| author | wenzelm | 
| Sat, 01 Mar 2008 14:10:13 +0100 | |
| changeset 26187 | 3e099fc47afd | 
| parent 26014 | 00c2c3525bef | 
| child 26233 | 3751b3dbb67c | 
| permissions | -rw-r--r-- | 
| 21249 | 1 | (* Title: HOL/Lattices.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow | |
| 4 | *) | |
| 5 | ||
| 22454 | 6 | header {* Abstract lattices *}
 | 
| 21249 | 7 | |
| 8 | theory Lattices | |
| 9 | imports Orderings | |
| 10 | begin | |
| 11 | ||
| 12 | subsection{* Lattices *}
 | |
| 13 | ||
| 25206 | 14 | notation | 
| 25382 | 15 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 16 | less (infix "\<sqsubset>" 50) | |
| 25206 | 17 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 18 | class lower_semilattice = order + | 
| 21249 | 19 | fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70) | 
| 22737 | 20 | assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" | 
| 21 | and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y" | |
| 21733 | 22 | and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" | 
| 21249 | 23 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 24 | class upper_semilattice = order + | 
| 21249 | 25 | fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65) | 
| 22737 | 26 | assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y" | 
| 27 | and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y" | |
| 21733 | 28 | and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x" | 
| 26014 | 29 | begin | 
| 30 | ||
| 31 | text {* Dual lattice *}
 | |
| 32 | ||
| 33 | lemma dual_lattice: | |
| 34 | "lower_semilattice (op \<ge>) (op >) sup" | |
| 35 | by unfold_locales | |
| 36 | (auto simp add: sup_least) | |
| 37 | ||
| 38 | end | |
| 21249 | 39 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 40 | class lattice = lower_semilattice + upper_semilattice | 
| 21249 | 41 | |
| 25382 | 42 | |
| 21733 | 43 | subsubsection{* Intro and elim rules*}
 | 
| 44 | ||
| 45 | context lower_semilattice | |
| 46 | begin | |
| 21249 | 47 | |
| 25062 | 48 | lemma le_infI1[intro]: | 
| 49 | assumes "a \<sqsubseteq> x" | |
| 50 | shows "a \<sqinter> b \<sqsubseteq> x" | |
| 51 | proof (rule order_trans) | |
| 25482 | 52 | from assms show "a \<sqsubseteq> x" . | 
| 53 | show "a \<sqinter> b \<sqsubseteq> a" by simp | |
| 25062 | 54 | qed | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 55 | lemmas (in -) [rule del] = le_infI1 | 
| 21249 | 56 | |
| 25062 | 57 | lemma le_infI2[intro]: | 
| 58 | assumes "b \<sqsubseteq> x" | |
| 59 | shows "a \<sqinter> b \<sqsubseteq> x" | |
| 60 | proof (rule order_trans) | |
| 25482 | 61 | from assms show "b \<sqsubseteq> x" . | 
| 62 | show "a \<sqinter> b \<sqsubseteq> b" by simp | |
| 25062 | 63 | qed | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 64 | lemmas (in -) [rule del] = le_infI2 | 
| 21733 | 65 | |
| 21734 | 66 | lemma le_infI[intro!]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b" | 
| 21733 | 67 | by(blast intro: inf_greatest) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 68 | lemmas (in -) [rule del] = le_infI | 
| 21249 | 69 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 70 | lemma le_infE [elim!]: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 71 | by (blast intro: order_trans) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 72 | lemmas (in -) [rule del] = le_infE | 
| 21249 | 73 | |
| 21734 | 74 | lemma le_inf_iff [simp]: | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 75 | "x \<sqsubseteq> y \<sqinter> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)" | 
| 21733 | 76 | by blast | 
| 77 | ||
