avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
authorhoelzl
Wed, 07 May 2014 12:25:35 +0200
changeset 56889 48a745e1bde7
parent 56888 3e8cbb624cc5
child 56900 beea3ee118af
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
NEWS
src/HOL/Complex.thy
src/HOL/Decision_Procs/Approximation.thy
src/HOL/Int.thy
src/HOL/Library/Extended_Real.thy
src/HOL/Library/Fundamental_Theorem_Algebra.thy
src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy
src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy
src/HOL/NSA/CLim.thy
src/HOL/NSA/NSCA.thy
src/HOL/NSA/NSComplex.thy
src/HOL/NthRoot.thy
src/HOL/Real.thy
src/HOL/Real_Vector_Spaces.thy
--- a/NEWS	Tue May 06 23:35:24 2014 +0200
+++ b/NEWS	Wed May 07 12:25:35 2014 +0200
@@ -590,6 +590,48 @@
 * Include more theorems in continuous_intros. Remove the continuous_on_intros,
   isCont_intros collections, these facts are now in continuous_intros.
 
+* Theorems about complex numbers are now stated only using Re and Im, the Complex
+  constructor is not used anymore. It is possible to use primcorec to defined the
+  behaviour of a complex-valued function.
+
+  Removed theorems about the Complex constructor from the simpset, they are
+  available as the lemma collection legacy_Complex_simps. This especially
+  removes
+    i_complex_of_real: "ii * complex_of_real r = Complex 0 r".
+
+  Instead the reverse direction is supported with
+    Complex_eq: "Complex a b = a + \<i> * b"
+
+  Moved csqrt from Fundamental_Algebra_Theorem to Complex.
+
+  Renamings:
+    Re/Im                  ~>  complex.sel
+    complex_Re/Im_zero     ~>  zero_complex.sel
+    complex_Re/Im_add      ~>  plus_complex.sel
+    complex_Re/Im_minus    ~>  uminus_complex.sel
+    complex_Re/Im_diff     ~>  minus_complex.sel
+    complex_Re/Im_one      ~>  one_complex.sel
+    complex_Re/Im_mult     ~>  times_complex.sel
+    complex_Re/Im_inverse  ~>  inverse_complex.sel
+    complex_Re/Im_scaleR   ~>  scaleR_complex.sel
+    complex_Re/Im_i        ~>  ii.sel
+    complex_Re/Im_cnj      ~>  cnj.sel
+    Re/Im_cis              ~>  cis.sel
+
+    complex_divide_def   ~>  divide_complex_def
+    complex_norm_def     ~>  norm_complex_def
+    cmod_def             ~>  norm_complex_de
+
+  Removed theorems:
+    complex_zero_def
+    complex_add_def
+    complex_minus_def
+    complex_diff_def
+    complex_one_def
+    complex_mult_def
+    complex_inverse_def
+    complex_scaleR_def
+
 * Removed solvers remote_cvc3 and remote_z3. Use cvc3 and z3 instead.
 
 * Nitpick:
--- a/src/HOL/Complex.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/Complex.thy	Wed May 07 12:25:35 2014 +0200
@@ -10,202 +10,105 @@
 imports Transcendental
 begin
 
-datatype complex = Complex real real
+text {*
 
-primrec Re :: "complex \<Rightarrow> real"
-  where Re: "Re (Complex x y) = x"
+We use the @{text codatatype}-command to define the type of complex numbers. This might look strange
+at first, but allows us to use @{text primcorec} to define complex-functions by defining their
+real and imaginary result separate.
 
-primrec Im :: "complex \<Rightarrow> real"
-  where Im: "Im (Complex x y) = y"
+*}
 
-lemma complex_surj [simp]: "Complex (Re z) (Im z) = z"
-  by (induct z) simp
+codatatype complex = Complex (Re: real) (Im: real)
+
+lemma complex_surj: "Complex (Re z) (Im z) = z"
+  by (rule complex.collapse)
 
 lemma complex_eqI [intro?]: "\<lbrakk>Re x = Re y; Im x = Im y\<rbrakk> \<Longrightarrow> x = y"
-  by (induct x, induct y) simp
+  by (rule complex.expand) simp
 
 lemma complex_eq_iff: "x = y \<longleftrightarrow> Re x = Re y \<and> Im x = Im y"
-  by (induct x, induct y) simp
-
+  by (auto intro: complex.expand)
 
 subsection {* Addition and Subtraction *}
 
 instantiation complex :: ab_group_add
 begin
 
-definition complex_zero_def:
-  "0 = Complex 0 0"
-
-definition complex_add_def:
-  "x + y = Complex (Re x + Re y) (Im x + Im y)"
-
-definition complex_minus_def:
-  "- x = Complex (- Re x) (- Im x)"
-
-definition complex_diff_def:
-  "x - (y\<Colon>complex) = x + - y"
+primcorec zero_complex where
+  "Re 0 = 0"
+| "Im 0 = 0"
 
-lemma Complex_eq_0 [simp]: "Complex a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
-  by (simp add: complex_zero_def)
-
-lemma complex_Re_zero [simp]: "Re 0 = 0"
-  by (simp add: complex_zero_def)
-
-lemma complex_Im_zero [simp]: "Im 0 = 0"
-  by (simp add: complex_zero_def)
-
-lemma complex_add [simp]:
-  "Complex a b + Complex c d = Complex (a + c) (b + d)"
-  by (simp add: complex_add_def)
+primcorec plus_complex where
+  "Re (x + y) = Re x + Re y"
+| "Im (x + y) = Im x + Im y"
 
-lemma complex_Re_add [simp]: "Re (x + y) = Re x + Re y"
-  by (simp add: complex_add_def)
-
-lemma complex_Im_add [simp]: "Im (x + y) = Im x + Im y"
-  by (simp add: complex_add_def)
-
-lemma complex_minus [simp]:
-  "- (Complex a b) = Complex (- a) (- b)"
-  by (simp add: complex_minus_def)
-
-lemma complex_Re_minus [simp]: "Re (- x) = - Re x"
-  by (simp add: complex_minus_def)
+primcorec uminus_complex where
+  "Re (- x) = - Re x"
+| "Im (- x) = - Im x"
 
-lemma complex_Im_minus [simp]: "Im (- x) = - Im x"
-  by (simp add: complex_minus_def)
-
-lemma complex_diff [simp]:
-  "Complex a b - Complex c d = Complex (a - c) (b - d)"
-  by (simp add: complex_diff_def)
-
-lemma complex_Re_diff [simp]: "Re (x - y) = Re x - Re y"
-  by (simp add: complex_diff_def)
-
-lemma complex_Im_diff [simp]: "Im (x - y) = Im x - Im y"
-  by (simp add: complex_diff_def)
+primcorec minus_complex where
+  "Re (x - y) = Re x - Re y"
+| "Im (x - y) = Im x - Im y"
 
 instance
-  by intro_classes (simp_all add: complex_add_def complex_diff_def)
+  by intro_classes (simp_all add: complex_eq_iff)
 
 end
 
-
 subsection {* Multiplication and Division *}
 
 instantiation complex :: field_inverse_zero
 begin
 
-definition complex_one_def:
-  "1 = Complex 1 0"
-
-definition complex_mult_def:
-  "x * y = Complex (Re x * Re y - Im x * Im y) (Re x * Im y + Im x * Re y)"
-
-definition complex_inverse_def:
-  "inverse x =
-    Complex (Re x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)) (- Im x / ((Re x)\<^sup>2 + (Im x)\<^sup>2))"
-
-definition complex_divide_def:
-  "x / (y\<Colon>complex) = x * inverse y"
-
-lemma Complex_eq_1 [simp]:
-  "Complex a b = 1 \<longleftrightarrow> a = 1 \<and> b = 0"
-  by (simp add: complex_one_def)
-
-lemma Complex_eq_neg_1 [simp]:
-  "Complex a b = - 1 \<longleftrightarrow> a = - 1 \<and> b = 0"
-  by (simp add: complex_one_def)
-
-lemma complex_Re_one [simp]: "Re 1 = 1"
-  by (simp add: complex_one_def)
+primcorec one_complex where
+  "Re 1 = 1"
+| "Im 1 = 0"
 
-lemma complex_Im_one [simp]: "Im 1 = 0"
-  by (simp add: complex_one_def)
-
-lemma complex_mult [simp]:
-  "Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)"
-  by (simp add: complex_mult_def)
-
-lemma complex_Re_mult [simp]: "Re (x * y) = Re x * Re y - Im x * Im y"
-  by (simp add: complex_mult_def)
+primcorec times_complex where
+  "Re (x * y) = Re x * Re y - Im x * Im y"
+| "Im (x * y) = Re x * Im y + Im x * Re y"
 
-lemma complex_Im_mult [simp]: "Im (x * y) = Re x * Im y + Im x * Re y"
-  by (simp add: complex_mult_def)
-
-lemma complex_inverse [simp]:
-  "inverse (Complex a b) = Complex (a / (a\<^sup>2 + b\<^sup>2)) (- b / (a\<^sup>2 + b\<^sup>2))"
-  by (simp add: complex_inverse_def)
+primcorec inverse_complex where
+  "Re (inverse x) = Re x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)"
+| "Im (inverse x) = - Im x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)"
 
-lemma complex_Re_inverse:
-  "Re (inverse x) = Re x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)"
-  by (simp add: complex_inverse_def)
-
-lemma complex_Im_inverse:
-  "Im (inverse x) = - Im x / ((Re x)\<^sup>2 + (Im x)\<^sup>2)"
-  by (simp add: complex_inverse_def)
+definition "x / (y\<Colon>complex) = x * inverse y"
 
 instance
-  by intro_classes (simp_all add: complex_mult_def
-    distrib_left distrib_right right_diff_distrib left_diff_distrib
-    complex_inverse_def complex_divide_def
-    power2_eq_square add_divide_distrib [symmetric]
-    complex_eq_iff)
+  by intro_classes 
+     (simp_all add: complex_eq_iff divide_complex_def
+      distrib_left distrib_right right_diff_distrib left_diff_distrib
+      power2_eq_square add_divide_distrib [symmetric])
 
 end
 
+lemma Re_divide: "Re (x / y) = (Re x * Re y + Im x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2)"
+  unfolding divide_complex_def by (simp add: add_divide_distrib)
 
-subsection {* Numerals and Arithmetic *}
+lemma Im_divide: "Im (x / y) = (Im x * Re y - Re x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2)"
+  unfolding divide_complex_def times_complex.sel inverse_complex.sel
+  by (simp_all add: divide_simps)
 
-lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n"
-  by (induct n) simp_all
+lemma Re_power2: "Re (x ^ 2) = (Re x)^2 - (Im x)^2"
+  by (simp add: power2_eq_square)
 
-lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0"
+lemma Im_power2: "Im (x ^ 2) = 2 * Re x * Im x"
+  by (simp add: power2_eq_square)
+
+lemma Re_power_real: "Im x = 0 \<Longrightarrow> Re (x ^ n) = Re x ^ n "
   by (induct n) simp_all
 
-lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z"
-  by (cases z rule: int_diff_cases) simp
-
-lemma complex_Im_of_int [simp]: "Im (of_int z) = 0"
-  by (cases z rule: int_diff_cases) simp
-
-lemma complex_Re_numeral [simp]: "Re (numeral v) = numeral v"
-  using complex_Re_of_int [of "numeral v"] by simp
-
-lemma complex_Re_neg_numeral [simp]: "Re (- numeral v) = - numeral v"
-  using complex_Re_of_int [of "- numeral v"] by simp
-
-lemma complex_Im_numeral [simp]: "Im (numeral v) = 0"
-  using complex_Im_of_int [of "numeral v"] by simp
-
-lemma complex_Im_neg_numeral [simp]: "Im (- numeral v) = 0"
-  using complex_Im_of_int [of "- numeral v"] by simp
-
-lemma Complex_eq_numeral [simp]:
-  "Complex a b = numeral w \<longleftrightarrow> a = numeral w \<and> b = 0"
-  by (simp add: complex_eq_iff)
-
-lemma Complex_eq_neg_numeral [simp]:
-  "Complex a b = - numeral w \<longleftrightarrow> a = - numeral w \<and> b = 0"
-  by (simp add: complex_eq_iff)
-
+lemma Im_power_real: "Im x = 0 \<Longrightarrow> Im (x ^ n) = 0"
+  by (induct n) simp_all
 
 subsection {* Scalar Multiplication *}
 
 instantiation complex :: real_field
 begin
 
-definition complex_scaleR_def:
-  "scaleR r x = Complex (r * Re x) (r * Im x)"
-
-lemma complex_scaleR [simp]:
-  "scaleR r (Complex a b) = Complex (r * a) (r * b)"
-  unfolding complex_scaleR_def by simp
-
-lemma complex_Re_scaleR [simp]: "Re (scaleR r x) = r * Re x"
-  unfolding complex_scaleR_def by simp
-
-lemma complex_Im_scaleR [simp]: "Im (scaleR r x) = r * Im x"
-  unfolding complex_scaleR_def by simp
+primcorec scaleR_complex where
+  "Re (scaleR r x) = r * Re x"
+| "Im (scaleR r x) = r * Im x"
 
 instance
 proof
@@ -226,55 +129,84 @@
 
 end
 
-
-subsection{* Properties of Embedding from Reals *}
+subsection {* Numerals, Arithmetic, and Embedding from Reals *}
 
 abbreviation complex_of_real :: "real \<Rightarrow> complex"
   where "complex_of_real \<equiv> of_real"
 
 declare [[coercion complex_of_real]]
+declare [[coercion "of_int :: int \<Rightarrow> complex"]]
+declare [[coercion "of_nat :: nat \<Rightarrow> complex"]]
 
-lemma complex_of_real_def: "complex_of_real r = Complex r 0"
-  by (simp add: of_real_def complex_scaleR_def)
+lemma complex_Re_of_nat [simp]: "Re (of_nat n) = of_nat n"
+  by (induct n) simp_all
+
+lemma complex_Im_of_nat [simp]: "Im (of_nat n) = 0"
+  by (induct n) simp_all
+
+lemma complex_Re_of_int [simp]: "Re (of_int z) = of_int z"
+  by (cases z rule: int_diff_cases) simp
+
+lemma complex_Im_of_int [simp]: "Im (of_int z) = 0"
+  by (cases z rule: int_diff_cases) simp
+
+lemma complex_Re_numeral [simp]: "Re (numeral v) = numeral v"
+  using complex_Re_of_int [of "numeral v"] by simp
+
+lemma complex_Im_numeral [simp]: "Im (numeral v) = 0"
+  using complex_Im_of_int [of "numeral v"] by simp
 
 lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z"
-  by (simp add: complex_of_real_def)
+  by (simp add: of_real_def)
 
 lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0"
-  by (simp add: complex_of_real_def)
+  by (simp add: of_real_def)
+
+subsection {* The Complex Number $i$ *}
+
+primcorec "ii" :: complex  ("\<i>") where
+  "Re ii = 0"
+| "Im ii = 1"
 
-lemma Complex_add_complex_of_real [simp]:
-  shows "Complex x y + complex_of_real r = Complex (x+r) y"
-  by (simp add: complex_of_real_def)
+lemma i_squared [simp]: "ii * ii = -1"
+  by (simp add: complex_eq_iff)
+
+lemma power2_i [simp]: "ii\<^sup>2 = -1"
+  by (simp add: power2_eq_square)
 
-lemma complex_of_real_add_Complex [simp]:
-  shows "complex_of_real r + Complex x y = Complex (r+x) y"
-  by (simp add: complex_of_real_def)
+lemma inverse_i [simp]: "inverse ii = - ii"
+  by (rule inverse_unique) simp
+
+lemma divide_i [simp]: "x / ii = - ii * x"
+  by (simp add: divide_complex_def)
 
-lemma Complex_mult_complex_of_real:
-  shows "Complex x y * complex_of_real r = Complex (x*r) (y*r)"
-  by (simp add: complex_of_real_def)
+lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x"
+  by (simp add: mult_assoc [symmetric])
 
-lemma complex_of_real_mult_Complex:
-  shows "complex_of_real r * Complex x y = Complex (r*x) (r*y)"
-  by (simp add: complex_of_real_def)
+lemma Complex_eq[simp]: "Complex a b = a + \<i> * b"
+  by (simp add: complex_eq_iff)
+
+lemma complex_i_not_zero [simp]: "ii \<noteq> 0"
+  by (simp add: complex_eq_iff)
 
-lemma complex_eq_cancel_iff2 [simp]:
-  shows "(Complex x y = complex_of_real xa) = (x = xa & y = 0)"
-  by (simp add: complex_of_real_def)
+lemma complex_i_not_one [simp]: "ii \<noteq> 1"
+  by (simp add: complex_eq_iff)
+
+lemma complex_i_not_numeral [simp]: "ii \<noteq> numeral w"
+  by (simp add: complex_eq_iff)
 
-lemma complex_split_polar:
-     "\<exists>r a. z = complex_of_real r * (Complex (cos a) (sin a))"
+lemma complex_i_not_neg_numeral [simp]: "ii \<noteq> - numeral w"
+  by (simp add: complex_eq_iff)
+
+lemma complex_split_polar: "\<exists>r a. z = complex_of_real r * (cos a + \<i> * sin a)"
   by (simp add: complex_eq_iff polar_Ex)
 
-
 subsection {* Vector Norm *}
 
 instantiation complex :: real_normed_field
 begin
 
-definition complex_norm_def:
-  "norm z = sqrt ((Re z)\<^sup>2 + (Im z)\<^sup>2)"
+definition "norm z = sqrt ((Re z)\<^sup>2 + (Im z)\<^sup>2)"
 
 abbreviation cmod :: "complex \<Rightarrow> real"
   where "cmod \<equiv> norm"
@@ -288,57 +220,60 @@
 definition open_complex_def:
   "open (S :: complex set) \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
 
-lemmas cmod_def = complex_norm_def
-
-lemma complex_norm [simp]: "cmod (Complex x y) = sqrt (x\<^sup>2 + y\<^sup>2)"
-  by (simp add: complex_norm_def)
-
 instance proof
   fix r :: real and x y :: complex and S :: "complex set"
   show "(norm x = 0) = (x = 0)"
-    by (induct x) simp
+    by (simp add: norm_complex_def complex_eq_iff)
   show "norm (x + y) \<le> norm x + norm y"
-    by (induct x, induct y)
-       (simp add: real_sqrt_sum_squares_triangle_ineq)
+    by (simp add: norm_complex_def complex_eq_iff real_sqrt_sum_squares_triangle_ineq)
   show "norm (scaleR r x) = \<bar>r\<bar> * norm x"
-    by (induct x)
-       (simp add: power_mult_distrib distrib_left [symmetric] real_sqrt_mult)
+    by (simp add: norm_complex_def complex_eq_iff power_mult_distrib distrib_left [symmetric] real_sqrt_mult)
   show "norm (x * y) = norm x * norm y"
-    by (induct x, induct y)
-       (simp add: real_sqrt_mult [symmetric] power2_eq_square algebra_simps)
-  show "sgn x = x /\<^sub>R cmod x"
-    by (rule complex_sgn_def)
-  show "dist x y = cmod (x - y)"
-    by (rule dist_complex_def)
-  show "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> S)"
-    by (rule open_complex_def)
-qed
+    by (simp add: norm_complex_def complex_eq_iff real_sqrt_mult [symmetric] power2_eq_square algebra_simps)
+qed (rule complex_sgn_def dist_complex_def open_complex_def)+
 
 end
 
-lemma cmod_unit_one: "cmod (Complex (cos a) (sin a)) = 1"
-  by simp
+lemma norm_ii [simp]: "norm ii = 1"
+  by (simp add: norm_complex_def)
 
-lemma cmod_complex_polar:
-  "cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r"
-  by (simp add: norm_mult)
+lemma cmod_unit_one: "cmod (cos a + \<i> * sin a) = 1"
+  by (simp add: norm_complex_def)
+
+lemma cmod_complex_polar: "cmod (r * (cos a + \<i> * sin a)) = \<bar>r\<bar>"
+  by (simp add: norm_mult cmod_unit_one)
 
 lemma complex_Re_le_cmod: "Re x \<le> cmod x"
-  unfolding complex_norm_def
+  unfolding norm_complex_def
   by (rule real_sqrt_sum_squares_ge1)
 
 lemma complex_mod_minus_le_complex_mod: "- cmod x \<le> cmod x"
-  by (rule order_trans [OF _ norm_ge_zero], simp)
+  by (rule order_trans [OF _ norm_ge_zero]) simp
 
-lemma complex_mod_triangle_ineq2: "cmod(b + a) - cmod b \<le> cmod a"
-  by (rule ord_le_eq_trans [OF norm_triangle_ineq2], simp)
+lemma complex_mod_triangle_ineq2: "cmod (b + a) - cmod b \<le> cmod a"
+  by (rule ord_le_eq_trans [OF norm_triangle_ineq2]) simp
 
 lemma abs_Re_le_cmod: "\<bar>Re x\<bar> \<le> cmod x"
-  by (cases x) simp
+  by (simp add: norm_complex_def)
 
 lemma abs_Im_le_cmod: "\<bar>Im x\<bar> \<le> cmod x"
-  by (cases x) simp
+  by (simp add: norm_complex_def)
+
+lemma cmod_eq_Re: "Im z = 0 \<Longrightarrow> cmod z = \<bar>Re z\<bar>"
+  by (simp add: norm_complex_def)
+
+lemma cmod_eq_Im: "Re z = 0 \<Longrightarrow> cmod z = \<bar>Im z\<bar>"
+  by (simp add: norm_complex_def)
 
