| author | bulwahn | 
| Mon, 29 Mar 2010 17:30:38 +0200 | |
| changeset 36020 | 3ee4c29ead7f | 
| parent 32479 | 521cc9bf2958 | 
| child 38159 | e9b4835a54ee | 
| permissions | -rw-r--r-- | 
| 32479 | 1 | (* Author: Thomas Marthedal Rasmussen | 
| 9944 | 2 | Copyright 2000 University of Cambridge | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 3 | *) | 
| 9944 | 4 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 5 | header {* Fundamental Theorem of Arithmetic (unique factorization into primes) *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 6 | |
| 27368 | 7 | theory Factorization | 
| 32479 | 8 | imports Main "~~/src/HOL/Old_Number_Theory/Primes" Permutation | 
| 27368 | 9 | begin | 
| 9944 | 10 | |
| 11 | ||
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 12 | subsection {* Definitions *}
 | 
| 9944 | 13 | |
| 19670 | 14 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
19670diff
changeset | 15 | primel :: "nat list => bool" where | 
| 19670 | 16 | "primel xs = (\<forall>p \<in> set xs. prime p)" | 
| 17 | ||
| 9944 | 18 | consts | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 19 | nondec :: "nat list => bool " | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 20 | prod :: "nat list => nat" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 21 | oinsert :: "nat => nat list => nat list" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 22 | sort :: "nat list => nat list" | 
| 9944 | 23 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 24 | primrec | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 25 | "nondec [] = True" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 26 | "nondec (x # xs) = (case xs of [] => True | y # ys => x \<le> y \<and> nondec xs)" | 
| 9944 | 27 | |
| 28 | primrec | |
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11468diff
changeset | 29 | "prod [] = Suc 0" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 30 | "prod (x # xs) = x * prod xs" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 31 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 32 | primrec | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 33 | "oinsert x [] = [x]" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 34 | "oinsert x (y # ys) = (if x \<le> y then x # y # ys else y # oinsert x ys)" | 
| 9944 | 35 | |
| 36 | primrec | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 37 | "sort [] = []" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 38 | "sort (x # xs) = oinsert x (sort xs)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 39 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 40 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 41 | subsection {* Arithmetic *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 42 | |
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11468diff
changeset | 43 | lemma one_less_m: "(m::nat) \<noteq> m * k ==> m \<noteq> Suc 0 ==> Suc 0 < m" | 
| 19670 | 44 | apply (cases m) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 45 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 46 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 47 | |
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11468diff
changeset | 48 | lemma one_less_k: "(m::nat) \<noteq> m * k ==> Suc 0 < m * k ==> Suc 0 < k" | 
| 19670 | 49 | apply (cases k) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 50 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 51 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 52 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 53 | lemma mult_left_cancel: "(0::nat) < k ==> k * n = k * m ==> n = m" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 54 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 55 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 56 | |
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11468diff
changeset | 57 | lemma mn_eq_m_one: "(0::nat) < m ==> m * n = m ==> n = Suc 0" | 
| 19670 | 58 | apply (cases n) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 59 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 60 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 61 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 62 | lemma prod_mn_less_k: | 
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11468diff
changeset | 63 | "(0::nat) < n ==> 0 < k ==> Suc 0 < m ==> m * n = k ==> n < k" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 64 | apply (induct m) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 65 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 66 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 67 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 68 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 69 | subsection {* Prime list and product *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 70 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 71 | lemma prod_append: "prod (xs @ ys) = prod xs * prod ys" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 72 | apply (induct xs) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 73 | apply (simp_all add: mult_assoc) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 74 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 75 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 76 | lemma prod_xy_prod: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 77 | "prod (x # xs) = prod (y # ys) ==> x * prod xs = y * prod ys" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 78 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 79 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 80 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 81 | lemma primel_append: "primel (xs @ ys) = (primel xs \<and> primel ys)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 82 | apply (unfold primel_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 83 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 84 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 85 | |
| 16663 | 86 | lemma prime_primel: "prime n ==> primel [n] \<and> prod [n] = n" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 87 | apply (unfold primel_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 88 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 89 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 90 | |
| 16663 | 91 | lemma prime_nd_one: "prime p ==> \<not> p dvd Suc 0" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 92 | apply (unfold prime_def dvd_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 93 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 94 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 95 | |