| 21734 | 78 | lemma le_iff_inf: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 79 | by (blast intro: antisym dest: eq_iff [THEN iffD1]) | 
| 21249 | 80 | |
| 25206 | 81 | lemma mono_inf: | 
| 82 | fixes f :: "'a \<Rightarrow> 'b\<Colon>lower_semilattice" | |
| 83 | shows "mono f \<Longrightarrow> f (A \<sqinter> B) \<le> f A \<sqinter> f B" | |
| 84 | by (auto simp add: mono_def intro: Lattices.inf_greatest) | |
| 21733 | 85 | |
| 25206 | 86 | end | 
| 21733 | 87 | |
| 88 | context upper_semilattice | |
| 89 | begin | |
| 21249 | 90 | |
| 21734 | 91 | lemma le_supI1[intro]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | 
| 25062 | 92 | by (rule order_trans) auto | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 93 | lemmas (in -) [rule del] = le_supI1 | 
| 21249 | 94 | |
| 21734 | 95 | lemma le_supI2[intro]: "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | 
| 25062 | 96 | by (rule order_trans) auto | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 97 | lemmas (in -) [rule del] = le_supI2 | 
| 21733 | 98 | |
| 21734 | 99 | lemma le_supI[intro!]: "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x" | 
| 26014 | 100 | by (blast intro: sup_least) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 101 | lemmas (in -) [rule del] = le_supI | 
| 21249 | 102 | |
| 21734 | 103 | lemma le_supE[elim!]: "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 104 | by (blast intro: order_trans) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 105 | lemmas (in -) [rule del] = le_supE | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 106 | |
| 21734 | 107 | lemma ge_sup_conv[simp]: | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 108 | "x \<squnion> y \<sqsubseteq> z = (x \<sqsubseteq> z \<and> y \<sqsubseteq> z)" | 
| 21733 | 109 | by blast | 
| 110 | ||
| 21734 | 111 | lemma le_iff_sup: "(x \<sqsubseteq> y) = (x \<squnion> y = y)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 112 | by (blast intro: antisym dest: eq_iff [THEN iffD1]) | 
| 21734 | 113 | |
| 25206 | 114 | lemma mono_sup: | 
| 115 | fixes f :: "'a \<Rightarrow> 'b\<Colon>upper_semilattice" | |
| 116 | shows "mono f \<Longrightarrow> f A \<squnion> f B \<le> f (A \<squnion> B)" | |
| 117 | by (auto simp add: mono_def intro: Lattices.sup_least) | |
| 21733 | 118 | |
| 25206 | 119 | end | 
| 23878 | 120 | |
| 21733 | 121 | |
| 122 | subsubsection{* Equational laws *}
 | |
| 21249 | 123 | |
| 21733 | 124 | context lower_semilattice | 
| 125 | begin | |
| 126 | ||
| 127 | lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 128 | by (blast intro: antisym) | 
| 21733 | 129 | |
| 130 | lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 131 | by (blast intro: antisym) | 
| 21733 | 132 | |
| 133 | lemma inf_idem[simp]: "x \<sqinter> x = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 134 | by (blast intro: antisym) | 
| 21733 | 135 | |
| 136 | lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 137 | by (blast intro: antisym) | 
| 21733 | 138 | |
| 139 | lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 140 | by (blast intro: antisym) | 
| 21733 | 141 | |
| 142 | lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 143 | by (blast intro: antisym) | 
| 21733 | 144 | |
| 145 | lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 146 | by (blast intro: antisym) | 
| 21733 | 147 | |
| 148 | lemmas inf_ACI = inf_commute inf_assoc inf_left_commute inf_left_idem | |
| 149 | ||
| 150 | end | |
| 151 | ||
| 152 | ||
| 153 | context upper_semilattice | |
| 154 | begin | |
| 21249 | 155 | |
| 21733 | 156 | lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 157 | by (blast intro: antisym) | 