+lemma cmod_power2: "cmod z ^ 2 = (Re z)^2 + (Im z)^2"
+  by (simp add: norm_complex_def)
+
+lemma cmod_plus_Re_le_0_iff: "cmod z + Re z \<le> 0 \<longleftrightarrow> Re z = - cmod z"
+  using abs_Re_le_cmod[of z] by auto
+
+lemma Im_eq_0: "\<bar>Re z\<bar> = cmod z \<Longrightarrow> Im z = 0"
+  by (subst (asm) power_eq_iff_eq_base[symmetric, where n=2])
+     (auto simp add: norm_complex_def)
 
 lemma abs_sqrt_wlog:
   fixes x::"'a::linordered_idom"
@@ -346,7 +281,7 @@
 by (metis abs_ge_zero assms power2_abs)
 
 lemma complex_abs_le_norm: "\<bar>Re z\<bar> + \<bar>Im z\<bar> \<le> sqrt 2 * norm z"
-  unfolding complex_norm_def
+  unfolding norm_complex_def
   apply (rule abs_sqrt_wlog [where x="Re z"])
   apply (rule abs_sqrt_wlog [where x="Im z"])
   apply (rule power2_le_imp_le)
@@ -369,10 +304,10 @@
 subsection {* Completeness of the Complexes *}
 
 lemma bounded_linear_Re: "bounded_linear Re"
-  by (rule bounded_linear_intro [where K=1], simp_all add: complex_norm_def)
+  by (rule bounded_linear_intro [where K=1], simp_all add: norm_complex_def)
 
 lemma bounded_linear_Im: "bounded_linear Im"
-  by (rule bounded_linear_intro [where K=1], simp_all add: complex_norm_def)
+  by (rule bounded_linear_intro [where K=1], simp_all add: norm_complex_def)
 
 lemmas Cauchy_Re = bounded_linear.Cauchy [OF bounded_linear_Re]
 lemmas Cauchy_Im = bounded_linear.Cauchy [OF bounded_linear_Im]
@@ -390,127 +325,41 @@
 lemmas sums_Im = bounded_linear.sums [OF bounded_linear_Im]
 
 lemma tendsto_Complex [tendsto_intros]:
-  assumes "(f ---> a) F" and "(g ---> b) F"
-  shows "((\<lambda>x. Complex (f x) (g x)) ---> Complex a b) F"
-proof (rule tendstoI)
-  fix r :: real assume "0 < r"
-  hence "0 < r / sqrt 2" by simp
-  have "eventually (\<lambda>x. dist (f x) a < r / sqrt 2) F"
-    using `(f ---> a) F` and `0 < r / sqrt 2` by (rule tendstoD)
-  moreover
-  have "eventually (\<lambda>x. dist (g x) b < r / sqrt 2) F"
-    using `(g ---> b) F` and `0 < r / sqrt 2` by (rule tendstoD)
-  ultimately
-  show "eventually (\<lambda>x. dist (Complex (f x) (g x)) (Complex a b) < r) F"
-    by (rule eventually_elim2)
-       (simp add: dist_norm real_sqrt_sum_squares_less)
-qed
-
+  "(f ---> a) F \<Longrightarrow> (g ---> b) F \<Longrightarrow> ((\<lambda>x. Complex (f x) (g x)) ---> Complex a b) F"
+  by (auto intro!: tendsto_intros)
 
 lemma tendsto_complex_iff:
   "(f ---> x) F \<longleftrightarrow> (((\<lambda>x. Re (f x)) ---> Re x) F \<and> ((\<lambda>x. Im (f x)) ---> Im x) F)"
-proof -
-  have f: "f = (\<lambda>x. Complex (Re (f x)) (Im (f x)))" and x: "x = Complex (Re x) (Im x)"
-    by simp_all
-  show ?thesis
-    apply (subst f)
-    apply (subst x)
-    apply (intro iffI tendsto_Complex conjI)
-    apply (simp_all add: tendsto_Re tendsto_Im)
-    done
-qed
+proof safe
+  assume "((\<lambda>x. Re (f x)) ---> Re x) F" "((\<lambda>x. Im (f x)) ---> Im x) F"
+  from tendsto_Complex[OF this] show "(f ---> x) F"
+    unfolding complex.collapse .
+qed (auto intro: tendsto_intros)
 
 instance complex :: banach
 proof
   fix X :: "nat \<Rightarrow> complex"
   assume X: "Cauchy X"
-  from Cauchy_Re [OF X] have 1: "(\<lambda>n. Re (X n)) ----> lim (\<lambda>n. Re (X n))"
-    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
-  from Cauchy_Im [OF X] have 2: "(\<lambda>n. Im (X n)) ----> lim (\<lambda>n. Im (X n))"
-    by (simp add: Cauchy_convergent_iff convergent_LIMSEQ_iff)
-  have "X ----> Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))"
-    using tendsto_Complex [OF 1 2] by simp
-  thus "convergent X"
-    by (rule convergentI)
+  then have "(\<lambda>n. Complex (Re (X n)) (Im (X n))) ----> Complex (lim (\<lambda>n. Re (X n))) (lim (\<lambda>n. Im (X n)))"
+    by (intro tendsto_Complex convergent_LIMSEQ_iff[THEN iffD1] Cauchy_convergent_iff[THEN iffD1] Cauchy_Re Cauchy_Im)
+  then show "convergent X"
+    unfolding complex.collapse by (rule convergentI)
 qed
 
 declare
   DERIV_power[where 'a=complex, unfolded of_nat_def[symmetric], derivative_intros]
 
-
-subsection {* The Complex Number $i$ *}
-
-definition "ii" :: complex  ("\<i>")
-  where i_def: "ii \<equiv> Complex 0 1"
-
-lemma complex_Re_i [simp]: "Re ii = 0"
-  by (simp add: i_def)
-
-lemma complex_Im_i [simp]: "Im ii = 1"
-  by (simp add: i_def)
-
-lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 \<and> y = 1)"
-  by (simp add: i_def)
-
-lemma norm_ii [simp]: "norm ii = 1"
-  by (simp add: i_def)
-
-lemma complex_i_not_zero [simp]: "ii \<noteq> 0"
-  by (simp add: complex_eq_iff)
-
-lemma complex_i_not_one [simp]: "ii \<noteq> 1"
-  by (simp add: complex_eq_iff)
-
-lemma complex_i_not_numeral [simp]: "ii \<noteq> numeral w"
-  by (simp add: complex_eq_iff)
-
-lemma complex_i_not_neg_numeral [simp]: "ii \<noteq> - numeral w"
-  by (simp add: complex_eq_iff)
-
-lemma i_mult_Complex [simp]: "ii * Complex a b = Complex (- b) a"
-  by (simp add: complex_eq_iff)
-
-lemma Complex_mult_i [simp]: "Complex a b * ii = Complex (- b) a"
-  by (simp add: complex_eq_iff)
-
-lemma i_complex_of_real [simp]: "ii * complex_of_real r = Complex 0 r"
-  by (simp add: i_def complex_of_real_def)
-
-lemma complex_of_real_i [simp]: "complex_of_real r * ii = Complex 0 r"
-  by (simp add: i_def complex_of_real_def)
-
-lemma i_squared [simp]: "ii * ii = -1"
-  by (simp add: i_def)
-
-lemma power2_i [simp]: "ii\<^sup>2 = -1"
-  by (simp add: power2_eq_square)
-
-lemma inverse_i [simp]: "inverse ii = - ii"
-  by (rule inverse_unique, simp)
-
-lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x"
-  by (simp add: mult_assoc [symmetric])
-
-
 subsection {* Complex Conjugation *}
 
-definition cnj :: "complex \<Rightarrow> complex" where
-  "cnj z = Complex (Re z) (- Im z)"
-
-lemma complex_cnj [simp]: "cnj (Complex a b) = Complex a (- b)"
-  by (simp add: cnj_def)
-
-lemma complex_Re_cnj [simp]: "Re (cnj x) = Re x"
-  by (simp add: cnj_def)
-
-lemma complex_Im_cnj [simp]: "Im (cnj x) = - Im x"
-  by (simp add: cnj_def)
+primcorec cnj :: "complex \<Rightarrow> complex" where
+  "Re (cnj z) = Re z"
+| "Im (cnj z) = - Im z"
 
 lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)"
   by (simp add: complex_eq_iff)
 
 lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z"
-  by (simp add: cnj_def)
+  by (simp add: complex_eq_iff)
 
 lemma complex_cnj_zero [simp]: "cnj 0 = 0"
   by (simp add: complex_eq_iff)
@@ -518,35 +367,35 @@
 lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)"
   by (simp add: complex_eq_iff)
 
-lemma complex_cnj_add: "cnj (x + y) = cnj x + cnj y"
+lemma complex_cnj_add [simp]: "cnj (x + y) = cnj x + cnj y"
   by (simp add: complex_eq_iff)
 
-lemma cnj_setsum: "cnj (setsum f s) = (\<Sum>x\<in>s. cnj (f x))"
-  by (induct s rule: infinite_finite_induct) (auto simp: complex_cnj_add)
+lemma cnj_setsum [simp]: "cnj (setsum f s) = (\<Sum>x\<in>s. cnj (f x))"
+  by (induct s rule: infinite_finite_induct) auto
 
-lemma complex_cnj_diff: "cnj (x - y) = cnj x - cnj y"
+lemma complex_cnj_diff [simp]: "cnj (x - y) = cnj x - cnj y"
   by (simp add: complex_eq_iff)
 
-lemma complex_cnj_minus: "cnj (- x) = - cnj x"
+lemma complex_cnj_minus [simp]: "cnj (- x) = - cnj x"
   by (simp add: complex_eq_iff)
 
 lemma complex_cnj_one [simp]: "cnj 1 = 1"
   by (simp add: complex_eq_iff)
 
-lemma complex_cnj_mult: "cnj (x * y) = cnj x * cnj y"
+lemma complex_cnj_mult [simp]: "cnj (x * y) = cnj x * cnj y"
   by (simp add: complex_eq_iff)
 
-lemma cnj_setprod: "cnj (setprod f s) = (\<Prod>x\<in>s. cnj (f x))"
-  by (induct s rule: infinite_finite_induct) (auto simp: complex_cnj_mult)
+lemma cnj_setprod [simp]: "cnj (setprod f s) = (\<Prod>x\<in>s. cnj (f x))"
+  by (induct s rule: infinite_finite_induct) auto
 
