| author | blanchet | 
| Sun, 12 Oct 2014 21:52:45 +0200 | |
| changeset 58654 | 3e1cad27fc2f | 
| parent 58310 | 91ea607a34d8 | 
| child 58787 | af9eb5e566dd | 
| permissions | -rw-r--r-- | 
| 43920 | 1 | (* Title: HOL/Library/Extended_Real.thy | 
| 41983 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Robert Himmelmann, TU München | |
| 4 | Author: Armin Heller, TU München | |
| 5 | Author: Bogdan Grechuk, University of Edinburgh | |
| 6 | *) | |
| 41973 | 7 | |
| 8 | header {* Extended real number line *}
 | |
| 9 | ||
| 43920 | 10 | theory Extended_Real | 
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 11 | imports Complex_Main Extended_Nat Liminf_Limsup | 
| 41973 | 12 | begin | 
| 13 | ||
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 14 | text {*
 | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 15 | |
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 16 | For more lemmas about the extended real numbers go to | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 17 |   @{file "~~/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy"}
 | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 18 | |
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 19 | *} | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 20 | |
| 41973 | 21 | subsection {* Definition and basic properties *}
 | 
| 22 | ||
| 58310 | 23 | datatype ereal = ereal real | PInfty | MInfty | 
| 41973 | 24 | |
| 43920 | 25 | instantiation ereal :: uminus | 
| 41973 | 26 | begin | 
| 53873 | 27 | |
| 28 | fun uminus_ereal where | |
| 29 | "- (ereal r) = ereal (- r)" | |
| 30 | | "- PInfty = MInfty" | |
| 31 | | "- MInfty = PInfty" | |
| 32 | ||
| 33 | instance .. | |
| 34 | ||
| 41973 | 35 | end | 
| 36 | ||
| 43923 | 37 | instantiation ereal :: infinity | 
| 38 | begin | |
| 53873 | 39 | |
| 40 | definition "(\<infinity>::ereal) = PInfty" | |
| 41 | instance .. | |
| 42 | ||
| 43923 | 43 | end | 
| 41973 | 44 | |
| 43923 | 45 | declare [[coercion "ereal :: real \<Rightarrow> ereal"]] | 
| 41973 | 46 | |
| 43920 | 47 | lemma ereal_uminus_uminus[simp]: | 
| 53873 | 48 | fixes a :: ereal | 
| 49 | shows "- (- a) = a" | |
| 41973 | 50 | by (cases a) simp_all | 
| 51 | ||
| 43923 | 52 | lemma | 
| 53 | shows PInfty_eq_infinity[simp]: "PInfty = \<infinity>" | |
| 54 | and MInfty_eq_minfinity[simp]: "MInfty = - \<infinity>" | |
| 55 | and MInfty_neq_PInfty[simp]: "\<infinity> \<noteq> - (\<infinity>::ereal)" "- \<infinity> \<noteq> (\<infinity>::ereal)" | |
| 56 | and MInfty_neq_ereal[simp]: "ereal r \<noteq> - \<infinity>" "- \<infinity> \<noteq> ereal r" | |
| 57 | and PInfty_neq_ereal[simp]: "ereal r \<noteq> \<infinity>" "\<infinity> \<noteq> ereal r" | |
| 58 | and PInfty_cases[simp]: "(case \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = y" | |
| 59 | and MInfty_cases[simp]: "(case - \<infinity> of ereal r \<Rightarrow> f r | PInfty \<Rightarrow> y | MInfty \<Rightarrow> z) = z" | |
| 60 | by (simp_all add: infinity_ereal_def) | |
| 41973 | 61 | |
| 43933 | 62 | declare | 
| 63 | PInfty_eq_infinity[code_post] | |
| 64 | MInfty_eq_minfinity[code_post] | |
| 65 | ||
| 66 | lemma [code_unfold]: | |
| 67 | "\<infinity> = PInfty" | |
| 53873 | 68 | "- PInfty = MInfty" | 
| 43933 | 69 | by simp_all | 
| 70 | ||
| 43923 | 71 | lemma inj_ereal[simp]: "inj_on ereal A" | 
| 72 | unfolding inj_on_def by auto | |
| 41973 | 73 | |
| 55913 | 74 | lemma ereal_cases[cases type: ereal]: | 
| 75 | obtains (real) r where "x = ereal r" | |
| 76 | | (PInf) "x = \<infinity>" | |
| 77 | | (MInf) "x = -\<infinity>" | |
| 41973 | 78 | using assms by (cases x) auto | 
| 79 | ||
| 43920 | 80 | lemmas ereal2_cases = ereal_cases[case_product ereal_cases] | 
| 81 | lemmas ereal3_cases = ereal2_cases[case_product ereal_cases] | |
| 41973 | 82 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 83 | lemma ereal_all_split: "\<And>P. (\<forall>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<and> (\<forall>x. P (ereal x)) \<and> P (-\<infinity>)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 84 | by (metis ereal_cases) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 85 | |
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 86 | lemma ereal_ex_split: "\<And>P. (\<exists>x::ereal. P x) \<longleftrightarrow> P \<infinity> \<or> (\<exists>x. P (ereal x)) \<or> P (-\<infinity>)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 87 | by (metis ereal_cases) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57025diff
changeset | 88 | |
| 43920 | 89 | lemma ereal_uminus_eq_iff[simp]: | 
| 53873 | 90 | fixes a b :: ereal | 
| 91 | shows "-a = -b \<longleftrightarrow> a = b" | |
| 43920 | 92 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 41973 | 93 | |
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 94 | instantiation ereal :: real_of | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 95 | begin | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 96 | |
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 97 | function real_ereal :: "ereal \<Rightarrow> real" where | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 98 | "real_ereal (ereal r) = r" | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 99 | | "real_ereal \<infinity> = 0" | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 100 | | "real_ereal (-\<infinity>) = 0" | 
| 43920 | 101 | by (auto intro: ereal_cases) | 
| 53873 | 102 | termination by default (rule wf_empty) | 
| 41973 | 103 | |
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 104 | instance .. | 
| 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 105 | end | 
| 41973 | 106 | |
| 43920 | 107 | lemma real_of_ereal[simp]: | 
| 53873 | 108 | "real (- x :: ereal) = - (real x)" | 
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 109 | by (cases x) simp_all | 
| 41973 | 110 | |
| 43920 | 111 | lemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"
 | 
| 41973 | 112 | proof safe | 
| 53873 | 113 | fix x | 
| 114 | assume "x \<notin> range ereal" "x \<noteq> \<infinity>" | |
| 115 | then show "x = -\<infinity>" | |
| 116 | by (cases x) auto | |
| 41973 | 117 | qed auto | 
| 118 | ||
| 43920 | 119 | lemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 120 | proof safe | 
| 53873 | 121 | fix x :: ereal | 
| 122 | show "x \<in> range uminus" | |
| 123 | by (intro image_eqI[of _ _ "-x"]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 124 | qed auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 125 | |
| 43920 | 126 | instantiation ereal :: abs | 
| 41976 | 127 | begin | 
| 53873 | 128 | |
| 129 | function abs_ereal where | |
| 130 | "\<bar>ereal r\<bar> = ereal \<bar>r\<bar>" | |
| 131 | | "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)" | |
| 132 | | "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)" | |
| 133 | by (auto intro: ereal_cases) | |
| 134 | termination proof qed (rule wf_empty) | |
| 135 | ||
| 136 | instance .. | |
| 137 | ||
| 41976 | 138 | end | 
| 139 | ||
| 53873 | 140 | lemma abs_eq_infinity_cases[elim!]: | 
| 141 | fixes x :: ereal | |
| 142 | assumes "\<bar>x\<bar> = \<infinity>" | |
| 143 | obtains "x = \<infinity>" | "x = -\<infinity>" | |
| 144 | using assms by (cases x) auto | |
| 41976 | 145 | |
| 53873 | 146 | lemma abs_neq_infinity_cases[elim!]: | 
| 147 | fixes x :: ereal | |
| 148 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 149 | obtains r where "x = ereal r" | |
| 150 | using assms by (cases x) auto | |
| 151 | ||
| 152 | lemma abs_ereal_uminus[simp]: | |
| 153 | fixes x :: ereal | |
| 154 | shows "\<bar>- x\<bar> = \<bar>x\<bar>" | |
| 41976 | 155 | by (cases x) auto | 
| 156 | ||
| 53873 | 157 | lemma ereal_infinity_cases: | 
| 158 | fixes a :: ereal | |
| 159 | shows "a \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>" | |
| 160 | by auto | |
| 41976 | 161 | |
| 50104 | 162 | |
| 41973 | 163 | subsubsection "Addition" | 
| 164 | ||
| 54408 | 165 | instantiation ereal :: "{one,comm_monoid_add,zero_neq_one}"
 | 
| 41973 | 166 | begin | 
| 167 | ||
| 43920 | 168 | definition "0 = ereal 0" | 
| 51351 | 169 | definition "1 = ereal 1" | 
| 41973 | 170 | |
| 43920 | 171 | function plus_ereal where | 
| 53873 | 172 | "ereal r + ereal p = ereal (r + p)" | 
| 173 | | "\<infinity> + a = (\<infinity>::ereal)" | |
| 174 | | "a + \<infinity> = (\<infinity>::ereal)" | |
| 175 | | "ereal r + -\<infinity> = - \<infinity>" | |
| 176 | | "-\<infinity> + ereal p = -(\<infinity>::ereal)" | |
| 177 | | "-\<infinity> + -\<infinity> = -(\<infinity>::ereal)" | |
| 41973 | 178 | proof - | 
| 179 | case (goal1 P x) | |
| 53873 | 180 | then obtain a b where "x = (a, b)" | 
| 181 | by (cases x) auto | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 182 | with goal1 show P | 
| 43920 | 183 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 184 | qed auto | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 185 | termination by default (rule wf_empty) | 
| 41973 | 186 | |
| 187 | lemma Infty_neq_0[simp]: | |
| 43923 | 188 | "(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> (\<infinity>::ereal)" | 
| 189 | "-(\<infinity>::ereal) \<noteq> 0" "0 \<noteq> -(\<infinity>::ereal)" | |
| 43920 | 190 | by (simp_all add: zero_ereal_def) | 
| 41973 | 191 | |
| 43920 | 192 | lemma ereal_eq_0[simp]: | 
| 193 | "ereal r = 0 \<longleftrightarrow> r = 0" | |
| 194 | "0 = ereal r \<longleftrightarrow> r = 0" | |
| 195 | unfolding zero_ereal_def by simp_all | |
| 41973 | 196 | |
| 54416 | 197 | lemma ereal_eq_1[simp]: | 
| 198 | "ereal r = 1 \<longleftrightarrow> r = 1" | |
| 199 | "1 = ereal r \<longleftrightarrow> r = 1" | |
| 200 | unfolding one_ereal_def by simp_all | |
| 201 | ||
| 41973 | 202 | instance | 
| 203 | proof | |
| 47082 | 204 | fix a b c :: ereal | 
| 205 | show "0 + a = a" | |
| 43920 | 206 | by (cases a) (simp_all add: zero_ereal_def) | 
| 47082 | 207 | show "a + b = b + a" | 
| 43920 | 208 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 47082 | 209 | show "a + b + c = a + (b + c)" | 
| 43920 | 210 | by (cases rule: ereal3_cases[of a b c]) simp_all | 
| 54408 | 211 | show "0 \<noteq> (1::ereal)" | 
| 212 | by (simp add: one_ereal_def zero_ereal_def) | |
| 41973 | 213 | qed | 
| 53873 | 214 | |
| 41973 | 215 | end | 
| 216 | ||
| 51351 | 217 | instance ereal :: numeral .. | 
| 218 | ||
| 43920 | 219 | lemma real_of_ereal_0[simp]: "real (0::ereal) = 0" | 
| 58042 
ffa9e39763e3
introduce real_of typeclass for real :: 'a => real
 hoelzl parents: 
57512diff
changeset | 220 | unfolding zero_ereal_def by simp | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 221 | |
| 43920 | 222 | lemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)" | 
| 223 | unfolding zero_ereal_def abs_ereal.simps by simp | |
| 41976 | 224 | |
| 53873 | 225 | lemma ereal_uminus_zero[simp]: "- 0 = (0::ereal)" | 
| 43920 | 226 | by (simp add: zero_ereal_def) | 
| 41973 | 227 | |
| 43920 | 228 | lemma ereal_uminus_zero_iff[simp]: | 
| 53873 | 229 | fixes a :: ereal | 
| 230 | shows "-a = 0 \<longleftrightarrow> a = 0" | |
| 41973 | 231 | by (cases a) simp_all | 
| 232 | ||
| 43920 | 233 | lemma ereal_plus_eq_PInfty[simp]: | 
| 53873 | 234 | fixes a b :: ereal | 
| 235 | shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | |
| 43920 | 236 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 237 | |
| 43920 | 238 | lemma ereal_plus_eq_MInfty[simp]: | 
| 53873 | 239 | fixes a b :: ereal | 
| 240 | shows "a + b = -\<infinity> \<longleftrightarrow> (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>" | |
| 43920 | 241 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 242 | |
| 43920 | 243 | lemma ereal_add_cancel_left: | 
| 53873 | 244 | fixes a b :: ereal | 
| 245 | assumes "a \<noteq> -\<infinity>" | |
| 246 | shows "a + b = a + c \<longleftrightarrow> a = \<infinity> \<or> b = c" | |
| 43920 | 247 | using assms by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 248 | |
| 43920 | 249 | lemma ereal_add_cancel_right: | 
| 53873 | 250 | fixes a b :: ereal | 
| 251 | assumes "a \<noteq> -\<infinity>" | |
| 252 | shows "b + a = c + a \<longleftrightarrow> a = \<infinity> \<or> b = c" | |
| 43920 | 253 | using assms by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 254 | |
| 53873 | 255 | lemma ereal_real: "ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)" | 
| 41973 | 256 | by (cases x) simp_all | 
| 257 | ||
| 43920 | 258 | lemma real_of_ereal_add: | 
| 259 | fixes a b :: ereal | |
| 47082 | 260 | shows "real (a + b) = | 
| 261 | (if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real a + real b else 0)" | |
| 43920 | 262 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 263 | |
| 53873 | 264 | |
| 43920 | 265 | subsubsection "Linear order on @{typ ereal}"
 | 
| 41973 | 266 | |
| 43920 | 267 | instantiation ereal :: linorder | 
| 41973 | 268 | begin | 
| 269 | ||
| 47082 | 270 | function less_ereal | 
| 271 | where | |
| 272 | " ereal x < ereal y \<longleftrightarrow> x < y" | |
| 273 | | "(\<infinity>::ereal) < a \<longleftrightarrow> False" | |
| 274 | | " a < -(\<infinity>::ereal) \<longleftrightarrow> False" | |
| 275 | | "ereal x < \<infinity> \<longleftrightarrow> True" | |
| 276 | | " -\<infinity> < ereal r \<longleftrightarrow> True" | |
| 277 | | " -\<infinity> < (\<infinity>::ereal) \<longleftrightarrow> True" | |
| 41973 | 278 | proof - | 
| 279 | case (goal1 P x) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 280 | then obtain a b where "x = (a,b)" by (cases x) auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 281 | with goal1 show P by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 282 | qed simp_all | 
| 283 | termination by (relation "{}") simp
 | |
| 284 | ||
| 43920 | 285 | definition "x \<le> (y::ereal) \<longleftrightarrow> x < y \<or> x = y" | 
| 41973 | 286 | |
| 43920 | 287 | lemma ereal_infty_less[simp]: | 
| 43923 | 288 | fixes x :: ereal | 
| 289 | shows "x < \<infinity> \<longleftrightarrow> (x \<noteq> \<infinity>)" | |
| 290 | "-\<infinity> < x \<longleftrightarrow> (x \<noteq> -\<infinity>)" | |
| 41973 | 291 | by (cases x, simp_all) (cases x, simp_all) | 
| 292 | ||
| 43920 | 293 | lemma ereal_infty_less_eq[simp]: | 
| 43923 | 294 | fixes x :: ereal | 
| 295 | shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>" | |
| 53873 | 296 | and "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>" | 
| 43920 | 297 | by (auto simp add: less_eq_ereal_def) | 
| 41973 | 298 | |
| 43920 | 299 | lemma ereal_less[simp]: | 
| 300 | "ereal r < 0 \<longleftrightarrow> (r < 0)" | |
| 301 | "0 < ereal r \<longleftrightarrow> (0 < r)" | |
| 54416 | 302 | "ereal r < 1 \<longleftrightarrow> (r < 1)" | 
| 303 | "1 < ereal r \<longleftrightarrow> (1 < r)" | |
| 43923 | 304 | "0 < (\<infinity>::ereal)" | 
| 305 | "-(\<infinity>::ereal) < 0" | |
| 54416 | 306 | by (simp_all add: zero_ereal_def one_ereal_def) | 
| 41973 | 307 | |
| 43920 | 308 | lemma ereal_less_eq[simp]: | 
| 43923 | 309 | "x \<le> (\<infinity>::ereal)" | 
| 310 | "-(\<infinity>::ereal) \<le> x" | |
| 43920 | 311 | "ereal r \<le> ereal p \<longleftrightarrow> r \<le> p" | 
| 312 | "ereal r \<le> 0 \<longleftrightarrow> r \<le> 0" | |
| 313 | "0 \<le> ereal r \<longleftrightarrow> 0 \<le> r" | |
| 54416 | 314 | "ereal r \<le> 1 \<longleftrightarrow> r \<le> 1" | 
| 315 | "1 \<le> ereal r \<longleftrightarrow> 1 \<le> r" | |
| 316 | by (auto simp add: less_eq_ereal_def zero_ereal_def one_ereal_def) | |
| 41973 | 317 | |
| 43920 | 318 | lemma ereal_infty_less_eq2: | 
| 43923 | 319 | "a \<le> b \<Longrightarrow> a = \<infinity> \<Longrightarrow> b = (\<infinity>::ereal)" | 
| 320 | "a \<le> b \<Longrightarrow> b = -\<infinity> \<Longrightarrow> a = -(\<infinity>::ereal)" | |
| 41973 | 321 | by simp_all | 
| 322 | ||
| 323 | instance | |
| 324 | proof | |
| 47082 | 325 | fix x y z :: ereal | 
| 326 | show "x \<le> x" | |
| 41973 | 327 | by (cases x) simp_all | 
| 47082 | 328 | show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x" | 
| 43920 | 329 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 330 | show "x \<le> y \<or> y \<le> x " | 
| 43920 | 331 | by (cases rule: ereal2_cases[of x y]) auto | 
| 53873 | 332 |   {
 | 
| 333 | assume "x \<le> y" "y \<le> x" | |
| 334 | then show "x = y" | |
| 335 | by (cases rule: ereal2_cases[of x y]) auto | |
| 336 | } | |
