| author | nipkow | 
| Mon, 16 Sep 2019 18:00:27 +0200 | |
| changeset 70708 | 3e11f35496b3 | 
| parent 70113 | c8deb8ba6d05 | 
| child 71351 | b3a93a91803b | 
| permissions | -rw-r--r-- | 
| 63466 | 1 | (* Title: HOL/Binomial.thy | 
| 2 | Author: Jacques D. Fleuriot | |
| 3 | Author: Lawrence C Paulson | |
| 4 | Author: Jeremy Avigad | |
| 5 | Author: Chaitanya Mangla | |
| 6 | Author: Manuel Eberl | |
| 12196 | 7 | *) | 
| 8 | ||
| 65812 | 9 | section \<open>Binomial Coefficients and Binomial Theorem\<close> | 
| 15094 
a7d1a3fdc30d
conversion of Hyperreal/{Fact,Filter} to Isar scripts
 paulson parents: 
12196diff
changeset | 10 | |
| 59669 
de7792ea4090
renaming HOL/Fact.thy -> Binomial.thy
 paulson <lp15@cam.ac.uk> parents: 
59667diff
changeset | 11 | theory Binomial | 
| 65813 | 12 | imports Presburger Factorial | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 13 | begin | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 14 | |
| 63373 | 15 | subsection \<open>Binomial coefficients\<close> | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 16 | |
| 63466 | 17 | text \<open>This development is based on the work of Andy Gordon and Florian Kammueller.\<close> | 
| 18 | ||
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 19 | text \<open>Combinatorial definition\<close> | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 20 | |
| 63466 | 21 | definition binomial :: "nat \<Rightarrow> nat \<Rightarrow> nat" (infixl "choose" 65) | 
| 22 |   where "n choose k = card {K\<in>Pow {0..<n}. card K = k}"
 | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 23 | |
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 24 | theorem n_subsets: | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 25 | assumes "finite A" | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 26 |   shows "card {B. B \<subseteq> A \<and> card B = k} = card A choose k"
 | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 27 | proof - | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 28 |   from assms obtain f where bij: "bij_betw f {0..<card A} A"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 29 | by (blast dest: ex_bij_betw_nat_finite) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 30 |   then have [simp]: "card (f ` C) = card C" if "C \<subseteq> {0..<card A}" for C
 | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 31 | by (meson bij_betw_imp_inj_on bij_betw_subset card_image that) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 32 |   from bij have "bij_betw (image f) (Pow {0..<card A}) (Pow A)"
 | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 33 | by (rule bij_betw_Pow) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 34 |   then have "inj_on (image f) (Pow {0..<card A})"
 | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 35 | by (rule bij_betw_imp_inj_on) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 36 |   moreover have "{K. K \<subseteq> {0..<card A} \<and> card K = k} \<subseteq> Pow {0..<card A}"
 | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 37 | by auto | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 38 |   ultimately have "inj_on (image f) {K. K \<subseteq> {0..<card A} \<and> card K = k}"
 | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 39 | by (rule inj_on_subset) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 40 |   then have "card {K. K \<subseteq> {0..<card A} \<and> card K = k} =
 | 
| 63466 | 41 |       card (image f ` {K. K \<subseteq> {0..<card A} \<and> card K = k})" (is "_ = card ?C")
 | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 42 | by (simp add: card_image) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 43 |   also have "?C = {K. K \<subseteq> f ` {0..<card A} \<and> card K = k}"
 | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 44 | by (auto elim!: subset_imageE) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 45 |   also have "f ` {0..<card A} = A"
 | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 46 | by (meson bij bij_betw_def) | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 47 | finally show ?thesis | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 48 | by (simp add: binomial_def) | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 49 | qed | 
| 63466 | 50 | |
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 51 | text \<open>Recursive characterization\<close> | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 52 | |
| 68785 | 53 | lemma binomial_n_0 [simp]: "n choose 0 = 1" | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 54 | proof - | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 55 |   have "{K \<in> Pow {0..<n}. card K = 0} = {{}}"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 56 | by (auto dest: finite_subset) | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 57 | then show ?thesis | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 58 | by (simp add: binomial_def) | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 59 | qed | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 60 | |
| 68785 | 61 | lemma binomial_0_Suc [simp]: "0 choose Suc k = 0" | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 62 | by (simp add: binomial_def) | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 63 | |
| 68785 | 64 | lemma binomial_Suc_Suc [simp]: "Suc n choose Suc k = (n choose k) + (n choose Suc k)" | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 65 | proof - | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 66 |   let ?P = "\<lambda>n k. {K. K \<subseteq> {0..<n} \<and> card K = k}"
 | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 67 | let ?Q = "?P (Suc n) (Suc k)" | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 68 | have inj: "inj_on (insert n) (?P n k)" | 
| 63466 | 69 | by rule (auto; metis atLeastLessThan_iff insert_iff less_irrefl subsetCE) | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 70 |   have disjoint: "insert n ` ?P n k \<inter> ?P n (Suc k) = {}"
 | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 71 | by auto | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 72 |   have "?Q = {K\<in>?Q. n \<in> K} \<union> {K\<in>?Q. n \<notin> K}"
 | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 73 | by auto | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 74 |   also have "{K\<in>?Q. n \<in> K} = insert n ` ?P n k" (is "?A = ?B")
 | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 75 | proof (rule set_eqI) | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 76 | fix K | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 77 |     have K_finite: "finite K" if "K \<subseteq> insert n {0..<n}"
 | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 78 | using that by (rule finite_subset) simp_all | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 79 | have Suc_card_K: "Suc (card K - Suc 0) = card K" if "n \<in> K" | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 80 | and "finite K" | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 81 | proof - | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 82 | from \<open>n \<in> K\<close> obtain L where "K = insert n L" and "n \<notin> L" | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 83 | by (blast elim: Set.set_insert) | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 84 | with that show ?thesis by (simp add: card_insert) | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 85 | qed | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 86 | show "K \<in> ?A \<longleftrightarrow> K \<in> ?B" | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 87 | by (subst in_image_insert_iff) | 
| 63466 | 88 | (auto simp add: card_insert subset_eq_atLeast0_lessThan_finite | 
| 89 | Diff_subset_conv K_finite Suc_card_K) | |
| 90 | qed | |
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 91 |   also have "{K\<in>?Q. n \<notin> K} = ?P n (Suc k)"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 92 | by (auto simp add: atLeast0_lessThan_Suc) | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 93 | finally show ?thesis using inj disjoint | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 94 | by (simp add: binomial_def card_Un_disjoint card_image) | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 95 | qed | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 96 | |
| 63466 | 97 | lemma binomial_eq_0: "n < k \<Longrightarrow> n choose k = 0" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 98 | by (auto simp add: binomial_def dest: subset_eq_atLeast0_lessThan_card) | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 99 | |
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 100 | lemma zero_less_binomial: "k \<le> n \<Longrightarrow> n choose k > 0" | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 101 | by (induct n k rule: diff_induct) simp_all | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 102 | |
| 63466 | 103 | lemma binomial_eq_0_iff [simp]: "n choose k = 0 \<longleftrightarrow> n < k" | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 104 | by (metis binomial_eq_0 less_numeral_extra(3) not_less zero_less_binomial) | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 105 | |
| 63466 | 106 | lemma zero_less_binomial_iff [simp]: "n choose k > 0 \<longleftrightarrow> k \<le> n" | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 107 | by (metis binomial_eq_0_iff not_less0 not_less zero_less_binomial) | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 108 | |
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 109 | lemma binomial_n_n [simp]: "n choose n = 1" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 110 | by (induct n) (simp_all add: binomial_eq_0) | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 111 | |
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 112 | lemma binomial_Suc_n [simp]: "Suc n choose n = Suc n" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 113 | by (induct n) simp_all | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 114 | |
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 115 | lemma binomial_1 [simp]: "n choose Suc 0 = n" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 116 | by (induct n) simp_all | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 117 | |
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 118 | lemma choose_reduce_nat: | 
| 63466 | 119 | "0 < n \<Longrightarrow> 0 < k \<Longrightarrow> | 
| 120 | n choose k = ((n - 1) choose (k - 1)) + ((n - 1) choose k)" | |
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 121 | using binomial_Suc_Suc [of "n - 1" "k - 1"] by simp | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 122 | |
| 63466 | 123 | lemma Suc_times_binomial_eq: "Suc n * (n choose k) = (Suc n choose Suc k) * Suc k" | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 124 | apply (induct n arbitrary: k) | 
| 63466 | 125 | apply simp | 
| 126 | apply arith | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 127 | apply (case_tac k) | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 128 | apply (auto simp add: add_mult_distrib add_mult_distrib2 le_Suc_eq binomial_eq_0) | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 129 | done | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 130 | |
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 131 | lemma binomial_le_pow2: "n choose k \<le> 2^n" | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 132 | apply (induct n arbitrary: k) | 
| 63466 | 133 | apply (case_tac k) | 
| 134 | apply simp_all | |
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 135 | apply (case_tac k) | 
| 63466 | 136 | apply auto | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 137 | apply (simp add: add_le_mono mult_2) | 
| 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 138 | done | 
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 139 | |
| 63466 | 140 | text \<open>The absorption property.\<close> | 
| 141 | lemma Suc_times_binomial: "Suc k * (Suc n choose Suc k) = Suc n * (n choose k)" | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 142 | using Suc_times_binomial_eq by auto | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 143 | |
| 63466 | 144 | text \<open>This is the well-known version of absorption, but it's harder to use | 
| 145 | because of the need to reason about division.\<close> | |
| 146 | lemma binomial_Suc_Suc_eq_times: "(Suc n choose Suc k) = (Suc n * (n choose k)) div Suc k" | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 147 | by (simp add: Suc_times_binomial_eq del: mult_Suc mult_Suc_right) | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 148 | |
| 63466 | 149 | text \<open>Another version of absorption, with \<open>-1\<close> instead of \<open>Suc\<close>.\<close> | 
| 150 | lemma times_binomial_minus1_eq: "0 < k \<Longrightarrow> k * (n choose k) = n * ((n - 1) choose (k - 1))" | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 151 | using Suc_times_binomial_eq [where n = "n - 1" and k = "k - 1"] | 
| 63648 | 152 | by (auto split: nat_diff_split) | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 153 | |
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 154 | |
| 60758 | 155 | subsection \<open>The binomial theorem (courtesy of Tobias Nipkow):\<close> | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 156 | |
| 63466 | 157 | text \<open>Avigad's version, generalized to any commutative ring\<close> | 
| 158 | theorem binomial_ring: "(a + b :: 'a::{comm_ring_1,power})^n =
 | |
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 159 | (\<Sum>k\<le>n. (of_nat (n choose k)) * a^k * b^(n-k))" | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 160 | proof (induct n) | 
| 63466 | 161 | case 0 | 
| 162 | then show ?case by simp | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 163 | next | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 164 | case (Suc n) | 
| 63466 | 165 |   have decomp: "{0..n+1} = {0} \<union> {n + 1} \<union> {1..n}"
 | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 166 | by auto | 
| 63466 | 167 |   have decomp2: "{0..n} = {0} \<union> {1..n}"
 | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 168 | by auto | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 169 | have "(a + b)^(n+1) = (a + b) * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n - k))" | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 170 | using Suc.hyps by simp | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 171 | also have "\<dots> = a * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n-k)) + | 
| 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 172 | b * (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n-k))" | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 173 | by (rule distrib_right) | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 174 | also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * a^(k+1) * b^(n-k)) + | 
| 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 175 | (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n - k + 1))" | 
| 64267 | 176 | by (auto simp add: sum_distrib_left ac_simps) | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 177 | also have "\<dots> = (\<Sum>k\<le>n. of_nat (n choose k) * a^k * b^(n + 1 - k)) + | 
| 63466 | 178 | (\<Sum>k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k))" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 179 | by (simp add: atMost_atLeast0 sum.shift_bounds_cl_Suc_ivl Suc_diff_le field_simps del: sum.cl_ivl_Suc) | 
| 63466 | 180 | also have "\<dots> = a^(n + 1) + b^(n + 1) + | 
| 181 | (\<Sum>k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n + 1 - k)) + | |
| 182 | (\<Sum>k=1..n. of_nat (n choose k) * a^k * b^(n + 1 - k))" | |
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 183 | by (simp add: atMost_atLeast0 decomp2) | 
| 63466 | 184 | also have "\<dots> = a^(n + 1) + b^(n + 1) + | 
| 185 | (\<Sum>k=1..n. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))" | |
| 64267 | 186 | by (auto simp add: field_simps sum.distrib [symmetric] choose_reduce_nat) | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 187 | also have "\<dots> = (\<Sum>k\<le>n+1. of_nat (n + 1 choose k) * a^k * b^(n + 1 - k))" | 
| 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 188 | using decomp by (simp add: atMost_atLeast0 field_simps) | 
| 63466 | 189 | finally show ?case | 
| 190 | by simp | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 191 | qed | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 192 | |
| 63466 | 193 | text \<open>Original version for the naturals.\<close> | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 194 | corollary binomial: "(a + b :: nat)^n = (\<Sum>k\<le>n. (of_nat (n choose k)) * a^k * b^(n - k))" | 
| 63466 | 195 | using binomial_ring [of "int a" "int b" n] | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 196 | by (simp only: of_nat_add [symmetric] of_nat_mult [symmetric] of_nat_power [symmetric] | 
| 64267 | 197 | of_nat_sum [symmetric] of_nat_eq_iff of_nat_id) | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 198 | |
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 199 | lemma binomial_fact_lemma: "k \<le> n \<Longrightarrow> fact k * fact (n - k) * (n choose k) = fact n" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 200 | proof (induct n arbitrary: k rule: nat_less_induct) | 
| 63466 | 201 | fix n k | 
| 202 | assume H: "\<forall>m<n. \<forall>x\<le>m. fact x * fact (m - x) * (m choose x) = fact m" | |
| 203 | assume kn: "k \<le> n" | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 204 | let ?ths = "fact k * fact (n - k) * (n choose k) = fact n" | 
| 63466 | 205 | consider "n = 0 \<or> k = 0 \<or> n = k" | m h where "n = Suc m" "k = Suc h" "h < m" | 
| 206 | using kn by atomize_elim presburger | |
| 207 | then show "fact k * fact (n - k) * (n choose k) = fact n" | |
| 208 | proof cases | |
| 209 | case 1 | |
| 210 | with kn show ?thesis by auto | |
| 211 | next | |
| 212 | case 2 | |
| 213 | note n = \<open>n = Suc m\<close> | |
| 214 | note k = \<open>k = Suc h\<close> | |
| 215 | note hm = \<open>h < m\<close> | |
| 216 | have mn: "m < n" | |
| 217 | using n by arith | |
| 218 | have hm': "h \<le> m" | |
| 219 | using hm by arith | |
| 220 | have km: "k \<le> m" | |
| 221 | using hm k n kn by arith | |
| 222 | have "m - h = Suc (m - Suc h)" | |
| 223 | using k km hm by arith | |
| 224 | with km k have "fact (m - h) = (m - h) * fact (m - k)" | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 225 | by simp | 
| 63466 | 226 | with n k have "fact k * fact (n - k) * (n choose k) = | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 227 | k * (fact h * fact (m - h) * (m choose h)) + | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 228 | (m - h) * (fact k * fact (m - k) * (m choose k))" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 229 | by (simp add: field_simps) | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 230 | also have "\<dots> = (k + (m - h)) * fact m" | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 231 | using H[rule_format, OF mn hm'] H[rule_format, OF mn km] | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 232 | by (simp add: field_simps) | 
| 63466 | 233 | finally show ?thesis | 
| 234 | using k n km by simp | |
| 235 | qed | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 236 | qed | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 237 | |
| 63372 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 238 | lemma binomial_fact': | 
| 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 239 | assumes "k \<le> n" | 
| 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 240 | shows "n choose k = fact n div (fact k * fact (n - k))" | 
| 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 241 | using binomial_fact_lemma [OF assms] | 
| 64240 | 242 | by (metis fact_nonzero mult_eq_0_iff nonzero_mult_div_cancel_left) | 
| 63372 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 243 | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 244 | lemma binomial_fact: | 
| 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 245 | assumes kn: "k \<le> n" | 
| 63466 | 246 | shows "(of_nat (n choose k) :: 'a::field_char_0) = fact n / (fact k * fact (n - k))" | 
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 247 | using binomial_fact_lemma[OF kn] | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 248 | apply (simp add: field_simps) | 
| 63466 | 249 | apply (metis mult.commute of_nat_fact of_nat_mult) | 
| 250 | done | |
| 59658 
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
 paulson <lp15@cam.ac.uk> parents: 
58889diff
changeset | 251 | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 252 | lemma fact_binomial: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 253 | assumes "k \<le> n" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 254 | shows "fact k * of_nat (n choose k) = (fact n / fact (n - k) :: 'a::field_char_0)" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 255 | unfolding binomial_fact [OF assms] by (simp add: field_simps) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 256 | |
| 63466 | 257 | lemma choose_two: "n choose 2 = n * (n - 1) div 2" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 258 | proof (cases "n \<ge> 2") | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 259 | case False | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 260 | then have "n = 0 \<or> n = 1" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 261 | by auto | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 262 | then show ?thesis by auto | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 263 | next | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 264 | case True | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 265 | define m where "m = n - 2" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 266 | with True have "n = m + 2" | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 267 | by simp | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 268 | then have "fact n = n * (n - 1) * fact (n - 2)" | 
| 64272 | 269 | by (simp add: fact_prod_Suc atLeast0_lessThan_Suc algebra_simps) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 270 | with True show ?thesis | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 271 | by (simp add: binomial_fact') | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 272 | qed | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 273 | |
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 274 | lemma choose_row_sum: "(\<Sum>k\<le>n. n choose k) = 2^n" | 
| 63466 | 275 | using binomial [of 1 "1" n] by (simp add: numeral_2_eq_2) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 276 | |
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 277 | lemma sum_choose_lower: "(\<Sum>k\<le>n. (r+k) choose k) = Suc (r+n) choose n" | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 278 | by (induct n) auto | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 279 | |
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 280 | lemma sum_choose_upper: "(\<Sum>k\<le>n. k choose m) = Suc n choose Suc m" | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 281 | by (induct n) auto | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 282 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 283 | lemma choose_alternating_sum: | 
| 63466 | 284 | "n > 0 \<Longrightarrow> (\<Sum>i\<le>n. (-1)^i * of_nat (n choose i)) = (0 :: 'a::comm_ring_1)" | 
| 285 | using binomial_ring[of "-1 :: 'a" 1 n] | |
| 286 | by (simp add: atLeast0AtMost mult_of_nat_commute zero_power) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 287 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 288 | lemma choose_even_sum: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 289 | assumes "n > 0" | 
| 63466 | 290 | shows "2 * (\<Sum>i\<le>n. if even i then of_nat (n choose i) else 0) = (2 ^ n :: 'a::comm_ring_1)" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 291 | proof - | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 292 | have "2 ^ n = (\<Sum>i\<le>n. of_nat (n choose i)) + (\<Sum>i\<le>n. (-1) ^ i * of_nat (n choose i) :: 'a)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 293 | using choose_row_sum[of n] | 
| 64267 | 294 | by (simp add: choose_alternating_sum assms atLeast0AtMost of_nat_sum[symmetric]) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 295 | also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) + (-1) ^ i * of_nat (n choose i))" | 
| 64267 | 296 | by (simp add: sum.distrib) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 297 | also have "\<dots> = 2 * (\<Sum>i\<le>n. if even i then of_nat (n choose i) else 0)" | 
| 64267 | 298 | by (subst sum_distrib_left, intro sum.cong) simp_all | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 299 | finally show ?thesis .. | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 300 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 301 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 302 | lemma choose_odd_sum: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 303 | assumes "n > 0" | 
| 63466 | 304 | shows "2 * (\<Sum>i\<le>n. if odd i then of_nat (n choose i) else 0) = (2 ^ n :: 'a::comm_ring_1)" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 305 | proof - | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 306 | have "2 ^ n = (\<Sum>i\<le>n. of_nat (n choose i)) - (\<Sum>i\<le>n. (-1) ^ i * of_nat (n choose i) :: 'a)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 307 | using choose_row_sum[of n] | 
| 64267 | 308 | by (simp add: choose_alternating_sum assms atLeast0AtMost of_nat_sum[symmetric]) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 309 | also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) - (-1) ^ i * of_nat (n choose i))" | 
| 64267 | 310 | by (simp add: sum_subtractf) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 311 | also have "\<dots> = 2 * (\<Sum>i\<le>n. if odd i then of_nat (n choose i) else 0)" | 
| 64267 | 312 | by (subst sum_distrib_left, intro sum.cong) simp_all | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 313 | finally show ?thesis .. | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 314 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 315 | |
| 60758 | 316 | text\<open>NW diagonal sum property\<close> | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 317 | lemma sum_choose_diagonal: | 
| 63466 | 318 | assumes "m \<le> n" | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 319 | shows "(\<Sum>k\<le>m. (n - k) choose (m - k)) = Suc n choose m" | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 320 | proof - | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 321 | have "(\<Sum>k\<le>m. (n-k) choose (m - k)) = (\<Sum>k\<le>m. (n - m + k) choose k)" | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 322 | using sum.atLeastAtMost_rev [of "\<lambda>k. (n - k) choose (m - k)" 0 m] assms | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 323 | by (simp add: atMost_atLeast0) | 
| 63466 | 324 | also have "\<dots> = Suc (n - m + m) choose m" | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 325 | by (rule sum_choose_lower) | 
| 63466 | 326 | also have "\<dots> = Suc n choose m" | 
| 327 | using assms by simp | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 328 | finally show ?thesis . | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 329 | qed | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 330 | |
| 63373 | 331 | |
| 63372 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 332 | subsection \<open>Generalized binomial coefficients\<close> | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 333 | |
| 63466 | 334 | definition gbinomial :: "'a::{semidom_divide,semiring_char_0} \<Rightarrow> nat \<Rightarrow> 'a"  (infixl "gchoose" 65)
 | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 335 |   where gbinomial_prod_rev: "a gchoose k = prod (\<lambda>i. a - of_nat i) {0..<k} div fact k"
 | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 336 | |
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 337 | lemma gbinomial_0 [simp]: | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 338 | "a gchoose 0 = 1" | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 339 | "0 gchoose (Suc k) = 0" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 340 | by (simp_all add: gbinomial_prod_rev prod.atLeast0_lessThan_Suc_shift del: prod.op_ivl_Suc) | 