-lemma complex_cnj_inverse: "cnj (inverse x) = inverse (cnj x)"
-  by (simp add: complex_inverse_def)
+lemma complex_cnj_inverse [simp]: "cnj (inverse x) = inverse (cnj x)"
+  by (simp add: complex_eq_iff)
 
-lemma complex_cnj_divide: "cnj (x / y) = cnj x / cnj y"
-  by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse)
+lemma complex_cnj_divide [simp]: "cnj (x / y) = cnj x / cnj y"
+  by (simp add: divide_complex_def)
 
-lemma complex_cnj_power: "cnj (x ^ n) = cnj x ^ n"
-  by (induct n, simp_all add: complex_cnj_mult)
+lemma complex_cnj_power [simp]: "cnj (x ^ n) = cnj x ^ n"
+  by (induct n) simp_all
 
 lemma complex_cnj_of_nat [simp]: "cnj (of_nat n) = of_nat n"
   by (simp add: complex_eq_iff)
@@ -560,11 +409,11 @@
 lemma complex_cnj_neg_numeral [simp]: "cnj (- numeral w) = - numeral w"
   by (simp add: complex_eq_iff)
 
-lemma complex_cnj_scaleR: "cnj (scaleR r x) = scaleR r (cnj x)"
+lemma complex_cnj_scaleR [simp]: "cnj (scaleR r x) = scaleR r (cnj x)"
   by (simp add: complex_eq_iff)
 
 lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z"
-  by (simp add: complex_norm_def)
+  by (simp add: norm_complex_def)
 
 lemma complex_cnj_complex_of_real [simp]: "cnj (of_real x) = of_real x"
   by (simp add: complex_eq_iff)
@@ -585,7 +434,7 @@
   by (simp add: norm_mult power2_eq_square)
 
 lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))"
-  by (simp add: cmod_def power2_eq_square)
+  by (simp add: norm_complex_def power2_eq_square)
 
 lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0"
   by simp
@@ -601,70 +450,46 @@
 lemmas has_derivative_cnj [simp, derivative_intros] = bounded_linear.has_derivative [OF bounded_linear_cnj]
 
 lemma lim_cnj: "((\<lambda>x. cnj(f x)) ---> cnj l) F \<longleftrightarrow> (f ---> l) F"
-  by (simp add: tendsto_iff dist_complex_def Complex.complex_cnj_diff [symmetric])
+  by (simp add: tendsto_iff dist_complex_def complex_cnj_diff [symmetric] del: complex_cnj_diff)
 
 lemma sums_cnj: "((\<lambda>x. cnj(f x)) sums cnj l) \<longleftrightarrow> (f sums l)"
-  by (simp add: sums_def lim_cnj cnj_setsum [symmetric])
+  by (simp add: sums_def lim_cnj cnj_setsum [symmetric] del: cnj_setsum)
 
 
 subsection{*Basic Lemmas*}
 
 lemma complex_eq_0: "z=0 \<longleftrightarrow> (Re z)\<^sup>2 + (Im z)\<^sup>2 = 0"
-  by (metis complex_Im_zero complex_Re_zero complex_eqI sum_power2_eq_zero_iff)
+  by (metis zero_complex.sel complex_eqI sum_power2_eq_zero_iff)
 
 lemma complex_neq_0: "z\<noteq>0 \<longleftrightarrow> (Re z)\<^sup>2 + (Im z)\<^sup>2 > 0"
-by (metis complex_eq_0 less_numeral_extra(3) sum_power2_gt_zero_iff)
+  by (metis complex_eq_0 less_numeral_extra(3) sum_power2_gt_zero_iff)
 
 lemma complex_norm_square: "of_real ((norm z)\<^sup>2) = z * cnj z"
-apply (cases z, auto)
-by (metis complex_of_real_def of_real_add of_real_power power2_eq_square)
+by (cases z)
+   (auto simp: complex_eq_iff norm_complex_def power2_eq_square[symmetric] of_real_power[symmetric]
+         simp del: of_real_power)
 
-lemma complex_div_eq_0: 
-    "(Re(a / b) = 0 \<longleftrightarrow> Re(a * cnj b) = 0) & (Im(a / b) = 0 \<longleftrightarrow> Im(a * cnj b) = 0)"
-proof (cases "b=0")
-  case True then show ?thesis by auto
+lemma re_complex_div_eq_0: "Re (a / b) = 0 \<longleftrightarrow> Re (a * cnj b) = 0"
+  by (auto simp add: Re_divide)
+  
+lemma im_complex_div_eq_0: "Im (a / b) = 0 \<longleftrightarrow> Im (a * cnj b) = 0"
+  by (auto simp add: Im_divide)
+
+lemma complex_div_gt_0: 
+  "(Re (a / b) > 0 \<longleftrightarrow> Re (a * cnj b) > 0) \<and> (Im (a / b) > 0 \<longleftrightarrow> Im (a * cnj b) > 0)"
+proof cases
+  assume "b = 0" then show ?thesis by auto
 next
-  case False
-  show ?thesis
-  proof (cases b)
-    case (Complex x y)
-    then have "x\<^sup>2 + y\<^sup>2 > 0"
-      by (metis Complex_eq_0 False sum_power2_gt_zero_iff)
-    then have "!!u v. u / (x\<^sup>2 + y\<^sup>2) + v / (x\<^sup>2 + y\<^sup>2) = (u + v) / (x\<^sup>2 + y\<^sup>2)"
-      by (metis add_divide_distrib)
-    with Complex False show ?thesis
-      by (auto simp: complex_divide_def)
-  qed
+  assume "b \<noteq> 0"
+  then have "0 < (Re b)\<^sup>2 + (Im b)\<^sup>2"
+    by (simp add: complex_eq_iff sum_power2_gt_zero_iff)
+  then show ?thesis
+    by (simp add: Re_divide Im_divide zero_less_divide_iff)
 qed
 
-lemma re_complex_div_eq_0: "Re(a / b) = 0 \<longleftrightarrow> Re(a * cnj b) = 0"
-  and im_complex_div_eq_0: "Im(a / b) = 0 \<longleftrightarrow> Im(a * cnj b) = 0"
-using complex_div_eq_0 by auto
-
-
-lemma complex_div_gt_0: 
-    "(Re(a / b) > 0 \<longleftrightarrow> Re(a * cnj b) > 0) & (Im(a / b) > 0 \<longleftrightarrow> Im(a * cnj b) > 0)"
-proof (cases "b=0")
-  case True then show ?thesis by auto
-next
-  case False
-  show ?thesis
-  proof (cases b)
-    case (Complex x y)
-    then have "x\<^sup>2 + y\<^sup>2 > 0"
-      by (metis Complex_eq_0 False sum_power2_gt_zero_iff)
-    moreover have "!!u v. u / (x\<^sup>2 + y\<^sup>2) + v / (x\<^sup>2 + y\<^sup>2) = (u + v) / (x\<^sup>2 + y\<^sup>2)"
-      by (metis add_divide_distrib)
-    ultimately show ?thesis using Complex False `0 < x\<^sup>2 + y\<^sup>2`
-      apply (simp add: complex_divide_def  zero_less_divide_iff less_divide_eq)
-      apply (metis less_divide_eq mult_zero_left diff_conv_add_uminus minus_divide_left)
-      done
-  qed
-qed
-
-lemma re_complex_div_gt_0: "Re(a / b) > 0 \<longleftrightarrow> Re(a * cnj b) > 0"
-  and im_complex_div_gt_0: "Im(a / b) > 0 \<longleftrightarrow> Im(a * cnj b) > 0"
-using complex_div_gt_0 by auto
+lemma re_complex_div_gt_0: "Re (a / b) > 0 \<longleftrightarrow> Re (a * cnj b) > 0"
+  and im_complex_div_gt_0: "Im (a / b) > 0 \<longleftrightarrow> Im (a * cnj b) > 0"
+  using complex_div_gt_0 by auto
 
 lemma re_complex_div_ge_0: "Re(a / b) \<ge> 0 \<longleftrightarrow> Re(a * cnj b) \<ge> 0"
   by (metis le_less re_complex_div_eq_0 re_complex_div_gt_0)
@@ -684,17 +509,17 @@
 lemma im_complex_div_le_0: "Im(a / b) \<le> 0 \<longleftrightarrow> Im(a * cnj b) \<le> 0"
   by (metis im_complex_div_gt_0 not_le)
 
-lemma Re_setsum: "Re(setsum f s) = setsum (%x. Re(f x)) s"
+lemma Re_setsum[simp]: "Re (setsum f s) = (\<Sum>x\<in>s. Re (f x))"
   by (induct s rule: infinite_finite_induct) auto
 
-lemma Im_setsum: "Im(setsum f s) = setsum (%x. Im(f x)) s"
+lemma Im_setsum[simp]: "Im (setsum f s) = (\<Sum>x\<in>s. Im(f x))"
   by (induct s rule: infinite_finite_induct) auto
 
 lemma sums_complex_iff: "f sums x \<longleftrightarrow> ((\<lambda>x. Re (f x)) sums Re x) \<and> ((\<lambda>x. Im (f x)) sums Im x)"
   unfolding sums_def tendsto_complex_iff Im_setsum Re_setsum ..
   
 lemma summable_complex_iff: "summable f \<longleftrightarrow> summable (\<lambda>x. Re (f x)) \<and>  summable (\<lambda>x. Im (f x))"
-  unfolding summable_def sums_complex_iff[abs_def] by (metis Im.simps Re.simps)
+  unfolding summable_def sums_complex_iff[abs_def] by (metis complex.sel)
 
 lemma summable_complex_of_real [simp]: "summable (\<lambda>n. complex_of_real (f n)) \<longleftrightarrow> summable f"
   unfolding summable_complex_iff by simp
@@ -705,30 +530,14 @@
 lemma summable_Im: "summable f \<Longrightarrow> summable (\<lambda>x. Im (f x))"
   unfolding summable_complex_iff by blast
 