| 21733 | 158 | |
| 159 | lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 160 | by (blast intro: antisym) | 
| 21733 | 161 | |
| 162 | lemma sup_idem[simp]: "x \<squnion> x = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 163 | by (blast intro: antisym) | 
| 21733 | 164 | |
| 165 | lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 166 | by (blast intro: antisym) | 
| 21733 | 167 | |
| 168 | lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 169 | by (blast intro: antisym) | 
| 21733 | 170 | |
| 171 | lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 172 | by (blast intro: antisym) | 
| 21249 | 173 | |
| 21733 | 174 | lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 175 | by (blast intro: antisym) | 
| 21733 | 176 | |
| 177 | lemmas sup_ACI = sup_commute sup_assoc sup_left_commute sup_left_idem | |
| 178 | ||
| 179 | end | |
| 21249 | 180 | |
| 21733 | 181 | context lattice | 
| 182 | begin | |
| 183 | ||
| 184 | lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 185 | by (blast intro: antisym inf_le1 inf_greatest sup_ge1) | 
| 21733 | 186 | |
| 187 | lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 188 | by (blast intro: antisym sup_ge1 sup_least inf_le1) | 
| 21733 | 189 | |
| 21734 | 190 | lemmas ACI = inf_ACI sup_ACI | 
| 191 | ||
| 22454 | 192 | lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2 | 
| 193 | ||
| 21734 | 194 | text{* Towards distributivity *}
 | 
| 21249 | 195 | |
| 21734 | 196 | lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 197 | by blast | 
| 21734 | 198 | |
| 199 | lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 200 | by blast | 
| 21734 | 201 | |
| 202 | ||
| 203 | text{* If you have one of them, you have them all. *}
 | |
| 21249 | 204 | |
| 21733 | 205 | lemma distrib_imp1: | 
| 21249 | 206 | assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 207 | shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | |
| 208 | proof- | |
| 209 | have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb) | |
| 210 | also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc) | |
| 211 | also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" | |
| 212 | by(simp add:inf_sup_absorb inf_commute) | |
| 213 | also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D) | |
| 214 | finally show ?thesis . | |
| 215 | qed | |
| 216 | ||
| 21733 | 217 | lemma distrib_imp2: | 
| 21249 | 218 | assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 219 | shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | |
| 220 | proof- | |
| 221 | have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb) | |
| 222 | also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc) | |
| 223 | also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)" | |
| 224 | by(simp add:sup_inf_absorb sup_commute) | |
| 225 | also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D) | |
| 226 | finally show ?thesis . | |
| 227 | qed | |
| 228 | ||
| 21734 | 229 | (* seems unused *) | 
| 230 | lemma modular_le: "x \<sqsubseteq> z \<Longrightarrow> x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> z" | |
| 231 | by blast | |
| 232 | ||
| 21733 | 233 | end | 
| 21249 | 234 | |
| 235 | ||
| 24164 | 236 | subsection {* Distributive lattices *}
 | 
| 21249 | 237 | |
| 22454 | 238 | class distrib_lattice = lattice + | 
| 21249 | 239 | assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 240 | ||
| 21733 | 241 | context distrib_lattice | 
| 242 | begin | |
| 243 | ||
| 244 | lemma sup_inf_distrib2: | |