| 23814 | 96 | lemma hd_dvd_prod: "prod (x # xs) = prod ys ==> x dvd (prod ys)" | 
| 97 | by (metis dvd_mult_left dvd_refl prod.simps(2)) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 98 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 99 | lemma primel_tl: "primel (x # xs) ==> primel xs" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 100 | apply (unfold primel_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 101 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 102 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 103 | |
| 16663 | 104 | lemma primel_hd_tl: "(primel (x # xs)) = (prime x \<and> primel xs)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 105 | apply (unfold primel_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 106 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 107 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 108 | |
| 16663 | 109 | lemma primes_eq: "prime p ==> prime q ==> p dvd q ==> p = q" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 110 | apply (unfold prime_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 111 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 112 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 113 | |
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11468diff
changeset | 114 | lemma primel_one_empty: "primel xs ==> prod xs = Suc 0 ==> xs = []" | 
| 19670 | 115 | apply (cases xs) | 
| 116 | apply (simp_all add: primel_def prime_def) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 117 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 118 | |
| 16663 | 119 | lemma prime_g_one: "prime p ==> Suc 0 < p" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 120 | apply (unfold prime_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 121 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 122 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 123 | |
| 16663 | 124 | lemma prime_g_zero: "prime p ==> 0 < p" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 125 | apply (unfold prime_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 126 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 127 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 128 | |
| 19670 | 129 | lemma primel_nempty_g_one: | 
| 130 | "primel xs \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> Suc 0 < prod xs" | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 131 | apply (induct xs) | 
| 19670 | 132 | apply simp | 
| 133 | apply (fastsimp simp: primel_def prime_def elim: one_less_mult) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 134 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 135 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 136 | lemma primel_prod_gz: "primel xs ==> 0 < prod xs" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 137 | apply (induct xs) | 
| 19670 | 138 | apply (auto simp: primel_def prime_def) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 139 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 140 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 141 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 142 | subsection {* Sorting *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 143 | |
| 19670 | 144 | lemma nondec_oinsert: "nondec xs \<Longrightarrow> nondec (oinsert x xs)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 145 | apply (induct xs) | 
| 19670 | 146 | apply simp | 
| 147 | apply (case_tac xs) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 148 | apply (simp_all cong del: list.weak_case_cong) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 149 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 150 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 151 | lemma nondec_sort: "nondec (sort xs)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 152 | apply (induct xs) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 153 | apply simp_all | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 154 | apply (erule nondec_oinsert) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 155 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 156 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 157 | lemma x_less_y_oinsert: "x \<le> y ==> l = y # ys ==> x # l = oinsert x l" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 158 | apply simp_all | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 159 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 160 | |
| 19670 | 161 | lemma nondec_sort_eq [rule_format]: "nondec xs \<longrightarrow> xs = sort xs" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 162 | apply (induct xs) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 163 | apply safe | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 164 | apply simp_all | 
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
11701diff
changeset | 165 | apply (case_tac xs) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 166 | apply simp_all | 
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
11701diff
changeset | 167 | apply (case_tac xs) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 168 | apply simp | 
| 15236 
f289e8ba2bb3
Proofs needed to be updated because induction now preserves name of
 nipkow parents: 
11701diff
changeset | 169 | apply (rule_tac y = aa and ys = list in x_less_y_oinsert) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 170 | apply simp_all | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 171 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 172 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 173 | lemma oinsert_x_y: "oinsert x (oinsert y l) = oinsert y (oinsert x l)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 174 | apply (induct l) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 175 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 176 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 177 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 178 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 179 | subsection {* Permutation *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 180 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 181 | lemma perm_primel [rule_format]: "xs <~~> ys ==> primel xs --> primel ys" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 182 | apply (unfold primel_def) | 
| 19670 | 183 | apply (induct set: perm) | 
| 16663 | 184 | apply simp | 
| 185 | apply simp | |
| 186 | apply (simp (no_asm)) | |
| 187 | apply blast | |