| 337 |   {
 | |
| 338 | assume "x \<le> y" "y \<le> z" | |
| 339 | then show "x \<le> z" | |
| 340 | by (cases rule: ereal3_cases[of x y z]) auto | |
| 341 | } | |
| 41973 | 342 | qed | 
| 47082 | 343 | |
| 41973 | 344 | end | 
| 345 | ||
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 346 | lemma ereal_dense2: "x < y \<Longrightarrow> \<exists>z. x < ereal z \<and> ereal z < y" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 347 | using lt_ex gt_ex dense by (cases x y rule: ereal2_cases) auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 348 | |
| 53216 | 349 | instance ereal :: dense_linorder | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 350 | by default (blast dest: ereal_dense2) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 351 | |
| 43920 | 352 | instance ereal :: ordered_ab_semigroup_add | 
| 41978 | 353 | proof | 
| 53873 | 354 | fix a b c :: ereal | 
| 355 | assume "a \<le> b" | |
| 356 | then show "c + a \<le> c + b" | |
| 43920 | 357 | by (cases rule: ereal3_cases[of a b c]) auto | 
| 41978 | 358 | qed | 
| 359 | ||
| 43920 | 360 | lemma real_of_ereal_positive_mono: | 
| 53873 | 361 | fixes x y :: ereal | 
| 362 | shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> real x \<le> real y" | |
| 43920 | 363 | by (cases rule: ereal2_cases[of x y]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 364 | |
| 43920 | 365 | lemma ereal_MInfty_lessI[intro, simp]: | 
| 53873 | 366 | fixes a :: ereal | 
| 367 | shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a" | |
| 41973 | 368 | by (cases a) auto | 
| 369 | ||
| 43920 | 370 | lemma ereal_less_PInfty[intro, simp]: | 
| 53873 | 371 | fixes a :: ereal | 
| 372 | shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>" | |
| 41973 | 373 | by (cases a) auto | 
| 374 | ||
| 43920 | 375 | lemma ereal_less_ereal_Ex: | 
| 376 | fixes a b :: ereal | |
| 377 | shows "x < ereal r \<longleftrightarrow> x = -\<infinity> \<or> (\<exists>p. p < r \<and> x = ereal p)" | |
| 41973 | 378 | by (cases x) auto | 
| 379 | ||
| 43920 | 380 | lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 381 | proof (cases x) | 
| 53873 | 382 | case (real r) | 
| 383 | then show ?thesis | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 384 | using reals_Archimedean2[of r] by simp | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 385 | qed simp_all | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 386 | |
| 43920 | 387 | lemma ereal_add_mono: | 
| 53873 | 388 | fixes a b c d :: ereal | 
| 389 | assumes "a \<le> b" | |
| 390 | and "c \<le> d" | |
| 391 | shows "a + c \<le> b + d" | |
| 41973 | 392 | using assms | 
| 393 | apply (cases a) | |
| 43920 | 394 | apply (cases rule: ereal3_cases[of b c d], auto) | 
| 395 | apply (cases rule: ereal3_cases[of b c d], auto) | |
| 41973 | 396 | done | 
| 397 | ||
| 43920 | 398 | lemma ereal_minus_le_minus[simp]: | 
| 53873 | 399 | fixes a b :: ereal | 
| 400 | shows "- a \<le> - b \<longleftrightarrow> b \<le> a" | |
| 43920 | 401 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 402 | |
| 43920 | 403 | lemma ereal_minus_less_minus[simp]: | 
| 53873 | 404 | fixes a b :: ereal | 
| 405 | shows "- a < - b \<longleftrightarrow> b < a" | |
| 43920 | 406 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 407 | |
| 43920 | 408 | lemma ereal_le_real_iff: | 
| 53873 | 409 | "x \<le> real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0)" | 
| 41973 | 410 | by (cases y) auto | 
| 411 | ||
| 43920 | 412 | lemma real_le_ereal_iff: | 
| 53873 | 413 | "real y \<le> x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x)" | 
| 41973 | 414 | by (cases y) auto | 
| 415 | ||
| 43920 | 416 | lemma ereal_less_real_iff: | 
| 53873 | 417 | "x < real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0)" | 
| 41973 | 418 | by (cases y) auto | 
| 419 | ||
| 43920 | 420 | lemma real_less_ereal_iff: | 
| 53873 | 421 | "real y < x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x)" | 
| 41973 | 422 | by (cases y) auto | 
| 423 | ||
| 43920 | 424 | lemma real_of_ereal_pos: | 
| 53873 | 425 | fixes x :: ereal | 
| 426 | shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 427 | |
| 43920 | 428 | lemmas real_of_ereal_ord_simps = | 
| 429 | ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_iff | |
| 41973 | 430 | |
| 43920 | 431 | lemma abs_ereal_ge0[simp]: "0 \<le> x \<Longrightarrow> \<bar>x :: ereal\<bar> = x" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 432 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 433 | |
| 43920 | 434 | lemma abs_ereal_less0[simp]: "x < 0 \<Longrightarrow> \<bar>x :: ereal\<bar> = -x" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 435 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 436 | |
| 43920 | 437 | lemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 438 | by (cases x) auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 439 | |
| 53873 | 440 | lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> x \<le> 0 \<or> x = \<infinity>" | 
| 43923 | 441 | by (cases x) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 442 | |
| 43923 | 443 | lemma abs_real_of_ereal[simp]: "\<bar>real (x :: ereal)\<bar> = real \<bar>x\<bar>" | 
| 444 | by (cases x) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 445 | |
| 43923 | 446 | lemma zero_less_real_of_ereal: | 
| 53873 | 447 | fixes x :: ereal | 
| 448 | shows "0 < real x \<longleftrightarrow> 0 < x \<and> x \<noteq> \<infinity>" | |
| 43923 | 449 | by (cases x) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 450 | |
| 43920 | 451 | lemma ereal_0_le_uminus_iff[simp]: | 
| 53873 | 452 | fixes a :: ereal | 
| 453 | shows "0 \<le> - a \<longleftrightarrow> a \<le> 0" | |
| 43920 | 454 | by (cases rule: ereal2_cases[of a]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 455 | |
| 43920 | 456 | lemma ereal_uminus_le_0_iff[simp]: | 
| 53873 | 457 | fixes a :: ereal | 
| 458 | shows "- a \<le> 0 \<longleftrightarrow> 0 \<le> a" | |
| 43920 | 459 | by (cases rule: ereal2_cases[of a]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 460 | |
| 43920 | 461 | lemma ereal_add_strict_mono: | 
| 462 | fixes a b c d :: ereal | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 463 | assumes "a \<le> b" | 
| 53873 | 464 | and "0 \<le> a" | 
| 465 | and "a \<noteq> \<infinity>" | |
| 466 | and "c < d" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 467 | shows "a + c < b + d" | 
| 53873 | 468 | using assms | 
| 469 | by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 470 | |
| 53873 | 471 | lemma ereal_less_add: | 
| 472 | fixes a b c :: ereal | |
| 473 | shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b" | |
| 43920 | 474 | by (cases rule: ereal2_cases[of b c]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 475 | |
| 54416 | 476 | lemma ereal_add_nonneg_eq_0_iff: | 
| 477 | fixes a b :: ereal | |
| 478 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> a + b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" | |
| 479 | by (cases a b rule: ereal2_cases) auto | |
| 480 | ||
| 53873 | 481 | lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)" | 
| 482 | by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 483 | |
| 43920 | 484 | lemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)" | 
| 485 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 486 | |
| 43920 | 487 | lemma ereal_uminus_le_reorder: "- a \<le> b \<longleftrightarrow> -b \<le> (a::ereal)" | 
| 488 | by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_le_minus) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 489 | |
| 43920 | 490 | lemmas ereal_uminus_reorder = | 
| 491 | ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorder | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 492 | |
| 43920 | 493 | lemma ereal_bot: | 
| 53873 | 494 | fixes x :: ereal | 
| 495 | assumes "\<And>B. x \<le> ereal B" | |
| 496 | shows "x = - \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 497 | proof (cases x) | 
| 53873 | 498 | case (real r) | 
| 499 | with assms[of "r - 1"] show ?thesis | |
| 500 | by auto | |
| 47082 | 501 | next | 
| 53873 | 502 | case PInf | 
| 503 | with assms[of 0] show ?thesis | |
| 504 | by auto | |
| 47082 | 505 | next | 
| 53873 | 506 | case MInf | 
| 507 | then show ?thesis | |
| 508 | by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 509 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 510 | |
| 43920 | 511 | lemma ereal_top: | 
| 53873 | 512 | fixes x :: ereal | 
| 513 | assumes "\<And>B. x \<ge> ereal B" | |
| 514 | shows "x = \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 515 | proof (cases x) | 
| 53873 | 516 | case (real r) | 
| 517 | with assms[of "r + 1"] show ?thesis | |
| 518 | by auto | |
| 47082 | 519 | next | 
| 53873 | 520 | case MInf | 
| 521 | with assms[of 0] show ?thesis | |
| 522 | by auto | |
| 47082 | 523 | next | 
| 53873 | 524 | case PInf | 
| 525 | then show ?thesis | |
| 526 | by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 527 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 528 | |
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 529 | lemma | 
| 43920 | 530 | shows ereal_max[simp]: "ereal (max x y) = max (ereal x) (ereal y)" | 
| 531 | and ereal_min[simp]: "ereal (min x y) = min (ereal x) (ereal y)" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 532 | by (simp_all add: min_def max_def) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 533 | |
| 43920 | 534 | lemma ereal_max_0: "max 0 (ereal r) = ereal (max 0 r)" | 
| 535 | by (auto simp: zero_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 536 | |
| 41978 | 537 | lemma | 
| 43920 | 538 | fixes f :: "nat \<Rightarrow> ereal" | 
| 54416 | 539 | shows ereal_incseq_uminus[simp]: "incseq (\<lambda>x. - f x) \<longleftrightarrow> decseq f" | 
| 540 | and ereal_decseq_uminus[simp]: "decseq (\<lambda>x. - f x) \<longleftrightarrow> incseq f" | |
| 41978 | 541 | unfolding decseq_def incseq_def by auto | 
| 542 | ||
| 43920 | 543 | lemma incseq_ereal: "incseq f \<Longrightarrow> incseq (\<lambda>x. ereal (f x))" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 544 | unfolding incseq_def by auto | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 545 | |
| 56537 | 546 | lemma ereal_add_nonneg_nonneg[simp]: | 
| 53873 | 547 | fixes a b :: ereal | 
| 548 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b" | |
| 41978 | 549 | using add_mono[of 0 a 0 b] by simp | 
| 550 | ||
| 53873 | 551 | lemma image_eqD: "f ` A = B \<Longrightarrow> \<forall>x\<in>A. f x \<in> B" | 
| 41978 | 552 | by auto | 
| 553 | ||
| 554 | lemma incseq_setsumI: | |
| 53873 | 555 |   fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
 | 
| 41978 | 556 | assumes "\<And>i. 0 \<le> f i" | 
| 557 |   shows "incseq (\<lambda>i. setsum f {..< i})"
 | |
| 558 | proof (intro incseq_SucI) | |
| 53873 | 559 | fix n | 
| 560 |   have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
 | |
| 41978 | 561 | using assms by (rule add_left_mono) | 
| 562 |   then show "setsum f {..< n} \<le> setsum f {..< Suc n}"
 | |
| 563 | by auto | |
| 564 | qed | |
| 565 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 566 | lemma incseq_setsumI2: | 
| 53873 | 567 |   fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
 | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 568 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 569 | shows "incseq (\<lambda>i. \<Sum>n\<in>A. f n i)" | 
| 53873 | 570 | using assms | 
| 571 | unfolding incseq_def by (auto intro: setsum_mono) | |
| 572 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 573 | |
| 41973 | 574 | subsubsection "Multiplication" | 
| 575 | ||
| 53873 | 576 | instantiation ereal :: "{comm_monoid_mult,sgn}"
 | 
| 41973 | 577 | begin | 
| 578 | ||
| 51351 | 579 | function sgn_ereal :: "ereal \<Rightarrow> ereal" where | 
| 43920 | 580 | "sgn (ereal r) = ereal (sgn r)" | 
| 43923 | 581 | | "sgn (\<infinity>::ereal) = 1" | 
| 582 | | "sgn (-\<infinity>::ereal) = -1" | |
| 43920 | 583 | by (auto intro: ereal_cases) | 
| 53873 | 584 | termination by default (rule wf_empty) | 
| 41976 | 585 | |
| 43920 | 586 | function times_ereal where | 
| 53873 | 587 | "ereal r * ereal p = ereal (r * p)" | 
| 588 | | "ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | |
| 589 | | "\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" | |
| 590 | | "ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | |
| 591 | | "-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" | |
| 592 | | "(\<infinity>::ereal) * \<infinity> = \<infinity>" | |
| 593 | | "-(\<infinity>::ereal) * \<infinity> = -\<infinity>" | |
| 594 | | "(\<infinity>::ereal) * -\<infinity> = -\<infinity>" | |
| 595 | | "-(\<infinity>::ereal) * -\<infinity> = \<infinity>" | |
| 41973 | 596 | proof - | 
| 597 | case (goal1 P x) | |
| 53873 | 598 | then obtain a b where "x = (a, b)" | 
| 599 | by (cases x) auto | |
| 600 | with goal1 show P | |
| 601 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41973 | 602 | qed simp_all | 
| 603 | termination by (relation "{}") simp
 | |
| 604 | ||
| 605 | instance | |
| 606 | proof | |
| 53873 | 607 | fix a b c :: ereal | 
| 608 | show "1 * a = a" | |
| 43920 | 609 | by (cases a) (simp_all add: one_ereal_def) | 
| 47082 | 610 | show "a * b = b * a" | 
| 43920 | 611 | by (cases rule: ereal2_cases[of a b]) simp_all | 
| 47082 | 612 | show "a * b * c = a * (b * c)" | 
| 43920 | 613 | by (cases rule: ereal3_cases[of a b c]) | 
| 614 | (simp_all add: zero_ereal_def zero_less_mult_iff) | |
| 41973 | 615 | qed | 
| 53873 | 616 | |
| 41973 | 617 | end | 
| 618 | ||
| 50104 | 619 | lemma real_ereal_1[simp]: "real (1::ereal) = 1" | 
| 620 | unfolding one_ereal_def by simp | |
| 621 | ||
| 43920 | 622 | lemma real_of_ereal_le_1: | 
| 53873 | 623 | fixes a :: ereal | 
| 624 | shows "a \<le> 1 \<Longrightarrow> real a \<le> 1" | |
| 43920 | 625 | by (cases a) (auto simp: one_ereal_def) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 626 | |
| 43920 | 627 | lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)" | 
| 628 | unfolding one_ereal_def by simp | |
| 41976 | 629 | |
| 43920 | 630 | lemma ereal_mult_zero[simp]: | 
| 53873 | 631 | fixes a :: ereal | 
| 632 | shows "a * 0 = 0" | |
| 43920 | 633 | by (cases a) (simp_all add: zero_ereal_def) | 
| 41973 | 634 | |
| 43920 | 635 | lemma ereal_zero_mult[simp]: | 
| 53873 | 636 | fixes a :: ereal | 
| 637 | shows "0 * a = 0" | |
| 43920 | 638 | by (cases a) (simp_all add: zero_ereal_def) | 
| 41973 | 639 | |
| 53873 | 640 | lemma ereal_m1_less_0[simp]: "-(1::ereal) < 0" | 
| 43920 | 641 | by (simp add: zero_ereal_def one_ereal_def) | 
| 41973 | 642 | |
| 43920 | 643 | lemma ereal_times[simp]: | 
| 43923 | 644 | "1 \<noteq> (\<infinity>::ereal)" "(\<infinity>::ereal) \<noteq> 1" | 
| 645 | "1 \<noteq> -(\<infinity>::ereal)" "-(\<infinity>::ereal) \<noteq> 1" | |
| 43920 | 646 | by (auto simp add: times_ereal_def one_ereal_def) | 
| 41973 | 647 | |
| 43920 | 648 | lemma ereal_plus_1[simp]: | 
| 53873 | 649 | "1 + ereal r = ereal (r + 1)" | 
| 650 | "ereal r + 1 = ereal (r + 1)" | |
| 651 | "1 + -(\<infinity>::ereal) = -\<infinity>" | |
| 652 | "-(\<infinity>::ereal) + 1 = -\<infinity>" | |
| 43920 | 653 | unfolding one_ereal_def by auto | 
| 41973 | 654 | |
| 43920 | 655 | lemma ereal_zero_times[simp]: | 
| 53873 | 656 | fixes a b :: ereal | 
| 657 | shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | |
| 43920 | 658 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 659 | |
| 43920 | 660 | lemma ereal_mult_eq_PInfty[simp]: | 
| 53873 | 661 | "a * b = (\<infinity>::ereal) \<longleftrightarrow> | 
| 41973 | 662 | (a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)" | 
| 43920 | 663 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 664 | |
| 43920 | 665 | lemma ereal_mult_eq_MInfty[simp]: | 
| 53873 | 666 | "a * b = -(\<infinity>::ereal) \<longleftrightarrow> | 
| 41973 | 667 | (a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)" | 
| 43920 | 668 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 669 | |
| 54416 | 670 | lemma ereal_abs_mult: "\<bar>x * y :: ereal\<bar> = \<bar>x\<bar> * \<bar>y\<bar>" | 
| 671 | by (cases x y rule: ereal2_cases) (auto simp: abs_mult) | |
| 672 | ||
| 43920 | 673 | lemma ereal_0_less_1[simp]: "0 < (1::ereal)" | 
