using mult_strict_right_mono_neg [of a 0 b] by simp | 
| 14738 | 798 | |
| 25917 | 799 | subclass ring_no_zero_divisors | 
| 28823 | 800 | proof | 
| 25917 | 801 | fix a b | 
| 802 | assume "a \<noteq> 0" then have A: "a < 0 \<or> 0 < a" by (simp add: neq_iff) | |
| 803 | assume "b \<noteq> 0" then have B: "b < 0 \<or> 0 < b" by (simp add: neq_iff) | |
| 804 | have "a * b < 0 \<or> 0 < a * b" | |
| 805 | proof (cases "a < 0") | |
| 806 | case True note A' = this | |
| 807 | show ?thesis proof (cases "b < 0") | |
| 808 | case True with A' | |
| 809 | show ?thesis by (auto dest: mult_neg_neg) | |
| 810 | next | |
| 811 | case False with B have "0 < b" by auto | |
| 812 | with A' show ?thesis by (auto dest: mult_strict_right_mono) | |
| 813 | qed | |
| 814 | next | |
| 815 | case False with A have A': "0 < a" by auto | |
| 816 | show ?thesis proof (cases "b < 0") | |
| 817 | case True with A' | |
| 818 | show ?thesis by (auto dest: mult_strict_right_mono_neg) | |
| 819 | next | |
| 820 | case False with B have "0 < b" by auto | |
| 821 | with A' show ?thesis by (auto dest: mult_pos_pos) | |
| 822 | qed | |
| 823 | qed | |
| 824 | then show "a * b \<noteq> 0" by (simp add: neq_iff) | |
| 825 | qed | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 826 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 827 | lemma zero_less_mult_iff: | 
| 25917 | 828 | "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" | 
| 829 | apply (auto simp add: mult_pos_pos mult_neg_neg) | |
| 830 | apply (simp_all add: not_less le_less) | |
| 831 | apply (erule disjE) apply assumption defer | |
| 832 | apply (erule disjE) defer apply (drule sym) apply simp | |
| 833 | apply (erule disjE) defer apply (drule sym) apply simp | |
| 834 | apply (erule disjE) apply assumption apply (drule sym) apply simp | |
| 835 | apply (drule sym) apply simp | |
| 836 | apply (blast dest: zero_less_mult_pos) | |
| 25230 | 837 | apply (blast dest: zero_less_mult_pos2) | 
| 838 | done | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 839 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 840 | lemma zero_le_mult_iff: | 
| 25917 | 841 | "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" | 
| 29667 | 842 | by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 843 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 844 | lemma mult_less_0_iff: | 
| 25917 | 845 | "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" | 
| 35216 | 846 | apply (insert zero_less_mult_iff [of "-a" b]) | 
| 847 | apply force | |
| 25917 | 848 | done | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 849 | |
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 850 | lemma mult_le_0_iff: | 
| 25917 | 851 | "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" | 
| 852 | apply (insert zero_le_mult_iff [of "-a" b]) | |
| 35216 | 853 | apply force | 
| 25917 | 854 | done | 
| 855 | ||
| 26193 | 856 | text{*Cancellation laws for @{term "c*a < c*b"} and @{term "a*c < b*c"},
 | 
| 857 |    also with the relations @{text "\<le>"} and equality.*}
 | |
| 858 | ||
| 859 | text{*These ``disjunction'' versions produce two cases when the comparison is
 | |
| 860 | an assumption, but effectively four when the comparison is a goal.*} | |
| 861 | ||
| 862 | lemma mult_less_cancel_right_disj: | |
| 863 | "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 864 | apply (cases "c = 0") | |
| 865 | apply (auto simp add: neq_iff mult_strict_right_mono | |
| 866 | mult_strict_right_mono_neg) | |
| 867 | apply (auto simp add: not_less | |
| 868 | not_le [symmetric, of "a*c"] | |
| 869 | not_le [symmetric, of a]) | |
| 870 | apply (erule_tac [!] notE) | |
| 871 | apply (auto simp add: less_imp_le mult_right_mono | |
| 872 | mult_right_mono_neg) | |
| 873 | done | |
| 874 | ||
| 875 | lemma mult_less_cancel_left_disj: | |
| 876 | "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | |
| 877 | apply (cases "c = 0") | |
| 878 | apply (auto simp add: neq_iff mult_strict_left_mono | |
| 879 | mult_strict_left_mono_neg) | |
| 880 | apply (auto simp add: not_less | |
| 881 | not_le [symmetric, of "c*a"] | |
| 882 | not_le [symmetric, of a]) | |
| 883 | apply (erule_tac [!] notE) | |
| 884 | apply (auto simp add: less_imp_le mult_left_mono | |
| 885 | mult_left_mono_neg) | |
| 886 | done | |
| 887 | ||
| 888 | text{*The ``conjunction of implication'' lemmas produce two cases when the
 | |
| 889 | comparison is a goal, but give four when the comparison is an assumption.*} | |
| 890 | ||
| 891 | lemma mult_less_cancel_right: | |
| 892 | "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 893 | using mult_less_cancel_right_disj [of a c b] by auto | |
| 894 | ||
| 895 | lemma mult_less_cancel_left: | |
| 896 | "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | |
| 897 | using mult_less_cancel_left_disj [of c a b] by auto | |
| 898 | ||
| 899 | lemma mult_le_cancel_right: | |
| 900 | "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 901 | by (simp add: not_less [symmetric] mult_less_cancel_right_disj) | 
| 26193 | 902 | |
| 903 | lemma mult_le_cancel_left: | |
| 904 | "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 29667 | 905 | by (simp add: not_less [symmetric] mult_less_cancel_left_disj) | 
| 26193 | 906 | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 907 | lemma mult_le_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 908 | "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 909 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 910 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 911 | lemma mult_le_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 912 | "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 913 | by (auto simp: mult_le_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 914 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 915 | lemma mult_less_cancel_left_pos: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 916 | "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 917 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 918 | |