| 21249 | 245 | "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)" | 
| 246 | by(simp add:ACI sup_inf_distrib1) | |
| 247 | ||
| 21733 | 248 | lemma inf_sup_distrib1: | 
| 21249 | 249 | "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 250 | by(rule distrib_imp2[OF sup_inf_distrib1]) | |
| 251 | ||
| 21733 | 252 | lemma inf_sup_distrib2: | 
| 21249 | 253 | "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" | 
| 254 | by(simp add:ACI inf_sup_distrib1) | |
| 255 | ||
| 21733 | 256 | lemmas distrib = | 
| 21249 | 257 | sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2 | 
| 258 | ||
| 21733 | 259 | end | 
| 260 | ||
| 21249 | 261 | |
| 22454 | 262 | subsection {* Uniqueness of inf and sup *}
 | 
| 263 | ||
| 22737 | 264 | lemma (in lower_semilattice) inf_unique: | 
| 22454 | 265 | fixes f (infixl "\<triangle>" 70) | 
| 25062 | 266 | assumes le1: "\<And>x y. x \<triangle> y \<le> x" and le2: "\<And>x y. x \<triangle> y \<le> y" | 
| 267 | and greatest: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z" | |
| 22737 | 268 | shows "x \<sqinter> y = x \<triangle> y" | 
| 22454 | 269 | proof (rule antisym) | 
| 25062 | 270 | show "x \<triangle> y \<le> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2) | 
| 22454 | 271 | next | 
| 25062 | 272 | have leI: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z" by (blast intro: greatest) | 
| 273 | show "x \<sqinter> y \<le> x \<triangle> y" by (rule leI) simp_all | |
| 22454 | 274 | qed | 
| 275 | ||
| 22737 | 276 | lemma (in upper_semilattice) sup_unique: | 
| 22454 | 277 | fixes f (infixl "\<nabla>" 70) | 
| 25062 | 278 | assumes ge1 [simp]: "\<And>x y. x \<le> x \<nabla> y" and ge2: "\<And>x y. y \<le> x \<nabla> y" | 
| 279 | and least: "\<And>x y z. y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<nabla> z \<le> x" | |
| 22737 | 280 | shows "x \<squnion> y = x \<nabla> y" | 
| 22454 | 281 | proof (rule antisym) | 
| 25062 | 282 | show "x \<squnion> y \<le> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2) | 
| 22454 | 283 | next | 
| 25062 | 284 | have leI: "\<And>x y z. x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x \<nabla> y \<le> z" by (blast intro: least) | 
| 285 | show "x \<nabla> y \<le> x \<squnion> y" by (rule leI) simp_all | |
| 22454 | 286 | qed | 
| 287 | ||
| 288 | ||
| 22916 | 289 | subsection {* @{const min}/@{const max} on linear orders as
 | 
| 290 |   special case of @{const inf}/@{const sup} *}
 | |
| 291 | ||
| 292 | lemma (in linorder) distrib_lattice_min_max: | |
| 25062 | 293 | "distrib_lattice (op \<le>) (op <) min max" | 
| 22916 | 294 | proof unfold_locales | 
| 25062 | 295 | have aux: "\<And>x y \<Colon> 'a. x < y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | 
| 22916 | 296 | by (auto simp add: less_le antisym) | 
| 297 | fix x y z | |
| 298 | show "max x (min y z) = min (max x y) (max x z)" | |
| 299 | unfolding min_def max_def | |
| 24640 
85a6c200ecd3
Simplified proofs due to transitivity reasoner setup.
 ballarin parents: 
24514diff
changeset | 300 | by auto | 
| 22916 | 301 | qed (auto simp add: min_def max_def not_le less_imp_le) | 
| 21249 | 302 | |
| 303 | interpretation min_max: | |
| 22454 | 304 | distrib_lattice ["op \<le> \<Colon> 'a\<Colon>linorder \<Rightarrow> 'a \<Rightarrow> bool" "op <" min max] | 
| 23948 | 305 | by (rule distrib_lattice_min_max) | 
| 21249 | 306 | |
| 22454 | 307 | lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{lower_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 308 | by (rule ext)+ (auto intro: antisym) | 
| 21733 | 309 | |