| 674 | by (simp_all add: zero_ereal_def one_ereal_def) | |
| 41973 | 675 | |
| 43920 | 676 | lemma ereal_mult_minus_left[simp]: | 
| 53873 | 677 | fixes a b :: ereal | 
| 678 | shows "-a * b = - (a * b)" | |
| 43920 | 679 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 680 | |
| 43920 | 681 | lemma ereal_mult_minus_right[simp]: | 
| 53873 | 682 | fixes a b :: ereal | 
| 683 | shows "a * -b = - (a * b)" | |
| 43920 | 684 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 685 | |
| 43920 | 686 | lemma ereal_mult_infty[simp]: | 
| 43923 | 687 | "a * (\<infinity>::ereal) = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | 
| 41973 | 688 | by (cases a) auto | 
| 689 | ||
| 43920 | 690 | lemma ereal_infty_mult[simp]: | 
| 43923 | 691 | "(\<infinity>::ereal) * a = (if a = 0 then 0 else if 0 < a then \<infinity> else - \<infinity>)" | 
| 41973 | 692 | by (cases a) auto | 
| 693 | ||
| 43920 | 694 | lemma ereal_mult_strict_right_mono: | 
| 53873 | 695 | assumes "a < b" | 
| 696 | and "0 < c" | |
| 697 | and "c < (\<infinity>::ereal)" | |
| 41973 | 698 | shows "a * c < b * c" | 
| 699 | using assms | |
| 53873 | 700 | by (cases rule: ereal3_cases[of a b c]) (auto simp: zero_le_mult_iff) | 
| 41973 | 701 | |
| 43920 | 702 | lemma ereal_mult_strict_left_mono: | 
| 53873 | 703 | "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c < (\<infinity>::ereal) \<Longrightarrow> c * a < c * b" | 
| 704 | using ereal_mult_strict_right_mono | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 705 | by (simp add: mult.commute[of c]) | 
| 41973 | 706 | |
| 43920 | 707 | lemma ereal_mult_right_mono: | 
| 53873 | 708 | fixes a b c :: ereal | 
| 709 | shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | |
| 41973 | 710 | using assms | 
| 53873 | 711 | apply (cases "c = 0") | 
| 712 | apply simp | |
| 713 | apply (cases rule: ereal3_cases[of a b c]) | |
| 714 | apply (auto simp: zero_le_mult_iff) | |
| 715 | done | |
| 41973 | 716 | |
| 43920 | 717 | lemma ereal_mult_left_mono: | 
| 53873 | 718 | fixes a b c :: ereal | 
| 719 | shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | |
| 720 | using ereal_mult_right_mono | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57447diff
changeset | 721 | by (simp add: mult.commute[of c]) | 
| 41973 | 722 | |
| 43920 | 723 | lemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)" | 
| 724 | by (simp add: one_ereal_def zero_ereal_def) | |
| 41978 | 725 | |
| 43920 | 726 | lemma ereal_0_le_mult[simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * (b :: ereal)" | 
| 56536 | 727 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 728 | |
| 43920 | 729 | lemma ereal_right_distrib: | 
| 53873 | 730 | fixes r a b :: ereal | 
| 731 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b" | |
| 43920 | 732 | by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 733 | |
| 43920 | 734 | lemma ereal_left_distrib: | 
| 53873 | 735 | fixes r a b :: ereal | 
| 736 | shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r" | |
| 43920 | 737 | by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 738 | |
| 43920 | 739 | lemma ereal_mult_le_0_iff: | 
| 740 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 741 | shows "a * b \<le> 0 \<longleftrightarrow> (0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b)" | 
| 43920 | 742 | by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_le_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 743 | |
| 43920 | 744 | lemma ereal_zero_le_0_iff: | 
| 745 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 746 | shows "0 \<le> a * b \<longleftrightarrow> (0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0)" | 
| 43920 | 747 | by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_le_mult_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 748 | |
| 43920 | 749 | lemma ereal_mult_less_0_iff: | 
| 750 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 751 | shows "a * b < 0 \<longleftrightarrow> (0 < a \<and> b < 0) \<or> (a < 0 \<and> 0 < b)" | 
| 43920 | 752 | by (cases rule: ereal2_cases[of a b]) (simp_all add: mult_less_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 753 | |
| 43920 | 754 | lemma ereal_zero_less_0_iff: | 
| 755 | fixes a b :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 756 | shows "0 < a * b \<longleftrightarrow> (0 < a \<and> 0 < b) \<or> (a < 0 \<and> b < 0)" | 
| 43920 | 757 | by (cases rule: ereal2_cases[of a b]) (simp_all add: zero_less_mult_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 758 | |
| 50104 | 759 | lemma ereal_left_mult_cong: | 
| 760 | fixes a b c :: ereal | |
| 761 | shows "(c \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> c * a = c * b" | |
| 762 | by (cases "c = 0") simp_all | |
| 763 | ||
| 764 | lemma ereal_right_mult_cong: | |
| 765 | fixes a b c :: ereal | |
| 766 | shows "(c \<noteq> 0 \<Longrightarrow> a = b) \<Longrightarrow> a * c = b * c" | |
| 767 | by (cases "c = 0") simp_all | |
| 768 | ||
| 43920 | 769 | lemma ereal_distrib: | 
| 770 | fixes a b c :: ereal | |
| 53873 | 771 | assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" | 
| 772 | and "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" | |
| 773 | and "\<bar>c\<bar> \<noteq> \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 774 | shows "(a + b) * c = a * c + b * c" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 775 | using assms | 
| 43920 | 776 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 777 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 778 | lemma numeral_eq_ereal [simp]: "numeral w = ereal (numeral w)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 779 | apply (induct w rule: num_induct) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 780 | apply (simp only: numeral_One one_ereal_def) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 781 | apply (simp only: numeral_inc ereal_plus_1) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 782 | done | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 783 | |
| 43920 | 784 | lemma ereal_le_epsilon: | 
| 785 | fixes x y :: ereal | |
| 53873 | 786 | assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + e" | 
| 787 | shows "x \<le> y" | |
| 788 | proof - | |
| 789 |   {
 | |
| 790 | assume a: "\<exists>r. y = ereal r" | |
| 791 | then obtain r where r_def: "y = ereal r" | |
| 792 | by auto | |
| 793 |     {
 | |
| 794 | assume "x = -\<infinity>" | |
| 795 | then have ?thesis by auto | |
| 796 | } | |
| 797 | moreover | |
| 798 |     {
 | |
| 799 | assume "x \<noteq> -\<infinity>" | |
| 800 | then obtain p where p_def: "x = ereal p" | |
| 801 | using a assms[rule_format, of 1] | |
| 802 | by (cases x) auto | |
| 803 |       {
 | |
| 804 | fix e | |
| 805 | have "0 < e \<longrightarrow> p \<le> r + e" | |
| 806 | using assms[rule_format, of "ereal e"] p_def r_def by auto | |
| 807 | } | |
| 808 | then have "p \<le> r" | |
| 809 | apply (subst field_le_epsilon) | |
| 810 | apply auto | |
| 811 | done | |
| 812 | then have ?thesis | |
| 813 | using r_def p_def by auto | |
| 814 | } | |
| 815 | ultimately have ?thesis | |
| 816 | by blast | |
| 817 | } | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 818 | moreover | 
| 53873 | 819 |   {
 | 
| 820 | assume "y = -\<infinity> | y = \<infinity>" | |
| 821 | then have ?thesis | |
| 822 | using assms[rule_format, of 1] by (cases x) auto | |
| 823 | } | |
| 824 | ultimately show ?thesis | |
| 825 | by (cases y) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 826 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 827 | |
| 43920 | 828 | lemma ereal_le_epsilon2: | 
| 829 | fixes x y :: ereal | |
| 53873 | 830 | assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + ereal e" | 
| 831 | shows "x \<le> y" | |
| 832 | proof - | |
| 833 |   {
 | |
| 834 | fix e :: ereal | |
| 835 | assume "e > 0" | |
| 836 |     {
 | |
| 837 | assume "e = \<infinity>" | |
| 838 | then have "x \<le> y + e" | |
| 839 | by auto | |
| 840 | } | |
| 841 | moreover | |
| 842 |     {
 | |
| 843 | assume "e \<noteq> \<infinity>" | |
| 844 | then obtain r where "e = ereal r" | |
| 845 | using `e > 0` by (cases e) auto | |
| 846 | then have "x \<le> y + e" | |
| 847 | using assms[rule_format, of r] `e>0` by auto | |
| 848 | } | |
| 849 | ultimately have "x \<le> y + e" | |
| 850 | by blast | |
| 851 | } | |
| 852 | then show ?thesis | |
| 853 | using ereal_le_epsilon by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 854 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 855 | |
| 43920 | 856 | lemma ereal_le_real: | 
| 857 | fixes x y :: ereal | |
| 53873 | 858 | assumes "\<forall>z. x \<le> ereal z \<longrightarrow> y \<le> ereal z" | 
| 859 | shows "y \<le> x" | |
| 860 | by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 861 | |
| 43920 | 862 | lemma setprod_ereal_0: | 
| 863 | fixes f :: "'a \<Rightarrow> ereal" | |
| 53873 | 864 | shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. f i = 0)" | 
| 865 | proof (cases "finite A") | |
| 866 | case True | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 867 | then show ?thesis by (induct A) auto | 
| 53873 | 868 | next | 
| 869 | case False | |
| 870 | then show ?thesis by auto | |
| 871 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 872 | |
| 43920 | 873 | lemma setprod_ereal_pos: | 
| 53873 | 874 | fixes f :: "'a \<Rightarrow> ereal" | 
| 875 | assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" | |
| 876 | shows "0 \<le> (\<Prod>i\<in>I. f i)" | |
| 877 | proof (cases "finite I") | |
| 878 | case True | |
| 879 | from this pos show ?thesis | |
| 880 | by induct auto | |
| 881 | next | |
| 882 | case False | |
| 883 | then show ?thesis by simp | |
| 884 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 885 | |
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 886 | lemma setprod_PInf: | 
| 43923 | 887 | fixes f :: "'a \<Rightarrow> ereal" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 888 | assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 889 | shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)" | 
| 53873 | 890 | proof (cases "finite I") | 
| 891 | case True | |
| 892 | from this assms show ?thesis | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 893 | proof (induct I) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 894 | case (insert i I) | 
| 53873 | 895 | then have pos: "0 \<le> f i" "0 \<le> setprod f I" | 
| 896 | by (auto intro!: setprod_ereal_pos) | |
| 897 | from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>" | |
| 898 | by auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 899 | also have "\<dots> \<longleftrightarrow> (setprod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> setprod f I \<noteq> 0" | 
| 43920 | 900 | using setprod_ereal_pos[of I f] pos | 
| 901 | by (cases rule: ereal2_cases[of "f i" "setprod f I"]) auto | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 902 | also have "\<dots> \<longleftrightarrow> finite (insert i I) \<and> (\<exists>j\<in>insert i I. f j = \<infinity>) \<and> (\<forall>j\<in>insert i I. f j \<noteq> 0)" | 
| 43920 | 903 | using insert by (auto simp: setprod_ereal_0) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 904 | finally show ?case . | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 905 | qed simp | 
| 53873 | 906 | next | 
| 907 | case False | |
| 908 | then show ?thesis by simp | |
| 909 | qed | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 910 | |
| 43920 | 911 | lemma setprod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (setprod f A)" | 
| 53873 | 912 | proof (cases "finite A") | 
| 913 | case True | |
| 914 | then show ?thesis | |
| 43920 | 915 | by induct (auto simp: one_ereal_def) | 
| 53873 | 916 | next | 
| 917 | case False | |
| 918 | then show ?thesis | |
| 919 | by (simp add: one_ereal_def) | |
| 920 | qed | |
| 921 | ||
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 922 | |
| 41978 | 923 | subsubsection {* Power *}
 | 
| 924 | ||
| 43920 | 925 | lemma ereal_power[simp]: "(ereal x) ^ n = ereal (x^n)" | 
| 926 | by (induct n) (auto simp: one_ereal_def) | |
| 41978 | 927 | |
| 43923 | 928 | lemma ereal_power_PInf[simp]: "(\<infinity>::ereal) ^ n = (if n = 0 then 1 else \<infinity>)" | 
| 43920 | 929 | by (induct n) (auto simp: one_ereal_def) | 
| 41978 | 930 | |
| 43920 | 931 | lemma ereal_power_uminus[simp]: | 
| 932 | fixes x :: ereal | |
| 41978 | 933 | shows "(- x) ^ n = (if even n then x ^ n else - (x^n))" | 
| 43920 | 934 | by (induct n) (auto simp: one_ereal_def) | 
| 41978 | 935 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 936 | lemma ereal_power_numeral[simp]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
47082diff
changeset | 937 | "(numeral num :: ereal) ^ n = ereal (numeral num ^ n)" | 
| 43920 | 938 | by (induct n) (auto simp: one_ereal_def) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 939 | |
| 43920 | 940 | lemma zero_le_power_ereal[simp]: | 
| 53873 | 941 | fixes a :: ereal | 
| 942 | assumes "0 \<le> a" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 943 | shows "0 \<le> a ^ n" | 
| 43920 | 944 | using assms by (induct n) (auto simp: ereal_zero_le_0_iff) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 945 | |
| 53873 | 946 | |
| 41973 | 947 | subsubsection {* Subtraction *}
 | 
| 948 | ||
| 43920 | 949 | lemma ereal_minus_minus_image[simp]: | 
| 950 | fixes S :: "ereal set" | |
| 41973 | 951 | shows "uminus ` uminus ` S = S" | 
| 952 | by (auto simp: image_iff) | |
| 953 | ||
| 43920 | 954 | lemma ereal_uminus_lessThan[simp]: | 
| 53873 | 955 | fixes a :: ereal | 
| 956 |   shows "uminus ` {..<a} = {-a<..}"
 | |
| 47082 | 957 | proof - | 
| 958 |   {
 | |
| 53873 | 959 | fix x | 
| 960 | assume "-a < x" | |
| 961 | then have "- x < - (- a)" | |
| 962 | by (simp del: ereal_uminus_uminus) | |
| 963 | then have "- x < a" | |
| 964 | by simp | |
| 47082 | 965 | } | 
| 53873 | 966 | then show ?thesis | 
| 54416 | 967 | by force | 
| 47082 | 968 | qed | 
| 41973 | 969 | |
| 53873 | 970 | lemma ereal_uminus_greaterThan[simp]: "uminus ` {(a::ereal)<..} = {..<-a}"
 | 
| 971 | by (metis ereal_uminus_lessThan ereal_uminus_uminus ereal_minus_minus_image) | |
| 41973 | 972 | |
| 43920 | 973 | instantiation ereal :: minus | 
| 41973 | 974 | begin | 
| 53873 | 975 | |
| 43920 | 976 | definition "x - y = x + -(y::ereal)" | 
| 41973 | 977 | instance .. | 
| 53873 | 978 | |
| 41973 | 979 | end | 
| 980 | ||
| 43920 | 981 | lemma ereal_minus[simp]: | 
| 982 | "ereal r - ereal p = ereal (r - p)" | |
| 983 | "-\<infinity> - ereal r = -\<infinity>" | |
| 984 | "ereal r - \<infinity> = -\<infinity>" | |
| 43923 | 985 | "(\<infinity>::ereal) - x = \<infinity>" | 
| 986 | "-(\<infinity>::ereal) - \<infinity> = -\<infinity>" | |
| 41973 | 987 | "x - -y = x + y" | 
| 988 | "x - 0 = x" | |
| 989 | "0 - x = -x" | |
| 43920 | 990 | by (simp_all add: minus_ereal_def) | 
| 41973 | 991 | |
| 53873 | 992 | lemma ereal_x_minus_x[simp]: "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)" | 
| 41973 | 993 | by (cases x) simp_all | 
| 994 | ||
| 43920 | 995 | lemma ereal_eq_minus_iff: | 
| 996 | fixes x y z :: ereal | |
| 41973 | 997 | shows "x = z - y \<longleftrightarrow> | 
| 41976 | 998 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y = z) \<and> | 
| 41973 | 999 | (y = -\<infinity> \<longrightarrow> x = \<infinity>) \<and> | 
| 1000 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<longrightarrow> x = \<infinity>) \<and> | |
| 1001 | (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>)" | |
| 43920 | 1002 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1003 | |
| 43920 | 1004 | lemma ereal_eq_minus: | 
| 1005 | fixes x y z :: ereal | |
| 41976 | 1006 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x = z - y \<longleftrightarrow> x + y = z" | 
| 43920 | 1007 | by (auto simp: ereal_eq_minus_iff) | 
| 41973 | 1008 | |
| 43920 | 1009 | lemma ereal_less_minus_iff: | 
| 1010 | fixes x y z :: ereal | |
| 41973 | 1011 | shows "x < z - y \<longleftrightarrow> | 
| 1012 | (y = \<infinity> \<longrightarrow> z = \<infinity> \<and> x \<noteq> \<infinity>) \<and> | |
| 1013 | (y = -\<infinity> \<longrightarrow> x \<noteq> \<infinity>) \<and> | |
| 41976 | 1014 | (\<bar>y\<bar> \<noteq> \<infinity>\<longrightarrow> x + y < z)" | 