-lemma Complex_setsum': "setsum (%x. Complex (f x) 0) s = Complex (setsum f s) 0"
-  by (induct s rule: infinite_finite_induct) auto
-
-lemma Complex_setsum: "Complex (setsum f s) 0 = setsum (%x. Complex (f x) 0) s"
-  by (metis Complex_setsum')
-
-lemma of_real_setsum: "of_real (setsum f s) = setsum (%x. of_real(f x)) s"
-  by (induct s rule: infinite_finite_induct) auto
-
-lemma of_real_setprod: "of_real (setprod f s) = setprod (%x. of_real(f x)) s"
-  by (induct s rule: infinite_finite_induct) auto
+lemma complex_is_Real_iff: "z \<in> \<real> \<longleftrightarrow> Im z = 0"
+  by (auto simp: Reals_def complex_eq_iff)
 
 lemma Reals_cnj_iff: "z \<in> \<real> \<longleftrightarrow> cnj z = z"
-by (metis Reals_cases Reals_of_real complex.exhaust complex.inject complex_cnj 
-          complex_of_real_def equal_neg_zero)
-
-lemma Complex_in_Reals: "Complex x 0 \<in> \<real>"
-  by (metis Reals_of_real complex_of_real_def)
+  by (auto simp: complex_is_Real_iff complex_eq_iff)
 
 lemma in_Reals_norm: "z \<in> \<real> \<Longrightarrow> norm(z) = abs(Re z)"
-  by (metis Re_complex_of_real Reals_cases norm_of_real)
-
-lemma complex_is_Real_iff: "z \<in> \<real> \<longleftrightarrow> Im z = 0"
-  by (metis Complex_in_Reals Im_complex_of_real Reals_cases complex_surj)
+  by (simp add: complex_is_Real_iff norm_complex_def)
 
 lemma series_comparison_complex:
   fixes f:: "nat \<Rightarrow> 'a::banach"
@@ -753,20 +562,15 @@
 
 subsubsection {* $\cos \theta + i \sin \theta$ *}
 
-definition cis :: "real \<Rightarrow> complex" where
-  "cis a = Complex (cos a) (sin a)"
-
-lemma Re_cis [simp]: "Re (cis a) = cos a"
-  by (simp add: cis_def)
-
-lemma Im_cis [simp]: "Im (cis a) = sin a"
-  by (simp add: cis_def)
+primcorec cis :: "real \<Rightarrow> complex" where
+  "Re (cis a) = cos a"
+| "Im (cis a) = sin a"
 
 lemma cis_zero [simp]: "cis 0 = 1"
-  by (simp add: cis_def)
+  by (simp add: complex_eq_iff)
 
 lemma norm_cis [simp]: "norm (cis a) = 1"
-  by (simp add: cis_def)
+  by (simp add: norm_complex_def)
 
 lemma sgn_cis [simp]: "sgn (cis a) = cis a"
   by (simp add: sgn_div_norm)
@@ -775,16 +579,16 @@
   by (metis norm_cis norm_zero zero_neq_one)
 
 lemma cis_mult: "cis a * cis b = cis (a + b)"
-  by (simp add: cis_def cos_add sin_add)
+  by (simp add: complex_eq_iff cos_add sin_add)
 
 lemma DeMoivre: "(cis a) ^ n = cis (real n * a)"
   by (induct n, simp_all add: real_of_nat_Suc algebra_simps cis_mult)
 
 lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)"
-  by (simp add: cis_def)
+  by (simp add: complex_eq_iff)
 
 lemma cis_divide: "cis a / cis b = cis (a - b)"
-  by (simp add: complex_divide_def cis_mult)
+  by (simp add: divide_complex_def cis_mult)
 
 lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)"
   by (auto simp add: DeMoivre)
@@ -792,9 +596,12 @@
 lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)"
   by (auto simp add: DeMoivre)
 
+lemma cis_pi: "cis pi = -1"
+  by (simp add: complex_eq_iff)
+
 subsubsection {* $r(\cos \theta + i \sin \theta)$ *}
 
-definition rcis :: "[real, real] \<Rightarrow> complex" where
+definition rcis :: "real \<Rightarrow> real \<Rightarrow> complex" where
   "rcis r a = complex_of_real r * cis a"
 
 lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a"
@@ -838,26 +645,24 @@
 abbreviation expi :: "complex \<Rightarrow> complex"
   where "expi \<equiv> exp"
 
-lemma cis_conv_exp: "cis b = exp (Complex 0 b)"
-proof (rule complex_eqI)
-  { fix n have "Complex 0 b ^ n =
-    real (fact n) *\<^sub>R Complex (cos_coeff n * b ^ n) (sin_coeff n * b ^ n)"
-      apply (induct n)
-      apply (simp add: cos_coeff_def sin_coeff_def)
-      apply (simp add: sin_coeff_Suc cos_coeff_Suc del: mult_Suc)
-      done } note * = this
-  show "Re (cis b) = Re (exp (Complex 0 b))"
-    unfolding exp_def cis_def cos_def
-    by (subst bounded_linear.suminf[OF bounded_linear_Re summable_exp_generic],
-      simp add: * mult_assoc [symmetric])
-  show "Im (cis b) = Im (exp (Complex 0 b))"
-    unfolding exp_def cis_def sin_def
-    by (subst bounded_linear.suminf[OF bounded_linear_Im summable_exp_generic],
-      simp add: * mult_assoc [symmetric])
+lemma cis_conv_exp: "cis b = exp (\<i> * b)"
+proof -
+  { fix n :: nat
+    have "\<i> ^ n = fact n *\<^sub>R (cos_coeff n + \<i> * sin_coeff n)"
+      by (induct n)
+         (simp_all add: sin_coeff_Suc cos_coeff_Suc complex_eq_iff Re_divide Im_divide field_simps
+                        power2_eq_square real_of_nat_Suc add_nonneg_eq_0_iff
+                        real_of_nat_def[symmetric])
+    then have "(\<i> * complex_of_real b) ^ n /\<^sub>R fact n =
+        of_real (cos_coeff n * b^n) + \<i> * of_real (sin_coeff n * b^n)"
+      by (simp add: field_simps) }
+  then show ?thesis
+    by (auto simp add: cis.ctr exp_def simp del: of_real_mult
+             intro!: sums_unique sums_add sums_mult sums_of_real sin_converges cos_converges)
 qed
 
-lemma expi_def: "expi z = complex_of_real (exp (Re z)) * cis (Im z)"
-  unfolding cis_conv_exp exp_of_real [symmetric] mult_exp_exp by simp
+lemma expi_def: "expi z = exp (Re z) * cis (Im z)"
+  unfolding cis_conv_exp exp_of_real [symmetric] mult_exp_exp by (cases z) simp
 
 lemma Re_exp: "Re (exp z) = exp (Re z) * cos (Im z)"
   unfolding expi_def by simp
@@ -872,7 +677,7 @@
 done
 
 lemma expi_two_pi_i [simp]: "expi((2::complex) * complex_of_real pi * ii) = 1"
-  by (simp add: expi_def cis_def)
+  by (simp add: expi_def complex_eq_iff)
 
 subsubsection {* Complex argument *}
 
@@ -882,15 +687,6 @@
 lemma arg_zero: "arg 0 = 0"
   by (simp add: arg_def)
 
-lemma of_nat_less_of_int_iff: (* TODO: move *)
-  "(of_nat n :: 'a::linordered_idom) < of_int x \<longleftrightarrow> int n < x"
-  by (metis of_int_of_nat_eq of_int_less_iff)
-
-lemma real_of_nat_less_numeral_iff [simp]: (* TODO: move *)
-  "real (n::nat) < numeral w \<longleftrightarrow> n < numeral w"
-  using of_nat_less_of_int_iff [of n "numeral w", where 'a=real]
-  by (simp add: real_of_nat_def zless_nat_eq_int_zless [symmetric])
-
 lemma arg_unique:
   assumes "sgn z = cis x" and "-pi < x" and "x \<le> pi"
   shows "arg z = x"
@@ -923,13 +719,12 @@
   def b \<equiv> "if 0 < r then a else a + pi"
   have b: "sgn z = cis b"
     unfolding z b_def rcis_def using `r \<noteq> 0`
-    by (simp add: of_real_def sgn_scaleR sgn_if, simp add: cis_def)
+    by (simp add: of_real_def sgn_scaleR sgn_if complex_eq_iff)
   have cis_2pi_nat: "\<And>n. cis (2 * pi * real_of_nat n) = 1"
-    by (induct_tac n, simp_all add: distrib_left cis_mult [symmetric],
-      simp add: cis_def)
+    by (induct_tac n) (simp_all add: distrib_left cis_mult [symmetric] complex_eq_iff)
   have cis_2pi_int: "\<And>x. cis (2 * pi * real_of_int x) = 1"
-    by (case_tac x rule: int_diff_cases,
-      simp add: right_diff_distrib cis_divide [symmetric] cis_2pi_nat)
+    by (case_tac x rule: int_diff_cases)
+       (simp add: right_diff_distrib cis_divide [symmetric] cis_2pi_nat)
   def c \<equiv> "b - 2*pi * of_int \<lceil>(b - pi) / (2*pi)\<rceil>"
   have "sgn z = cis c"
     unfolding b c_def
@@ -941,22 +736,136 @@
 qed
 
 lemma arg_bounded: "- pi < arg z \<and> arg z \<le> pi"
-  by (cases "z = 0", simp_all add: arg_zero arg_correct)
+  by (cases "z = 0") (simp_all add: arg_zero arg_correct)
 
 lemma cis_arg: "z \<noteq> 0 \<Longrightarrow> cis (arg z) = sgn z"
   by (simp add: arg_correct)
 
 lemma rcis_cmod_arg: "rcis (cmod z) (arg z) = z"
-  by (cases "z = 0", simp_all add: rcis_def cis_arg sgn_div_norm of_real_def)
+  by (cases "z = 0") (simp_all add: rcis_def cis_arg sgn_div_norm of_real_def)
+
+lemma cos_arg_i_mult_zero [simp]: "y \<noteq> 0 \<Longrightarrow> Re y = 0 \<Longrightarrow> cos (arg y) = 0"
+  using cis_arg [of y] by (simp add: complex_eq_iff)
+
+subsection {* Square root of complex numbers *}
+
+primcorec csqrt :: "complex \<Rightarrow> complex" where
+  "Re (csqrt z) = sqrt ((cmod z + Re z) / 2)"
+| "Im (csqrt z) = (if Im z = 0 then 1 else sgn (Im z)) * sqrt ((cmod z - Re z) / 2)"
+
+lemma csqrt_of_real_nonneg [simp]: "Im x = 0 \<Longrightarrow> Re x \<ge> 0 \<Longrightarrow> csqrt x = sqrt (Re x)"
+  by (simp add: complex_eq_iff norm_complex_def)
+
+lemma csqrt_of_real_nonpos [simp]: "Im x = 0 \<Longrightarrow> Re x \<le> 0 \<Longrightarrow> csqrt x = \<i> * sqrt \<bar>Re x\<bar>"
+  by (simp add: complex_eq_iff norm_complex_def)
+
+lemma csqrt_0 [simp]: "csqrt 0 = 0"
+  by simp
+
+lemma csqrt_1 [simp]: "csqrt 1 = 1"
+  by simp
+
+lemma csqrt_ii [simp]: "csqrt \<i> = (1 + \<i>) / sqrt 2"
+  by (simp add: complex_eq_iff Re_divide Im_divide real_sqrt_divide real_div_sqrt)
 