| 188 | apply blast | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 189 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 190 | |
| 19670 | 191 | lemma perm_prod: "xs <~~> ys ==> prod xs = prod ys" | 
| 192 | apply (induct set: perm) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 193 | apply (simp_all add: mult_ac) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 194 | done | 
| 9944 | 195 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 196 | lemma perm_subst_oinsert: "xs <~~> ys ==> oinsert a xs <~~> oinsert a ys" | 
| 19670 | 197 | apply (induct set: perm) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 198 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 199 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 200 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 201 | lemma perm_oinsert: "x # xs <~~> oinsert x xs" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 202 | apply (induct xs) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 203 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 204 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 205 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 206 | lemma perm_sort: "xs <~~> sort xs" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 207 | apply (induct xs) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 208 | apply (auto intro: perm_oinsert elim: perm_subst_oinsert) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 209 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 210 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 211 | lemma perm_sort_eq: "xs <~~> ys ==> sort xs = sort ys" | 
| 19670 | 212 | apply (induct set: perm) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 213 | apply (simp_all add: oinsert_x_y) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 214 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 215 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 216 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 217 | subsection {* Existence *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 218 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 219 | lemma ex_nondec_lemma: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 220 | "primel xs ==> \<exists>ys. primel ys \<and> nondec ys \<and> prod ys = prod xs" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 221 | apply (blast intro: nondec_sort perm_prod perm_primel perm_sort perm_sym) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 222 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 223 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 224 | lemma not_prime_ex_mk: | 
| 16663 | 225 | "Suc 0 < n \<and> \<not> prime n ==> | 
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11468diff
changeset | 226 | \<exists>m k. Suc 0 < m \<and> Suc 0 < k \<and> m < n \<and> k < n \<and> n = m * k" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 227 | apply (unfold prime_def dvd_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 228 | apply (auto intro: n_less_m_mult_n n_less_n_mult_m one_less_m one_less_k) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 229 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 230 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 231 | lemma split_primel: | 
| 25687 
f92c9dfa7681
split_primel: salvaged original proof after blow with sledghammer
 wenzelm parents: 
25493diff
changeset | 232 | "primel xs \<Longrightarrow> primel ys \<Longrightarrow> \<exists>l. primel l \<and> prod l = prod xs * prod ys" | 
| 
f92c9dfa7681
split_primel: salvaged original proof after blow with sledghammer
 wenzelm parents: 
25493diff
changeset | 233 | apply (rule exI) | 
| 
f92c9dfa7681
split_primel: salvaged original proof after blow with sledghammer
 wenzelm parents: 
25493diff
changeset | 234 | apply safe | 
| 
f92c9dfa7681
split_primel: salvaged original proof after blow with sledghammer
 wenzelm parents: 
25493diff
changeset | 235 | apply (rule_tac [2] prod_append) | 
| 
f92c9dfa7681
split_primel: salvaged original proof after blow with sledghammer
 wenzelm parents: 
25493diff
changeset | 236 | apply (simp add: primel_append) | 
| 
f92c9dfa7681
split_primel: salvaged original proof after blow with sledghammer
 wenzelm parents: 
25493diff
changeset | 237 | done | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 238 | |
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11468diff
changeset | 239 | lemma factor_exists [rule_format]: "Suc 0 < n --> (\<exists>l. primel l \<and> prod l = n)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 240 | apply (induct n rule: nat_less_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 241 | apply (rule impI) | 
| 16663 | 242 | apply (case_tac "prime n") | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 243 | apply (rule exI) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 244 | apply (erule prime_primel) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 245 | apply (cut_tac n = n in not_prime_ex_mk) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 246 | apply (auto intro!: split_primel) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 247 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 248 | |
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11468diff
changeset | 249 | lemma nondec_factor_exists: "Suc 0 < n ==> \<exists>l. primel l \<and> nondec l \<and> prod l = n" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 250 | apply (erule factor_exists [THEN exE]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 251 | apply (blast intro!: ex_nondec_lemma) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 252 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 253 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 254 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 255 | subsection {* Uniqueness *}
 | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 256 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 257 | lemma prime_dvd_mult_list [rule_format]: | 
| 16663 | 258 | "prime p ==> p dvd (prod xs) --> (\<exists>m. m:set xs \<and> p dvd m)" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 259 | apply (induct xs) | 
| 11364 | 260 | apply (force simp add: prime_def) | 