| 43920 | 1015 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1016 | |
| 43920 | 1017 | lemma ereal_less_minus: | 
| 1018 | fixes x y z :: ereal | |
| 41976 | 1019 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x < z - y \<longleftrightarrow> x + y < z" | 
| 43920 | 1020 | by (auto simp: ereal_less_minus_iff) | 
| 41973 | 1021 | |
| 43920 | 1022 | lemma ereal_le_minus_iff: | 
| 1023 | fixes x y z :: ereal | |
| 53873 | 1024 | shows "x \<le> z - y \<longleftrightarrow> (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)" | 
| 43920 | 1025 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1026 | |
| 43920 | 1027 | lemma ereal_le_minus: | 
| 1028 | fixes x y z :: ereal | |
| 41976 | 1029 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x \<le> z - y \<longleftrightarrow> x + y \<le> z" | 
| 43920 | 1030 | by (auto simp: ereal_le_minus_iff) | 
| 41973 | 1031 | |
| 43920 | 1032 | lemma ereal_minus_less_iff: | 
| 1033 | fixes x y z :: ereal | |
| 53873 | 1034 | shows "x - y < z \<longleftrightarrow> y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and> (y \<noteq> \<infinity> \<longrightarrow> x < z + y)" | 
| 43920 | 1035 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1036 | |
| 43920 | 1037 | lemma ereal_minus_less: | 
| 1038 | fixes x y z :: ereal | |
| 41976 | 1039 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y < z \<longleftrightarrow> x < z + y" | 
| 43920 | 1040 | by (auto simp: ereal_minus_less_iff) | 
| 41973 | 1041 | |
| 43920 | 1042 | lemma ereal_minus_le_iff: | 
| 1043 | fixes x y z :: ereal | |
| 41973 | 1044 | shows "x - y \<le> z \<longleftrightarrow> | 
| 1045 | (y = -\<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 1046 | (y = \<infinity> \<longrightarrow> x = \<infinity> \<longrightarrow> z = \<infinity>) \<and> | |
| 41976 | 1047 | (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x \<le> z + y)" | 
| 43920 | 1048 | by (cases rule: ereal3_cases[of x y z]) auto | 
| 41973 | 1049 | |
| 43920 | 1050 | lemma ereal_minus_le: | 
| 1051 | fixes x y z :: ereal | |
| 41976 | 1052 | shows "\<bar>y\<bar> \<noteq> \<infinity> \<Longrightarrow> x - y \<le> z \<longleftrightarrow> x \<le> z + y" | 
| 43920 | 1053 | by (auto simp: ereal_minus_le_iff) | 
| 41973 | 1054 | |
| 43920 | 1055 | lemma ereal_minus_eq_minus_iff: | 
| 1056 | fixes a b c :: ereal | |
| 41973 | 1057 | shows "a - b = a - c \<longleftrightarrow> | 
| 1058 | b = c \<or> a = \<infinity> \<or> (a = -\<infinity> \<and> b \<noteq> -\<infinity> \<and> c \<noteq> -\<infinity>)" | |
| 43920 | 1059 | by (cases rule: ereal3_cases[of a b c]) auto | 
| 41973 | 1060 | |
| 43920 | 1061 | lemma ereal_add_le_add_iff: | 
| 43923 | 1062 | fixes a b c :: ereal | 
| 1063 | shows "c + a \<le> c + b \<longleftrightarrow> | |
| 41973 | 1064 | a \<le> b \<or> c = \<infinity> \<or> (c = -\<infinity> \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>)" | 
| 43920 | 1065 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps) | 
| 41973 | 1066 | |
| 43920 | 1067 | lemma ereal_mult_le_mult_iff: | 
| 43923 | 1068 | fixes a b c :: ereal | 
| 1069 | shows "\<bar>c\<bar> \<noteq> \<infinity> \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | |
| 43920 | 1070 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: mult_le_cancel_left) | 
| 41973 | 1071 | |
| 43920 | 1072 | lemma ereal_minus_mono: | 
| 1073 | fixes A B C D :: ereal assumes "A \<le> B" "D \<le> C" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1074 | shows "A - C \<le> B - D" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1075 | using assms | 
| 43920 | 1076 | by (cases rule: ereal3_cases[case_product ereal_cases, of A B C D]) simp_all | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1077 | |
| 43920 | 1078 | lemma real_of_ereal_minus: | 
| 43923 | 1079 | fixes a b :: ereal | 
| 1080 | shows "real (a - b) = (if \<bar>a\<bar> = \<infinity> \<or> \<bar>b\<bar> = \<infinity> then 0 else real a - real b)" | |
| 43920 | 1081 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1082 | |
| 43920 | 1083 | lemma ereal_diff_positive: | 
| 1084 | fixes a b :: ereal shows "a \<le> b \<Longrightarrow> 0 \<le> b - a" | |
| 1085 | by (cases rule: ereal2_cases[of a b]) auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1086 | |
| 43920 | 1087 | lemma ereal_between: | 
| 1088 | fixes x e :: ereal | |
| 53873 | 1089 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | 
| 1090 | and "0 < e" | |
| 1091 | shows "x - e < x" | |
| 1092 | and "x < x + e" | |
| 1093 | using assms | |
| 1094 | apply (cases x, cases e) | |
| 1095 | apply auto | |
| 1096 | using assms | |
| 1097 | apply (cases x, cases e) | |
| 1098 | apply auto | |
| 1099 | done | |
| 41973 | 1100 | |
| 50104 | 1101 | lemma ereal_minus_eq_PInfty_iff: | 
| 53873 | 1102 | fixes x y :: ereal | 
| 1103 | shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>" | |
| 50104 | 1104 | by (cases x y rule: ereal2_cases) simp_all | 
| 1105 | ||
| 53873 | 1106 | |
| 41973 | 1107 | subsubsection {* Division *}
 | 
| 1108 | ||
| 43920 | 1109 | instantiation ereal :: inverse | 
| 41973 | 1110 | begin | 
| 1111 | ||
| 43920 | 1112 | function inverse_ereal where | 
| 53873 | 1113 | "inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))" | 
| 1114 | | "inverse (\<infinity>::ereal) = 0" | |
| 1115 | | "inverse (-\<infinity>::ereal) = 0" | |
| 43920 | 1116 | by (auto intro: ereal_cases) | 
| 41973 | 1117 | termination by (relation "{}") simp
 | 
| 1118 | ||
| 43920 | 1119 | definition "x / y = x * inverse (y :: ereal)" | 
| 41973 | 1120 | |
| 47082 | 1121 | instance .. | 
| 53873 | 1122 | |
| 41973 | 1123 | end | 
| 1124 | ||
| 43920 | 1125 | lemma real_of_ereal_inverse[simp]: | 
| 1126 | fixes a :: ereal | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1127 | shows "real (inverse a) = 1 / real a" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1128 | by (cases a) (auto simp: inverse_eq_divide) | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1129 | |
| 43920 | 1130 | lemma ereal_inverse[simp]: | 
| 43923 | 1131 | "inverse (0::ereal) = \<infinity>" | 
| 43920 | 1132 | "inverse (1::ereal) = 1" | 
| 1133 | by (simp_all add: one_ereal_def zero_ereal_def) | |
| 41973 | 1134 | |
| 43920 | 1135 | lemma ereal_divide[simp]: | 
| 1136 | "ereal r / ereal p = (if p = 0 then ereal r * \<infinity> else ereal (r / p))" | |
| 1137 | unfolding divide_ereal_def by (auto simp: divide_real_def) | |
| 41973 | 1138 | |
| 43920 | 1139 | lemma ereal_divide_same[simp]: | 
| 53873 | 1140 | fixes x :: ereal | 
| 1141 | shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)" | |
| 1142 | by (cases x) (simp_all add: divide_real_def divide_ereal_def one_ereal_def) | |
| 41973 | 1143 | |
| 43920 | 1144 | lemma ereal_inv_inv[simp]: | 
| 53873 | 1145 | fixes x :: ereal | 
| 1146 | shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)" | |
| 41973 | 1147 | by (cases x) auto | 
| 1148 | ||
| 43920 | 1149 | lemma ereal_inverse_minus[simp]: | 
| 53873 | 1150 | fixes x :: ereal | 
| 1151 | shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)" | |
| 41973 | 1152 | by (cases x) simp_all | 
| 1153 | ||
| 43920 | 1154 | lemma ereal_uminus_divide[simp]: | 
| 53873 | 1155 | fixes x y :: ereal | 
| 1156 | shows "- x / y = - (x / y)" | |
| 43920 | 1157 | unfolding divide_ereal_def by simp | 
| 41973 | 1158 | |
| 43920 | 1159 | lemma ereal_divide_Infty[simp]: | 
| 53873 | 1160 | fixes x :: ereal | 
| 1161 | shows "x / \<infinity> = 0" "x / -\<infinity> = 0" | |
| 43920 | 1162 | unfolding divide_ereal_def by simp_all | 
| 41973 | 1163 | |
| 53873 | 1164 | lemma ereal_divide_one[simp]: "x / 1 = (x::ereal)" | 
| 43920 | 1165 | unfolding divide_ereal_def by simp | 
| 41973 | 1166 | |
| 53873 | 1167 | lemma ereal_divide_ereal[simp]: "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)" | 
| 43920 | 1168 | unfolding divide_ereal_def by simp | 
| 41973 | 1169 | |
| 43920 | 1170 | lemma zero_le_divide_ereal[simp]: | 
| 53873 | 1171 | fixes a :: ereal | 
| 1172 | assumes "0 \<le> a" | |
| 1173 | and "0 \<le> b" | |
| 41978 | 1174 | shows "0 \<le> a / b" | 
| 43920 | 1175 | using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff) | 
| 41978 | 1176 | |
| 43920 | 1177 | lemma ereal_le_divide_pos: | 
| 53873 | 1178 | fixes x y z :: ereal | 
| 1179 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z" | |
| 43920 | 1180 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1181 | |
| 43920 | 1182 | lemma ereal_divide_le_pos: | 
| 53873 | 1183 | fixes x y z :: ereal | 
| 1184 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y" | |
| 43920 | 1185 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1186 | |
| 43920 | 1187 | lemma ereal_le_divide_neg: | 
| 53873 | 1188 | fixes x y z :: ereal | 
| 1189 | shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y" | |
| 43920 | 1190 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1191 | |
| 43920 | 1192 | lemma ereal_divide_le_neg: | 
| 53873 | 1193 | fixes x y z :: ereal | 
| 1194 | shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z" | |
| 43920 | 1195 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 1196 | |
| 43920 | 1197 | lemma ereal_inverse_antimono_strict: | 
| 1198 | fixes x y :: ereal | |
| 41973 | 1199 | shows "0 \<le> x \<Longrightarrow> x < y \<Longrightarrow> inverse y < inverse x" | 
| 43920 | 1200 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 1201 | |
| 43920 | 1202 | lemma ereal_inverse_antimono: | 
| 1203 | fixes x y :: ereal | |
| 53873 | 1204 | shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> inverse y \<le> inverse x" | 
| 43920 | 1205 | by (cases rule: ereal2_cases[of x y]) auto | 
| 41973 | 1206 | |
| 1207 | lemma inverse_inverse_Pinfty_iff[simp]: | |
| 53873 | 1208 | fixes x :: ereal | 
| 1209 | shows "inverse x = \<infinity> \<longleftrightarrow> x = 0" | |
| 41973 | 1210 | by (cases x) auto | 
| 1211 | ||
| 43920 | 1212 | lemma ereal_inverse_eq_0: | 
| 53873 | 1213 | fixes x :: ereal | 
| 1214 | shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>" | |
| 41973 | 1215 | by (cases x) auto | 
| 1216 | ||
| 43920 | 1217 | lemma ereal_0_gt_inverse: | 
| 53873 | 1218 | fixes x :: ereal | 
| 1219 | shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1220 | by (cases x) auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1221 | |
| 43920 | 1222 | lemma ereal_mult_less_right: | 
| 43923 | 1223 | fixes a b c :: ereal | 
| 53873 | 1224 | assumes "b * a < c * a" | 
| 1225 | and "0 < a" | |
| 1226 | and "a < \<infinity>" | |
| 41973 | 1227 | shows "b < c" | 
| 1228 | using assms | |
| 43920 | 1229 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 1230 | (auto split: split_if_asm simp: zero_less_mult_iff zero_le_mult_iff) | 
| 1231 | ||
| 43920 | 1232 | lemma ereal_power_divide: | 
| 53873 | 1233 | fixes x y :: ereal | 
| 1234 | shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n" | |
| 43920 | 1235 | by (cases rule: ereal2_cases[of x y]) | 
| 1236 | (auto simp: one_ereal_def zero_ereal_def power_divide not_le | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1237 | power_less_zero_eq zero_le_power_iff) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1238 | |
| 43920 | 1239 | lemma ereal_le_mult_one_interval: | 
| 1240 | fixes x y :: ereal | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1241 | assumes y: "y \<noteq> -\<infinity>" | 
| 53873 | 1242 | assumes z: "\<And>z. 0 < z \<Longrightarrow> z < 1 \<Longrightarrow> z * x \<le> y" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1243 | shows "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1244 | proof (cases x) | 
| 53873 | 1245 | case PInf | 
| 1246 | with z[of "1 / 2"] show "x \<le> y" | |
| 1247 | by (simp add: one_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1248 | next | 
| 53873 | 1249 | case (real r) | 
| 1250 | note r = this | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1251 | show "x \<le> y" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1252 | proof (cases y) | 
| 53873 | 1253 | case (real p) | 
| 1254 | note p = this | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1255 | have "r \<le> p" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1256 | proof (rule field_le_mult_one_interval) | 
| 53873 | 1257 | fix z :: real | 
| 1258 | assume "0 < z" and "z < 1" | |
| 1259 | with z[of "ereal z"] show "z * r \<le> p" | |
| 1260 | using p r by (auto simp: zero_le_mult_iff one_ereal_def) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1261 | qed | 
| 53873 | 1262 | then show "x \<le> y" | 
| 1263 | using p r by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1264 | qed (insert y, simp_all) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1265 | qed simp | 
| 41978 | 1266 | |
| 45934 | 1267 | lemma ereal_divide_right_mono[simp]: | 
| 1268 | fixes x y z :: ereal | |
| 53873 | 1269 | assumes "x \<le> y" | 
| 1270 | and "0 < z" | |
| 1271 | shows "x / z \<le> y / z" | |
| 1272 | using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono) | |
| 45934 | 1273 | |
| 1274 | lemma ereal_divide_left_mono[simp]: | |
| 1275 | fixes x y z :: ereal | |
| 53873 | 1276 | assumes "y \<le> x" | 
| 1277 | and "0 < z" | |
| 1278 | and "0 < x * y" | |
| 45934 | 1279 | shows "z / x \<le> z / y" | 
| 53873 | 1280 | using assms | 
| 1281 | by (cases x y z rule: ereal3_cases) | |
| 54416 | 1282 | (auto intro: divide_left_mono simp: field_simps zero_less_mult_iff mult_less_0_iff split: split_if_asm) | 
| 45934 | 1283 | |
| 1284 | lemma ereal_divide_zero_left[simp]: | |
| 1285 | fixes a :: ereal | |
| 1286 | shows "0 / a = 0" | |
| 1287 | by (cases a) (auto simp: zero_ereal_def) | |
| 1288 | ||
| 1289 | lemma ereal_times_divide_eq_left[simp]: | |
| 1290 | fixes a b c :: ereal | |
| 1291 | shows "b / c * a = b * a / c" | |
| 54416 | 1292 | by (cases a b c rule: ereal3_cases) (auto simp: field_simps zero_less_mult_iff mult_less_0_iff) | 
| 45934 | 1293 | |
| 53873 | 1294 | |
| 41973 | 1295 | subsection "Complete lattice" | 
| 1296 | ||
| 43920 | 1297 | instantiation ereal :: lattice | 
| 41973 | 1298 | begin | 
| 53873 | 1299 | |
| 43920 | 1300 | definition [simp]: "sup x y = (max x y :: ereal)" | 
| 1301 | definition [simp]: "inf x y = (min x y :: ereal)" | |
| 47082 | 1302 | instance by default simp_all | 
| 53873 | 1303 | |
| 41973 | 1304 | end | 
| 1305 | ||
| 43920 | 1306 | instantiation ereal :: complete_lattice | 
| 41973 | 1307 | begin | 
| 1308 | ||
| 43923 | 1309 | definition "bot = (-\<infinity>::ereal)" | 
| 1310 | definition "top = (\<infinity>::ereal)" | |
| 41973 | 1311 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1312 | definition "Sup S = (SOME x :: ereal. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z))" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1313 | definition "Inf S = (SOME x :: ereal. (\<forall>y\<in>S. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x))" | 
| 41973 | 1314 | |
| 43920 | 1315 | lemma ereal_complete_Sup: | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1316 | fixes S :: "ereal set" | 
| 41973 | 1317 | shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)" | 
| 53873 | 1318 | proof (cases "\<exists>x. \<forall>a\<in>S. a \<le> ereal x") | 
| 1319 | case True | |
| 1320 | then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y" | |
| 1321 | by auto | |
| 1322 | then have "\<infinity> \<notin> S" | |
| 1323 | by force | |
| 41973 | 1324 | show ?thesis | 
| 53873 | 1325 |   proof (cases "S \<noteq> {-\<infinity>} \<and> S \<noteq> {}")
 | 
| 1326 | case True | |
| 1327 | with `\<infinity> \<notin> S` obtain x where x: "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 1328 | by auto | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1329 | obtain s where s: "\<forall>x\<in>ereal -` S. x \<le> s" "\<And>z. (\<forall>x\<in>ereal -` S. x \<le> z) \<Longrightarrow> s \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1330 | proof (atomize_elim, rule complete_real) | 
| 53873 | 1331 | show "\<exists>x. x \<in> ereal -` S" | 
| 1332 | using x by auto | |
| 1333 | show "\<exists>z. \<forall>x\<in>ereal -` S. x \<le> z" | |
| 1334 | by (auto dest: y intro!: exI[of _ y]) | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1335 | qed | 
| 41973 | 1336 | show ?thesis | 
| 43920 | 1337 | proof (safe intro!: exI[of _ "ereal s"]) | 
| 53873 | 1338 | fix y | 