-lemma cos_arg_i_mult_zero [simp]:
-     "y \<noteq> 0 ==> cos (arg(Complex 0 y)) = 0"
-  using cis_arg [of "Complex 0 y"] by (simp add: complex_eq_iff)
+lemma power2_csqrt[algebra]: "(csqrt z)\<^sup>2 = z"
+proof cases
+  assume "Im z = 0" then show ?thesis
+    using real_sqrt_pow2[of "Re z"] real_sqrt_pow2[of "- Re z"]
+    by (cases "0::real" "Re z" rule: linorder_cases)
+       (simp_all add: complex_eq_iff Re_power2 Im_power2 power2_eq_square cmod_eq_Re)
+next
+  assume "Im z \<noteq> 0"
+  moreover
+  have "cmod z * cmod z - Re z * Re z = Im z * Im z"
+    by (simp add: norm_complex_def power2_eq_square)
+  moreover
+  have "\<bar>Re z\<bar> \<le> cmod z"
+    by (simp add: norm_complex_def)
+  ultimately show ?thesis
+    by (simp add: Re_power2 Im_power2 complex_eq_iff real_sgn_eq
+                  field_simps real_sqrt_mult[symmetric] real_sqrt_divide)
+qed
+
+lemma csqrt_eq_0 [simp]: "csqrt z = 0 \<longleftrightarrow> z = 0"
+  by auto (metis power2_csqrt power_eq_0_iff)
+
+lemma csqrt_eq_1 [simp]: "csqrt z = 1 \<longleftrightarrow> z = 1"
+  by auto (metis power2_csqrt power2_eq_1_iff)
+
+lemma csqrt_principal: "0 < Re (csqrt z) \<or> Re (csqrt z) = 0 \<and> 0 \<le> Im (csqrt z)"
+  by (auto simp add: not_less cmod_plus_Re_le_0_iff Im_eq_0)
+
+lemma Re_csqrt: "0 \<le> Re (csqrt z)"
+  by (metis csqrt_principal le_less)
+
+lemma csqrt_square:
+  assumes "0 < Re b \<or> (Re b = 0 \<and> 0 \<le> Im b)"
+  shows "csqrt (b^2) = b"
+proof -
+  have "csqrt (b^2) = b \<or> csqrt (b^2) = - b"
+    unfolding power2_eq_iff[symmetric] by (simp add: power2_csqrt)
+  moreover have "csqrt (b^2) \<noteq> -b \<or> b = 0"
+    using csqrt_principal[of "b ^ 2"] assms by (intro disjCI notI) (auto simp: complex_eq_iff)
+  ultimately show ?thesis
+    by auto
+qed
+
+lemma csqrt_minus [simp]: 
+  assumes "Im x < 0 \<or> (Im x = 0 \<and> 0 \<le> Re x)"
+  shows "csqrt (- x) = \<i> * csqrt x"
+proof -
+  have "csqrt ((\<i> * csqrt x)^2) = \<i> * csqrt x"
+  proof (rule csqrt_square)
+    have "Im (csqrt x) \<le> 0"
+      using assms by (auto simp add: cmod_eq_Re mult_le_0_iff field_simps complex_Re_le_cmod)
+    then show "0 < Re (\<i> * csqrt x) \<or> Re (\<i> * csqrt x) = 0 \<and> 0 \<le> Im (\<i> * csqrt x)"
+      by (auto simp add: Re_csqrt simp del: csqrt.simps)
+  qed
+  also have "(\<i> * csqrt x)^2 = - x"
+    by (simp add: power2_csqrt power_mult_distrib)
+  finally show ?thesis .
+qed
 
 text {* Legacy theorem names *}
 
 lemmas expand_complex_eq = complex_eq_iff
 lemmas complex_Re_Im_cancel_iff = complex_eq_iff
 lemmas complex_equality = complex_eqI
+lemmas cmod_def = norm_complex_def
+lemmas complex_norm_def = norm_complex_def
+lemmas complex_divide_def = divide_complex_def
+
+lemma legacy_Complex_simps:
+  shows Complex_eq_0: "Complex a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0"
+    and complex_add: "Complex a b + Complex c d = Complex (a + c) (b + d)"
+    and complex_minus: "- (Complex a b) = Complex (- a) (- b)"
+    and complex_diff: "Complex a b - Complex c d = Complex (a - c) (b - d)"
+    and Complex_eq_1: "Complex a b = 1 \<longleftrightarrow> a = 1 \<and> b = 0"
+    and Complex_eq_neg_1: "Complex a b = - 1 \<longleftrightarrow> a = - 1 \<and> b = 0"
+    and complex_mult: "Complex a b * Complex c d = Complex (a * c - b * d) (a * d + b * c)"
+    and complex_inverse: "inverse (Complex a b) = Complex (a / (a\<^sup>2 + b\<^sup>2)) (- b / (a\<^sup>2 + b\<^sup>2))"
+    and Complex_eq_numeral: "Complex a b = numeral w \<longleftrightarrow> a = numeral w \<and> b = 0"
+    and Complex_eq_neg_numeral: "Complex a b = - numeral w \<longleftrightarrow> a = - numeral w \<and> b = 0"
+    and complex_scaleR: "scaleR r (Complex a b) = Complex (r * a) (r * b)"
+    and Complex_eq_i: "(Complex x y = ii) = (x = 0 \<and> y = 1)"
+    and i_mult_Complex: "ii * Complex a b = Complex (- b) a"
+    and Complex_mult_i: "Complex a b * ii = Complex (- b) a"
+    and i_complex_of_real: "ii * complex_of_real r = Complex 0 r"
+    and complex_of_real_i: "complex_of_real r * ii = Complex 0 r"
+    and Complex_add_complex_of_real: "Complex x y + complex_of_real r = Complex (x+r) y"
+    and complex_of_real_add_Complex: "complex_of_real r + Complex x y = Complex (r+x) y"
+    and Complex_mult_complex_of_real: "Complex x y * complex_of_real r = Complex (x*r) (y*r)"
+    and complex_of_real_mult_Complex: "complex_of_real r * Complex x y = Complex (r*x) (r*y)"
+    and complex_eq_cancel_iff2: "(Complex x y = complex_of_real xa) = (x = xa & y = 0)"
+    and complex_cn: "cnj (Complex a b) = Complex a (- b)"
+    and Complex_setsum': "setsum (%x. Complex (f x) 0) s = Complex (setsum f s) 0"
+    and Complex_setsum: "Complex (setsum f s) 0 = setsum (%x. Complex (f x) 0) s"
+    and complex_of_real_def: "complex_of_real r = Complex r 0"
+    and complex_norm: "cmod (Complex x y) = sqrt (x\<^sup>2 + y\<^sup>2)"
+  by (simp_all add: norm_complex_def field_simps complex_eq_iff Re_divide Im_divide del: Complex_eq)
+
+lemma Complex_in_Reals: "Complex x 0 \<in> \<real>"
+  by (metis Reals_of_real complex_of_real_def)
 
 end
--- a/src/HOL/Decision_Procs/Approximation.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/Decision_Procs/Approximation.thy	Wed May 07 12:25:35 2014 +0200
@@ -235,8 +235,9 @@
         from xt1(5)[OF `0 \<le> ?E mod 2` this]
         show ?thesis by auto
       qed
-      hence "sqrt (2 powr (?E mod 2)) < sqrt (2 * 2)" by auto
-      hence E_mod_pow: "sqrt (2 powr (?E mod 2)) < 2" unfolding real_sqrt_abs2 by auto
+      hence "sqrt (2 powr (?E mod 2)) < sqrt (2 * 2)"
+        by (auto simp del: real_sqrt_four)
+      hence E_mod_pow: "sqrt (2 powr (?E mod 2)) < 2" by auto
 
       have E_eq: "2 powr ?E = 2 powr (?E div 2 + ?E div 2 + ?E mod 2)" by auto
       have "sqrt (2 powr ?E) = sqrt (2 powr (?E div 2) * 2 powr (?E div 2) * 2 powr (?E mod 2))"
--- a/src/HOL/Int.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/Int.thy	Wed May 07 12:25:35 2014 +0200
@@ -293,6 +293,10 @@
 
 end
 
+lemma of_nat_less_of_int_iff:
+  "(of_nat n::'a::linordered_idom) < of_int x \<longleftrightarrow> int n < x"
+  by (metis of_int_of_nat_eq of_int_less_iff)
+
 lemma of_int_eq_id [simp]: "of_int = id"
 proof
   fix z show "of_int z = id z"
--- a/src/HOL/Library/Extended_Real.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/Library/Extended_Real.thy	Wed May 07 12:25:35 2014 +0200
@@ -1894,7 +1894,7 @@
   by (cases n) (auto dest: natceiling_le intro: natceiling_le_eq[THEN iffD1])
 
 lemma numeral_less_ereal_of_enat_iff[simp]: "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n"
-  by (cases n) (auto simp: real_of_nat_less_iff[symmetric])
+  by (cases n) auto
 
 lemma ereal_of_enat_ge_zero_cancel_iff[simp]: "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n"
   by (cases n) (auto simp: enat_0[symmetric])
--- a/src/HOL/Library/Fundamental_Theorem_Algebra.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/Library/Fundamental_Theorem_Algebra.thy	Wed May 07 12:25:35 2014 +0200
@@ -6,126 +6,12 @@
 imports Polynomial Complex_Main
 begin
 