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 919 | lemma mult_less_cancel_left_neg: | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 920 | "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a" | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 921 | by (auto simp: mult_less_cancel_left) | 
| 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 922 | |
| 25917 | 923 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 924 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 925 | lemmas mult_sign_intros = | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 926 | mult_nonneg_nonneg mult_nonneg_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 927 | mult_nonpos_nonneg mult_nonpos_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 928 | mult_pos_pos mult_pos_neg | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 929 | mult_neg_pos mult_neg_neg | 
| 25230 | 930 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 931 | class ordered_comm_ring = comm_ring + ordered_comm_semiring | 
| 25267 | 932 | begin | 
| 25230 | 933 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 934 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 935 | subclass ordered_cancel_comm_semiring .. | 
| 25230 | 936 | |
| 25267 | 937 | end | 
| 25230 | 938 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 939 | class linordered_semidom = comm_semiring_1_cancel + linordered_comm_semiring_strict + | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 940 | (*previously linordered_semiring*) | 
| 25230 | 941 | assumes zero_less_one [simp]: "0 < 1" | 
| 942 | begin | |
| 943 | ||
| 944 | lemma pos_add_strict: | |
| 945 | shows "0 < a \<Longrightarrow> b < c \<Longrightarrow> b < a + c" | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 946 | using add_strict_mono [of 0 a b c] by simp | 
| 25230 | 947 | |
| 26193 | 948 | lemma zero_le_one [simp]: "0 \<le> 1" | 
| 29667 | 949 | by (rule zero_less_one [THEN less_imp_le]) | 
| 26193 | 950 | |
| 951 | lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" | |
| 29667 | 952 | by (simp add: not_le) | 
| 26193 | 953 | |
| 954 | lemma not_one_less_zero [simp]: "\<not> 1 < 0" | |
| 29667 | 955 | by (simp add: not_less) | 
| 26193 | 956 | |
| 957 | lemma less_1_mult: | |
| 958 | assumes "1 < m" and "1 < n" | |
| 959 | shows "1 < m * n" | |
| 960 | using assms mult_strict_mono [of 1 m 1 n] | |
| 961 | by (simp add: less_trans [OF zero_less_one]) | |
| 962 | ||
| 25230 | 963 | end | 
| 964 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 965 | class linordered_idom = comm_ring_1 + | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 966 | linordered_comm_semiring_strict + ordered_ab_group_add + | 
| 25230 | 967 | abs_if + sgn_if | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 968 | (*previously linordered_ring*) | 
| 25917 | 969 | begin | 
| 970 | ||
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 971 | subclass linordered_semiring_1_strict .. | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 972 | subclass linordered_ring_strict .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 973 | subclass ordered_comm_ring .. | 
| 27516 | 974 | subclass idom .. | 
| 25917 | 975 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 976 | subclass linordered_semidom | 
| 28823 | 977 | proof | 
| 26193 | 978 | have "0 \<le> 1 * 1" by (rule zero_le_square) | 
| 979 | thus "0 < 1" by (simp add: le_less) | |
| 25917 | 980 | qed | 
| 981 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 982 | lemma linorder_neqE_linordered_idom: | 
| 26193 | 983 | assumes "x \<noteq> y" obtains "x < y" | "y < x" | 
| 984 | using assms by (rule neqE) | |
| 985 | ||
| 26274 | 986 | text {* These cancellation simprules also produce two cases when the comparison is a goal. *}
 | 
| 987 | ||
| 988 | lemma mult_le_cancel_right1: | |
| 989 | "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 990 | by (insert mult_le_cancel_right [of 1 c b], simp) | 
| 26274 | 991 | |
| 992 | lemma mult_le_cancel_right2: | |
| 993 | "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 994 | by (insert mult_le_cancel_right [of a c 1], simp) | 
| 26274 | 995 | |
| 996 | lemma mult_le_cancel_left1: | |
| 997 | "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | |
| 29667 | 998 | by (insert mult_le_cancel_left [of c 1 b], simp) | 
| 26274 | 999 | |
| 1000 | lemma mult_le_cancel_left2: | |
| 1001 | "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | |
| 29667 | 1002 | by (insert mult_le_cancel_left [of c a 1], simp) | 
| 26274 | 1003 | |
| 1004 | lemma mult_less_cancel_right1: | |
| 1005 | "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 1006 | by (insert mult_less_cancel_right [of 1 c b], simp) | 
| 26274 | 1007 | |
| 1008 | lemma mult_less_cancel_right2: | |
| 1009 | "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 1010 | by (insert mult_less_cancel_right [of a c 1], simp) | 
| 26274 | 1011 | |
| 1012 | lemma mult_less_cancel_left1: | |
| 1013 | "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | |
| 29667 | 1014 | by (insert mult_less_cancel_left [of c 1 b], simp) | 
| 26274 | 1015 | |
| 1016 | lemma mult_less_cancel_left2: | |
| 1017 | "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | |
| 29667 | 1018 | by (insert mult_less_cancel_left [of c a 1], simp) | 
| 26274 | 1019 | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1020 | lemma sgn_sgn [simp]: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1021 | "sgn (sgn a) = sgn a" | 
| 29700 | 1022 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1023 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1024 | lemma sgn_0_0: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1025 | "sgn a = 0 \<longleftrightarrow> a = 0" | 