| 22454 | 310 | lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{upper_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 311 | by (rule ext)+ (auto intro: antisym) | 
| 21733 | 312 | |
| 21249 | 313 | lemmas le_maxI1 = min_max.sup_ge1 | 
| 314 | lemmas le_maxI2 = min_max.sup_ge2 | |
| 21381 | 315 | |
| 21249 | 316 | lemmas max_ac = min_max.sup_assoc min_max.sup_commute | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 317 | mk_left_commute [of max, OF min_max.sup_assoc min_max.sup_commute] | 
| 21249 | 318 | |
| 319 | lemmas min_ac = min_max.inf_assoc min_max.inf_commute | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 320 | mk_left_commute [of min, OF min_max.inf_assoc min_max.inf_commute] | 
| 21249 | 321 | |
| 22454 | 322 | text {*
 | 
| 323 | Now we have inherited antisymmetry as an intro-rule on all | |
| 324 | linear orders. This is a problem because it applies to bool, which is | |
| 325 | undesirable. | |
| 326 | *} | |
| 327 | ||
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 328 | lemmas [rule del] = min_max.le_infI min_max.le_supI | 
| 22454 | 329 | min_max.le_supE min_max.le_infE min_max.le_supI1 min_max.le_supI2 | 
| 330 | min_max.le_infI1 min_max.le_infI2 | |
| 331 | ||
| 332 | ||
| 23878 | 333 | subsection {* Complete lattices *}
 | 
| 334 | ||
| 335 | class complete_lattice = lattice + | |
| 336 |   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
 | |
| 24345 | 337 |     and Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
 | 
| 23878 | 338 | assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x" | 
| 24345 | 339 | and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A" | 
| 340 | assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A" | |
| 341 | and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z" | |
| 23878 | 342 | begin | 
| 343 | ||
| 25062 | 344 | lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<le> a}"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 345 | by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 23878 | 346 | |
| 25062 | 347 | lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<le> b}"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 348 | by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 23878 | 349 | |
| 350 | lemma Inf_Univ: "\<Sqinter>UNIV = \<Squnion>{}"
 | |
| 24345 | 351 | unfolding Sup_Inf by auto | 
| 23878 | 352 | |
| 353 | lemma Sup_Univ: "\<Squnion>UNIV = \<Sqinter>{}"
 | |
| 354 | unfolding Inf_Sup by auto | |
| 355 | ||
| 356 | lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A" | |
| 357 | apply (rule antisym) | |
| 358 | apply (rule le_infI) | |
| 359 | apply (rule Inf_lower) | |
| 360 | apply simp | |
| 361 | apply (rule Inf_greatest) | |
| 362 | apply (rule Inf_lower) | |
| 363 | apply simp | |
| 364 | apply (rule Inf_greatest) | |
| 365 | apply (erule insertE) | |
| 366 | apply (rule le_infI1) | |
| 367 | apply simp | |
| 368 | apply (rule le_infI2) | |
| 369 | apply (erule Inf_lower) | |
| 370 | done | |
| 371 | ||
| 24345 | 372 | lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A" | 
| 23878 | 373 | apply (rule antisym) | 
| 374 | apply (rule Sup_least) | |
| 375 | apply (erule insertE) | |
| 376 | apply (rule le_supI1) | |
| 377 | apply simp | |
| 378 | apply (rule le_supI2) | |
| 379 | apply (erule Sup_upper) | |
| 380 | apply (rule le_supI) | |
| 381 | apply (rule Sup_upper) | |
| 382 | apply simp | |
| 383 | apply (rule Sup_least) | |
| 384 | apply (rule Sup_upper) | |
| 385 | apply simp | |
| 386 | done | |
| 387 | ||
| 388 | lemma Inf_singleton [simp]: | |
| 389 |   "\<Sqinter>{a} = a"
 | |
| 390 | by (auto intro: antisym Inf_lower Inf_greatest) | |
| 391 | ||