-subsection {* Square root of complex numbers *}
-
-definition csqrt :: "complex \<Rightarrow> complex"
-where
-  "csqrt z =
-    (if Im z = 0 then
-       if 0 \<le> Re z then Complex (sqrt(Re z)) 0
-       else Complex 0 (sqrt(- Re z))
-     else Complex (sqrt((cmod z + Re z) /2)) ((Im z / abs(Im z)) * sqrt((cmod z - Re z) /2)))"
-
-lemma csqrt[algebra]: "(csqrt z)\<^sup>2 = z"
-proof -
-  obtain x y where xy: "z = Complex x y" by (cases z)
-  {
-    assume y0: "y = 0"
-    {
-      assume x0: "x \<ge> 0"
-      then have ?thesis
-        using y0 xy real_sqrt_pow2[OF x0]
-        by (simp add: csqrt_def power2_eq_square)
-    }
-    moreover
-    {
-      assume "\<not> x \<ge> 0"
-      then have x0: "- x \<ge> 0" by arith
-      then have ?thesis
-        using y0 xy real_sqrt_pow2[OF x0]
-        by (simp add: csqrt_def power2_eq_square)
-    }
-    ultimately have ?thesis by blast
-  }
-  moreover
-  {
-    assume y0: "y \<noteq> 0"
-    {
-      fix x y
-      let ?z = "Complex x y"
-      from abs_Re_le_cmod[of ?z] have tha: "abs x \<le> cmod ?z"
-        by auto
-      then have "cmod ?z - x \<ge> 0" "cmod ?z + x \<ge> 0"
-        by arith+
-      then have "(sqrt (x * x + y * y) + x) / 2 \<ge> 0" "(sqrt (x * x + y * y) - x) / 2 \<ge> 0"
-        by (simp_all add: power2_eq_square)
-    }
-    note th = this
-    have sq4: "\<And>x::real. x\<^sup>2 / 4 = (x / 2)\<^sup>2"
-      by (simp add: power2_eq_square)
-    from th[of x y]
-    have sq4': "sqrt (((sqrt (x * x + y * y) + x)\<^sup>2 / 4)) = (sqrt (x * x + y * y) + x) / 2"
-      "sqrt (((sqrt (x * x + y * y) - x)\<^sup>2 / 4)) = (sqrt (x * x + y * y) - x) / 2"
-      unfolding sq4 by simp_all
-    then have th1: "sqrt ((sqrt (x * x + y * y) + x) * (sqrt (x * x + y * y) + x) / 4) -
-        sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) - x) / 4) = x"
-      unfolding power2_eq_square by simp
-    have "sqrt 4 = sqrt (2\<^sup>2)"
-      by simp
-    then have sqrt4: "sqrt 4 = 2"
-      by (simp only: real_sqrt_abs)
-    have th2: "2 * (y * sqrt ((sqrt (x * x + y * y) - x) * (sqrt (x * x + y * y) + x) / 4)) / \<bar>y\<bar> = y"
-      using iffD2[OF real_sqrt_pow2_iff sum_power2_ge_zero[of x y]] y0
-      unfolding power2_eq_square
-      by (simp add: algebra_simps real_sqrt_divide sqrt4)
-    from y0 xy have ?thesis
-      apply (simp add: csqrt_def power2_eq_square)
-      apply (simp add: real_sqrt_sum_squares_mult_ge_zero[of x y]
-        real_sqrt_pow2[OF th(1)[of x y], unfolded power2_eq_square]
-        real_sqrt_pow2[OF th(2)[of x y], unfolded power2_eq_square]
-        real_sqrt_mult[symmetric])
-      using th1 th2  ..
-  }
-  ultimately show ?thesis by blast
-qed
-
-lemma csqrt_Complex: "x \<ge> 0 \<Longrightarrow> csqrt (Complex x 0) = Complex (sqrt x) 0"
-  by (simp add: csqrt_def)
-
-lemma csqrt_0 [simp]: "csqrt 0 = 0"
-  by (simp add: csqrt_def)
-
-lemma csqrt_1 [simp]: "csqrt 1 = 1"
-  by (simp add: csqrt_def)
-
-lemma csqrt_principal: "0 < Re(csqrt(z)) | Re(csqrt(z)) = 0 & 0 \<le> Im(csqrt(z))"
-proof (cases z)
-  case (Complex x y)
-  then show ?thesis
-    using real_sqrt_sum_squares_ge1 [of "x" y]
-          real_sqrt_sum_squares_ge1 [of "-x" y]
-          real_sqrt_sum_squares_eq_cancel [of x y]
-    apply (auto simp: csqrt_def intro!: Rings.ordered_ring_class.split_mult_pos_le)
-    apply (metis add_commute diff_add_cancel le_add_same_cancel1 real_sqrt_sum_squares_ge1)
-    apply (metis add_commute less_eq_real_def power_minus_Bit0
-            real_0_less_add_iff real_sqrt_sum_squares_eq_cancel)
-    done
-qed
-
-lemma Re_csqrt: "0 \<le> Re(csqrt z)"
-  by (metis csqrt_principal le_less)
-
-lemma csqrt_square: "0 < Re z \<or> Re z = 0 \<and> 0 \<le> Im z \<Longrightarrow> csqrt (z\<^sup>2) = z"
-  using csqrt [of "z\<^sup>2"] csqrt_principal [of "z\<^sup>2"]
-  by (cases z) (auto simp: power2_eq_iff)
-
-lemma csqrt_eq_0 [simp]: "csqrt z = 0 \<longleftrightarrow> z = 0"
-  by auto (metis csqrt power_eq_0_iff)
-
-lemma csqrt_eq_1 [simp]: "csqrt z = 1 \<longleftrightarrow> z = 1"
-  by auto (metis csqrt power2_eq_1_iff)
-
-
 subsection {* More lemmas about module of complex numbers *}
 
-lemma complex_of_real_power: "complex_of_real x ^ n = complex_of_real (x^n)"
-  by (rule of_real_power [symmetric])
-
 text{* The triangle inequality for cmod *}
 lemma complex_mod_triangle_sub: "cmod w \<le> cmod (w + z) + norm z"
   using complex_mod_triangle_ineq2[of "w + z" "-z"] by auto
 
-
 subsection {* Basic lemmas about polynomials *}
 
 lemma poly_bound_exists:
@@ -281,7 +167,7 @@
     with IH[rule_format, of m] obtain z where z: "?P z m"
       by blast
     from z have "?P (csqrt z) n"
-      by (simp add: m power_mult csqrt)
+      by (simp add: m power_mult power2_csqrt)
     then have "\<exists>z. ?P z n" ..
   }
   moreover
@@ -319,7 +205,7 @@
     let ?w = "v / complex_of_real (root n (cmod b))"
     from odd_real_root_pow[OF o, of "cmod b"]
     have th1: "?w ^ n = v^n / complex_of_real (cmod b)"
-      by (simp add: power_divide complex_of_real_power)
+      by (simp add: power_divide of_real_power[symmetric])
     have th2:"cmod (complex_of_real (cmod b) / b) = 1"
       using b by (simp add: norm_divide)
     then have th3: "cmod (complex_of_real (cmod b) / b) \<ge> 0"
@@ -600,21 +486,6 @@
   ultimately show ?thesis by blast
 qed
 
-lemma "(rcis (sqrt (abs r)) (a/2))\<^sup>2 = rcis (abs r) a"
-  unfolding power2_eq_square
-  apply (simp add: rcis_mult)
-  apply (simp add: power2_eq_square[symmetric])
-  done
-
-lemma cispi: "cis pi = -1"
-  by (simp add: cis_def)
-
-lemma "(rcis (sqrt (abs r)) ((pi + a) / 2))\<^sup>2 = rcis (- abs r) a"
-  unfolding power2_eq_square
-  apply (simp add: rcis_mult add_divide_distrib)
-  apply (simp add: power2_eq_square[symmetric] rcis_def cispi cis_mult[symmetric])
-  done
-
 text {* Nonzero polynomial in z goes to infinity as z does. *}
 
 lemma poly_infinity:
--- a/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy	Wed May 07 12:25:35 2014 +0200
@@ -28,6 +28,7 @@
   fixes c :: "'a::real_field"
   shows "of_nat (Suc n) * c / of_nat (fact (Suc n)) = c / of_nat (fact n)"
   by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps)
+
 lemma linear_times:
   fixes c::"'a::real_algebra" shows "linear (\<lambda>x. c * x)"
   by (auto simp: linearI distrib_left)
@@ -260,8 +261,8 @@
 by (metis real_lim_sequentially setsum_in_Reals)
 
 lemma Lim_null_comparison_Re:
-   "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F \<Longrightarrow>  (g ---> 0) F \<Longrightarrow> (f ---> 0) F"
-  by (metis Lim_null_comparison complex_Re_zero tendsto_Re)
+  assumes "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F" "(g ---> 0) F" shows "(f ---> 0) F"
+  by (rule Lim_null_comparison[OF assms(1)] tendsto_eq_intros assms(2))+ simp
 
 subsection{*Holomorphic functions*}
 
--- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy	Wed May 07 12:25:35 2014 +0200
@@ -3716,7 +3716,7 @@
     where b: "\<forall>x\<in>s. 0 < b x \<and> cball x (b x) \<subseteq> s"
     using bchoice[of s "\<lambda>x e. e > 0 \<and> cball x e \<subseteq> s"] by auto
   have "b ` t \<noteq> {}"
-    unfolding i_def using obt by auto
+    using obt by auto
   def i \<equiv> "b ` t"
 
   show "\<exists>e > 0.
--- a/src/HOL/NSA/CLim.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/NSA/CLim.thy	Wed May 07 12:25:35 2014 +0200
@@ -58,12 +58,12 @@
 lemma LIM_cnj:
   fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
   shows "f -- a --> L ==> (%x. cnj (f x)) -- a --> cnj L"
-by (simp add: LIM_eq complex_cnj_diff [symmetric])
+by (simp add: LIM_eq complex_cnj_diff [symmetric] del: complex_cnj_diff)
 
 lemma LIM_cnj_iff:
   fixes f :: "'a::real_normed_vector \<Rightarrow> complex"
   shows "((%x. cnj (f x)) -- a --> cnj L) = (f -- a --> L)"
-by (simp add: LIM_eq complex_cnj_diff [symmetric])
+by (simp add: LIM_eq complex_cnj_diff [symmetric] del: complex_cnj_diff)
 
 lemma starfun_norm: "( *f* (\<lambda>x. norm (f x))) = (\<lambda>x. hnorm (( *f* f) x))"
 by transfer (rule refl)
@@ -148,7 +148,7 @@
 text{*Nonstandard version*}
 lemma NSCDERIV_pow:
      "NSDERIV (%x. x ^ n) x :> complex_of_real (real n) * (x ^ (n - 1))"
-by (simp add: NSDERIV_DERIV_iff)
+by (simp add: NSDERIV_DERIV_iff del: of_real_real_of_nat_eq)
 
 text{*Can't relax the premise @{term "x \<noteq> 0"}: it isn't continuous at zero*}
 lemma NSCDERIV_inverse:
--- a/src/HOL/NSA/NSCA.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/NSA/NSCA.thy	Wed May 07 12:25:35 2014 +0200
@@ -291,10 +291,10 @@
 done
 
 lemma hRe_diff [simp]: "\<And>x y. hRe (x - y) = hRe x - hRe y"
-by transfer (rule complex_Re_diff)
+by transfer simp
 
 lemma hIm_diff [simp]: "\<And>x y. hIm (x - y) = hIm x - hIm y"
-by transfer (rule complex_Im_diff)
+by transfer simp
 
 lemma approx_hRe: "x \<approx> y \<Longrightarrow> hRe x \<approx> hRe y"
 unfolding approx_def by (drule Infinitesimal_hRe) simp
--- a/src/HOL/NSA/NSComplex.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/NSA/NSComplex.thy	Wed May 07 12:25:35 2014 +0200
@@ -129,33 +129,33 @@
 by transfer (rule complex_equality)
 