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63366diff
changeset | 341 | |
| 64272 | 342 | lemma gbinomial_Suc: "a gchoose (Suc k) = prod (\<lambda>i. a - of_nat i) {0..k} div fact (Suc k)"
 | 
| 343 | by (simp add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 344 | |
| 68786 | 345 | lemma gbinomial_1 [simp]: "a gchoose 1 = a" | 
| 346 | by (simp add: gbinomial_prod_rev lessThan_Suc) | |
| 347 | ||
| 348 | lemma gbinomial_Suc0 [simp]: "a gchoose Suc 0 = a" | |
| 349 | by (simp add: gbinomial_prod_rev lessThan_Suc) | |
| 350 | ||
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 351 | lemma gbinomial_mult_fact: "fact k * (a gchoose k) = (\<Prod>i = 0..<k. a - of_nat i)" | 
| 63466 | 352 | for a :: "'a::field_char_0" | 
| 64272 | 353 | by (simp_all add: gbinomial_prod_rev field_simps) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 354 | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 355 | lemma gbinomial_mult_fact': "(a gchoose k) * fact k = (\<Prod>i = 0..<k. a - of_nat i)" | 
| 63466 | 356 | for a :: "'a::field_char_0" | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 357 | using gbinomial_mult_fact [of k a] by (simp add: ac_simps) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 358 | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 359 | lemma gbinomial_pochhammer: "a gchoose k = (- 1) ^ k * pochhammer (- a) k / fact k" | 
| 63466 | 360 | for a :: "'a::field_char_0" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 361 | proof (cases k) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 362 | case (Suc k') | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 363 | then show ?thesis | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 364 | apply (simp add: pochhammer_minus) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 365 | apply (simp add: gbinomial_prod_rev pochhammer_prod_rev power_mult_distrib [symmetric] atLeastLessThanSuc_atLeastAtMost | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 366 | prod.atLeast_Suc_atMost_Suc_shift of_nat_diff del: prod.cl_ivl_Suc) | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 367 | done | 
| 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 368 | qed auto | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 369 | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 370 | lemma gbinomial_pochhammer': "a gchoose k = pochhammer (a - of_nat k + 1) k / fact k" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 371 | for a :: "'a::field_char_0" | 
| 61552 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 372 | proof - | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 373 | have "a gchoose k = ((-1)^k * (-1)^k) * pochhammer (a - of_nat k + 1) k / fact k" | 
| 61552 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 374 | by (simp add: gbinomial_pochhammer pochhammer_minus mult_ac) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 375 | also have "(-1 :: 'a)^k * (-1)^k = 1" | 
| 63466 | 376 | by (subst power_add [symmetric]) simp | 
| 377 | finally show ?thesis | |
| 378 | by simp | |
| 61552 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 379 | qed | 
| 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 380 | |
| 63466 | 381 | lemma gbinomial_binomial: "n gchoose k = n choose k" | 
| 63372 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 382 | proof (cases "k \<le> n") | 
| 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 383 | case False | 
| 63466 | 384 | then have "n < k" | 
| 385 | by (simp add: not_le) | |
| 67399 | 386 |   then have "0 \<in> ((-) n) ` {0..<k}"
 | 
| 63372 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 387 | by auto | 
| 67399 | 388 |   then have "prod ((-) n) {0..<k} = 0"
 | 
| 64272 | 389 | by (auto intro: prod_zero) | 
| 63372 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 390 | with \<open>n < k\<close> show ?thesis | 
| 64272 | 391 | by (simp add: binomial_eq_0 gbinomial_prod_rev prod_zero) | 
| 63372 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 392 | next | 
| 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 393 | case True | 
| 67399 | 394 |   from True have *: "prod ((-) n) {0..<k} = \<Prod>{Suc (n - k)..n}"
 | 
| 65350 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 395 | by (intro prod.reindex_bij_witness[of _ "\<lambda>i. n - i" "\<lambda>i. n - i"]) auto | 
| 63466 | 396 | from True have "n choose k = fact n div (fact k * fact (n - k))" | 
| 63372 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 397 | by (rule binomial_fact') | 
| 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 398 | with * show ?thesis | 
| 64272 | 399 | by (simp add: gbinomial_prod_rev mult.commute [of "fact k"] div_mult2_eq fact_div_fact) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 400 | qed | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 401 | |
| 63466 | 402 | lemma of_nat_gbinomial: "of_nat (n gchoose k) = (of_nat n gchoose k :: 'a::field_char_0)" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 403 | proof (cases "k \<le> n") | 
| 63466 | 404 | case False | 
| 405 | then show ?thesis | |
| 64272 | 406 | by (simp add: not_le gbinomial_binomial binomial_eq_0 gbinomial_prod_rev) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 407 | next | 
| 63466 | 408 | case True | 
| 409 | define m where "m = n - k" | |
| 410 | with True have n: "n = m + k" | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 411 | by arith | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 412 | from n have "fact n = ((\<Prod>i = 0..<m + k. of_nat (m + k - i) ):: 'a)" | 
| 64272 | 413 | by (simp add: fact_prod_rev) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 414 |   also have "\<dots> = ((\<Prod>i\<in>{0..<k} \<union> {k..<m + k}. of_nat (m + k - i)) :: 'a)"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 415 | by (simp add: ivl_disj_un) | 
| 63466 | 416 | finally have "fact n = (fact m * (\<Prod>i = 0..<k. of_nat m + of_nat k - of_nat i) :: 'a)" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 417 | using prod.shift_bounds_nat_ivl [of "\<lambda>i. of_nat (m + k - i) :: 'a" 0 k m] | 
| 64272 | 418 | by (simp add: fact_prod_rev [of m] prod.union_disjoint of_nat_diff) | 
| 63466 | 419 | then have "fact n / fact (n - k) = ((\<Prod>i = 0..<k. of_nat n - of_nat i) :: 'a)" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 420 | by (simp add: n) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 421 | with True have "fact k * of_nat (n gchoose k) = (fact k * (of_nat n gchoose k) :: 'a)" | 
| 63466 | 422 | by (simp only: gbinomial_mult_fact [of k "of_nat n"] gbinomial_binomial [of n k] fact_binomial) | 
| 423 | then show ?thesis | |
| 424 | by simp | |
| 63372 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 425 | qed | 
| 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 426 | |
| 63466 | 427 | lemma binomial_gbinomial: "of_nat (n choose k) = (of_nat n gchoose k :: 'a::field_char_0)" | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 428 | by (simp add: gbinomial_binomial [symmetric] of_nat_gbinomial) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 429 | |
| 63466 | 430 | setup | 
| 69593 | 431 | \<open>Sign.add_const_constraint (\<^const_name>\<open>gbinomial\<close>, SOME \<^typ>\<open>'a::field_char_0 \<Rightarrow> nat \<Rightarrow> 'a\<close>)\<close> | 
| 63372 
492b49535094
relating gbinomial and binomial, still using distinct definitions
 haftmann parents: 
63367diff
changeset | 432 | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 433 | lemma gbinomial_mult_1: | 
| 63466 | 434 | fixes a :: "'a::field_char_0" | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 435 | shows "a * (a gchoose k) = of_nat k * (a gchoose k) + of_nat (Suc k) * (a gchoose (Suc k))" | 
| 63466 | 436 | (is "?l = ?r") | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 437 | proof - | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 438 | have "?r = ((- 1) ^k * pochhammer (- a) k / fact k) * (of_nat k - (- a + of_nat k))" | 
| 63466 | 439 | apply (simp only: gbinomial_pochhammer pochhammer_Suc right_diff_distrib power_Suc) | 
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63366diff
changeset | 440 | apply (simp del: of_nat_Suc fact_Suc) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 441 | apply (auto simp add: field_simps simp del: of_nat_Suc) | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 442 | done | 
| 63466 | 443 | also have "\<dots> = ?l" | 
| 444 | by (simp add: field_simps gbinomial_pochhammer) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 445 | finally show ?thesis .. | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 446 | qed | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 447 | |
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 448 | lemma gbinomial_mult_1': | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 449 | "(a gchoose k) * a = of_nat k * (a gchoose k) + of_nat (Suc k) * (a gchoose (Suc k))" | 
| 63466 | 450 | for a :: "'a::field_char_0" | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 451 | by (simp add: mult.commute gbinomial_mult_1) | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 452 | |
| 63466 | 453 | lemma gbinomial_Suc_Suc: "(a + 1) gchoose (Suc k) = a gchoose k + (a gchoose (Suc k))" | 
| 454 | for a :: "'a::field_char_0" | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 455 | proof (cases k) | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 456 | case 0 | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 457 | then show ?thesis by simp | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 458 | next | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 459 | case (Suc h) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 460 |   have eq0: "(\<Prod>i\<in>{1..k}. (a + 1) - of_nat i) = (\<Prod>i\<in>{0..h}. a - of_nat i)"
 | 
| 64272 | 461 | apply (rule prod.reindex_cong [where l = Suc]) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 462 | using Suc | 
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63366diff
changeset | 463 | apply (auto simp add: image_Suc_atMost) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 464 | done | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 465 | have "fact (Suc k) * (a gchoose k + (a gchoose (Suc k))) = | 
| 63466 | 466 | (a gchoose Suc h) * (fact (Suc (Suc h))) + | 
| 467 | (a gchoose Suc (Suc h)) * (fact (Suc (Suc h)))" | |
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63366diff
changeset | 468 | by (simp add: Suc field_simps del: fact_Suc) | 
| 63466 | 469 | also have "\<dots> = | 
| 470 | (a gchoose Suc h) * of_nat (Suc (Suc h) * fact (Suc h)) + (\<Prod>i=0..Suc h. a - of_nat i)" | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 471 | apply (simp del: fact_Suc prod.op_ivl_Suc add: gbinomial_mult_fact field_simps mult.left_commute [of _ "2"]) | 
| 63466 | 472 | apply (simp del: fact_Suc add: fact_Suc [of "Suc h"] field_simps gbinomial_mult_fact | 
| 473 | mult.left_commute [of _ "2"] atLeastLessThanSuc_atLeastAtMost) | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 474 | done | 
| 63466 | 475 | also have "\<dots> = | 
| 476 | (fact (Suc h) * (a gchoose Suc h)) * of_nat (Suc (Suc h)) + (\<Prod>i=0..Suc h. a - of_nat i)" | |
| 63367 
6c731c8b7f03
simplified definitions of combinatorial functions
 haftmann parents: 
63366diff
changeset | 477 | by (simp only: fact_Suc mult.commute mult.left_commute of_nat_fact of_nat_id of_nat_mult) | 
| 63466 | 478 | also have "\<dots> = | 
| 479 | of_nat (Suc (Suc h)) * (\<Prod>i=0..h. a - of_nat i) + (\<Prod>i=0..Suc h. a - of_nat i)" | |
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 480 | unfolding gbinomial_mult_fact atLeastLessThanSuc_atLeastAtMost by auto | 
| 63466 | 481 | also have "\<dots> = | 
| 482 | (\<Prod>i=0..Suc h. a - of_nat i) + (of_nat h * (\<Prod>i=0..h. a - of_nat i) + 2 * (\<Prod>i=0..h. a - of_nat i))" | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 483 | by (simp add: field_simps) | 
| 63466 | 484 | also have "\<dots> = | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 485 |     ((a gchoose Suc h) * (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0..Suc h}. a - of_nat i)"
 | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 486 | unfolding gbinomial_mult_fact' | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 487 | by (simp add: comm_semiring_class.distrib field_simps Suc atLeastLessThanSuc_atLeastAtMost) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 488 |   also have "\<dots> = (\<Prod>i\<in>{0..h}. a - of_nat i) * (a + 1)"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 489 | unfolding gbinomial_mult_fact' atLeast0_atMost_Suc | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 490 | by (simp add: field_simps Suc atLeastLessThanSuc_atLeastAtMost) | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 491 |   also have "\<dots> = (\<Prod>i\<in>{0..k}. (a + 1) - of_nat i)"
 | 
| 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 492 | using eq0 | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 493 | by (simp add: Suc prod.atLeast0_atMost_Suc_shift del: prod.cl_ivl_Suc) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 494 | also have "\<dots> = (fact (Suc k)) * ((a + 1) gchoose (Suc k))" | 
| 63466 | 495 | by (simp only: gbinomial_mult_fact atLeastLessThanSuc_atLeastAtMost) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 496 | finally show ?thesis | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 497 | using fact_nonzero [of "Suc k"] by auto | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 498 | qed | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 499 | |
| 63466 | 500 | lemma gbinomial_reduce_nat: "0 < k \<Longrightarrow> a gchoose k = (a - 1) gchoose (k - 1) + ((a - 1) gchoose k)" | 
| 501 | for a :: "'a::field_char_0" | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 502 | by (metis Suc_pred' diff_add_cancel gbinomial_Suc_Suc) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 503 | |
| 60141 
833adf7db7d8
New material, mostly about limits. Consolidation.