| 24345 | 392 | lemma Sup_singleton [simp]: | 
| 23878 | 393 |   "\<Squnion>{a} = a"
 | 
| 394 | by (auto intro: antisym Sup_upper Sup_least) | |
| 395 | ||
| 396 | lemma Inf_insert_simp: | |
| 397 |   "\<Sqinter>insert a A = (if A = {} then a else a \<sqinter> \<Sqinter>A)"
 | |
| 398 |   by (cases "A = {}") (simp_all, simp add: Inf_insert)
 | |
| 399 | ||
| 400 | lemma Sup_insert_simp: | |
| 401 |   "\<Squnion>insert a A = (if A = {} then a else a \<squnion> \<Squnion>A)"
 | |
| 402 |   by (cases "A = {}") (simp_all, simp add: Sup_insert)
 | |
| 403 | ||
| 404 | lemma Inf_binary: | |
| 405 |   "\<Sqinter>{a, b} = a \<sqinter> b"
 | |
| 406 | by (simp add: Inf_insert_simp) | |
| 407 | ||
| 408 | lemma Sup_binary: | |
| 409 |   "\<Squnion>{a, b} = a \<squnion> b"
 | |
| 410 | by (simp add: Sup_insert_simp) | |
| 411 | ||
| 412 | definition | |
| 25382 | 413 | top :: 'a where | 
| 25206 | 414 |   "top = \<Sqinter>{}"
 | 
| 23878 | 415 | |
| 416 | definition | |
| 25382 | 417 | bot :: 'a where | 
| 25206 | 418 |   "bot = \<Squnion>{}"
 | 
| 23878 | 419 | |
| 25062 | 420 | lemma top_greatest [simp]: "x \<le> top" | 
| 23878 | 421 | by (unfold top_def, rule Inf_greatest, simp) | 
| 422 | ||
| 25062 | 423 | lemma bot_least [simp]: "bot \<le> x" | 
| 23878 | 424 | by (unfold bot_def, rule Sup_least, simp) | 
| 425 | ||
| 426 | definition | |
| 24749 | 427 |   SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 23878 | 428 | where | 
| 25206 | 429 | "SUPR A f == \<Squnion> (f ` A)" | 
| 23878 | 430 | |
| 431 | definition | |
| 24749 | 432 |   INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 23878 | 433 | where | 
| 25206 | 434 | "INFI A f == \<Sqinter> (f ` A)" | 
| 23878 | 435 | |
| 24749 | 436 | end | 
| 437 | ||
| 23878 | 438 | syntax | 
| 439 |   "_SUP1"     :: "pttrns => 'b => 'b"           ("(3SUP _./ _)" [0, 10] 10)
 | |
| 440 |   "_SUP"      :: "pttrn => 'a set => 'b => 'b"  ("(3SUP _:_./ _)" [0, 10] 10)
 | |
| 441 |   "_INF1"     :: "pttrns => 'b => 'b"           ("(3INF _./ _)" [0, 10] 10)
 | |
| 442 |   "_INF"      :: "pttrn => 'a set => 'b => 'b"  ("(3INF _:_./ _)" [0, 10] 10)
 | |
| 443 | ||
| 444 | translations | |
| 445 | "SUP x y. B" == "SUP x. SUP y. B" | |
| 446 | "SUP x. B" == "CONST SUPR UNIV (%x. B)" | |
| 447 | "SUP x. B" == "SUP x:UNIV. B" | |
| 448 | "SUP x:A. B" == "CONST SUPR A (%x. B)" | |
| 449 | "INF x y. B" == "INF x. INF y. B" | |
| 450 | "INF x. B" == "CONST INFI UNIV (%x. B)" | |
| 451 | "INF x. B" == "INF x:UNIV. B" | |
| 452 | "INF x:A. B" == "CONST INFI A (%x. B)" | |
| 453 | ||
| 454 | (* To avoid eta-contraction of body: *) | |
| 455 | print_translation {*
 | |
| 456 | let | |
| 457 | fun btr' syn (A :: Abs abs :: ts) = | |
| 458 | let val (x,t) = atomic_abs_tr' abs | |
| 459 | in list_comb (Syntax.const syn $ x $ A $ t, ts) end | |
| 460 |   val const_syntax_name = Sign.const_syntax_name @{theory} o fst o dest_Const
 | |
| 461 | in | |
| 462 | [(const_syntax_name @{term SUPR}, btr' "_SUP"),(const_syntax_name @{term "INFI"}, btr' "_INF")]
 | |
| 463 | end | |
| 464 | *} | |
| 465 | ||
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 466 | context complete_lattice | 
| 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 467 | begin | 
| 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 468 | |
| 23878 | 469 | lemma le_SUPI: "i : A \<Longrightarrow> M i \<le> (SUP i:A. M i)" | 
| 470 | by (auto simp add: SUPR_def intro: Sup_upper) | |
| 471 | ||
| 472 | lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<le> u) \<Longrightarrow> (SUP i:A. M i) \<le> u" | |