 lemma hcomplex_hRe_zero [simp]: "hRe 0 = 0"
-by transfer (rule complex_Re_zero)
+by transfer simp
 
 lemma hcomplex_hIm_zero [simp]: "hIm 0 = 0"
-by transfer (rule complex_Im_zero)
+by transfer simp
 
 lemma hcomplex_hRe_one [simp]: "hRe 1 = 1"
-by transfer (rule complex_Re_one)
+by transfer simp
 
 lemma hcomplex_hIm_one [simp]: "hIm 1 = 0"
-by transfer (rule complex_Im_one)
+by transfer simp
 
 
 subsection{*Addition for Nonstandard Complex Numbers*}
 
 lemma hRe_add: "!!x y. hRe(x + y) = hRe(x) + hRe(y)"
-by transfer (rule complex_Re_add)
+by transfer simp
 
 lemma hIm_add: "!!x y. hIm(x + y) = hIm(x) + hIm(y)"
-by transfer (rule complex_Im_add)
+by transfer simp
 
 subsection{*More Minus Laws*}
 
 lemma hRe_minus: "!!z. hRe(-z) = - hRe(z)"
-by transfer (rule complex_Re_minus)
+by transfer (rule uminus_complex.sel)
 
 lemma hIm_minus: "!!z. hIm(-z) = - hIm(z)"
-by transfer (rule complex_Im_minus)
+by transfer (rule uminus_complex.sel)
 
 lemma hcomplex_add_minus_eq_minus:
       "x + y = (0::hcomplex) ==> x = -y"
@@ -212,10 +212,10 @@
 subsection{*HComplex theorems*}
 
 lemma hRe_HComplex [simp]: "!!x y. hRe (HComplex x y) = x"
-by transfer (rule Re)
+by transfer simp
 
 lemma hIm_HComplex [simp]: "!!x y. hIm (HComplex x y) = y"
-by transfer (rule Im)
+by transfer simp
 
 lemma hcomplex_surj [simp]: "!!z. HComplex (hRe z) (hIm z) = z"
 by transfer (rule complex_surj)
@@ -423,7 +423,7 @@
 by transfer (rule Complex_eq_1)
 
 lemma i_eq_HComplex_0_1: "iii = HComplex 0 1"
-by transfer (rule i_def [THEN meta_eq_to_obj_eq])
+by transfer (simp add: complex_eq_iff)
 
 lemma HComplex_eq_i [simp]: "!!x y. (HComplex x y = iii) = (x = 0 & y = 1)"
 by transfer (rule Complex_eq_i)
@@ -447,10 +447,10 @@
 by transfer simp
 
 lemma hcmod_mult_i [simp]: "!!y. hcmod (iii * hcomplex_of_hypreal y) = abs y"
-by transfer simp
+by transfer (simp add: norm_complex_def)
 
 lemma hcmod_mult_i2 [simp]: "!!y. hcmod (hcomplex_of_hypreal y * iii) = abs y"
-by transfer simp
+by transfer (simp add: norm_complex_def)
 
 (*---------------------------------------------------------------------------*)
 (*  harg                                                                     *)
@@ -458,7 +458,7 @@
 
 lemma cos_harg_i_mult_zero [simp]:
      "!!y. y \<noteq> 0 ==> ( *f* cos) (harg(HComplex 0 y)) = 0"
-by transfer (rule cos_arg_i_mult_zero)
+by transfer simp
 
 lemma hcomplex_of_hypreal_zero_iff [simp]:
      "!!y. (hcomplex_of_hypreal y = 0) = (y = 0)"
@@ -469,17 +469,17 @@
 
 lemma complex_split_polar2:
      "\<forall>n. \<exists>r a. (z n) =  complex_of_real r * (Complex (cos a) (sin a))"
-by (blast intro: complex_split_polar)
+by (auto intro: complex_split_polar)
 
 lemma hcomplex_split_polar:
   "!!z. \<exists>r a. z = hcomplex_of_hypreal r * (HComplex(( *f* cos) a)(( *f* sin) a))"
-by transfer (rule complex_split_polar)
+by transfer (simp add: complex_split_polar)
 
 lemma hcis_eq:
    "!!a. hcis a =
     (hcomplex_of_hypreal(( *f* cos) a) +
     iii * hcomplex_of_hypreal(( *f* sin) a))"
-by transfer (simp add: cis_def)
+by transfer (simp add: complex_eq_iff)
 
 lemma hrcis_Ex: "!!z. \<exists>r a. z = hrcis r a"
 by transfer (rule rcis_Ex)
@@ -502,12 +502,12 @@
 
 lemma hcmod_unit_one [simp]:
      "!!a. hcmod (HComplex (( *f* cos) a) (( *f* sin) a)) = 1"
-by transfer (rule cmod_unit_one)
+by transfer (simp add: cmod_unit_one)
 
 lemma hcmod_complex_polar [simp]:
   "!!r a. hcmod (hcomplex_of_hypreal r * HComplex (( *f* cos) a) (( *f* sin) a)) =
       abs r"
-by transfer (rule cmod_complex_polar)
+by transfer (simp add: cmod_complex_polar)
 
 lemma hcmod_hrcis [simp]: "!!r a. hcmod(hrcis r a) = abs r"
 by transfer (rule complex_mod_rcis)
@@ -579,10 +579,10 @@
 by transfer (simp add: rcis_inverse inverse_eq_divide [symmetric])
 
 lemma hRe_hcis [simp]: "!!a. hRe(hcis a) = ( *f* cos) a"
-by transfer (rule Re_cis)
+by transfer simp
 
 lemma hIm_hcis [simp]: "!!a. hIm(hcis a) = ( *f* sin) a"
-by transfer (rule Im_cis)
+by transfer simp
 
 lemma cos_n_hRe_hcis_pow_n: "( *f* cos) (hypreal_of_nat n * a) = hRe(hcis a ^ n)"
 by (simp add: NSDeMoivre)
--- a/src/HOL/NthRoot.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/NthRoot.thy	Wed May 07 12:25:35 2014 +0200
@@ -374,12 +374,18 @@
 lemma real_sqrt_one [simp]: "sqrt 1 = 1"
 unfolding sqrt_def by (rule real_root_one [OF pos2])
 
+lemma real_sqrt_four [simp]: "sqrt 4 = 2"
+  using real_sqrt_abs[of 2] by simp
+
 lemma real_sqrt_minus: "sqrt (- x) = - sqrt x"
 unfolding sqrt_def by (rule real_root_minus)
 
 lemma real_sqrt_mult: "sqrt (x * y) = sqrt x * sqrt y"
 unfolding sqrt_def by (rule real_root_mult)
 
+lemma real_sqrt_mult_self[simp]: "sqrt a * sqrt a = \<bar>a\<bar>"
+  using real_sqrt_abs[of a] unfolding power2_eq_square real_sqrt_mult .
+
 lemma real_sqrt_inverse: "sqrt (inverse x) = inverse (sqrt x)"
 unfolding sqrt_def by (rule real_root_inverse)
 
--- a/src/HOL/Real.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/Real.thy	Wed May 07 12:25:35 2014 +0200
@@ -1555,6 +1555,7 @@
   "real a \<le> (- numeral x::real) ^ n \<longleftrightarrow> a \<le> (- numeral x::int) ^ n"
   unfolding real_of_int_le_iff[symmetric] by simp
 
+
 subsection{*Density of the Reals*}
 
 lemma real_lbound_gt_zero:
@@ -1613,6 +1614,14 @@
 apply (drule_tac [2] real_of_int_less_iff [THEN iffD2], auto)
 done
 
+lemma real_of_nat_less_numeral_iff [simp]:
+  "real (n::nat) < numeral w \<longleftrightarrow> n < numeral w"
+  using real_of_nat_less_iff[of n "numeral w"] by simp
+
+lemma numeral_less_real_of_nat_iff [simp]:
+  "numeral w < real (n::nat) \<longleftrightarrow> numeral w < n"
+  using real_of_nat_less_iff[of "numeral w" n] by simp
+
 lemma numeral_le_real_of_int_iff [simp]:
      "((numeral n) \<le> real (m::int)) = (numeral n \<le> m)"
 by (simp add: linorder_not_less [symmetric])
--- a/src/HOL/Real_Vector_Spaces.thy	Tue May 06 23:35:24 2014 +0200
+++ b/src/HOL/Real_Vector_Spaces.thy	Wed May 07 12:25:35 2014 +0200
@@ -257,6 +257,12 @@
 lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
 by (simp add: of_real_def mult_commute)
 
+lemma of_real_setsum[simp]: "of_real (setsum f s) = (\<Sum>x\<in>s. of_real (f x))"
+  by (induct s rule: infinite_finite_induct) auto
+
+lemma of_real_setprod[simp]: "of_real (setprod f s) = (\<Prod>x\<in>s. of_real (f x))"
+  by (induct s rule: infinite_finite_induct) auto
+
 lemma nonzero_of_real_inverse:
   "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
    inverse (of_real x :: 'a::real_div_algebra)"
@@ -304,6 +310,12 @@
 lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
 by (cases z rule: int_diff_cases, simp)
 
+lemma of_real_real_of_nat_eq [simp]: "of_real (real n) = of_nat n"
+  by (simp add: real_of_nat_def)
+
+lemma of_real_real_of_int_eq [simp]: "of_real (real z) = of_int z"
+  by (simp add: real_of_int_def)
+
 lemma of_real_numeral: "of_real (numeral w) = numeral w"
 using of_real_of_int_eq [of "numeral w"] by simp
 
@@ -1121,6 +1133,18 @@
 lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1"
 unfolding real_sgn_eq by simp
 
+lemma zero_le_sgn_iff [simp]: "0 \<le> sgn x \<longleftrightarrow> 0 \<le> (x::real)"
+  by (cases "0::real" x rule: linorder_cases) simp_all
+  
+lemma zero_less_sgn_iff [simp]: "0 < sgn x \<longleftrightarrow> 0 < (x::real)"
+  by (cases "0::real" x rule: linorder_cases) simp_all
+
+lemma sgn_le_0_iff [simp]: "sgn x \<le> 0 \<longleftrightarrow> (x::real) \<le> 0"
+  by (cases "0::real" x rule: linorder_cases) simp_all
+  
+lemma sgn_less_0_iff [simp]: "sgn x < 0 \<longleftrightarrow> (x::real) < 0"
+  by (cases "0::real" x rule: linorder_cases) simp_all
+
 lemma norm_conv_dist: "norm x = dist x 0"
   unfolding dist_norm by simp