| 1339 | assume "y \<in> S" | |
| 1340 | with s `\<infinity> \<notin> S` show "y \<le> ereal s" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1341 | by (cases y) auto | 
| 41973 | 1342 | next | 
| 53873 | 1343 | fix z | 
| 1344 | assume "\<forall>y\<in>S. y \<le> z" | |
| 1345 |       with `S \<noteq> {-\<infinity>} \<and> S \<noteq> {}` show "ereal s \<le> z"
 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1346 | by (cases z) (auto intro!: s) | 
| 41973 | 1347 | qed | 
| 53873 | 1348 | next | 
| 1349 | case False | |
| 1350 | then show ?thesis | |
| 1351 | by (auto intro!: exI[of _ "-\<infinity>"]) | |
| 1352 | qed | |
| 1353 | next | |
| 1354 | case False | |
| 1355 | then show ?thesis | |
| 1356 | by (fastforce intro!: exI[of _ \<infinity>] ereal_top intro: order_trans dest: less_imp_le simp: not_le) | |
| 1357 | qed | |
| 41973 | 1358 | |
| 43920 | 1359 | lemma ereal_complete_uminus_eq: | 
| 1360 | fixes S :: "ereal set" | |
| 41973 | 1361 | shows "(\<forall>y\<in>uminus`S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>uminus`S. y \<le> z) \<longrightarrow> x \<le> z) | 
| 1362 | \<longleftrightarrow> (\<forall>y\<in>S. -x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> -x)" | |
| 43920 | 1363 | by simp (metis ereal_minus_le_minus ereal_uminus_uminus) | 
| 41973 | 1364 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1365 | lemma ereal_complete_Inf: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1366 | "\<exists>x. (\<forall>y\<in>S::ereal set. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x)" | 
| 53873 | 1367 | using ereal_complete_Sup[of "uminus ` S"] | 
| 1368 | unfolding ereal_complete_uminus_eq | |
| 1369 | by auto | |
| 41973 | 1370 | |
| 1371 | instance | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1372 | proof | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1373 |   show "Sup {} = (bot::ereal)"
 | 
| 53873 | 1374 | apply (auto simp: bot_ereal_def Sup_ereal_def) | 
| 1375 | apply (rule some1_equality) | |
| 1376 | apply (metis ereal_bot ereal_less_eq(2)) | |
| 1377 | apply (metis ereal_less_eq(2)) | |
| 1378 | done | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1379 |   show "Inf {} = (top::ereal)"
 | 
| 53873 | 1380 | apply (auto simp: top_ereal_def Inf_ereal_def) | 
| 1381 | apply (rule some1_equality) | |
| 1382 | apply (metis ereal_top ereal_less_eq(1)) | |
| 1383 | apply (metis ereal_less_eq(1)) | |
| 1384 | done | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1385 | qed (auto intro: someI2_ex ereal_complete_Sup ereal_complete_Inf | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
51775diff
changeset | 1386 | simp: Sup_ereal_def Inf_ereal_def bot_ereal_def top_ereal_def) | 
| 43941 | 1387 | |
| 41973 | 1388 | end | 
| 1389 | ||
| 43941 | 1390 | instance ereal :: complete_linorder .. | 
| 1391 | ||
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1392 | instance ereal :: linear_continuum | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1393 | proof | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1394 | show "\<exists>a b::ereal. a \<noteq> b" | 
| 54416 | 1395 | using zero_neq_one by blast | 
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1396 | qed | 
| 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1397 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1398 | lemma ereal_Sup_uminus_image_eq: "Sup (uminus ` S::ereal set) = - Inf S" | 
| 56166 | 1399 | by (auto intro!: SUP_eqI | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1400 | simp: Ball_def[symmetric] ereal_uminus_le_reorder le_Inf_iff | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1401 | intro!: complete_lattice_class.Inf_lower2) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1402 | |
| 56166 | 1403 | lemma ereal_SUP_uminus_eq: | 
| 1404 | fixes f :: "'a \<Rightarrow> ereal" | |
| 1405 | shows "(SUP x:S. uminus (f x)) = - (INF x:S. f x)" | |
| 1406 | using ereal_Sup_uminus_image_eq [of "f ` S"] by (simp add: comp_def) | |
| 1407 | ||
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1408 | lemma ereal_inj_on_uminus[intro, simp]: "inj_on uminus (A :: ereal set)" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1409 | by (auto intro!: inj_onI) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1410 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1411 | lemma ereal_Inf_uminus_image_eq: "Inf (uminus ` S::ereal set) = - Sup S" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1412 | using ereal_Sup_uminus_image_eq[of "uminus ` S"] by simp | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1413 | |
| 56166 | 1414 | lemma ereal_INF_uminus_eq: | 
| 1415 | fixes f :: "'a \<Rightarrow> ereal" | |
| 1416 | shows "(INF x:S. uminus (f x)) = - (SUP x:S. f x)" | |
| 1417 | using ereal_Inf_uminus_image_eq [of "f ` S"] by (simp add: comp_def) | |
| 1418 | ||
| 54416 | 1419 | lemma ereal_SUP_not_infty: | 
| 1420 | fixes f :: "_ \<Rightarrow> ereal" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1421 |   shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>SUPREMUM A f\<bar> \<noteq> \<infinity>"
 | 
| 54416 | 1422 | using SUP_upper2[of _ A l f] SUP_least[of A f u] | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1423 | by (cases "SUPREMUM A f") auto | 
| 54416 | 1424 | |
| 1425 | lemma ereal_INF_not_infty: | |
| 1426 | fixes f :: "_ \<Rightarrow> ereal" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1427 |   shows "A \<noteq> {} \<Longrightarrow> l \<noteq> -\<infinity> \<Longrightarrow> u \<noteq> \<infinity> \<Longrightarrow> \<forall>a\<in>A. l \<le> f a \<and> f a \<le> u \<Longrightarrow> \<bar>INFIMUM A f\<bar> \<noteq> \<infinity>"
 | 
| 54416 | 1428 | using INF_lower2[of _ A f u] INF_greatest[of A l f] | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1429 | by (cases "INFIMUM A f") auto | 
| 54416 | 1430 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1431 | lemma ereal_SUP_uminus: | 
| 53873 | 1432 | fixes f :: "'a \<Rightarrow> ereal" | 
| 41973 | 1433 | shows "(SUP i : R. -(f i)) = -(INF i : R. f i)" | 
| 43920 | 1434 | using ereal_Sup_uminus_image_eq[of "f`R"] | 
| 56166 | 1435 | by (simp add: image_image) | 
| 41973 | 1436 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1437 | lemma ereal_INF_uminus: | 
| 53873 | 1438 | fixes f :: "'a \<Rightarrow> ereal" | 
| 1439 | shows "(INF i : R. - f i) = - (SUP i : R. f i)" | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1440 | using ereal_SUP_uminus [of _ "\<lambda>x. - f x"] by simp | 
| 41973 | 1441 | |
| 43920 | 1442 | lemma ereal_image_uminus_shift: | 
| 53873 | 1443 | fixes X Y :: "ereal set" | 
| 1444 | shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y" | |
| 41973 | 1445 | proof | 
| 1446 | assume "uminus ` X = Y" | |
| 1447 | then have "uminus ` uminus ` X = uminus ` Y" | |
| 1448 | by (simp add: inj_image_eq_iff) | |
| 53873 | 1449 | then show "X = uminus ` Y" | 
| 1450 | by (simp add: image_image) | |
| 41973 | 1451 | qed (simp add: image_image) | 
| 1452 | ||
| 43920 | 1453 | lemma Inf_ereal_iff: | 
| 1454 | fixes z :: ereal | |
| 53873 | 1455 | shows "(\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> (\<exists>x\<in>X. x < y) \<longleftrightarrow> Inf X < y" | 
| 1456 | by (metis complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower | |
| 1457 | less_le_not_le linear order_less_le_trans) | |
| 41973 | 1458 | |
| 1459 | lemma Sup_eq_MInfty: | |
| 53873 | 1460 | fixes S :: "ereal set" | 
| 1461 |   shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1462 | unfolding bot_ereal_def[symmetric] by auto | 
| 41973 | 1463 | |
| 1464 | lemma Inf_eq_PInfty: | |
| 53873 | 1465 | fixes S :: "ereal set" | 
| 1466 |   shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
 | |
| 41973 | 1467 | using Sup_eq_MInfty[of "uminus`S"] | 
| 43920 | 1468 | unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simp | 
| 41973 | 1469 | |
| 53873 | 1470 | lemma Inf_eq_MInfty: | 
| 1471 | fixes S :: "ereal set" | |
| 1472 | shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1473 | unfolding bot_ereal_def[symmetric] by auto | 
| 41973 | 1474 | |
| 43923 | 1475 | lemma Sup_eq_PInfty: | 
| 53873 | 1476 | fixes S :: "ereal set" | 
| 1477 | shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 1478 | unfolding top_ereal_def[symmetric] by auto | 
| 41973 | 1479 | |
| 43920 | 1480 | lemma Sup_ereal_close: | 
| 1481 | fixes e :: ereal | |
| 53873 | 1482 | assumes "0 < e" | 
| 1483 |     and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
 | |
| 41973 | 1484 | shows "\<exists>x\<in>S. Sup S - e < x" | 
| 41976 | 1485 | using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1]) | 
| 41973 | 1486 | |
| 43920 | 1487 | lemma Inf_ereal_close: | 
| 53873 | 1488 | fixes e :: ereal | 
| 1489 | assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" | |
| 1490 | and "0 < e" | |
| 41973 | 1491 | shows "\<exists>x\<in>X. x < Inf X + e" | 
| 1492 | proof (rule Inf_less_iff[THEN iffD1]) | |
| 53873 | 1493 | show "Inf X < Inf X + e" | 
| 1494 | using assms by (cases e) auto | |
| 41973 | 1495 | qed | 
| 1496 | ||
| 43920 | 1497 | lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \<infinity>" | 
| 41973 | 1498 | proof - | 
| 53873 | 1499 |   {
 | 
| 1500 | fix x :: ereal | |
| 1501 | assume "x \<noteq> \<infinity>" | |
| 43920 | 1502 | then have "\<exists>k::nat. x < ereal (real k)" | 
| 41973 | 1503 | proof (cases x) | 
| 53873 | 1504 | case MInf | 
| 1505 | then show ?thesis | |
| 1506 | by (intro exI[of _ 0]) auto | |
| 41973 | 1507 | next | 
| 1508 | case (real r) | |
| 1509 | moreover obtain k :: nat where "r < real k" | |
| 1510 | using ex_less_of_nat by (auto simp: real_eq_of_nat) | |
| 53873 | 1511 | ultimately show ?thesis | 
| 1512 | by auto | |
| 1513 | qed simp | |
| 1514 | } | |
| 41973 | 1515 | then show ?thesis | 
| 43920 | 1516 | using SUP_eq_top_iff[of UNIV "\<lambda>n::nat. ereal (real n)"] | 
| 1517 | by (auto simp: top_ereal_def) | |
| 41973 | 1518 | qed | 
| 1519 | ||
| 1520 | lemma Inf_less: | |
| 43920 | 1521 | fixes x :: ereal | 
| 41973 | 1522 | assumes "(INF i:A. f i) < x" | 
| 53873 | 1523 | shows "\<exists>i. i \<in> A \<and> f i \<le> x" | 
| 1524 | proof (rule ccontr) | |
| 1525 | assume "\<not> ?thesis" | |
| 1526 | then have "\<forall>i\<in>A. f i > x" | |
| 1527 | by auto | |
| 1528 | then have "(INF i:A. f i) \<ge> x" | |
| 1529 | by (subst INF_greatest) auto | |
| 1530 | then show False | |
| 1531 | using assms by auto | |
| 41973 | 1532 | qed | 
| 1533 | ||
| 43920 | 1534 | lemma SUP_ereal_le_addI: | 
| 43923 | 1535 | fixes f :: "'i \<Rightarrow> ereal" | 
| 53873 | 1536 | assumes "\<And>i. f i + y \<le> z" | 
| 1537 | and "y \<noteq> -\<infinity>" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1538 | shows "SUPREMUM UNIV f + y \<le> z" | 
| 41978 | 1539 | proof (cases y) | 
| 1540 | case (real r) | |
| 53873 | 1541 | then have "\<And>i. f i \<le> z - y" | 
| 1542 | using assms by (simp add: ereal_le_minus_iff) | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1543 | then have "SUPREMUM UNIV f \<le> z - y" | 
| 53873 | 1544 | by (rule SUP_least) | 
| 1545 | then show ?thesis | |
| 1546 | using real by (simp add: ereal_le_minus_iff) | |
| 41978 | 1547 | qed (insert assms, auto) | 
| 1548 | ||
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1549 | lemma SUP_ereal_add: | 
| 43920 | 1550 | fixes f g :: "nat \<Rightarrow> ereal" | 
| 53873 | 1551 | assumes "incseq f" | 
| 1552 | and "incseq g" | |
| 1553 | and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1554 | shows "(SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g" | 
| 51000 | 1555 | proof (rule SUP_eqI) | 
| 53873 | 1556 | fix y | 
| 1557 | assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1558 | have f: "SUPREMUM UNIV f \<noteq> -\<infinity>" | 
| 53873 | 1559 | using pos | 
| 1560 | unfolding SUP_def Sup_eq_MInfty | |
| 1561 | by (auto dest: image_eqD) | |
| 1562 |   {
 | |
| 1563 | fix j | |
| 1564 |     {
 | |
| 1565 | fix i | |
| 41978 | 1566 | have "f i + g j \<le> f i + g (max i j)" | 
| 53873 | 1567 | using `incseq g`[THEN incseqD] | 
| 1568 | by (rule add_left_mono) auto | |
| 41978 | 1569 | also have "\<dots> \<le> f (max i j) + g (max i j)" | 
| 53873 | 1570 | using `incseq f`[THEN incseqD] | 
| 1571 | by (rule add_right_mono) auto | |
| 41978 | 1572 | also have "\<dots> \<le> y" using * by auto | 
| 53873 | 1573 | finally have "f i + g j \<le> y" . | 
| 1574 | } | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1575 | then have "SUPREMUM UNIV f + g j \<le> y" | 
| 43920 | 1576 | using assms(4)[of j] by (intro SUP_ereal_le_addI) auto | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1577 | then have "g j + SUPREMUM UNIV f \<le> y" by (simp add: ac_simps) | 
| 53873 | 1578 | } | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1579 | then have "SUPREMUM UNIV g + SUPREMUM UNIV f \<le> y" | 
| 43920 | 1580 | using f by (rule SUP_ereal_le_addI) | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1581 | then show "SUPREMUM UNIV f + SUPREMUM UNIV g \<le> y" | 
| 53873 | 1582 | by (simp add: ac_simps) | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1583 | qed (auto intro!: add_mono SUP_upper) | 
| 41978 | 1584 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1585 | lemma SUP_ereal_add_pos: | 
| 43920 | 1586 | fixes f g :: "nat \<Rightarrow> ereal" | 
| 53873 | 1587 | assumes inc: "incseq f" "incseq g" | 
| 1588 | and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1589 | shows "(SUP i. f i + g i) = SUPREMUM UNIV f + SUPREMUM UNIV g" | 
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1590 | proof (intro SUP_ereal_add inc) | 
| 53873 | 1591 | fix i | 
| 1592 | show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" | |
| 1593 | using pos[of i] by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1594 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1595 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1596 | lemma SUP_ereal_setsum: | 
| 43920 | 1597 | fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal" | 
| 53873 | 1598 | assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" | 
| 1599 | and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1600 | shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPREMUM UNIV (f n))" | 
| 53873 | 1601 | proof (cases "finite A") | 
| 1602 | case True | |
| 1603 | then show ?thesis using assms | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1604 | by induct (auto simp: incseq_setsumI2 setsum_nonneg SUP_ereal_add_pos) | 
| 53873 | 1605 | next | 
| 1606 | case False | |
| 1607 | then show ?thesis by simp | |
| 1608 | qed | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1609 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1610 | lemma SUP_ereal_cmult: | 
| 53873 | 1611 | fixes f :: "nat \<Rightarrow> ereal" | 
| 1612 | assumes "\<And>i. 0 \<le> f i" | |
| 1613 | and "0 \<le> c" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1614 | shows "(SUP i. c * f i) = c * SUPREMUM UNIV f" | 
| 51000 | 1615 | proof (rule SUP_eqI) | 
| 53873 | 1616 | fix i | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1617 | have "f i \<le> SUPREMUM UNIV f" | 
| 53873 | 1618 | by (rule SUP_upper) auto | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1619 | then show "c * f i \<le> c * SUPREMUM UNIV f" | 
| 43920 | 1620 | using `0 \<le> c` by (rule ereal_mult_left_mono) | 
| 41978 | 1621 | next | 
| 53873 | 1622 | fix y | 
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 1623 | assume "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y" | 
| 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 1624 | then have *: "\<And>i. c * f i \<le> y" by simp | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1625 | show "c * SUPREMUM UNIV f \<le> y" | 
| 53873 | 1626 | proof (cases "0 < c \<and> c \<noteq> \<infinity>") | 
| 1627 | case True | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1628 | with * have "SUPREMUM UNIV f \<le> y / c" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1629 | by (intro SUP_least) (auto simp: ereal_le_divide_pos) | 
| 53873 | 1630 | with True show ?thesis | 
| 43920 | 1631 | by (auto simp: ereal_le_divide_pos) | 
| 41978 | 1632 | next | 
| 53873 | 1633 | case False | 
| 1634 |     {
 | |
| 1635 | assume "c = \<infinity>" | |