| 473 | by (auto simp add: SUPR_def intro: Sup_least) | |
| 474 | ||
| 475 | lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<le> M i" | |
| 476 | by (auto simp add: INFI_def intro: Inf_lower) | |
| 477 | ||
| 478 | lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<le> M i) \<Longrightarrow> u \<le> (INF i:A. M i)" | |
| 479 | by (auto simp add: INFI_def intro: Inf_greatest) | |
| 480 | ||
| 481 | lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
 | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 482 | by (auto intro: antisym SUP_leI le_SUPI) | 
| 23878 | 483 | |
| 484 | lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
 | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 485 | by (auto intro: antisym INF_leI le_INFI) | 
| 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 486 | |
| 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 487 | end | 
| 23878 | 488 | |
| 489 | ||
| 22454 | 490 | subsection {* Bool as lattice *}
 | 
| 491 | ||
| 25510 | 492 | instantiation bool :: distrib_lattice | 
| 493 | begin | |
| 494 | ||
| 495 | definition | |
| 496 | inf_bool_eq: "P \<sqinter> Q \<longleftrightarrow> P \<and> Q" | |
| 497 | ||
| 498 | definition | |
| 499 | sup_bool_eq: "P \<squnion> Q \<longleftrightarrow> P \<or> Q" | |
| 500 | ||
| 501 | instance | |
| 22454 | 502 | by intro_classes (auto simp add: inf_bool_eq sup_bool_eq le_bool_def) | 
| 503 | ||
| 25510 | 504 | end | 
| 505 | ||
| 506 | instantiation bool :: complete_lattice | |
| 507 | begin | |
| 508 | ||
| 509 | definition | |
| 510 | Inf_bool_def: "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)" | |
| 511 | ||
| 512 | definition | |
| 513 | Sup_bool_def: "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)" | |
| 514 | ||
| 515 | instance | |
| 24345 | 516 | by intro_classes (auto simp add: Inf_bool_def Sup_bool_def le_bool_def) | 
| 23878 | 517 | |
| 25510 | 518 | end | 
| 519 | ||
| 23878 | 520 | lemma Inf_empty_bool [simp]: | 
| 25206 | 521 |   "\<Sqinter>{}"
 | 
| 23878 | 522 | unfolding Inf_bool_def by auto | 
| 523 | ||
| 524 | lemma not_Sup_empty_bool [simp]: | |
| 525 |   "\<not> Sup {}"
 | |
| 24345 | 526 | unfolding Sup_bool_def by auto | 
| 23878 | 527 | |
| 528 | lemma top_bool_eq: "top = True" | |
| 529 | by (iprover intro!: order_antisym le_boolI top_greatest) | |
| 530 | ||
| 531 | lemma bot_bool_eq: "bot = False" | |
| 532 | by (iprover intro!: order_antisym le_boolI bot_least) | |
| 533 | ||
| 534 | ||
| 535 | subsection {* Set as lattice *}
 | |
| 536 | ||
| 25510 | 537 | instantiation set :: (type) distrib_lattice | 
| 538 | begin | |
| 539 | ||
| 540 | definition | |
| 541 | inf_set_eq [code func del]: "A \<sqinter> B = A \<inter> B" | |
| 542 | ||
| 543 | definition | |
| 544 | sup_set_eq [code func del]: "A \<squnion> B = A \<union> B" | |
| 545 | ||
| 546 | instance | |
| 23878 | 547 | by intro_classes (auto simp add: inf_set_eq sup_set_eq) | 
| 548 | ||
| 25510 | 549 | end | 
| 23878 | 550 | |
| 24514 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 551 | lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B" | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 552 | apply (fold inf_set_eq sup_set_eq) | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 553 | apply (erule mono_inf) | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 554 | done | 
| 23878 | 555 | |
| 24514 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 556 | lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)" | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 557 | apply (fold inf_set_eq sup_set_eq) | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 558 | apply (erule mono_sup) | 