 paulson <lp15@cam.ac.uk> parents: 
59867diff
changeset | 504 | lemma gchoose_row_sum_weighted: | 
| 63466 | 505 | "(\<Sum>k = 0..m. (r gchoose k) * (r/2 - of_nat k)) = of_nat(Suc m) / 2 * (r gchoose (Suc m))" | 
| 506 | for r :: "'a::field_char_0" | |
| 507 | by (induct m) (simp_all add: field_simps distrib gbinomial_mult_1) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 508 | |
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 509 | lemma binomial_symmetric: | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 510 | assumes kn: "k \<le> n" | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 511 | shows "n choose k = n choose (n - k)" | 
| 63466 | 512 | proof - | 
| 513 | have kn': "n - k \<le> n" | |
| 514 | using kn by arith | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 515 | from binomial_fact_lemma[OF kn] binomial_fact_lemma[OF kn'] | 
| 63466 | 516 | have "fact k * fact (n - k) * (n choose k) = fact (n - k) * fact (n - (n - k)) * (n choose (n - k))" | 
| 517 | by simp | |
| 518 | then show ?thesis | |
| 519 | using kn by simp | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 520 | qed | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 521 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 522 | lemma choose_rising_sum: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 523 | "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose (n + 1))" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 524 | "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose m)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 525 | proof - | 
| 63466 | 526 | show "(\<Sum>j\<le>m. ((n + j) choose n)) = ((n + m + 1) choose (n + 1))" | 
| 527 | by (induct m) simp_all | |
| 528 | also have "\<dots> = (n + m + 1) choose m" | |
| 529 | by (subst binomial_symmetric) simp_all | |
| 530 | finally show "(\<Sum>j\<le>m. ((n + j) choose n)) = (n + m + 1) choose m" . | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 531 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 532 | |
| 63466 | 533 | lemma choose_linear_sum: "(\<Sum>i\<le>n. i * (n choose i)) = n * 2 ^ (n - 1)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 534 | proof (cases n) | 
| 63466 | 535 | case 0 | 
| 536 | then show ?thesis by simp | |
| 537 | next | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 538 | case (Suc m) | 
| 63466 | 539 | have "(\<Sum>i\<le>n. i * (n choose i)) = (\<Sum>i\<le>Suc m. i * (Suc m choose i))" | 
| 540 | by (simp add: Suc) | |
| 541 | also have "\<dots> = Suc m * 2 ^ m" | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 542 | unfolding sum.atMost_Suc_shift Suc_times_binomial sum_distrib_left[symmetric] | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 543 | by (simp add: choose_row_sum) | 
| 63466 | 544 | finally show ?thesis | 
| 545 | using Suc by simp | |
| 546 | qed | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 547 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 548 | lemma choose_alternating_linear_sum: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 549 | assumes "n \<noteq> 1" | 
| 63466 | 550 | shows "(\<Sum>i\<le>n. (-1)^i * of_nat i * of_nat (n choose i) :: 'a::comm_ring_1) = 0" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 551 | proof (cases n) | 
| 63466 | 552 | case 0 | 
| 553 | then show ?thesis by simp | |
| 554 | next | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 555 | case (Suc m) | 
| 63466 | 556 | with assms have "m > 0" | 
| 557 | by simp | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 558 | have "(\<Sum>i\<le>n. (-1) ^ i * of_nat i * of_nat (n choose i) :: 'a) = | 
| 63466 | 559 | (\<Sum>i\<le>Suc m. (-1) ^ i * of_nat i * of_nat (Suc m choose i))" | 
| 560 | by (simp add: Suc) | |
| 561 | also have "\<dots> = (\<Sum>i\<le>m. (-1) ^ (Suc i) * of_nat (Suc i * (Suc m choose Suc i)))" | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 562 | by (simp only: sum.atMost_Suc_shift sum_distrib_left[symmetric] mult_ac of_nat_mult) simp | 
| 63466 | 563 | also have "\<dots> = - of_nat (Suc m) * (\<Sum>i\<le>m. (-1) ^ i * of_nat (m choose i))" | 
| 64267 | 564 | by (subst sum_distrib_left, rule sum.cong[OF refl], subst Suc_times_binomial) | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 565 | (simp add: algebra_simps) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 566 | also have "(\<Sum>i\<le>m. (-1 :: 'a) ^ i * of_nat ((m choose i))) = 0" | 
| 61799 | 567 | using choose_alternating_sum[OF \<open>m > 0\<close>] by simp | 
| 63466 | 568 | finally show ?thesis | 
| 569 | by simp | |
| 570 | qed | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 571 | |
| 63466 | 572 | lemma vandermonde: "(\<Sum>k\<le>r. (m choose k) * (n choose (r - k))) = (m + n) choose r" | 
| 573 | proof (induct n arbitrary: r) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 574 | case 0 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 575 | have "(\<Sum>k\<le>r. (m choose k) * (0 choose (r - k))) = (\<Sum>k\<le>r. if k = r then (m choose k) else 0)" | 
| 64267 | 576 | by (intro sum.cong) simp_all | 
| 63466 | 577 | also have "\<dots> = m choose r" | 
| 68784 | 578 | by simp | 
| 63466 | 579 | finally show ?case | 
| 580 | by simp | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 581 | next | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 582 | case (Suc n r) | 
| 63466 | 583 | show ?case | 
| 64267 | 584 | by (cases r) (simp_all add: Suc [symmetric] algebra_simps sum.distrib Suc_diff_le) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 585 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 586 | |
| 63466 | 587 | lemma choose_square_sum: "(\<Sum>k\<le>n. (n choose k)^2) = ((2*n) choose n)" | 
| 588 | using vandermonde[of n n n] | |
| 589 | by (simp add: power2_eq_square mult_2 binomial_symmetric [symmetric]) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 590 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 591 | lemma pochhammer_binomial_sum: | 
| 63466 | 592 | fixes a b :: "'a::comm_ring_1" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 593 | shows "pochhammer (a + b) n = (\<Sum>k\<le>n. of_nat (n choose k) * pochhammer a k * pochhammer b (n - k))" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 594 | proof (induction n arbitrary: a b) | 
| 63466 | 595 | case 0 | 
| 596 | then show ?case by simp | |
| 597 | next | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 598 | case (Suc n a b) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 599 | have "(\<Sum>k\<le>Suc n. of_nat (Suc n choose k) * pochhammer a k * pochhammer b (Suc n - k)) = | 
| 63466 | 600 | (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a (Suc i) * pochhammer b (n - i)) + | 
| 601 | ((\<Sum>i\<le>n. of_nat (n choose Suc i) * pochhammer a (Suc i) * pochhammer b (n - i)) + | |
| 602 | pochhammer b (Suc n))" | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 603 | by (subst sum.atMost_Suc_shift) (simp add: ring_distribs sum.distrib) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 604 | also have "(\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a (Suc i) * pochhammer b (n - i)) = | 
| 63466 | 605 | a * pochhammer ((a + 1) + b) n" | 
| 64267 | 606 | by (subst Suc) (simp add: sum_distrib_left pochhammer_rec mult_ac) | 
| 63466 | 607 | also have "(\<Sum>i\<le>n. of_nat (n choose Suc i) * pochhammer a (Suc i) * pochhammer b (n - i)) + | 
| 608 | pochhammer b (Suc n) = | |
| 609 | (\<Sum>i=0..Suc n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc n - i))" | |
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 610 | apply (subst sum.atLeast_Suc_atMost) | 
| 63466 | 611 | apply simp | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 612 | apply (subst sum.shift_bounds_cl_Suc_ivl) | 
| 63466 | 613 | apply (simp add: atLeast0AtMost) | 
| 614 | done | |
| 615 | also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc n - i))" | |
| 64267 | 616 | using Suc by (intro sum.mono_neutral_right) (auto simp: not_le binomial_eq_0) | 
| 63466 | 617 | also have "\<dots> = (\<Sum>i\<le>n. of_nat (n choose i) * pochhammer a i * pochhammer b (Suc (n - i)))" | 
| 64267 | 618 | by (intro sum.cong) (simp_all add: Suc_diff_le) | 
| 63466 | 619 | also have "\<dots> = b * pochhammer (a + (b + 1)) n" | 
| 64267 | 620 | by (subst Suc) (simp add: sum_distrib_left mult_ac pochhammer_rec) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 621 | also have "a * pochhammer ((a + 1) + b) n + b * pochhammer (a + (b + 1)) n = | 
| 63466 | 622 | pochhammer (a + b) (Suc n)" | 
| 623 | by (simp add: pochhammer_rec algebra_simps) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 624 | finally show ?case .. | 
| 63466 | 625 | qed | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 626 | |
| 63466 | 627 | text \<open>Contributed by Manuel Eberl, generalised by LCP. | 
| 69593 | 628 | Alternative definition of the binomial coefficient as \<^term>\<open>\<Prod>i<k. (n - i) / (k - i)\<close>.\<close> | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 629 | lemma gbinomial_altdef_of_nat: "a gchoose k = (\<Prod>i = 0..<k. (a - of_nat i) / of_nat (k - i) :: 'a)" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 630 | for k :: nat and a :: "'a::field_char_0" | 
| 64272 | 631 | by (simp add: prod_dividef gbinomial_prod_rev fact_prod_rev) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 632 | |
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 633 | lemma gbinomial_ge_n_over_k_pow_k: | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 634 | fixes k :: nat | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 635 | and a :: "'a::linordered_field" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 636 | assumes "of_nat k \<le> a" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 637 | shows "(a / of_nat k :: 'a) ^ k \<le> a gchoose k" | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 638 | proof - | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 639 | have x: "0 \<le> a" | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 640 | using assms of_nat_0_le_iff order_trans by blast | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 641 | have "(a / of_nat k :: 'a) ^ k = (\<Prod>i = 0..<k. a / of_nat k :: 'a)" | 
| 68784 | 642 | by simp | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 643 | also have "\<dots> \<le> a gchoose k" (* FIXME *) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 644 | unfolding gbinomial_altdef_of_nat | 
| 64272 | 645 | apply (safe intro!: prod_mono) | 
| 63466 | 646 | apply simp_all | 
| 647 | prefer 2 | |
| 648 | subgoal premises for i | |
| 649 | proof - | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 650 | from assms have "a * of_nat i \<ge> of_nat (i * k)" | 
| 63466 | 651 | by (metis mult.commute mult_le_cancel_right of_nat_less_0_iff of_nat_mult) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 652 | then have "a * of_nat k - a * of_nat i \<le> a * of_nat k - of_nat (i * k)" | 
| 63466 | 653 | by arith | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 654 | then have "a * of_nat (k - i) \<le> (a - of_nat i) * of_nat k" | 
| 63466 | 655 | using \<open>i < k\<close> by (simp add: algebra_simps zero_less_mult_iff of_nat_diff) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 656 | then have "a * of_nat (k - i) \<le> (a - of_nat i) * (of_nat k :: 'a)" | 
| 63466 | 657 | by (simp only: of_nat_mult[symmetric] of_nat_le_iff) | 
| 658 | with assms show ?thesis | |
| 659 | using \<open>i < k\<close> by (simp add: field_simps) | |
| 660 | qed | |
| 661 | apply (simp add: x zero_le_divide_iff) | |
| 662 | done | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 663 | finally show ?thesis . | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 664 | qed | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 665 | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 666 | lemma gbinomial_negated_upper: "(a gchoose k) = (-1) ^ k * ((of_nat k - a - 1) gchoose k)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 667 | by (simp add: gbinomial_pochhammer pochhammer_minus algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 668 | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 669 | lemma gbinomial_minus: "((-a) gchoose k) = (-1) ^ k * ((a + of_nat k - 1) gchoose k)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 670 | by (subst gbinomial_negated_upper) (simp add: add_ac) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 671 | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 672 | lemma Suc_times_gbinomial: "of_nat (Suc k) * ((a + 1) gchoose (Suc k)) = (a + 1) * (a gchoose k)" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 673 | proof (cases k) | 
| 63466 | 674 | case 0 | 
| 675 | then show ?thesis by simp | |
| 676 | next | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 677 | case (Suc b) | 
| 63466 | 678 | then have "((a + 1) gchoose (Suc (Suc b))) = (\<Prod>i = 0..Suc b. a + (1 - of_nat i)) / fact (b + 2)" | 
| 64272 | 679 | by (simp add: field_simps gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 680 | also have "(\<Prod>i = 0..Suc b. a + (1 - of_nat i)) = (a + 1) * (\<Prod>i = 0..b. a - of_nat i)" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 681 | by (simp add: prod.atLeast0_atMost_Suc_shift del: prod.cl_ivl_Suc) | 
| 63466 | 682 | also have "\<dots> / fact (b + 2) = (a + 1) / of_nat (Suc (Suc b)) * (a gchoose Suc b)" | 
| 64272 | 683 | by (simp_all add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 684 | finally show ?thesis by (simp add: Suc field_simps del: of_nat_Suc) | 
| 63466 | 685 | qed | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 686 | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 687 | lemma gbinomial_factors: "((a + 1) gchoose (Suc k)) = (a + 1) / of_nat (Suc k) * (a gchoose k)" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 688 | proof (cases k) | 
| 63466 | 689 | case 0 | 
| 690 | then show ?thesis by simp | |
| 691 | next | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 692 | case (Suc b) | 
| 63466 | 693 | then have "((a + 1) gchoose (Suc (Suc b))) = (\<Prod>i = 0 .. Suc b. a + (1 - of_nat i)) / fact (b + 2)" | 
| 64272 | 694 | by (simp add: field_simps gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost) | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 695 | also have "(\<Prod>i = 0 .. Suc b. a + (1 - of_nat i)) = (a + 1) * (\<Prod>i = 0..b. a - of_nat i)" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 696 | by (simp add: prod.atLeast0_atMost_Suc_shift del: prod.cl_ivl_Suc) | 
| 63466 | 697 | also have "\<dots> / fact (b + 2) = (a + 1) / of_nat (Suc (Suc b)) * (a gchoose Suc b)" | 
| 64272 | 698 | by (simp_all add: gbinomial_prod_rev atLeastLessThanSuc_atLeastAtMost atLeast0AtMost) | 
| 63466 | 699 | finally show ?thesis | 
| 700 | by (simp add: Suc) | |
| 701 | qed | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 702 | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 703 | lemma gbinomial_rec: "((a + 1) gchoose (Suc k)) = (a gchoose k) * ((a + 1) / of_nat (Suc k))" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 704 | using gbinomial_mult_1[of a k] | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 705 | by (subst gbinomial_Suc_Suc) (simp add: field_simps del: of_nat_Suc, simp add: algebra_simps) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 706 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 707 | lemma gbinomial_of_nat_symmetric: "k \<le> n \<Longrightarrow> (of_nat n) gchoose k = (of_nat n) gchoose (n - k)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 708 | using binomial_symmetric[of k n] by (simp add: binomial_gbinomial [symmetric]) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 709 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 710 | |
| 67299 | 711 | text \<open>The absorption identity (equation 5.5 @{cite \<open>p.~157\<close> GKP_CM}):
 | 
| 63466 | 712 | \[ | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 713 | {r \choose k} = \frac{r}{k}{r - 1 \choose k - 1},\quad \textnormal{integer } k \neq 0.