| 1636 | have ?thesis | |
| 1637 | proof (cases "\<forall>i. f i = 0") | |
| 1638 | case True | |
| 1639 |         then have "range f = {0}"
 | |
| 1640 | by auto | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1641 | with True show "c * SUPREMUM UNIV f \<le> y" | 
| 56248 
67dc9549fa15
generalized and strengthened cong rules on compound operators, similar to 1ed737a98198
 haftmann parents: 
56218diff
changeset | 1642 | using * by auto | 
| 41978 | 1643 | next | 
| 53873 | 1644 | case False | 
| 1645 | then obtain i where "f i \<noteq> 0" | |
| 1646 | by auto | |
| 1647 | with *[of i] `c = \<infinity>` `0 \<le> f i` show ?thesis | |
| 1648 | by (auto split: split_if_asm) | |
| 1649 | qed | |
| 1650 | } | |
| 1651 | moreover note False | |
| 1652 | ultimately show ?thesis | |
| 1653 | using * `0 \<le> c` by auto | |
| 41978 | 1654 | qed | 
| 1655 | qed | |
| 1656 | ||
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1657 | lemma SUP_PInfty: | 
| 43920 | 1658 | fixes f :: "'a \<Rightarrow> ereal" | 
| 1659 | assumes "\<And>n::nat. \<exists>i\<in>A. ereal (real n) \<le> f i" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1660 | shows "(SUP i:A. f i) = \<infinity>" | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1661 | unfolding SUP_def Sup_eq_top_iff[where 'a=ereal, unfolded top_ereal_def] | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1662 | apply simp | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1663 | proof safe | 
| 53873 | 1664 | fix x :: ereal | 
| 1665 | assume "x \<noteq> \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1666 | show "\<exists>i\<in>A. x < f i" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1667 | proof (cases x) | 
| 53873 | 1668 | case PInf | 
| 1669 | with `x \<noteq> \<infinity>` show ?thesis | |
| 1670 | by simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1671 | next | 
| 53873 | 1672 | case MInf | 
| 1673 | with assms[of "0"] show ?thesis | |
| 1674 | by force | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1675 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1676 | case (real r) | 
| 53873 | 1677 | with less_PInf_Ex_of_nat[of x] obtain n :: nat where "x < ereal (real n)" | 
| 1678 | by auto | |
| 53381 | 1679 | moreover obtain i where "i \<in> A" "ereal (real n) \<le> f i" | 
| 1680 | using assms .. | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1681 | ultimately show ?thesis | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1682 | by (auto intro!: bexI[of _ i]) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1683 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1684 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1685 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1686 | lemma Sup_countable_SUP: | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1687 |   assumes "A \<noteq> {}"
 | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1688 | shows "\<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> A \<and> Sup A = SUPREMUM UNIV f" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1689 | proof (cases "Sup A") | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1690 | case (real r) | 
| 43920 | 1691 | have "\<forall>n::nat. \<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1692 | proof | 
| 53873 | 1693 | fix n :: nat | 
| 1694 | have "\<exists>x\<in>A. Sup A - 1 / ereal (real n) < x" | |
| 43920 | 1695 | using assms real by (intro Sup_ereal_close) (auto simp: one_ereal_def) | 
| 53381 | 1696 | then obtain x where "x \<in> A" "Sup A - 1 / ereal (real n) < x" .. | 
| 43920 | 1697 | then show "\<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)" | 
| 1698 | by (auto intro!: exI[of _ x] simp: ereal_minus_less_iff) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1699 | qed | 
| 53381 | 1700 | from choice[OF this] obtain f :: "nat \<Rightarrow> ereal" | 
| 1701 | where f: "\<forall>x. f x \<in> A \<and> Sup A < f x + 1 / ereal (real x)" .. | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1702 | have "SUPREMUM UNIV f = Sup A" | 
| 51000 | 1703 | proof (rule SUP_eqI) | 
| 53873 | 1704 | fix i | 
| 1705 | show "f i \<le> Sup A" | |
| 1706 | using f by (auto intro!: complete_lattice_class.Sup_upper) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1707 | next | 
| 53873 | 1708 | fix y | 
| 1709 | assume bound: "\<And>i. i \<in> UNIV \<Longrightarrow> f i \<le> y" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1710 | show "Sup A \<le> y" | 
| 43920 | 1711 | proof (rule ereal_le_epsilon, intro allI impI) | 
| 53873 | 1712 | fix e :: ereal | 
| 1713 | assume "0 < e" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1714 | show "Sup A \<le> y + e" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1715 | proof (cases e) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1716 | case (real r) | 
| 53873 | 1717 | then have "0 < r" | 
| 1718 | using `0 < e` by auto | |
| 1719 | then obtain n :: nat where *: "1 / real n < r" "0 < n" | |
| 1720 | using ex_inverse_of_nat_less | |
| 1721 | by (auto simp: real_eq_of_nat inverse_eq_divide) | |
| 1722 | have "Sup A \<le> f n + 1 / ereal (real n)" | |
| 1723 | using f[THEN spec, of n] | |
| 44918 | 1724 | by auto | 
| 53873 | 1725 | also have "1 / ereal (real n) \<le> e" | 
| 1726 | using real * | |
| 1727 | by (auto simp: one_ereal_def ) | |
| 1728 | with bound have "f n + 1 / ereal (real n) \<le> y + e" | |
| 1729 | by (rule add_mono) simp | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1730 | finally show "Sup A \<le> y + e" . | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1731 | qed (insert `0 < e`, auto) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1732 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1733 | qed | 
| 53873 | 1734 | with f show ?thesis | 
| 1735 | by (auto intro!: exI[of _ f]) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1736 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1737 | case PInf | 
| 53873 | 1738 |   from `A \<noteq> {}` obtain x where "x \<in> A"
 | 
| 1739 | by auto | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1740 | show ?thesis | 
| 53873 | 1741 | proof (cases "\<infinity> \<in> A") | 
| 1742 | case True | |
| 1743 | then have "\<infinity> \<le> Sup A" | |
| 1744 | by (intro complete_lattice_class.Sup_upper) | |
| 1745 | with True show ?thesis | |
| 1746 | by (auto intro!: exI[of _ "\<lambda>x. \<infinity>"]) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1747 | next | 
| 53873 | 1748 | case False | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1749 | have "\<exists>x\<in>A. 0 \<le> x" | 
| 54416 | 1750 | by (metis Infty_neq_0(2) PInf complete_lattice_class.Sup_least ereal_infty_less_eq2(1) linorder_linear) | 
| 53873 | 1751 | then obtain x where "x \<in> A" and "0 \<le> x" | 
| 1752 | by auto | |
| 43920 | 1753 | have "\<forall>n::nat. \<exists>f. f \<in> A \<and> x + ereal (real n) \<le> f" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1754 | proof (rule ccontr) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1755 | assume "\<not> ?thesis" | 
| 43920 | 1756 | then have "\<exists>n::nat. Sup A \<le> x + ereal (real n)" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1757 | by (simp add: Sup_le_iff not_le less_imp_le Ball_def) (metis less_imp_le) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1758 | then show False using `x \<in> A` `\<infinity> \<notin> A` PInf | 
| 53873 | 1759 | by (cases x) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1760 | qed | 
| 53381 | 1761 | from choice[OF this] obtain f :: "nat \<Rightarrow> ereal" | 
| 1762 | where f: "\<forall>z. f z \<in> A \<and> x + ereal (real z) \<le> f z" .. | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1763 | have "SUPREMUM UNIV f = \<infinity>" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1764 | proof (rule SUP_PInfty) | 
| 53381 | 1765 | fix n :: nat | 
| 1766 | show "\<exists>i\<in>UNIV. ereal (real n) \<le> f i" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1767 | using f[THEN spec, of n] `0 \<le> x` | 
| 43920 | 1768 | by (cases rule: ereal2_cases[of "f n" x]) (auto intro!: exI[of _ n]) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1769 | qed | 
| 53873 | 1770 | then show ?thesis | 
| 1771 | using f PInf by (auto intro!: exI[of _ f]) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1772 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1773 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1774 | case MInf | 
| 53873 | 1775 |   with `A \<noteq> {}` have "A = {-\<infinity>}"
 | 
| 1776 | by (auto simp: Sup_eq_MInfty) | |
| 1777 | then show ?thesis | |
| 1778 | using MInf by (auto intro!: exI[of _ "\<lambda>x. -\<infinity>"]) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1779 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1780 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1781 | lemma SUP_countable_SUP: | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1782 |   "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPREMUM A g = SUPREMUM UNIV f"
 | 
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1783 | using Sup_countable_SUP [of "g`A"] | 
| 56166 | 1784 | by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1785 | |
| 43920 | 1786 | lemma Sup_ereal_cadd: | 
| 53873 | 1787 | fixes A :: "ereal set" | 
| 1788 |   assumes "A \<noteq> {}"
 | |
| 1789 | and "a \<noteq> -\<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1790 | shows "Sup ((\<lambda>x. a + x) ` A) = a + Sup A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1791 | proof (rule antisym) | 
| 43920 | 1792 | have *: "\<And>a::ereal. \<And>A. Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" | 
| 56166 | 1793 | by (auto intro!: add_mono complete_lattice_class.SUP_least complete_lattice_class.Sup_upper) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1794 | then show "Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" . | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1795 | show "a + Sup A \<le> Sup ((\<lambda>x. a + x) ` A)" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1796 | proof (cases a) | 
| 53873 | 1797 |     case PInf with `A \<noteq> {}`
 | 
| 1798 | show ?thesis | |
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
54416diff
changeset | 1799 | by (auto simp: image_constant max.absorb1) | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1800 | next | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1801 | case (real r) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1802 | then have **: "op + (- a) ` op + a ` A = A" | 
| 43920 | 1803 | by (auto simp: image_iff ac_simps zero_ereal_def[symmetric]) | 
| 53873 | 1804 | from *[of "-a" "(\<lambda>x. a + x) ` A"] real show ?thesis | 
| 1805 | unfolding ** | |
| 43920 | 1806 | by (cases rule: ereal2_cases[of "Sup A" "Sup (op + a ` A)"]) auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1807 | qed (insert `a \<noteq> -\<infinity>`, auto) | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1808 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1809 | |
| 43920 | 1810 | lemma Sup_ereal_cminus: | 
| 53873 | 1811 | fixes A :: "ereal set" | 
| 1812 |   assumes "A \<noteq> {}"
 | |
| 1813 | and "a \<noteq> -\<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1814 | shows "Sup ((\<lambda>x. a - x) ` A) = a - Inf A" | 
| 56166 | 1815 | using Sup_ereal_cadd [of "uminus ` A" a] assms | 
| 1816 | unfolding image_image minus_ereal_def by (simp add: ereal_SUP_uminus_eq) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1817 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1818 | lemma SUP_ereal_cminus: | 
| 43923 | 1819 | fixes f :: "'i \<Rightarrow> ereal" | 
| 53873 | 1820 | fixes A | 
| 1821 |   assumes "A \<noteq> {}"
 | |
| 1822 | and "a \<noteq> -\<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1823 | shows "(SUP x:A. a - f x) = a - (INF x:A. f x)" | 
| 43920 | 1824 | using Sup_ereal_cminus[of "f`A" a] assms | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1825 | unfolding SUP_def INF_def image_image by auto | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1826 | |
| 43920 | 1827 | lemma Inf_ereal_cminus: | 
| 53873 | 1828 | fixes A :: "ereal set" | 
| 1829 |   assumes "A \<noteq> {}"
 | |
| 1830 | and "\<bar>a\<bar> \<noteq> \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1831 | shows "Inf ((\<lambda>x. a - x) ` A) = a - Sup A" | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1832 | proof - | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1833 |   {
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1834 | fix x | 
| 53873 | 1835 | have "-a - -x = -(a - x)" | 
| 1836 | using assms by (cases x) auto | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1837 | } note * = this | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1838 | then have "(\<lambda>x. -a - x)`uminus`A = uminus ` (\<lambda>x. a - x) ` A" | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1839 | by (auto simp: image_image) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1840 | with * show ?thesis | 
| 56166 | 1841 | using Sup_ereal_cminus [of "uminus ` A" "- a"] assms | 
| 1842 | by (auto simp add: ereal_INF_uminus_eq ereal_SUP_uminus_eq) | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1843 | qed | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1844 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1845 | lemma INF_ereal_cminus: | 
| 53873 | 1846 | fixes a :: ereal | 
| 1847 |   assumes "A \<noteq> {}"
 | |
| 1848 | and "\<bar>a\<bar> \<noteq> \<infinity>" | |
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1849 | shows "(INF x:A. a - f x) = a - (SUP x:A. f x)" | 
| 43920 | 1850 | using Inf_ereal_cminus[of "f`A" a] assms | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44918diff
changeset | 1851 | unfolding SUP_def INF_def image_image | 
| 41979 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1852 | by auto | 
| 
b10ec1f5e9d5
lemmas about addition, SUP on countable sets and infinite sums for extreal
 hoelzl parents: 
41978diff
changeset | 1853 | |
| 43920 | 1854 | lemma uminus_ereal_add_uminus_uminus: | 
| 53873 | 1855 | fixes a b :: ereal | 
| 1856 | shows "a \<noteq> \<infinity> \<Longrightarrow> b \<noteq> \<infinity> \<Longrightarrow> - (- a + - b) = a + b" | |
| 43920 | 1857 | by (cases rule: ereal2_cases[of a b]) auto | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1858 | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1859 | lemma INF_ereal_add: | 
| 43923 | 1860 | fixes f :: "nat \<Rightarrow> ereal" | 
| 53873 | 1861 | assumes "decseq f" "decseq g" | 
| 1862 | and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>" | |
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1863 | shows "(INF i. f i + g i) = INFIMUM UNIV f + INFIMUM UNIV g" | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1864 | proof - | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1865 | have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1866 | using assms unfolding INF_less_iff by auto | 
| 53873 | 1867 |   {
 | 
| 1868 | fix i | |
| 1869 | from fin[of i] have "- ((- f i) + (- g i)) = f i + g i" | |
| 1870 | by (rule uminus_ereal_add_uminus_uminus) | |
| 1871 | } | |
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1872 | then have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))" | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1873 | by simp | 
| 56218 
1c3f1f2431f9
elongated INFI and SUPR, to reduced risk of confusing theorems names in the future while still being consistent with INTER and UNION
 haftmann parents: 
56212diff
changeset | 1874 | also have "\<dots> = INFIMUM UNIV f + INFIMUM UNIV g" | 
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1875 | unfolding ereal_INF_uminus | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1876 | using assms INF_less | 
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1877 | by (subst SUP_ereal_add) | 
| 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 1878 | (auto simp: ereal_SUP_uminus intro!: uminus_ereal_add_uminus_uminus) | 
| 42950 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1879 | finally show ?thesis . | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1880 | qed | 
| 
6e5c2a3c69da
move lemmas to Extended_Reals and Extended_Real_Limits
 hoelzl parents: 
42600diff