| 29700 | 1026 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1027 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1028 | lemma sgn_1_pos: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1029 | "sgn a = 1 \<longleftrightarrow> a > 0" | 
| 35216 | 1030 | unfolding sgn_if by simp | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1031 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1032 | lemma sgn_1_neg: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1033 | "sgn a = - 1 \<longleftrightarrow> a < 0" | 
| 35216 | 1034 | unfolding sgn_if by auto | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1035 | |
| 29940 | 1036 | lemma sgn_pos [simp]: | 
| 1037 | "0 < a \<Longrightarrow> sgn a = 1" | |
| 1038 | unfolding sgn_1_pos . | |
| 1039 | ||
| 1040 | lemma sgn_neg [simp]: | |
| 1041 | "a < 0 \<Longrightarrow> sgn a = - 1" | |
| 1042 | unfolding sgn_1_neg . | |
| 1043 | ||
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1044 | lemma sgn_times: | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1045 | "sgn (a * b) = sgn a * sgn b" | 
| 29667 | 1046 | by (auto simp add: sgn_if zero_less_mult_iff) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 1047 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1048 | lemma abs_sgn: "\<bar>k\<bar> = k * sgn k" | 
| 29700 | 1049 | unfolding sgn_if abs_if by auto | 
| 1050 | ||
| 29940 | 1051 | lemma sgn_greater [simp]: | 
| 1052 | "0 < sgn a \<longleftrightarrow> 0 < a" | |
| 1053 | unfolding sgn_if by auto | |
| 1054 | ||
| 1055 | lemma sgn_less [simp]: | |
| 1056 | "sgn a < 0 \<longleftrightarrow> a < 0" | |
| 1057 | unfolding sgn_if by auto | |
| 1058 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1059 | lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k" | 
| 29949 | 1060 | by (simp add: abs_if) | 
| 1061 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1062 | lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k" | 
| 29949 | 1063 | by (simp add: abs_if) | 
| 29653 | 1064 | |
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1065 | lemma dvd_if_abs_eq: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1066 | "\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k" | 
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1067 | by(subst abs_dvd_iff[symmetric]) simp | 
| 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 1068 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1069 | text {* The following lemmas can be proven in more generale structures, but
 | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1070 | are dangerous as simp rules in absence of @{thm neg_equal_zero}, 
 | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1071 | @{thm neg_less_pos}, @{thm neg_less_eq_nonneg}. *}
 | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1072 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1073 | lemma equation_minus_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1074 | "1 = - a \<longleftrightarrow> a = - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1075 | by (fact equation_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1076 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1077 | lemma minus_equation_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1078 | "- a = 1 \<longleftrightarrow> a = - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1079 | by (subst minus_equation_iff, auto) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1080 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1081 | lemma le_minus_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1082 | "1 \<le> - b \<longleftrightarrow> b \<le> - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1083 | by (fact le_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1084 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1085 | lemma minus_le_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1086 | "- a \<le> 1 \<longleftrightarrow> - 1 \<le> a" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1087 | by (fact minus_le_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1088 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1089 | lemma less_minus_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1090 | "1 < - b \<longleftrightarrow> b < - 1" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1091 | by (fact less_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1092 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1093 | lemma minus_less_iff_1 [simp, no_atp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1094 | "- a < 1 \<longleftrightarrow> - 1 < a" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1095 | by (fact minus_less_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 1096 | |
| 25917 | 1097 | end | 
| 25230 | 1098 | |
| 26274 | 1099 | text {* Simprules for comparisons where common factors can be cancelled. *}
 | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1100 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 1101 | lemmas mult_compare_simps = | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1102 | mult_le_cancel_right mult_le_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1103 | mult_le_cancel_right1 mult_le_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1104 | mult_le_cancel_left1 mult_le_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1105 | mult_less_cancel_right mult_less_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1106 | mult_less_cancel_right1 mult_less_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1107 | mult_less_cancel_left1 mult_less_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1108 | mult_cancel_right mult_cancel_left | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1109 | mult_cancel_right1 mult_cancel_right2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1110 | mult_cancel_left1 mult_cancel_left2 | 
| 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1111 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1112 | text {* Reasoning about inequalities with division *}
 | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1113 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1114 | context linordered_semidom | 
| 25193 | 1115 | begin | 
| 1116 | ||
| 1117 | lemma less_add_one: "a < a + 1" | |
| 14293 | 1118 | proof - | 
| 25193 | 1119 | have "a + 0 < a + 1" | 
| 23482 | 1120 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 14293 | 1121 | thus ?thesis by simp | 
| 1122 | qed | |
| 1123 | ||
| 25193 | 1124 | lemma zero_less_two: "0 < 1 + 1" | 
| 29667 | 1125 | by (blast intro: less_trans zero_less_one less_add_one) | 
| 25193 | 1126 | |
| 1127 | end | |
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 1128 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1129 | context linordered_idom | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1130 | begin | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 1131 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1132 | lemma mult_right_le_one_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1133 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1134 | by (auto simp add: mult_le_cancel_left2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1135 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1136 | lemma mult_left_le_one_le: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1137 | "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1138 | by (auto simp add: mult_le_cancel_right2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1139 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1140 | end | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1141 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1142 | text {* Absolute Value *}
 | 
| 14293 | 1143 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1144 | context linordered_idom | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1145 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1146 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1147 | lemma mult_sgn_abs: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1148 | "sgn x * \<bar>x\<bar> = x" | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1149 | unfolding abs_if sgn_if by auto | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1150 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1151 | lemma abs_one [simp]: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1152 | "\<bar>1\<bar> = 1" | 
| 44921 | 1153 | by (simp add: abs_if) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1154 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1155 | end | 
| 24491 | 1156 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1157 | class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs + | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1158 | assumes abs_eq_mult: | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1159 | "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1160 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1161 | context linordered_idom | 
| 30961 | 1162 | begin | 
| 1163 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1164 | subclass ordered_ring_abs proof | 
| 35216 | 1165 | qed (auto simp add: abs_if not_less mult_less_0_iff) | 
| 30961 | 1166 | |
| 1167 | lemma abs_mult: | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1168 | "\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 30961 | 1169 | by (rule abs_eq_mult) auto | 
| 1170 | ||
| 1171 | lemma abs_mult_self: | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1172 | "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | 
| 30961 | 1173 | by (simp add: abs_if) | 
| 1174 | ||
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1175 | lemma abs_mult_less: | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1176 | "\<bar>a\<bar> < c \<Longrightarrow> \<bar>b\<bar> < d \<Longrightarrow> \<bar>a\<bar> * \<bar>b\<bar> < c * d" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1177 | proof - | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1178 | assume ac: "\<bar>a\<bar> < c" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1179 | hence cpos: "0<c" by (blast intro: le_less_trans abs_ge_zero) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1180 | assume "\<bar>b\<bar> < d" | 
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1181 | thus ?thesis by (simp add: ac cpos mult_strict_mono) | 
| 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 1182 | qed | 
| 14293 | 1183 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1184 | lemma abs_less_iff: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1185 | "\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1186 | by (simp add: less_le abs_le_iff) (auto simp add: abs_if) | 
| 14738 | 1187 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1188 | lemma abs_mult_pos: | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1189 | "0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>" | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1190 | by (simp add: abs_mult) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1191 | |
| 51520 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1192 | lemma abs_diff_less_iff: | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1193 | "\<bar>x - a\<bar> < r \<longleftrightarrow> a - r < x \<and> x < a + r" | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1194 | by (auto simp add: diff_less_eq ac_simps abs_less_iff) | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 1195 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1196 | end | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 1197 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 1198 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 1199 | code_module Rings \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 1200 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1201 | end | 
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 1202 |