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 714 | \]\<close> | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 715 | lemma gbinomial_absorption': "k > 0 \<Longrightarrow> a gchoose k = (a / of_nat k) * (a - 1 gchoose (k - 1))" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 716 | using gbinomial_rec[of "a - 1" "k - 1"] | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 717 | by (simp_all add: gbinomial_rec field_simps del: of_nat_Suc) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 718 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 719 | text \<open>The absorption identity is written in the following form to avoid | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 720 | division by $k$ (the lower index) and therefore remove the $k \neq 0$ | 
| 67299 | 721 | restriction @{cite \<open>p.~157\<close> GKP_CM}:
 | 
| 63466 | 722 | \[ | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 723 | k{r \choose k} = r{r - 1 \choose k - 1}, \quad \textnormal{integer } k.
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 724 | \]\<close> | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 725 | lemma gbinomial_absorption: "of_nat (Suc k) * (a gchoose Suc k) = a * ((a - 1) gchoose k)" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 726 | using gbinomial_absorption'[of "Suc k" a] by (simp add: field_simps del: of_nat_Suc) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 727 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 728 | text \<open>The absorption identity for natural number binomial coefficients:\<close> | 
| 63466 | 729 | lemma binomial_absorption: "Suc k * (n choose Suc k) = n * ((n - 1) choose k)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 730 | by (cases n) (simp_all add: binomial_eq_0 Suc_times_binomial del: binomial_Suc_Suc mult_Suc) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 731 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 732 | text \<open>The absorption companion identity for natural number coefficients, | 
| 67299 | 733 |   following the proof by GKP @{cite \<open>p.~157\<close> GKP_CM}:\<close>
 | 
| 63466 | 734 | lemma binomial_absorb_comp: "(n - k) * (n choose k) = n * ((n - 1) choose k)" | 
| 735 | (is "?lhs = ?rhs") | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 736 | proof (cases "n \<le> k") | 
| 63466 | 737 | case True | 
| 738 | then show ?thesis by auto | |
| 739 | next | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 740 | case False | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 741 | then have "?rhs = Suc ((n - 1) - k) * (n choose Suc ((n - 1) - k))" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 742 | using binomial_symmetric[of k "n - 1"] binomial_absorption[of "(n - 1) - k" n] | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 743 | by simp | 
| 63466 | 744 | also have "Suc ((n - 1) - k) = n - k" | 
| 745 | using False by simp | |
| 746 | also have "n choose \<dots> = n choose k" | |
| 747 | using False by (intro binomial_symmetric [symmetric]) simp_all | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 748 | finally show ?thesis .. | 
| 63466 | 749 | qed | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 750 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 751 | text \<open>The generalised absorption companion identity:\<close> | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 752 | lemma gbinomial_absorb_comp: "(a - of_nat k) * (a gchoose k) = a * ((a - 1) gchoose k)" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 753 | using pochhammer_absorb_comp[of a k] by (simp add: gbinomial_pochhammer) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 754 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 755 | lemma gbinomial_addition_formula: | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 756 | "a gchoose (Suc k) = ((a - 1) gchoose (Suc k)) + ((a - 1) gchoose k)" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 757 | using gbinomial_Suc_Suc[of "a - 1" k] by (simp add: algebra_simps) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 758 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 759 | lemma binomial_addition_formula: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 760 | "0 < n \<Longrightarrow> n choose (Suc k) = ((n - 1) choose (Suc k)) + ((n - 1) choose k)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 761 | by (subst choose_reduce_nat) simp_all | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 762 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 763 | text \<open> | 
| 67299 | 764 |   Equation 5.9 of the reference material @{cite \<open>p.~159\<close> GKP_CM} is a useful
 | 
| 63466 | 765 | summation formula, operating on both indices: | 
| 766 | \[ | |
| 767 |    \sum\limits_{k \leq n}{r + k \choose k} = {r + n + 1 \choose n},
 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 768 |    \quad \textnormal{integer } n.
 | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 769 | \] | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 770 | \<close> | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 771 | lemma gbinomial_parallel_sum: "(\<Sum>k\<le>n. (a + of_nat k) gchoose k) = (a + of_nat n + 1) gchoose n" | 
| 63466 | 772 | proof (induct n) | 
| 773 | case 0 | |
| 774 | then show ?case by simp | |
| 775 | next | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 776 | case (Suc m) | 
| 63466 | 777 | then show ?case | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 778 | using gbinomial_Suc_Suc[of "(a + of_nat m + 1)" m] | 
| 63466 | 779 | by (simp add: add_ac) | 
| 780 | qed | |
| 781 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 782 | |
| 63373 | 783 | subsubsection \<open>Summation on the upper index\<close> | 
| 63466 | 784 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 785 | text \<open> | 
| 67299 | 786 |   Another summation formula is equation 5.10 of the reference material @{cite \<open>p.~160\<close> GKP_CM},
 | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 787 |   aptly named \emph{summation on the upper index}:\[\sum_{0 \leq k \leq n} {k \choose m} =
 | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 788 |   {n + 1 \choose m + 1}, \quad \textnormal{integers } m, n \geq 0.\]
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 789 | \<close> | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 790 | lemma gbinomial_sum_up_index: | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 791 | "(\<Sum>j = 0..n. (of_nat j gchoose k) :: 'a::field_char_0) = (of_nat n + 1) gchoose (k + 1)" | 
| 63466 | 792 | proof (induct n) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 793 | case 0 | 
| 63466 | 794 | show ?case | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 795 | using gbinomial_Suc_Suc[of 0 k] | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 796 | by (cases k) auto | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 797 | next | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 798 | case (Suc n) | 
| 63466 | 799 | then show ?case | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 800 | using gbinomial_Suc_Suc[of "of_nat (Suc n) :: 'a" k] | 
| 63466 | 801 | by (simp add: add_ac) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 802 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 803 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 804 | lemma gbinomial_index_swap: | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 805 | "((-1) ^ k) * ((- (of_nat n) - 1) gchoose k) = ((-1) ^ n) * ((- (of_nat k) - 1) gchoose n)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 806 | (is "?lhs = ?rhs") | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 807 | proof - | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 808 | have "?lhs = (of_nat (k + n) gchoose k)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 809 | by (subst gbinomial_negated_upper) (simp add: power_mult_distrib [symmetric]) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 810 | also have "\<dots> = (of_nat (k + n) gchoose n)" | 
| 63466 | 811 | by (subst gbinomial_of_nat_symmetric) simp_all | 
| 812 | also have "\<dots> = ?rhs" | |
| 813 | by (subst gbinomial_negated_upper) simp | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 814 | finally show ?thesis . | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 815 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 816 | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 817 | lemma gbinomial_sum_lower_neg: "(\<Sum>k\<le>m. (a gchoose k) * (- 1) ^ k) = (- 1) ^ m * (a - 1 gchoose m)" | 
| 63466 | 818 | (is "?lhs = ?rhs") | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 819 | proof - | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 820 | have "?lhs = (\<Sum>k\<le>m. -(a + 1) + of_nat k gchoose k)" | 
| 64267 | 821 | by (intro sum.cong[OF refl]) (subst gbinomial_negated_upper, simp add: power_mult_distrib) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 822 | also have "\<dots> = - a + of_nat m gchoose m" | 
| 63466 | 823 | by (subst gbinomial_parallel_sum) simp | 
| 824 | also have "\<dots> = ?rhs" | |
| 825 | by (subst gbinomial_negated_upper) (simp add: power_mult_distrib) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 826 | finally show ?thesis . | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 827 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 828 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 829 | lemma gbinomial_partial_row_sum: | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 830 | "(\<Sum>k\<le>m. (a gchoose k) * ((a / 2) - of_nat k)) = ((of_nat m + 1)/2) * (a gchoose (m + 1))" | 
| 63466 | 831 | proof (induct m) | 
| 832 | case 0 | |
| 833 | then show ?case by simp | |
| 834 | next | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 835 | case (Suc mm) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 836 | then have "(\<Sum>k\<le>Suc mm. (a gchoose k) * (a / 2 - of_nat k)) = | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 837 | (a - of_nat (Suc mm)) * (a gchoose Suc mm) / 2" | 
| 63466 | 838 | by (simp add: field_simps) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 839 | also have "\<dots> = a * (a - 1 gchoose Suc mm) / 2" | 
| 63466 | 840 | by (subst gbinomial_absorb_comp) (rule refl) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 841 | also have "\<dots> = (of_nat (Suc mm) + 1) / 2 * (a gchoose (Suc mm + 1))" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 842 | by (subst gbinomial_absorption [symmetric]) simp | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 843 | finally show ?case . | 
| 63466 | 844 | qed | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 845 | |
| 64267 | 846 | lemma sum_bounds_lt_plus1: "(\<Sum>k<mm. f (Suc k)) = (\<Sum>k=1..mm. f k)" | 
| 63466 | 847 | by (induct mm) simp_all | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 848 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 849 | lemma gbinomial_partial_sum_poly: | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 850 | "(\<Sum>k\<le>m. (of_nat m + a gchoose k) * x^k * y^(m-k)) = | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 851 | (\<Sum>k\<le>m. (-a gchoose k) * (-x)^k * (x + y)^(m-k))" | 
| 63466 | 852 | (is "?lhs m = ?rhs m") | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 853 | proof (induction m) | 
| 63466 | 854 | case 0 | 
| 855 | then show ?case by simp | |
| 856 | next | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 857 | case (Suc mm) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 858 | define G where "G i k = (of_nat i + a gchoose k) * x^k * y^(i - k)" for i k | 
| 63040 | 859 | define S where "S = ?lhs" | 
| 63466 | 860 | have SG_def: "S = (\<lambda>i. (\<Sum>k\<le>i. (G i k)))" | 
| 861 | unfolding S_def G_def .. | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 862 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 863 | have "S (Suc mm) = G (Suc mm) 0 + (\<Sum>k=Suc 0..Suc mm. G (Suc mm) k)" | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 864 | using SG_def by (simp add: sum.atLeast_Suc_atMost atLeast0AtMost [symmetric]) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 865 | also have "(\<Sum>k=Suc 0..Suc mm. G (Suc mm) k) = (\<Sum>k=0..mm. G (Suc mm) (Suc k))" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 866 | by (subst sum.shift_bounds_cl_Suc_ivl) simp | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 867 | also have "\<dots> = (\<Sum>k=0..mm. ((of_nat mm + a gchoose (Suc k)) + | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 868 | (of_nat mm + a gchoose k)) * x^(Suc k) * y^(mm - k))" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 869 | unfolding G_def by (subst gbinomial_addition_formula) simp | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 870 | also have "\<dots> = (\<Sum>k=0..mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k)) + | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 871 | (\<Sum>k=0..mm. (of_nat mm + a gchoose k) * x^(Suc k) * y^(mm - k))" | 