| 261 | apply (force dest: prime_dvd_mult) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 262 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 263 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 264 | lemma hd_xs_dvd_prod: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 265 | "primel (x # xs) ==> primel ys ==> prod (x # xs) = prod ys | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 266 | ==> \<exists>m. m \<in> set ys \<and> x dvd m" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 267 | apply (rule prime_dvd_mult_list) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 268 | apply (simp add: primel_hd_tl) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 269 | apply (erule hd_dvd_prod) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 270 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 271 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 272 | lemma prime_dvd_eq: "primel (x # xs) ==> primel ys ==> m \<in> set ys ==> x dvd m ==> x = m" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 273 | apply (rule primes_eq) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 274 | apply (auto simp add: primel_def primel_hd_tl) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 275 | done | 
| 9944 | 276 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 277 | lemma hd_xs_eq_prod: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 278 | "primel (x # xs) ==> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 279 | primel ys ==> prod (x # xs) = prod ys ==> x \<in> set ys" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 280 | apply (frule hd_xs_dvd_prod) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 281 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 282 | apply (drule prime_dvd_eq) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 283 | apply auto | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 284 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 285 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 286 | lemma perm_primel_ex: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 287 | "primel (x # xs) ==> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 288 | primel ys ==> prod (x # xs) = prod ys ==> \<exists>l. ys <~~> (x # l)" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 289 | apply (rule exI) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 290 | apply (rule perm_remove) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 291 | apply (erule hd_xs_eq_prod) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 292 | apply simp_all | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 293 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 294 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 295 | lemma primel_prod_less: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 296 | "primel (x # xs) ==> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 297 | primel ys ==> prod (x # xs) = prod ys ==> prod xs < prod ys" | 
| 26316 
9e9e67e33557
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
25687diff
changeset | 298 | by (metis less_asym linorder_neqE_nat mult_less_cancel2 nat_0_less_mult_iff | 
| 25180 
16a99bc76717
avoid very slow metis invocation (saves 1min on 1.60 GHz machine);
 wenzelm parents: 
25157diff
changeset | 299 | nat_less_le nat_mult_1 prime_def primel_hd_tl primel_prod_gz prod.simps(2)) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 300 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 301 | lemma prod_one_empty: | 
| 16663 | 302 | "primel xs ==> p * prod xs = p ==> prime p ==> xs = []" | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 303 | apply (auto intro: primel_one_empty simp add: prime_def) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 304 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 305 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 306 | lemma uniq_ex_aux: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 307 | "\<forall>m. m < prod ys --> (\<forall>xs ys. primel xs \<and> primel ys \<and> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 308 | prod xs = prod ys \<and> prod xs = m --> xs <~~> ys) ==> | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 309 | primel list ==> primel x ==> prod list = prod x ==> prod x < prod ys | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 310 | ==> x <~~> list" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 311 | apply simp | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 312 | done | 
| 9944 | 313 | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 314 | lemma factor_unique [rule_format]: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 315 | "\<forall>xs ys. primel xs \<and> primel ys \<and> prod xs = prod ys \<and> prod xs = n | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 316 | --> xs <~~> ys" | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 317 | apply (induct n rule: nat_less_induct) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 318 | apply safe | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 319 | apply (case_tac xs) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 320 | apply (force intro: primel_one_empty) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 321 | apply (rule perm_primel_ex [THEN exE]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 322 | apply simp_all | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 323 | apply (rule perm.trans [THEN perm_sym]) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 324 | apply assumption | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 325 | apply (rule perm.Cons) | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 326 | apply (case_tac "x = []") | 
| 25493 | 327 | apply (metis perm_prod perm_refl prime_primel primel_hd_tl primel_tl prod_one_empty) | 
| 328 | apply (metis nat_0_less_mult_iff nat_mult_eq_cancel1 perm_primel perm_prod primel_prod_gz primel_prod_less primel_tl prod.simps(2)) | |
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 329 | done | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 330 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 331 | lemma perm_nondec_unique: | 
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 332 | "xs <~~> ys ==> nondec xs ==> nondec ys ==> xs = ys" | 
| 23814 | 333 | by (metis nondec_sort_eq perm_sort_eq) | 
| 334 | ||
| 25493 | 335 | theorem unique_prime_factorization [rule_format]: | 
| 11701 
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
 wenzelm parents: 
11468diff
changeset | 336 | "\<forall>n. Suc 0 < n --> (\<exists>!l. primel l \<and> nondec l \<and> prod l = n)" | 
| 25493 | 337 | by (metis factor_unique nondec_factor_exists perm_nondec_unique) | 
| 11049 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 338 | |
| 
7eef34adb852
HOL-NumberTheory: converted to new-style format and proper document setup;
 wenzelm parents: 
9944diff
changeset | 339 | end |