changeset | 1881 | |
| 45934 | 1882 | subsection "Relation to @{typ enat}"
 | 
| 1883 | ||
| 1884 | definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)" | |
| 1885 | ||
| 1886 | declare [[coercion "ereal_of_enat :: enat \<Rightarrow> ereal"]] | |
| 1887 | declare [[coercion "(\<lambda>n. ereal (real n)) :: nat \<Rightarrow> ereal"]] | |
| 1888 | ||
| 1889 | lemma ereal_of_enat_simps[simp]: | |
| 1890 | "ereal_of_enat (enat n) = ereal n" | |
| 1891 | "ereal_of_enat \<infinity> = \<infinity>" | |
| 1892 | by (simp_all add: ereal_of_enat_def) | |
| 1893 | ||
| 53873 | 1894 | lemma ereal_of_enat_le_iff[simp]: "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n" | 
| 1895 | by (cases m n rule: enat2_cases) auto | |
| 45934 | 1896 | |
| 53873 | 1897 | lemma ereal_of_enat_less_iff[simp]: "ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n" | 
| 1898 | by (cases m n rule: enat2_cases) auto | |
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 1899 | |
| 53873 | 1900 | lemma numeral_le_ereal_of_enat_iff[simp]: "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n" | 
| 1901 | by (cases n) (auto dest: natceiling_le intro: natceiling_le_eq[THEN iffD1]) | |
| 45934 | 1902 | |
| 53873 | 1903 | lemma numeral_less_ereal_of_enat_iff[simp]: "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56537diff
changeset | 1904 | by (cases n) auto | 
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 1905 | |
| 53873 | 1906 | lemma ereal_of_enat_ge_zero_cancel_iff[simp]: "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n" | 
| 1907 | by (cases n) (auto simp: enat_0[symmetric]) | |
| 45934 | 1908 | |
| 53873 | 1909 | lemma ereal_of_enat_gt_zero_cancel_iff[simp]: "0 < ereal_of_enat n \<longleftrightarrow> 0 < n" | 
| 1910 | by (cases n) (auto simp: enat_0[symmetric]) | |
| 45934 | 1911 | |
| 53873 | 1912 | lemma ereal_of_enat_zero[simp]: "ereal_of_enat 0 = 0" | 
| 1913 | by (auto simp: enat_0[symmetric]) | |
| 45934 | 1914 | |
| 53873 | 1915 | lemma ereal_of_enat_inf[simp]: "ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>" | 
| 50819 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 1916 | by (cases n) auto | 
| 
5601ae592679
added some ereal_of_enat_* lemmas (from $AFP/thys/Girth_Chromatic)
 noschinl parents: 
50104diff
changeset | 1917 | |
| 53873 | 1918 | lemma ereal_of_enat_add: "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n" | 
| 1919 | by (cases m n rule: enat2_cases) auto | |
| 45934 | 1920 | |
| 1921 | lemma ereal_of_enat_sub: | |
| 53873 | 1922 | assumes "n \<le> m" | 
| 1923 | shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n " | |
| 1924 | using assms by (cases m n rule: enat2_cases) auto | |
| 45934 | 1925 | |
| 1926 | lemma ereal_of_enat_mult: | |
| 1927 | "ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n" | |
| 53873 | 1928 | by (cases m n rule: enat2_cases) auto | 
| 45934 | 1929 | |
| 1930 | lemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_mult | |
| 1931 | lemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric] | |
| 1932 | ||
| 1933 | ||
| 43920 | 1934 | subsection "Limits on @{typ ereal}"
 | 
| 41973 | 1935 | |
| 1936 | subsubsection "Topological space" | |
| 1937 | ||
| 51775 
408d937c9486
revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
 hoelzl parents: 
51774diff
changeset | 1938 | instantiation ereal :: linear_continuum_topology | 
| 41973 | 1939 | begin | 
| 1940 | ||
| 51000 | 1941 | definition "open_ereal" :: "ereal set \<Rightarrow> bool" where | 
| 1942 | open_ereal_generated: "open_ereal = generate_topology (range lessThan \<union> range greaterThan)" | |
| 1943 | ||
| 1944 | instance | |
| 1945 | by default (simp add: open_ereal_generated) | |
| 53873 | 1946 | |
| 51000 | 1947 | end | 
| 41973 | 1948 | |
| 43920 | 1949 | lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)"
 | 
| 51000 | 1950 | unfolding open_ereal_generated | 
| 1951 | proof (induct rule: generate_topology.induct) | |
| 1952 | case (Int A B) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1953 |   then obtain x z where "\<infinity> \<in> A \<Longrightarrow> {ereal x <..} \<subseteq> A" "\<infinity> \<in> B \<Longrightarrow> {ereal z <..} \<subseteq> B"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1954 | by auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1955 | with Int show ?case | 
| 51000 | 1956 | by (intro exI[of _ "max x z"]) fastforce | 
| 1957 | next | |
| 53873 | 1958 | case (Basis S) | 
| 1959 |   {
 | |
| 1960 | fix x | |
| 1961 | have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t" | |
| 1962 | by (cases x) auto | |
| 1963 | } | |
| 1964 | moreover note Basis | |
| 51000 | 1965 | ultimately show ?case | 
| 1966 | by (auto split: ereal.split) | |
| 1967 | qed (fastforce simp add: vimage_Union)+ | |
| 41973 | 1968 | |
| 43920 | 1969 | lemma open_MInfty: "open A \<Longrightarrow> -\<infinity> \<in> A \<Longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A)"
 | 
| 51000 | 1970 | unfolding open_ereal_generated | 
| 1971 | proof (induct rule: generate_topology.induct) | |
| 1972 | case (Int A B) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1973 |   then obtain x z where "-\<infinity> \<in> A \<Longrightarrow> {..< ereal x} \<subseteq> A" "-\<infinity> \<in> B \<Longrightarrow> {..< ereal z} \<subseteq> B"
 | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1974 | by auto | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53216diff
changeset | 1975 | with Int show ?case | 
| 51000 | 1976 | by (intro exI[of _ "min x z"]) fastforce | 
| 1977 | next | |
| 53873 | 1978 | case (Basis S) | 
| 1979 |   {
 | |
| 1980 | fix x | |
| 1981 | have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x" | |
| 1982 | by (cases x) auto | |
| 1983 | } | |
| 1984 | moreover note Basis | |
| 51000 | 1985 | ultimately show ?case | 
| 1986 | by (auto split: ereal.split) | |
| 1987 | qed (fastforce simp add: vimage_Union)+ | |
| 1988 | ||
| 1989 | lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)" | |
| 1990 | unfolding open_ereal_generated | |
| 1991 | proof (induct rule: generate_topology.induct) | |
| 53873 | 1992 | case (Int A B) | 
| 1993 | then show ?case | |
| 1994 | by auto | |
| 51000 | 1995 | next | 
| 53873 | 1996 | case (Basis S) | 
| 1997 |   {
 | |
| 1998 | fix x have | |
| 51000 | 1999 |       "ereal -` {..<x} = (case x of PInfty \<Rightarrow> UNIV | MInfty \<Rightarrow> {} | ereal r \<Rightarrow> {..<r})"
 | 
| 2000 |       "ereal -` {x<..} = (case x of PInfty \<Rightarrow> {} | MInfty \<Rightarrow> UNIV | ereal r \<Rightarrow> {r<..})"
 | |
| 53873 | 2001 | by (induct x) auto | 
| 2002 | } | |
| 2003 | moreover note Basis | |
| 51000 | 2004 | ultimately show ?case | 
| 2005 | by (auto split: ereal.split) | |
| 2006 | qed (fastforce simp add: vimage_Union)+ | |
| 2007 | ||
| 2008 | lemma open_ereal: "open S \<Longrightarrow> open (ereal ` S)" | |
| 2009 | unfolding open_generated_order[where 'a=real] | |
| 2010 | proof (induct rule: generate_topology.induct) | |
| 2011 | case (Basis S) | |
| 53873 | 2012 |   moreover {
 | 
| 2013 | fix x | |
| 2014 |     have "ereal ` {..< x} = { -\<infinity> <..< ereal x }"
 | |
| 2015 | apply auto | |
| 2016 | apply (case_tac xa) | |
| 2017 | apply auto | |
| 2018 | done | |
| 2019 | } | |
| 2020 |   moreover {
 | |
| 2021 | fix x | |
| 2022 |     have "ereal ` {x <..} = { ereal x <..< \<infinity> }"
 | |
| 2023 | apply auto | |
| 2024 | apply (case_tac xa) | |
| 2025 | apply auto | |
| 2026 | done | |
| 2027 | } | |
| 51000 | 2028 | ultimately show ?case | 
| 2029 | by auto | |
| 2030 | qed (auto simp add: image_Union image_Int) | |
| 2031 | ||
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2032 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2033 | lemma eventually_finite: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2034 | fixes x :: ereal | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2035 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" "(f ---> x) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2036 | shows "eventually (\<lambda>x. \<bar>f x\<bar> \<noteq> \<infinity>) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2037 | proof - | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2038 | have "(f ---> ereal (real x)) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2039 | using assms by (cases x) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2040 | then have "eventually (\<lambda>x. f x \<in> ereal ` UNIV) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2041 | by (rule topological_tendstoD) (auto intro: open_ereal) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2042 | also have "(\<lambda>x. f x \<in> ereal ` UNIV) = (\<lambda>x. \<bar>f x\<bar> \<noteq> \<infinity>)" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2043 | by auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2044 | finally show ?thesis . | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2045 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2046 | |
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2047 | |
| 53873 | 2048 | lemma open_ereal_def: | 
| 2049 |   "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
 | |
| 51000 | 2050 | (is "open A \<longleftrightarrow> ?rhs") | 
| 2051 | proof | |
| 53873 | 2052 | assume "open A" | 
| 2053 | then show ?rhs | |
| 51000 | 2054 | using open_PInfty open_MInfty open_ereal_vimage by auto | 
| 2055 | next | |
| 2056 | assume "?rhs" | |
| 2057 |   then obtain x y where A: "open (ereal -` A)" "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" "-\<infinity> \<in> A \<Longrightarrow> {..< ereal y} \<subseteq> A"
 | |
| 2058 | by auto | |
| 2059 |   have *: "A = ereal ` (ereal -` A) \<union> (if \<infinity> \<in> A then {ereal x<..} else {}) \<union> (if -\<infinity> \<in> A then {..< ereal y} else {})"
 | |
| 2060 | using A(2,3) by auto | |
| 2061 | from open_ereal[OF A(1)] show "open A" | |
| 2062 | by (subst *) (auto simp: open_Un) | |
| 2063 | qed | |
| 41973 | 2064 | |
| 53873 | 2065 | lemma open_PInfty2: | 
| 2066 | assumes "open A" | |
| 2067 | and "\<infinity> \<in> A" | |
| 2068 |   obtains x where "{ereal x<..} \<subseteq> A"
 | |
| 41973 | 2069 | using open_PInfty[OF assms] by auto | 
| 2070 | ||
| 53873 | 2071 | lemma open_MInfty2: | 
| 2072 | assumes "open A" | |
| 2073 | and "-\<infinity> \<in> A" | |
| 2074 |   obtains x where "{..<ereal x} \<subseteq> A"
 | |
| 41973 | 2075 | using open_MInfty[OF assms] by auto | 
| 2076 | ||
| 53873 | 2077 | lemma ereal_openE: | 
| 2078 | assumes "open A" | |
| 2079 | obtains x y where "open (ereal -` A)" | |
| 2080 |     and "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A"
 | |
| 2081 |     and "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
 | |
| 43920 | 2082 | using assms open_ereal_def by auto | 
| 41973 | 2083 | |
| 51000 | 2084 | lemmas open_ereal_lessThan = open_lessThan[where 'a=ereal] | 
| 2085 | lemmas open_ereal_greaterThan = open_greaterThan[where 'a=ereal] | |
| 2086 | lemmas ereal_open_greaterThanLessThan = open_greaterThanLessThan[where 'a=ereal] | |
| 2087 | lemmas closed_ereal_atLeast = closed_atLeast[where 'a=ereal] | |
| 2088 | lemmas closed_ereal_atMost = closed_atMost[where 'a=ereal] | |
| 2089 | lemmas closed_ereal_atLeastAtMost = closed_atLeastAtMost[where 'a=ereal] | |
| 2090 | lemmas closed_ereal_singleton = closed_singleton[where 'a=ereal] | |
| 53873 | 2091 | |
| 43920 | 2092 | lemma ereal_open_cont_interval: | 
| 43923 | 2093 | fixes S :: "ereal set" | 
| 53873 | 2094 | assumes "open S" | 
| 2095 | and "x \<in> S" | |
| 2096 | and "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2097 |   obtains e where "e > 0" and "{x-e <..< x+e} \<subseteq> S"
 | |
| 2098 | proof - | |
| 2099 | from `open S` | |
| 2100 | have "open (ereal -` S)" | |
| 2101 | by (rule ereal_openE) | |
| 2102 | then obtain e where "e > 0" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S" | |
| 41980 
28b51effc5ed
split Extended_Reals into parts for Library and Multivariate_Analysis
 hoelzl parents: 
41979diff
changeset | 2103 | using assms unfolding open_dist by force | 
| 41975 | 2104 | show thesis | 
| 2105 | proof (intro that subsetI) | |
| 53873 | 2106 | show "0 < ereal e" | 
| 2107 | using `0 < e` by auto | |
| 2108 | fix y | |
| 2109 |     assume "y \<in> {x - ereal e<..<x + ereal e}"
 | |
| 43920 | 2110 | with assms obtain t where "y = ereal t" "dist t (real x) < e" | 
| 53873 | 2111 | by (cases y) (auto simp: dist_real_def) | 
| 2112 | then show "y \<in> S" | |
| 2113 | using e[of t] by auto | |
| 41975 | 2114 | qed | 
| 41973 | 2115 | qed | 
| 2116 | ||
| 43920 | 2117 | lemma ereal_open_cont_interval2: | 
| 43923 | 2118 | fixes S :: "ereal set" | 
| 53873 | 2119 | assumes "open S" | 
| 2120 | and "x \<in> S" | |
| 2121 | and x: "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2122 |   obtains a b where "a < x" and "x < b" and "{a <..< b} \<subseteq> S"
 | |
| 53381 | 2123 | proof - | 
| 2124 |   obtain e where "0 < e" "{x - e<..<x + e} \<subseteq> S"
 | |
| 2125 | using assms by (rule ereal_open_cont_interval) | |
| 53873 | 2126 | with that[of "x - e" "x + e"] ereal_between[OF x, of e] | 
| 2127 | show thesis | |
| 2128 | by auto | |
| 41973 | 2129 | qed | 
| 2130 | ||
| 2131 | subsubsection {* Convergent sequences *}
 | |
| 2132 | ||
| 53873 | 2133 | lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net" | 
| 2134 | (is "?l = ?r") | |
| 41973 | 2135 | proof (intro iffI topological_tendstoI) | 
| 53873 | 2136 | fix S | 
| 2137 | assume "?l" and "open S" and "x \<in> S" | |
| 41973 | 2138 | then show "eventually (\<lambda>x. f x \<in> S) net" | 
| 43920 | 2139 | using `?l`[THEN topological_tendstoD, OF open_ereal, OF `open S`] | 
| 41973 | 2140 | by (simp add: inj_image_mem_iff) | 
| 2141 | next | |
| 53873 | 2142 | fix S | 
| 2143 | assume "?r" and "open S" and "ereal x \<in> S" | |
| 43920 | 2144 | show "eventually (\<lambda>x. ereal (f x) \<in> S) net" | 
| 2145 | using `?r`[THEN topological_tendstoD, OF open_ereal_vimage, OF `open S`] | |
| 53873 | 2146 | using `ereal x \<in> S` | 
| 2147 | by auto | |
| 41973 | 2148 | qed | 
| 2149 | ||
| 43920 | 2150 | lemma lim_real_of_ereal[simp]: | 
| 2151 | assumes lim: "(f ---> ereal x) net" | |
| 41973 | 2152 | shows "((\<lambda>x. real (f x)) ---> x) net" | 
| 2153 | proof (intro topological_tendstoI) | |
| 53873 | 2154 | fix S | 
| 2155 | assume "open S" and "x \<in> S" | |
| 43920 | 2156 | then have S: "open S" "ereal x \<in> ereal ` S" | 
| 41973 | 2157 | by (simp_all add: inj_image_mem_iff) | 
| 53873 | 2158 | have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S" | 
| 2159 | by auto | |
| 43920 | 2160 | from this lim[THEN topological_tendstoD, OF open_ereal, OF S] | 
| 41973 | 2161 | show "eventually (\<lambda>x. real (f x) \<in> S) net" | 
| 2162 | by (rule eventually_mono) | |
| 2163 | qed | |
| 2164 | ||
| 51000 | 2165 | lemma tendsto_PInfty: "(f ---> \<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. ereal r < f x) F)" | 
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2166 | proof - | 
| 53873 | 2167 |   {
 | 
| 2168 | fix l :: ereal | |
| 2169 | assume "\<forall>r. eventually (\<lambda>x. ereal r < f x) F" | |
| 2170 | from this[THEN spec, of "real l"] have "l \<noteq> \<infinity> \<Longrightarrow> eventually (\<lambda>x. l < f x) F" | |
| 2171 | by (cases l) (auto elim: eventually_elim1) | |
| 2172 | } | |
| 51022 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2173 | then show ?thesis | 
| 
78de6c7e8a58
replace open_interval with the rule open_tendstoI; generalize Liminf/Limsup rules
 hoelzl parents: 
51000diff
changeset | 2174 | by (auto simp: order_tendsto_iff) | 
| 41973 | 2175 | qed | 
| 2176 | ||
| 57025 | 2177 | lemma tendsto_PInfty_eq_at_top: | 
| 2178 | "((\<lambda>z. ereal (f z)) ---> \<infinity>) F \<longleftrightarrow> (LIM z F. f z :> at_top)" | |
| 2179 | unfolding tendsto_PInfty filterlim_at_top_dense by simp | |
| 2180 | ||
| 51000 | 2181 | lemma tendsto_MInfty: "(f ---> -\<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. f x < ereal r) F)" | 
| 2182 | unfolding tendsto_def | |
| 2183 | proof safe | |
| 53381 | 2184 | fix S :: "ereal set" | 
| 2185 | assume "open S" "-\<infinity> \<in> S" | |
| 2186 |   from open_MInfty[OF this] obtain B where "{..<ereal B} \<subseteq> S" ..