| 64267 | 872 | by (subst sum.distrib [symmetric]) (simp add: algebra_simps) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 873 | also have "(\<Sum>k=0..mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k)) = | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 874 | (\<Sum>k<Suc mm. (of_nat mm + a gchoose (Suc k)) * x^(Suc k) * y^(mm - k))" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 875 | by (simp only: atLeast0AtMost lessThan_Suc_atMost) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 876 | also have "\<dots> = (\<Sum>k<mm. (of_nat mm + a gchoose Suc k) * x^(Suc k) * y^(mm-k)) + | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 877 | (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)" | 
| 63466 | 878 | (is "_ = ?A + ?B") | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 879 | by (subst sum.lessThan_Suc) simp | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 880 | also have "?A = (\<Sum>k=1..mm. (of_nat mm + a gchoose k) * x^k * y^(mm - k + 1))" | 
| 64267 | 881 | proof (subst sum_bounds_lt_plus1 [symmetric], intro sum.cong[OF refl], clarify) | 
| 63466 | 882 | fix k | 
| 883 | assume "k < mm" | |
| 884 | then have "mm - k = mm - Suc k + 1" | |
| 885 | by linarith | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 886 | then show "(of_nat mm + a gchoose Suc k) * x ^ Suc k * y ^ (mm - k) = | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 887 | (of_nat mm + a gchoose Suc k) * x ^ Suc k * y ^ (mm - Suc k + 1)" | 
| 63466 | 888 | by (simp only:) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 889 | qed | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 890 | also have "\<dots> + ?B = y * (\<Sum>k=1..mm. (G mm k)) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)" | 
| 64267 | 891 | unfolding G_def by (subst sum_distrib_left) (simp add: algebra_simps) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 892 | also have "(\<Sum>k=0..mm. (of_nat mm + a gchoose k) * x^(Suc k) * y^(mm - k)) = x * (S mm)" | 
| 64267 | 893 | unfolding S_def by (subst sum_distrib_left) (simp add: atLeast0AtMost algebra_simps) | 
| 63466 | 894 | also have "(G (Suc mm) 0) = y * (G mm 0)" | 
| 895 | by (simp add: G_def) | |
| 896 | finally have "S (Suc mm) = | |
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 897 | y * (G mm 0 + (\<Sum>k=1..mm. (G mm k))) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm) + x * (S mm)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 898 | by (simp add: ring_distribs) | 
| 63466 | 899 | also have "G mm 0 + (\<Sum>k=1..mm. (G mm k)) = S mm" | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 900 | by (simp add: sum.atLeast_Suc_atMost[symmetric] SG_def atLeast0AtMost) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 901 | finally have "S (Suc mm) = (x + y) * (S mm) + (of_nat mm + a gchoose (Suc mm)) * x^(Suc mm)" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 902 | by (simp add: algebra_simps) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 903 | also have "(of_nat mm + a gchoose (Suc mm)) = (-1) ^ (Suc mm) * (- a gchoose (Suc mm))" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 904 | by (subst gbinomial_negated_upper) simp | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 905 | also have "(-1) ^ Suc mm * (- a gchoose Suc mm) * x ^ Suc mm = | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 906 | (- a gchoose (Suc mm)) * (-x) ^ Suc mm" | 
| 63466 | 907 | by (simp add: power_minus[of x]) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 908 | also have "(x + y) * S mm + \<dots> = (x + y) * ?rhs mm + (- a gchoose (Suc mm)) * (- x)^Suc mm" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 909 | unfolding S_def by (subst Suc.IH) simp | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 910 | also have "(x + y) * ?rhs mm = (\<Sum>n\<le>mm. ((- a gchoose n) * (- x) ^ n * (x + y) ^ (Suc mm - n)))" | 
| 64267 | 911 | by (subst sum_distrib_left, rule sum.cong) (simp_all add: Suc_diff_le) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 912 | also have "\<dots> + (-a gchoose (Suc mm)) * (-x)^Suc mm = | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 913 | (\<Sum>n\<le>Suc mm. (- a gchoose n) * (- x) ^ n * (x + y) ^ (Suc mm - n))" | 
| 63466 | 914 | by simp | 
| 915 | finally show ?case | |
| 916 | by (simp only: S_def) | |
| 917 | qed | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 918 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 919 | lemma gbinomial_partial_sum_poly_xpos: | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 920 | "(\<Sum>k\<le>m. (of_nat m + a gchoose k) * x^k * y^(m-k)) = | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 921 | (\<Sum>k\<le>m. (of_nat k + a - 1 gchoose k) * x^k * (x + y)^(m-k))" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 922 | apply (subst gbinomial_partial_sum_poly) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 923 | apply (subst gbinomial_negated_upper) | 
| 64267 | 924 | apply (intro sum.cong, rule refl) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 925 | apply (simp add: power_mult_distrib [symmetric]) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 926 | done | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 927 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 928 | lemma binomial_r_part_sum: "(\<Sum>k\<le>m. (2 * m + 1 choose k)) = 2 ^ (2 * m)" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 929 | proof - | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 930 | have "2 * 2^(2*m) = (\<Sum>k = 0..(2 * m + 1). (2 * m + 1 choose k))" | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 931 | using choose_row_sum[where n="2 * m + 1"] by (simp add: atMost_atLeast0) | 
| 63466 | 932 | also have "(\<Sum>k = 0..(2 * m + 1). (2 * m + 1 choose k)) = | 
| 933 | (\<Sum>k = 0..m. (2 * m + 1 choose k)) + | |
| 934 | (\<Sum>k = m+1..2*m+1. (2 * m + 1 choose k))" | |
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 935 | using sum.ub_add_nat[of 0 m "\<lambda>k. 2 * m + 1 choose k" "m+1"] | 
| 63466 | 936 | by (simp add: mult_2) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 937 | also have "(\<Sum>k = m+1..2*m+1. (2 * m + 1 choose k)) = | 
| 63466 | 938 | (\<Sum>k = 0..m. (2 * m + 1 choose (k + (m + 1))))" | 
| 70113 
c8deb8ba6d05
Fixing the main Homology theory; also moving a lot of sum/prod lemmas into their generic context
 paulson <lp15@cam.ac.uk> parents: 
70097diff
changeset | 939 | by (subst sum.shift_bounds_cl_nat_ivl [symmetric]) (simp add: mult_2) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 940 | also have "\<dots> = (\<Sum>k = 0..m. (2 * m + 1 choose (m - k)))" | 
| 64267 | 941 | by (intro sum.cong[OF refl], subst binomial_symmetric) simp_all | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 942 | also have "\<dots> = (\<Sum>k = 0..m. (2 * m + 1 choose k))" | 
| 67411 
3f4b0c84630f
restored naming of lemmas after corresponding constants
 haftmann parents: 
67399diff
changeset | 943 | using sum.atLeastAtMost_rev [of "\<lambda>k. 2 * m + 1 choose (m - k)" 0 m] | 
| 63417 
c184ec919c70
more lemmas to emphasize {0::nat..(<)n} as canonical representation of intervals on nat
 haftmann parents: 
63373diff
changeset | 944 | by simp | 
| 63466 | 945 | also have "\<dots> + \<dots> = 2 * \<dots>" | 
| 946 | by simp | |
| 947 | finally show ?thesis | |
| 948 | by (subst (asm) mult_cancel1) (simp add: atLeast0AtMost) | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 949 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 950 | |
| 63466 | 951 | lemma gbinomial_r_part_sum: "(\<Sum>k\<le>m. (2 * (of_nat m) + 1 gchoose k)) = 2 ^ (2 * m)" | 
| 952 | (is "?lhs = ?rhs") | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 953 | proof - | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 954 | have "?lhs = of_nat (\<Sum>k\<le>m. (2 * m + 1) choose k)" | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 955 | by (simp add: binomial_gbinomial add_ac) | 
| 63466 | 956 | also have "\<dots> = of_nat (2 ^ (2 * m))" | 
| 957 | by (subst binomial_r_part_sum) (rule refl) | |
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 958 | finally show ?thesis by simp | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 959 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 960 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 961 | lemma gbinomial_sum_nat_pow2: | 
| 63466 | 962 | "(\<Sum>k\<le>m. (of_nat (m + k) gchoose k :: 'a::field_char_0) / 2 ^ k) = 2 ^ m" | 
| 963 | (is "?lhs = ?rhs") | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 964 | proof - | 
| 63466 | 965 | have "2 ^ m * 2 ^ m = (2 ^ (2*m) :: 'a)" | 
| 966 | by (induct m) simp_all | |
| 967 | also have "\<dots> = (\<Sum>k\<le>m. (2 * (of_nat m) + 1 gchoose k))" | |
| 968 | using gbinomial_r_part_sum .. | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 969 | also have "\<dots> = (\<Sum>k\<le>m. (of_nat (m + k) gchoose k) * 2 ^ (m - k))" | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 970 | using gbinomial_partial_sum_poly_xpos[where x="1" and y="1" and a="of_nat m + 1" and m="m"] | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 971 | by (simp add: add_ac) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 972 | also have "\<dots> = 2 ^ m * (\<Sum>k\<le>m. (of_nat (m + k) gchoose k) / 2 ^ k)" | 
| 64267 | 973 | by (subst sum_distrib_left) (simp add: algebra_simps power_diff) | 
| 63466 | 974 | finally show ?thesis | 
| 975 | by (subst (asm) mult_left_cancel) simp_all | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 976 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 977 | |
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 978 | lemma gbinomial_trinomial_revision: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 979 | assumes "k \<le> m" | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 980 | shows "(a gchoose m) * (of_nat m gchoose k) = (a gchoose k) * (a - of_nat k gchoose (m - k))" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 981 | proof - | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 982 | have "(a gchoose m) * (of_nat m gchoose k) = (a gchoose m) * fact m / (fact k * fact (m - k))" | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 983 | using assms by (simp add: binomial_gbinomial [symmetric] binomial_fact) | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 984 | also have "\<dots> = (a gchoose k) * (a - of_nat k gchoose (m - k))" | 
| 63466 | 985 | using assms by (simp add: gbinomial_pochhammer power_diff pochhammer_product) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 986 | finally show ?thesis . | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 987 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61076diff
changeset | 988 | |
| 63466 | 989 | text \<open>Versions of the theorems above for the natural-number version of "choose"\<close> | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 990 | lemma binomial_altdef_of_nat: | 
| 63466 | 991 | "k \<le> n \<Longrightarrow> of_nat (n choose k) = (\<Prod>i = 0..<k. of_nat (n - i) / of_nat (k - i) :: 'a)" | 
| 992 | for n k :: nat and x :: "'a::field_char_0" | |
| 993 | by (simp add: gbinomial_altdef_of_nat binomial_gbinomial of_nat_diff) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 994 | |
| 63466 | 995 | lemma binomial_ge_n_over_k_pow_k: "k \<le> n \<Longrightarrow> (of_nat n / of_nat k :: 'a) ^ k \<le> of_nat (n choose k)" | 
| 996 | for k n :: nat and x :: "'a::linordered_field" | |
| 997 | by (simp add: gbinomial_ge_n_over_k_pow_k binomial_gbinomial of_nat_diff) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 998 | |
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 999 | lemma binomial_le_pow: | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1000 | assumes "r \<le> n" | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1001 | shows "n choose r \<le> n ^ r" | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1002 | proof - | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1003 | have "n choose r \<le> fact n div fact (n - r)" | 
| 63466 | 1004 | using assms by (subst binomial_fact_lemma[symmetric]) auto | 
| 1005 | with fact_div_fact_le_pow [OF assms] show ?thesis | |
| 1006 | by auto | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1007 | qed | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1008 | |
| 63466 | 1009 | lemma binomial_altdef_nat: "k \<le> n \<Longrightarrow> n choose k = fact n div (fact k * fact (n - k))" | 