| 
540eaf87e42d
mono_Int/Un: proper proof, avoid illegal schematic type vars;
 wenzelm parents: 
24345diff
changeset | 559 | done | 
| 23878 | 560 | |
| 25510 | 561 | instantiation set :: (type) complete_lattice | 
| 562 | begin | |
| 563 | ||
| 564 | definition | |
| 565 | Inf_set_def [code func del]: "\<Sqinter>S \<equiv> \<Inter>S" | |
| 566 | ||
| 567 | definition | |
| 568 | Sup_set_def [code func del]: "\<Squnion>S \<equiv> \<Union>S" | |
| 569 | ||
| 570 | instance | |
| 24345 | 571 | by intro_classes (auto simp add: Inf_set_def Sup_set_def) | 
| 23878 | 572 | |
| 25510 | 573 | end | 
| 23878 | 574 | |
| 575 | lemma top_set_eq: "top = UNIV" | |
| 576 | by (iprover intro!: subset_antisym subset_UNIV top_greatest) | |
| 577 | ||
| 578 | lemma bot_set_eq: "bot = {}"
 | |
| 579 | by (iprover intro!: subset_antisym empty_subsetI bot_least) | |
| 580 | ||
| 581 | ||
| 582 | subsection {* Fun as lattice *}
 | |
| 583 | ||
| 25510 | 584 | instantiation "fun" :: (type, lattice) lattice | 
| 585 | begin | |
| 586 | ||
| 587 | definition | |
| 588 | inf_fun_eq [code func del]: "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)" | |
| 589 | ||
| 590 | definition | |
| 591 | sup_fun_eq [code func del]: "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)" | |
| 592 | ||
| 593 | instance | |
| 23878 | 594 | apply intro_classes | 
| 595 | unfolding inf_fun_eq sup_fun_eq | |
| 596 | apply (auto intro: le_funI) | |
| 597 | apply (rule le_funI) | |
| 598 | apply (auto dest: le_funD) | |
| 599 | apply (rule le_funI) | |
| 600 | apply (auto dest: le_funD) | |
| 601 | done | |
| 602 | ||
| 25510 | 603 | end | 
| 23878 | 604 | |
| 605 | instance "fun" :: (type, distrib_lattice) distrib_lattice | |
| 606 | by default (auto simp add: inf_fun_eq sup_fun_eq sup_inf_distrib1) | |
| 607 | ||
| 25510 | 608 | instantiation "fun" :: (type, complete_lattice) complete_lattice | 
| 609 | begin | |
| 610 | ||
| 611 | definition | |
| 612 |   Inf_fun_def [code func del]: "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
 | |
| 613 | ||
| 614 | definition | |
| 615 |   Sup_fun_def [code func del]: "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
 | |
| 616 | ||
| 617 | instance | |
| 24345 | 618 | by intro_classes | 
| 619 | (auto simp add: Inf_fun_def Sup_fun_def le_fun_def | |
| 620 | intro: Inf_lower Sup_upper Inf_greatest Sup_least) | |
| 23878 | 621 | |
| 25510 | 622 | end | 
| 23878 | 623 | |
| 624 | lemma Inf_empty_fun: | |
| 25206 | 625 |   "\<Sqinter>{} = (\<lambda>_. \<Sqinter>{})"
 | 
| 23878 | 626 | by rule (auto simp add: Inf_fun_def) | 
| 627 | ||
| 628 | lemma Sup_empty_fun: | |
| 25206 | 629 |   "\<Squnion>{} = (\<lambda>_. \<Squnion>{})"
 | 
| 24345 | 630 | by rule (auto simp add: Sup_fun_def) | 
| 23878 | 631 | |
| 632 | lemma top_fun_eq: "top = (\<lambda>x. top)" | |
| 633 | by (iprover intro!: order_antisym le_funI top_greatest) | |
| 634 | ||
| 635 | lemma bot_fun_eq: "bot = (\<lambda>x. bot)" | |
| 636 | by (iprover intro!: order_antisym le_funI bot_least) | |
| 637 | ||
| 638 | ||
| 639 | text {* redundant bindings *}
 | |
| 22454 | 640 | |
| 641 | lemmas inf_aci = inf_ACI | |
| 642 | lemmas sup_aci = sup_ACI | |
| 643 | ||
| 25062 | 644 | no_notation | 
| 25382 | 645 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 646 | less (infix "\<sqsubset>" 50) and | |
| 647 | inf (infixl "\<sqinter>" 70) and | |
| 648 | sup (infixl "\<squnion>" 65) and | |
| 649 |   Inf  ("\<Sqinter>_" [900] 900) and
 | |
| 650 |   Sup  ("\<Squnion>_" [900] 900)
 | |
| 25062 | 651 | |
| 21249 | 652 | end |