 | |
| 51000 | 2187 | moreover | 
| 2188 | assume "\<forall>r::real. eventually (\<lambda>z. f z < r) F" | |
| 53873 | 2189 |   then have "eventually (\<lambda>z. f z \<in> {..< B}) F"
 | 
| 2190 | by auto | |
| 2191 | ultimately show "eventually (\<lambda>z. f z \<in> S) F" | |
| 2192 | by (auto elim!: eventually_elim1) | |
| 51000 | 2193 | next | 
| 53873 | 2194 | fix x | 
| 2195 | assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F" | |
| 2196 |   from this[rule_format, of "{..< ereal x}"] show "eventually (\<lambda>y. f y < ereal x) F"
 | |
| 2197 | by auto | |
| 41973 | 2198 | qed | 
| 2199 | ||
| 51000 | 2200 | lemma Lim_PInfty: "f ----> \<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. f n \<ge> ereal B)" | 
| 2201 | unfolding tendsto_PInfty eventually_sequentially | |
| 2202 | proof safe | |
| 53873 | 2203 | fix r | 
| 2204 | assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n" | |
| 2205 | then obtain N where "\<forall>n\<ge>N. ereal (r + 1) \<le> f n" | |
| 2206 | by blast | |
| 2207 | moreover have "ereal r < ereal (r + 1)" | |
| 2208 | by auto | |
| 51000 | 2209 | ultimately show "\<exists>N. \<forall>n\<ge>N. ereal r < f n" | 
| 2210 | by (blast intro: less_le_trans) | |
| 2211 | qed (blast intro: less_imp_le) | |
| 41973 | 2212 | |
| 51000 | 2213 | lemma Lim_MInfty: "f ----> -\<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. ereal B \<ge> f n)" | 
| 2214 | unfolding tendsto_MInfty eventually_sequentially | |
| 2215 | proof safe | |
| 53873 | 2216 | fix r | 
| 2217 | assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r" | |
| 2218 | then obtain N where "\<forall>n\<ge>N. f n \<le> ereal (r - 1)" | |
| 2219 | by blast | |
| 2220 | moreover have "ereal (r - 1) < ereal r" | |
| 2221 | by auto | |
| 51000 | 2222 | ultimately show "\<exists>N. \<forall>n\<ge>N. f n < ereal r" | 
| 2223 | by (blast intro: le_less_trans) | |
| 2224 | qed (blast intro: less_imp_le) | |
| 41973 | 2225 | |
| 51000 | 2226 | lemma Lim_bounded_PInfty: "f ----> l \<Longrightarrow> (\<And>n. f n \<le> ereal B) \<Longrightarrow> l \<noteq> \<infinity>" | 
| 2227 | using LIMSEQ_le_const2[of f l "ereal B"] by auto | |
| 41973 | 2228 | |
| 51000 | 2229 | lemma Lim_bounded_MInfty: "f ----> l \<Longrightarrow> (\<And>n. ereal B \<le> f n) \<Longrightarrow> l \<noteq> -\<infinity>" | 
| 2230 | using LIMSEQ_le_const[of f l "ereal B"] by auto | |
| 41973 | 2231 | |
| 2232 | lemma tendsto_explicit: | |
| 53873 | 2233 | "f ----> f0 \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> f0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> S))" | 
| 41973 | 2234 | unfolding tendsto_def eventually_sequentially by auto | 
| 2235 | ||
| 53873 | 2236 | lemma Lim_bounded_PInfty2: "f ----> l \<Longrightarrow> \<forall>n\<ge>N. f n \<le> ereal B \<Longrightarrow> l \<noteq> \<infinity>" | 
| 51000 | 2237 | using LIMSEQ_le_const2[of f l "ereal B"] by fastforce | 
| 41973 | 2238 | |
| 53873 | 2239 | lemma Lim_bounded_ereal: "f ----> (l :: 'a::linorder_topology) \<Longrightarrow> \<forall>n\<ge>M. f n \<le> C \<Longrightarrow> l \<le> C" | 
| 51000 | 2240 | by (intro LIMSEQ_le_const2) auto | 
| 41973 | 2241 | |
| 51351 | 2242 | lemma Lim_bounded2_ereal: | 
| 53873 | 2243 | assumes lim:"f ----> (l :: 'a::linorder_topology)" | 
| 2244 | and ge: "\<forall>n\<ge>N. f n \<ge> C" | |
| 2245 | shows "l \<ge> C" | |
| 51351 | 2246 | using ge | 
| 2247 | by (intro tendsto_le[OF trivial_limit_sequentially lim tendsto_const]) | |
| 2248 | (auto simp: eventually_sequentially) | |
| 2249 | ||
| 43920 | 2250 | lemma real_of_ereal_mult[simp]: | 
| 53873 | 2251 | fixes a b :: ereal | 
| 2252 | shows "real (a * b) = real a * real b" | |
| 43920 | 2253 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2254 | |
| 43920 | 2255 | lemma real_of_ereal_eq_0: | 
| 53873 | 2256 | fixes x :: ereal | 
| 2257 | shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0" | |
| 41973 | 2258 | by (cases x) auto | 
| 2259 | ||
| 43920 | 2260 | lemma tendsto_ereal_realD: | 
| 2261 | fixes f :: "'a \<Rightarrow> ereal" | |
| 53873 | 2262 | assumes "x \<noteq> 0" | 
| 2263 | and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net" | |
| 41973 | 2264 | shows "(f ---> x) net" | 
| 2265 | proof (intro topological_tendstoI) | |
| 53873 | 2266 | fix S | 
| 2267 | assume S: "open S" "x \<in> S" | |
| 2268 |   with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}"
 | |
| 2269 | by auto | |
| 41973 | 2270 | from tendsto[THEN topological_tendstoD, OF this] | 
| 2271 | show "eventually (\<lambda>x. f x \<in> S) net" | |
| 44142 | 2272 | by (rule eventually_rev_mp) (auto simp: ereal_real) | 
| 41973 | 2273 | qed | 
| 2274 | ||
| 43920 | 2275 | lemma tendsto_ereal_realI: | 
| 2276 | fixes f :: "'a \<Rightarrow> ereal" | |
| 41976 | 2277 | assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f ---> x) net" | 
| 43920 | 2278 | shows "((\<lambda>x. ereal (real (f x))) ---> x) net" | 
| 41973 | 2279 | proof (intro topological_tendstoI) | 
| 53873 | 2280 | fix S | 
| 2281 | assume "open S" and "x \<in> S" | |
| 2282 |   with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}"
 | |
| 2283 | by auto | |
| 41973 | 2284 | from tendsto[THEN topological_tendstoD, OF this] | 
| 43920 | 2285 | show "eventually (\<lambda>x. ereal (real (f x)) \<in> S) net" | 
| 2286 | by (elim eventually_elim1) (auto simp: ereal_real) | |
| 41973 | 2287 | qed | 
| 2288 | ||
| 43920 | 2289 | lemma ereal_mult_cancel_left: | 
| 53873 | 2290 | fixes a b c :: ereal | 
| 2291 | shows "a * b = a * c \<longleftrightarrow> (\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c" | |
| 2292 | by (cases rule: ereal3_cases[of a b c]) (simp_all add: zero_less_mult_iff) | |
| 41973 | 2293 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2294 | lemma tendsto_add_ereal: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2295 | fixes x y :: ereal | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2296 | assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and y: "\<bar>y\<bar> \<noteq> \<infinity>" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2297 | assumes f: "(f ---> x) F" and g: "(g ---> y) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2298 | shows "((\<lambda>x. f x + g x) ---> x + y) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2299 | proof - | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2300 | from x obtain r where x': "x = ereal r" by (cases x) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2301 | with f have "((\<lambda>i. real (f i)) ---> r) F" by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2302 | moreover | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2303 | from y obtain p where y': "y = ereal p" by (cases y) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2304 | with g have "((\<lambda>i. real (g i)) ---> p) F" by simp | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2305 | ultimately have "((\<lambda>i. real (f i) + real (g i)) ---> r + p) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2306 | by (rule tendsto_add) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2307 | moreover | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2308 | from eventually_finite[OF x f] eventually_finite[OF y g] | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2309 | have "eventually (\<lambda>x. f x + g x = ereal (real (f x) + real (g x))) F" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2310 | by eventually_elim auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2311 | ultimately show ?thesis | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2312 | by (simp add: x' y' cong: filterlim_cong) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2313 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56927diff
changeset | 2314 | |
| 43920 | 2315 | lemma ereal_inj_affinity: | 
| 43923 | 2316 | fixes m t :: ereal | 
| 53873 | 2317 | assumes "\<bar>m\<bar> \<noteq> \<infinity>" | 
| 2318 | and "m \<noteq> 0" | |
| 2319 | and "\<bar>t\<bar> \<noteq> \<infinity>" | |
| 41973 | 2320 | shows "inj_on (\<lambda>x. m * x + t) A" | 
| 2321 | using assms | |
| 43920 | 2322 | by (cases rule: ereal2_cases[of m t]) | 
| 2323 | (auto intro!: inj_onI simp: ereal_add_cancel_right ereal_mult_cancel_left) | |
| 41973 | 2324 | |
| 43920 | 2325 | lemma ereal_PInfty_eq_plus[simp]: | 
| 43923 | 2326 | fixes a b :: ereal | 
| 41973 | 2327 | shows "\<infinity> = a + b \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>" | 
| 43920 | 2328 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2329 | |
| 43920 | 2330 | lemma ereal_MInfty_eq_plus[simp]: | 
| 43923 | 2331 | fixes a b :: ereal | 
| 41973 | 2332 | shows "-\<infinity> = a + b \<longleftrightarrow> (a = -\<infinity> \<and> b \<noteq> \<infinity>) \<or> (b = -\<infinity> \<and> a \<noteq> \<infinity>)" | 
| 43920 | 2333 | by (cases rule: ereal2_cases[of a b]) auto | 
| 41973 | 2334 | |
| 43920 | 2335 | lemma ereal_less_divide_pos: | 
| 43923 | 2336 | fixes x y :: ereal | 
| 2337 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y < z / x \<longleftrightarrow> x * y < z" | |
| 43920 | 2338 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 2339 | |
| 43920 | 2340 | lemma ereal_divide_less_pos: | 
| 43923 | 2341 | fixes x y z :: ereal | 
| 2342 | shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y / x < z \<longleftrightarrow> y < x * z" | |
| 43920 | 2343 | by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps) | 
| 41973 | 2344 | |
| 43920 | 2345 | lemma ereal_divide_eq: | 
| 43923 | 2346 | fixes a b c :: ereal | 
| 2347 | shows "b \<noteq> 0 \<Longrightarrow> \<bar>b\<bar> \<noteq> \<infinity> \<Longrightarrow> a / b = c \<longleftrightarrow> a = b * c" | |
| 43920 | 2348 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2349 | (simp_all add: field_simps) | 
| 2350 | ||
| 43923 | 2351 | lemma ereal_inverse_not_MInfty[simp]: "inverse (a::ereal) \<noteq> -\<infinity>" | 
| 41973 | 2352 | by (cases a) auto | 
| 2353 | ||
| 43920 | 2354 | lemma ereal_mult_m1[simp]: "x * ereal (-1) = -x" | 
| 41973 | 2355 | by (cases x) auto | 
| 2356 | ||
| 53873 | 2357 | lemma ereal_real': | 
| 2358 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 2359 | shows "ereal (real x) = x" | |
| 41976 | 2360 | using assms by auto | 
| 41973 | 2361 | |
| 53873 | 2362 | lemma real_ereal_id: "real \<circ> ereal = id" | 
| 2363 | proof - | |
| 2364 |   {
 | |
| 2365 | fix x | |
| 2366 | have "(real o ereal) x = id x" | |
| 2367 | by auto | |
| 2368 | } | |
| 2369 | then show ?thesis | |
| 2370 | using ext by blast | |
| 41973 | 2371 | qed | 
| 2372 | ||
| 43923 | 2373 | lemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})"
 | 
| 53873 | 2374 | by (metis range_ereal open_ereal open_UNIV) | 
| 41973 | 2375 | |
| 43920 | 2376 | lemma ereal_le_distrib: | 
| 53873 | 2377 | fixes a b c :: ereal | 
| 2378 | shows "c * (a + b) \<le> c * a + c * b" | |
| 43920 | 2379 | by (cases rule: ereal3_cases[of a b c]) | 
| 41973 | 2380 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | 
| 2381 | ||
| 43920 | 2382 | lemma ereal_pos_distrib: | 
| 53873 | 2383 | fixes a b c :: ereal | 
| 2384 | assumes "0 \<le> c" | |
| 2385 | and "c \<noteq> \<infinity>" | |
| 2386 | shows "c * (a + b) = c * a + c * b" | |
| 2387 | using assms | |
| 2388 | by (cases rule: ereal3_cases[of a b c]) | |
| 2389 | (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff) | |
| 41973 | 2390 | |
| 43920 | 2391 | lemma ereal_pos_le_distrib: | 
| 53873 | 2392 | fixes a b c :: ereal | 
| 2393 | assumes "c \<ge> 0" | |
| 2394 | shows "c * (a + b) \<le> c * a + c * b" | |
| 2395 | using assms | |
| 2396 | by (cases rule: ereal3_cases[of a b c]) (auto simp add: field_simps) | |
| 41973 | 2397 | |
| 53873 | 2398 | lemma ereal_max_mono: "(a::ereal) \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> max a c \<le> max b d" | 
| 43920 | 2399 | by (metis sup_ereal_def sup_mono) | 
| 41973 | 2400 | |
| 53873 | 2401 | lemma ereal_max_least: "(a::ereal) \<le> x \<Longrightarrow> c \<le> x \<Longrightarrow> max a c \<le> x" | 
| 43920 | 2402 | by (metis sup_ereal_def sup_least) | 
| 41973 | 2403 | |
| 51000 | 2404 | lemma ereal_LimI_finite: | 
| 2405 | fixes x :: ereal | |
| 2406 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 53873 | 2407 | and "\<And>r. 0 < r \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r" | 
| 51000 | 2408 | shows "u ----> x" | 
| 2409 | proof (rule topological_tendstoI, unfold eventually_sequentially) | |
| 53873 | 2410 | obtain rx where rx: "x = ereal rx" | 
| 2411 | using assms by (cases x) auto | |
| 2412 | fix S | |
| 2413 | assume "open S" and "x \<in> S" | |
| 2414 | then have "open (ereal -` S)" | |
| 2415 | unfolding open_ereal_def by auto | |
| 2416 | with `x \<in> S` obtain r where "0 < r" and dist: "\<And>y. dist y rx < r \<Longrightarrow> ereal y \<in> S" | |
| 2417 | unfolding open_real_def rx by auto | |
| 51000 | 2418 | then obtain n where | 
| 53873 | 2419 | upper: "\<And>N. n \<le> N \<Longrightarrow> u N < x + ereal r" and | 
| 2420 | lower: "\<And>N. n \<le> N \<Longrightarrow> x < u N + ereal r" | |
| 2421 | using assms(2)[of "ereal r"] by auto | |
| 2422 | show "\<exists>N. \<forall>n\<ge>N. u n \<in> S" | |
| 51000 | 2423 | proof (safe intro!: exI[of _ n]) | 
| 53873 | 2424 | fix N | 
| 2425 | assume "n \<le> N" | |
| 51000 | 2426 | from upper[OF this] lower[OF this] assms `0 < r` | 
| 53873 | 2427 |     have "u N \<notin> {\<infinity>,(-\<infinity>)}"
 | 
| 2428 | by auto | |
| 2429 | then obtain ra where ra_def: "(u N) = ereal ra" | |
| 2430 | by (cases "u N") auto | |
| 2431 | then have "rx < ra + r" and "ra < rx + r" | |
| 2432 | using rx assms `0 < r` lower[OF `n \<le> N`] upper[OF `n \<le> N`] | |
| 2433 | by auto | |
| 2434 | then have "dist (real (u N)) rx < r" | |
| 2435 | using rx ra_def | |
| 51000 | 2436 | by (auto simp: dist_real_def abs_diff_less_iff field_simps) | 
| 53873 | 2437 | from dist[OF this] show "u N \<in> S" | 
| 2438 |       using `u N  \<notin> {\<infinity>, -\<infinity>}`
 | |
| 51000 | 2439 | by (auto simp: ereal_real split: split_if_asm) | 
| 2440 | qed | |
| 2441 | qed | |
| 2442 | ||
| 2443 | lemma tendsto_obtains_N: | |
| 2444 | assumes "f ----> f0" | |
| 53873 | 2445 | assumes "open S" | 
| 2446 | and "f0 \<in> S" | |
| 2447 | obtains N where "\<forall>n\<ge>N. f n \<in> S" | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51328diff
changeset | 2448 | using assms using tendsto_def | 
| 51000 | 2449 | using tendsto_explicit[of f f0] assms by auto | 
| 2450 | ||
| 2451 | lemma ereal_LimI_finite_iff: | |
| 2452 | fixes x :: ereal | |
| 2453 | assumes "\<bar>x\<bar> \<noteq> \<infinity>" | |
| 53873 | 2454 | shows "u ----> x \<longleftrightarrow> (\<forall>r. 0 < r \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r))" | 
| 2455 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 51000 | 2456 | proof | 
| 2457 | assume lim: "u ----> x" | |
| 53873 | 2458 |   {
 | 
| 2459 | fix r :: ereal | |
| 2460 | assume "r > 0" | |
| 2461 |     then obtain N where "\<forall>n\<ge>N. u n \<in> {x - r <..< x + r}"
 | |
| 51000 | 2462 |        apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
 | 
| 53873 | 2463 | using lim ereal_between[of x r] assms `r > 0` | 
| 2464 | apply auto | |
| 2465 | done | |
| 2466 | then have "\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r" | |
| 2467 | using ereal_minus_less[of r x] | |
| 2468 | by (cases r) auto | |
| 2469 | } | |
| 2470 | then show ?rhs | |
| 2471 | by auto | |
| 51000 | 2472 | next | 
| 53873 | 2473 | assume ?rhs | 
| 2474 | then show "u ----> x" | |
| 51000 | 2475 | using ereal_LimI_finite[of x] assms by auto | 
| 2476 | qed | |
| 2477 | ||
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2478 | lemma ereal_Limsup_uminus: | 
| 53873 | 2479 | fixes f :: "'a \<Rightarrow> ereal" | 
| 2480 | shows "Limsup net (\<lambda>x. - (f x)) = - Liminf net f" | |
| 56212 
3253aaf73a01
consolidated theorem names containing INFI and SUPR: have INF and SUP instead uniformly
 haftmann parents: 
56166diff
changeset | 2481 | unfolding Limsup_def Liminf_def ereal_SUP_uminus ereal_INF_uminus .. | 
| 51000 | 2482 | |
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2483 | lemma liminf_bounded_iff: | 
| 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2484 | fixes x :: "nat \<Rightarrow> ereal" | 
| 53873 | 2485 | shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" | 
| 2486 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 51340 
5e6296afe08d
move Liminf / Limsup lemmas on complete_lattices to its own file
 hoelzl parents: 
51329diff
changeset | 2487 | unfolding le_Liminf_iff eventually_sequentially .. | 
| 51000 | 2488 | |
| 53873 | 2489 | |
| 43933 | 2490 | subsubsection {* Tests for code generator *}
 | 
| 2491 | ||
| 2492 | (* A small list of simple arithmetic expressions *) | |
| 2493 | ||
| 56927 | 2494 | value "- \<infinity> :: ereal" | 
| 2495 | value "\<bar>-\<infinity>\<bar> :: ereal" | |
| 2496 | value "4 + 5 / 4 - ereal 2 :: ereal" | |
| 2497 | value "ereal 3 < \<infinity>" | |
| 2498 | value "real (\<infinity>::ereal) = 0" | |
| 43933 | 2499 | |
| 41973 | 2500 | end |