| 1010 | for k n :: nat | |
| 1011 | by (subst binomial_fact_lemma [symmetric]) auto | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1012 | |
| 63466 | 1013 | lemma choose_dvd: | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66311diff
changeset | 1014 | "k \<le> n \<Longrightarrow> fact k * fact (n - k) dvd (fact n :: 'a::linordered_semidom)" | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 1015 | unfolding dvd_def | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 1016 | apply (rule exI [where x="of_nat (n choose k)"]) | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 1017 | using binomial_fact_lemma [of k n, THEN arg_cong [where f = of_nat and 'b='a]] | 
| 63366 
209c4cbbc4cd
define binomial coefficents directly via combinatorial definition
 haftmann parents: 
63363diff
changeset | 1018 | apply auto | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1019 | done | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1020 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 1021 | lemma fact_fact_dvd_fact: | 
| 66806 
a4e82b58d833
abolished (semi)ring_div in favour of euclidean_(semi)ring_cancel
 haftmann parents: 
66311diff
changeset | 1022 | "fact k * fact n dvd (fact (k + n) :: 'a::linordered_semidom)" | 
| 63466 | 1023 | by (metis add.commute add_diff_cancel_left' choose_dvd le_add2) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1024 | |
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1025 | lemma choose_mult_lemma: | 
| 63466 | 1026 | "((m + r + k) choose (m + k)) * ((m + k) choose k) = ((m + r + k) choose k) * ((m + r) choose m)" | 
| 1027 | (is "?lhs = _") | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1028 | proof - | 
| 63466 | 1029 | have "?lhs = | 
| 1030 | fact (m + r + k) div (fact (m + k) * fact (m + r - m)) * (fact (m + k) div (fact k * fact m))" | |
| 63092 | 1031 | by (simp add: binomial_altdef_nat) | 
| 63466 | 1032 | also have "\<dots> = fact (m + r + k) div (fact r * (fact k * fact m))" | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1033 | apply (subst div_mult_div_if_dvd) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 1034 | apply (auto simp: algebra_simps fact_fact_dvd_fact) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1035 | apply (metis add.assoc add.commute fact_fact_dvd_fact) | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1036 | done | 
| 63466 | 1037 | also have "\<dots> = (fact (m + r + k) * fact (m + r)) div (fact r * (fact k * fact m) * fact (m + r))" | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1038 | apply (subst div_mult_div_if_dvd [symmetric]) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 1039 | apply (auto simp add: algebra_simps) | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62142diff
changeset | 1040 | apply (metis fact_fact_dvd_fact dvd_trans nat_mult_dvd_cancel_disj) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1041 | done | 
| 63466 | 1042 | also have "\<dots> = | 
| 1043 | (fact (m + r + k) div (fact k * fact (m + r)) * (fact (m + r) div (fact r * fact m)))" | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1044 | apply (subst div_mult_div_if_dvd) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59669diff
changeset | 1045 | apply (auto simp: fact_fact_dvd_fact algebra_simps) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1046 | done | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1047 | finally show ?thesis | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1048 | by (simp add: binomial_altdef_nat mult.commute) | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1049 | qed | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1050 | |
| 63466 | 1051 | text \<open>The "Subset of a Subset" identity.\<close> | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1052 | lemma choose_mult: | 
| 63466 | 1053 | "k \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> (n choose m) * (m choose k) = (n choose k) * ((n - k) choose (m - k))" | 
| 1054 | using choose_mult_lemma [of "m-k" "n-m" k] by simp | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1055 | |
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1056 | |
| 63373 | 1057 | subsection \<open>More on Binomial Coefficients\<close> | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1058 | |
| 63466 | 1059 | lemma choose_one: "n choose 1 = n" for n :: nat | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1060 | by simp | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1061 | |
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1062 | lemma card_UNION: | 
| 63466 | 1063 | assumes "finite A" | 
| 1064 | and "\<forall>k \<in> A. finite k" | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1065 |   shows "card (\<Union>A) = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * int (card (\<Inter>I)))"
 | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1066 | (is "?lhs = ?rhs") | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1067 | proof - | 
| 63466 | 1068 |   have "?rhs = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * (\<Sum>_\<in>\<Inter>I. 1))"
 | 
| 1069 | by simp | |
| 1070 |   also have "\<dots> = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (\<Sum>_\<in>\<Inter>I. (- 1) ^ (card I + 1)))"
 | |
| 1071 | (is "_ = nat ?rhs") | |
| 64267 | 1072 | by (subst sum_distrib_left) simp | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1073 |   also have "?rhs = (\<Sum>(I, _)\<in>Sigma {I. I \<subseteq> A \<and> I \<noteq> {}} Inter. (- 1) ^ (card I + 1))"
 | 
| 64267 | 1074 | using assms by (subst sum.Sigma) auto | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1075 |   also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:UNIV. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
 | 
| 69768 | 1076 | by (rule sum.reindex_cong [where l = "\<lambda>(x, y). (y, x)"]) (auto intro: inj_onI) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1077 |   also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:\<Union>A. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
 | 
| 63466 | 1078 | using assms | 
| 64267 | 1079 | by (auto intro!: sum.mono_neutral_cong_right finite_SigmaI2 intro: finite_subset[where B="\<Union>A"]) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1080 |   also have "\<dots> = (\<Sum>x\<in>\<Union>A. (\<Sum>I|I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I. (- 1) ^ (card I + 1)))"
 | 
| 64267 | 1081 | using assms by (subst sum.Sigma) auto | 
| 1082 | also have "\<dots> = (\<Sum>_\<in>\<Union>A. 1)" (is "sum ?lhs _ = _") | |
| 1083 | proof (rule sum.cong[OF refl]) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1084 | fix x | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1085 | assume x: "x \<in> \<Union>A" | 
| 63040 | 1086 |     define K where "K = {X \<in> A. x \<in> X}"
 | 
| 63466 | 1087 | with \<open>finite A\<close> have K: "finite K" | 
| 1088 | by auto | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1089 |     let ?I = "\<lambda>i. {I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I}"
 | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1090 |     have "inj_on snd (SIGMA i:{1..card A}. ?I i)"
 | 
| 63466 | 1091 | using assms by (auto intro!: inj_onI) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1092 |     moreover have [symmetric]: "snd ` (SIGMA i:{1..card A}. ?I i) = {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}"
 | 
| 63466 | 1093 | using assms | 
| 1094 | by (auto intro!: rev_image_eqI[where x="(card a, a)" for a] | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1095 | simp add: card_gt_0_iff[folded Suc_le_eq] | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1096 | dest: finite_subset intro: card_mono) | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1097 |     ultimately have "?lhs x = (\<Sum>(i, I)\<in>(SIGMA i:{1..card A}. ?I i). (- 1) ^ (i + 1))"
 | 
| 64267 | 1098 | by (rule sum.reindex_cong [where l = snd]) fastforce | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1099 | also have "\<dots> = (\<Sum>i=1..card A. (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. (- 1) ^ (i + 1)))" | 
| 64267 | 1100 | using assms by (subst sum.Sigma) auto | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1101 | also have "\<dots> = (\<Sum>i=1..card A. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1))" | 
| 64267 | 1102 | by (subst sum_distrib_left) simp | 
| 63466 | 1103 | also have "\<dots> = (\<Sum>i=1..card K. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> K \<and> card I = i. 1))" | 
| 1104 | (is "_ = ?rhs") | |
| 64267 | 1105 | proof (rule sum.mono_neutral_cong_right[rule_format]) | 
| 63466 | 1106 |       show "finite {1..card A}"
 | 
| 1107 | by simp | |
| 1108 |       show "{1..card K} \<subseteq> {1..card A}"
 | |
| 1109 | using \<open>finite A\<close> by (auto simp add: K_def intro: card_mono) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1110 | next | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1111 | fix i | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1112 |       assume "i \<in> {1..card A} - {1..card K}"
 | 
| 63466 | 1113 | then have i: "i \<le> card A" "card K < i" | 
| 1114 | by auto | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1115 |       have "{I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I} = {I. I \<subseteq> K \<and> card I = i}"
 | 
| 63466 | 1116 | by (auto simp add: K_def) | 
| 1117 |       also have "\<dots> = {}"
 | |
| 1118 | using \<open>finite A\<close> i by (auto simp add: K_def dest: card_mono[rotated 1]) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1119 | finally show "(- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1 :: int) = 0" | 
| 63466 | 1120 | by (simp only:) simp | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1121 | next | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1122 | fix i | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1123 | have "(\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1) = (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)" | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1124 | (is "?lhs = ?rhs") | 
| 64267 | 1125 | by (rule sum.cong) (auto simp add: K_def) | 
| 63466 | 1126 | then show "(- 1) ^ (i + 1) * ?lhs = (- 1) ^ (i + 1) * ?rhs" | 
| 1127 | by simp | |
| 1128 | qed | |
| 1129 |     also have "{I. I \<subseteq> K \<and> card I = 0} = {{}}"
 | |
| 1130 | using assms by (auto simp add: card_eq_0_iff K_def dest: finite_subset) | |
| 1131 | then have "?rhs = (\<Sum>i = 0..card K. (- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)) + 1" | |
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69768diff
changeset | 1132 | by (subst (2) sum.atLeast_Suc_atMost) simp_all | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1133 | also have "\<dots> = (\<Sum>i = 0..card K. (- 1) * ((- 1) ^ i * int (card K choose i))) + 1" | 
| 63466 | 1134 | using K by (subst n_subsets[symmetric]) simp_all | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1135 | also have "\<dots> = - (\<Sum>i = 0..card K. (- 1) ^ i * int (card K choose i)) + 1" | 
| 64267 | 1136 | by (subst sum_distrib_left[symmetric]) simp | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1137 | also have "\<dots> = - ((-1 + 1) ^ card K) + 1" | 
| 68077 
ee8c13ae81e9
Some tidying up (mostly regarding summations from 0)
 paulson <lp15@cam.ac.uk> parents: 
67443diff
changeset | 1138 | by (subst binomial_ring) (simp add: ac_simps atMost_atLeast0) | 
| 63466 | 1139 | also have "\<dots> = 1" | 
| 1140 | using x K by (auto simp add: K_def card_gt_0_iff) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1141 | finally show "?lhs x = 1" . | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1142 | qed | 
| 63466 | 1143 | also have "nat \<dots> = card (\<Union>A)" | 
| 1144 | by simp | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1145 | finally show ?thesis .. | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1146 | qed | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1147 | |
| 69593 | 1148 | text \<open>The number of nat lists of length \<open>m\<close> summing to \<open>N\<close> is \<^term>\<open>(N + m - 1) choose N\<close>:\<close> | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1149 | lemma card_length_sum_list_rec: | 
| 63466 | 1150 | assumes "m \<ge> 1" | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1151 |   shows "card {l::nat list. length l = m \<and> sum_list l = N} =
 | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1152 |       card {l. length l = (m - 1) \<and> sum_list l = N} +
 | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1153 |       card {l. length l = m \<and> sum_list l + 1 = N}"
 | 
| 63466 | 1154 | (is "card ?C = card ?A + card ?B") | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1155 | proof - | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1156 |   let ?A' = "{l. length l = m \<and> sum_list l = N \<and> hd l = 0}"
 | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1157 |   let ?B' = "{l. length l = m \<and> sum_list l = N \<and> hd l \<noteq> 0}"
 | 
| 63466 | 1158 | let ?f = "\<lambda>l. 0 # l" | 
| 1159 | let ?g = "\<lambda>l. (hd l + 1) # tl l" | |
| 65812 | 1160 | have 1: "xs \<noteq> [] \<Longrightarrow> x = hd xs \<Longrightarrow> x # tl xs = xs" for x :: nat and xs | 
| 63466 | 1161 | by simp | 
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1162 | have 2: "xs \<noteq> [] \<Longrightarrow> sum_list(tl xs) = sum_list xs - hd xs" for xs :: "nat list" | 
| 63466 | 1163 | by (auto simp add: neq_Nil_conv) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1164 | have f: "bij_betw ?f ?A ?A'" | 
| 63466 | 1165 | apply (rule bij_betw_byWitness[where f' = tl]) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1166 | using assms | 
| 63466 | 1167 | apply (auto simp: 2 length_0_conv[symmetric] 1 simp del: length_0_conv) | 
| 1168 | done | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1169 | have 3: "xs \<noteq> [] \<Longrightarrow> hd xs + (sum_list xs - hd xs) = sum_list xs" for xs :: "nat list" | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1170 | by (metis 1 sum_list_simps(2) 2) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1171 | have g: "bij_betw ?g ?B ?B'" | 
| 63466 | 1172 | apply (rule bij_betw_byWitness[where f' = "\<lambda>l. (hd l - 1) # tl l"]) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1173 | using assms | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1174 | by (auto simp: 2 length_0_conv[symmetric] intro!: 3 | 
| 63466 | 1175 | simp del: length_greater_0_conv length_0_conv) | 
| 1176 |   have fin: "finite {xs. size xs = M \<and> set xs \<subseteq> {0..<N}}" for M N :: nat
 | |
| 1177 | using finite_lists_length_eq[OF finite_atLeastLessThan] conj_commute by auto | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1178 | have fin_A: "finite ?A" using fin[of _ "N+1"] | 
| 63466 | 1179 |     by (intro finite_subset[where ?A = "?A" and ?B = "{xs. size xs = m - 1 \<and> set xs \<subseteq> {0..<N+1}}"])
 | 
| 66311 | 1180 | (auto simp: member_le_sum_list less_Suc_eq_le) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1181 | have fin_B: "finite ?B" | 
| 63466 | 1182 |     by (intro finite_subset[where ?A = "?B" and ?B = "{xs. size xs = m \<and> set xs \<subseteq> {0..<N}}"])
 | 
| 66311 | 1183 | (auto simp: member_le_sum_list less_Suc_eq_le fin) | 
| 63466 | 1184 | have uni: "?C = ?A' \<union> ?B'" | 
| 1185 | by auto | |
| 65350 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1186 |   have disj: "?A' \<inter> ?B' = {}" by blast
 | 
| 63466 | 1187 | have "card ?C = card(?A' \<union> ?B')" | 
| 1188 | using uni by simp | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1189 | also have "\<dots> = card ?A + card ?B" | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1190 | using card_Un_disjoint[OF _ _ disj] bij_betw_finite[OF f] bij_betw_finite[OF g] | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1191 | bij_betw_same_card[OF f] bij_betw_same_card[OF g] fin_A fin_B | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1192 | by presburger | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1193 | finally show ?thesis . | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1194 | qed | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1195 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1196 | lemma card_length_sum_list: "card {l::nat list. size l = m \<and> sum_list l = N} = (N + m - 1) choose N"
 | 
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67411diff
changeset | 1197 | \<comment> \<open>by Holden Lee, tidied by Tobias Nipkow\<close> | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1198 | proof (cases m) | 
| 63466 | 1199 | case 0 | 
| 1200 | then show ?thesis | |
| 1201 | by (cases N) (auto cong: conj_cong) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1202 | next | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1203 | case (Suc m') | 
| 63466 | 1204 | have m: "m \<ge> 1" | 
| 1205 | by (simp add: Suc) | |
| 1206 | then show ?thesis | |
| 1207 | proof (induct "N + m - 1" arbitrary: N m) | |
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67411diff
changeset | 1208 | case 0 \<comment> \<open>In the base case, the only solution is [0].\<close> | 
| 63466 | 1209 |     have [simp]: "{l::nat list. length l = Suc 0 \<and> (\<forall>n\<in>set l. n = 0)} = {[0]}"
 | 
| 1210 | by (auto simp: length_Suc_conv) | |
| 1211 | have "m = 1 \<and> N = 0" | |
| 1212 | using 0 by linarith | |
| 1213 | then show ?case | |
| 1214 | by simp | |
| 1215 | next | |
| 1216 | case (Suc k) | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1217 |     have c1: "card {l::nat list. size l = (m - 1) \<and> sum_list l =  N} = (N + (m - 1) - 1) choose N"
 | 
| 63466 | 1218 | proof (cases "m = 1") | 
| 1219 | case True | |
| 1220 | with Suc.hyps have "N \<ge> 1" | |
| 1221 | by auto | |
| 1222 | with True show ?thesis | |
| 1223 | by (simp add: binomial_eq_0) | |
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1224 | next | 
| 63466 | 1225 | case False | 
| 1226 | then show ?thesis | |
| 1227 | using Suc by fastforce | |
| 1228 | qed | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1229 |     from Suc have c2: "card {l::nat list. size l = m \<and> sum_list l + 1 = N} =
 | 
| 63466 | 1230 | (if N > 0 then ((N - 1) + m - 1) choose (N - 1) else 0)" | 
| 1231 | proof - | |
| 1232 | have *: "n > 0 \<Longrightarrow> Suc m = n \<longleftrightarrow> m = n - 1" for m n | |
| 1233 | by arith | |
| 1234 | from Suc have "N > 0 \<Longrightarrow> | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1235 |         card {l::nat list. size l = m \<and> sum_list l + 1 = N} =
 | 
| 63466 | 1236 | ((N - 1) + m - 1) choose (N - 1)" | 
| 1237 | by (simp add: *) | |
| 1238 | then show ?thesis | |
| 1239 | by auto | |
| 1240 | qed | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1241 |     from Suc.prems have "(card {l::nat list. size l = (m - 1) \<and> sum_list l = N} +
 | 
| 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1242 |           card {l::nat list. size l = m \<and> sum_list l + 1 = N}) = (N + m - 1) choose N"
 | 
| 63466 | 1243 | by (auto simp: c1 c2 choose_reduce_nat[of "N + m - 1" N] simp del: One_nat_def) | 
| 1244 | then show ?case | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63725diff
changeset | 1245 | using card_length_sum_list_rec[OF Suc.prems] by auto | 
| 63466 | 1246 | qed | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1247 | qed | 
| 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1248 | |
| 69107 | 1249 | lemma card_disjoint_shuffles: | 
| 65350 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1250 |   assumes "set xs \<inter> set ys = {}"
 | 
| 69107 | 1251 | shows "card (shuffles xs ys) = (length xs + length ys) choose length xs" | 
| 65350 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1252 | using assms | 
| 69107 | 1253 | proof (induction xs ys rule: shuffles.induct) | 
| 65350 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1254 | case (3 x xs y ys) | 
| 69107 | 1255 | have "shuffles (x # xs) (y # ys) = (#) x ` shuffles xs (y # ys) \<union> (#) y ` shuffles (x # xs) ys" | 
| 1256 | by (rule shuffles.simps) | |
| 1257 | also have "card \<dots> = card ((#) x ` shuffles xs (y # ys)) + card ((#) y ` shuffles (x # xs) ys)" | |
| 65350 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1258 | by (rule card_Un_disjoint) (insert "3.prems", auto) | 
| 69107 | 1259 | also have "card ((#) x ` shuffles xs (y # ys)) = card (shuffles xs (y # ys))" | 
| 65350 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1260 | by (rule card_image) auto | 
| 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1261 | also have "\<dots> = (length xs + length (y # ys)) choose length xs" | 
| 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1262 | using "3.prems" by (intro "3.IH") auto | 
| 69107 | 1263 | also have "card ((#) y ` shuffles (x # xs) ys) = card (shuffles (x # xs) ys)" | 
| 65350 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1264 | by (rule card_image) auto | 
| 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1265 | also have "\<dots> = (length (x # xs) + length ys) choose length (x # xs)" | 
| 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1266 | using "3.prems" by (intro "3.IH") auto | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
65350diff
changeset | 1267 | also have "length xs + length (y # ys) choose length xs + \<dots> = | 
| 65350 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1268 | (length (x # xs) + length (y # ys)) choose length (x # xs)" by simp | 
| 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1269 | finally show ?case . | 
| 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1270 | qed auto | 
| 
b149abe619f7
added shuffle product to HOL/List
 eberlm <eberlm@in.tum.de> parents: 
64272diff
changeset | 1271 | |
| 63466 | 1272 | lemma Suc_times_binomial_add: "Suc a * (Suc (a + b) choose Suc a) = Suc b * (Suc (a + b) choose a)" | 
| 1273 | \<comment> \<open>by Lukas Bulwahn\<close> | |
| 60604 | 1274 | proof - | 
| 1275 | have dvd: "Suc a * (fact a * fact b) dvd fact (Suc (a + b))" for a b | |
| 1276 | using fact_fact_dvd_fact[of "Suc a" "b", where 'a=nat] | |
| 1277 | by (simp only: fact_Suc add_Suc[symmetric] of_nat_id mult.assoc) | |
| 1278 | have "Suc a * (fact (Suc (a + b)) div (Suc a * fact a * fact b)) = | |
| 1279 | Suc a * fact (Suc (a + b)) div (Suc a * (fact a * fact b))" | |
| 1280 | by (subst div_mult_swap[symmetric]; simp only: mult.assoc dvd) | |
| 1281 | also have "\<dots> = Suc b * fact (Suc (a + b)) div (Suc b * (fact a * fact b))" | |
| 1282 | by (simp only: div_mult_mult1) | |
| 1283 | also have "\<dots> = Suc b * (fact (Suc (a + b)) div (Suc b * (fact a * fact b)))" | |
| 1284 | using dvd[of b a] by (subst div_mult_swap[symmetric]; simp only: ac_simps dvd) | |
| 1285 | finally show ?thesis | |
| 1286 | by (subst (1 2) binomial_altdef_nat) | |
| 63466 | 1287 | (simp_all only: ac_simps diff_Suc_Suc Suc_diff_le diff_add_inverse fact_Suc of_nat_id) | 
| 60604 | 1288 | qed | 
| 1289 | ||
| 63373 | 1290 | |
| 68785 | 1291 | subsection \<open>Executable code\<close> | 
| 63373 | 1292 | |
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61799diff
changeset | 1293 | lemma gbinomial_code [code]: | 
| 68787 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 1294 | "a gchoose k = | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 1295 | (if k = 0 then 1 | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 1296 | else fold_atLeastAtMost_nat (\<lambda>k acc. (a - of_nat k) * acc) 0 (k - 1) 1 / fact k)" | 
| 
b129052644e9
more uniform parameter naming convention for choose and gchoose
 haftmann parents: 
68786diff
changeset | 1297 | by (cases k) | 
| 64272 | 1298 | (simp_all add: gbinomial_prod_rev prod_atLeastAtMost_code [symmetric] | 
| 63466 | 1299 | atLeastLessThanSuc_atLeastAtMost) | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61799diff
changeset | 1300 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61799diff
changeset | 1301 | lemma binomial_code [code]: | 
| 68785 | 1302 | "n choose k = | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61799diff
changeset | 1303 | (if k > n then 0 | 
| 68785 | 1304 | else if 2 * k > n then n choose (n - k) | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
68787diff
changeset | 1305 | else (fold_atLeastAtMost_nat (*) (n - k + 1) n 1 div fact k))" | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61799diff
changeset | 1306 | proof - | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61799diff
changeset | 1307 |   {
 | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61799diff
changeset | 1308 | assume "k \<le> n" | 
| 63466 | 1309 |     then have "{1..n} = {1..n-k} \<union> {n-k+1..n}" by auto
 | 
| 1310 |     then have "(fact n :: nat) = fact (n-k) * \<Prod>{n-k+1..n}"
 | |
| 65581 
baf96277ee76
better code equation for binomial
 eberlm <eberlm@in.tum.de> parents: 
65552diff
changeset | 1311 | by (simp add: prod.union_disjoint fact_prod) | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61799diff
changeset | 1312 | } | 
| 64272 | 1313 | then show ?thesis by (auto simp: binomial_altdef_nat mult_ac prod_atLeastAtMost_code) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62347diff
changeset | 1314 | qed | 
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61799diff
changeset | 1315 | |
| 15131 | 1316 | end |