| author | wenzelm | 
| Mon, 02 Oct 2017 13:45:36 +0200 | |
| changeset 66748 | 3efac90a11a7 | 
| parent 65811 | 2653f1cd8775 | 
| child 66796 | ea9b2e5ca9fc | 
| permissions | -rw-r--r-- | 
| 63489 | 1 | (* Title: HOL/GCD.thy | 
| 2 | Author: Christophe Tabacznyj | |
| 3 | Author: Lawrence C. Paulson | |
| 4 | Author: Amine Chaieb | |
| 5 | Author: Thomas M. Rasmussen | |
| 6 | Author: Jeremy Avigad | |
| 7 | Author: Tobias Nipkow | |
| 31706 | 8 | |
| 32479 | 9 | This file deals with the functions gcd and lcm. Definitions and | 
| 10 | lemmas are proved uniformly for the natural numbers and integers. | |
| 31706 | 11 | |
| 12 | This file combines and revises a number of prior developments. | |
| 13 | ||
| 14 | The original theories "GCD" and "Primes" were by Christophe Tabacznyj | |
| 58623 | 15 | and Lawrence C. Paulson, based on @{cite davenport92}. They introduced
 | 
| 31706 | 16 | gcd, lcm, and prime for the natural numbers. | 
| 17 | ||
| 18 | The original theory "IntPrimes" was by Thomas M. Rasmussen, and | |
| 19 | extended gcd, lcm, primes to the integers. Amine Chaieb provided | |
| 20 | another extension of the notions to the integers, and added a number | |
| 21 | of results to "Primes" and "GCD". IntPrimes also defined and developed | |
| 22 | the congruence relations on the integers. The notion was extended to | |
| 34915 | 23 | the natural numbers by Chaieb. | 
| 31706 | 24 | |
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 25 | Jeremy Avigad combined all of these, made everything uniform for the | 
| 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 26 | natural numbers and the integers, and added a number of new theorems. | 
| 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 27 | |
| 31798 | 28 | Tobias Nipkow cleaned up a lot. | 
| 21256 | 29 | *) | 
| 30 | ||
| 60758 | 31 | section \<open>Greatest common divisor and least common multiple\<close> | 
| 21256 | 32 | |
| 33 | theory GCD | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 34 | imports Groups_List | 
| 31706 | 35 | begin | 
| 36 | ||
| 64850 | 37 | subsection \<open>Abstract bounded quasi semilattices as common foundation\<close> | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 38 | |
| 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 39 | locale bounded_quasi_semilattice = abel_semigroup + | 
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 40 |   fixes top :: 'a  ("\<^bold>\<top>") and bot :: 'a  ("\<^bold>\<bottom>")
 | 
| 64850 | 41 | and normalize :: "'a \<Rightarrow> 'a" | 
| 42 | assumes idem_normalize [simp]: "a \<^bold>* a = normalize a" | |
| 43 | and normalize_left_idem [simp]: "normalize a \<^bold>* b = a \<^bold>* b" | |
| 44 | and normalize_idem [simp]: "normalize (a \<^bold>* b) = a \<^bold>* b" | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 45 | and normalize_top [simp]: "normalize \<^bold>\<top> = \<^bold>\<top>" | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 46 | and normalize_bottom [simp]: "normalize \<^bold>\<bottom> = \<^bold>\<bottom>" | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 47 | and top_left_normalize [simp]: "\<^bold>\<top> \<^bold>* a = normalize a" | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 48 | and bottom_left_bottom [simp]: "\<^bold>\<bottom> \<^bold>* a = \<^bold>\<bottom>" | 
| 64850 | 49 | begin | 
| 50 | ||
| 51 | lemma left_idem [simp]: | |
| 52 | "a \<^bold>* (a \<^bold>* b) = a \<^bold>* b" | |
| 53 | using assoc [of a a b, symmetric] by simp | |
| 54 | ||
| 55 | lemma right_idem [simp]: | |
| 56 | "(a \<^bold>* b) \<^bold>* b = a \<^bold>* b" | |
| 57 | using left_idem [of b a] by (simp add: ac_simps) | |
| 58 | ||
| 59 | lemma comp_fun_idem: "comp_fun_idem f" | |
| 60 | by standard (simp_all add: fun_eq_iff ac_simps) | |
| 61 | ||
| 62 | interpretation comp_fun_idem f | |
| 63 | by (fact comp_fun_idem) | |
| 64 | ||
| 65 | lemma top_right_normalize [simp]: | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 66 | "a \<^bold>* \<^bold>\<top> = normalize a" | 
| 64850 | 67 | using top_left_normalize [of a] by (simp add: ac_simps) | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 68 | |
| 64850 | 69 | lemma bottom_right_bottom [simp]: | 
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 70 | "a \<^bold>* \<^bold>\<bottom> = \<^bold>\<bottom>" | 
| 64850 | 71 | using bottom_left_bottom [of a] by (simp add: ac_simps) | 
| 72 | ||
| 73 | lemma normalize_right_idem [simp]: | |
| 74 | "a \<^bold>* normalize b = a \<^bold>* b" | |
| 75 | using normalize_left_idem [of b a] by (simp add: ac_simps) | |
| 76 | ||
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 77 | end | 
| 64850 | 78 | |
| 79 | locale bounded_quasi_semilattice_set = bounded_quasi_semilattice | |
| 80 | begin | |
| 81 | ||
| 82 | interpretation comp_fun_idem f | |
| 83 | by (fact comp_fun_idem) | |
| 84 | ||
| 85 | definition F :: "'a set \<Rightarrow> 'a" | |
| 86 | where | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 87 | eq_fold: "F A = (if finite A then Finite_Set.fold f \<^bold>\<top> A else \<^bold>\<bottom>)" | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 88 | |
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 89 | lemma infinite [simp]: | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 90 | "infinite A \<Longrightarrow> F A = \<^bold>\<bottom>" | 
| 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 91 | by (simp add: eq_fold) | 
| 64850 | 92 | |
| 93 | lemma set_eq_fold [code]: | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 94 | "F (set xs) = fold f xs \<^bold>\<top>" | 
| 64850 | 95 | by (simp add: eq_fold fold_set_fold) | 
| 96 | ||
| 97 | lemma empty [simp]: | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 98 |   "F {} = \<^bold>\<top>"
 | 
| 64850 | 99 | by (simp add: eq_fold) | 
| 100 | ||
| 101 | lemma insert [simp]: | |
| 102 | "F (insert a A) = a \<^bold>* F A" | |
| 103 | by (cases "finite A") (simp_all add: eq_fold) | |
| 104 | ||
| 105 | lemma normalize [simp]: | |
| 106 | "normalize (F A) = F A" | |
| 107 | by (induct A rule: infinite_finite_induct) simp_all | |
| 108 | ||
| 109 | lemma in_idem: | |
| 110 | assumes "a \<in> A" | |
| 111 | shows "a \<^bold>* F A = F A" | |
| 112 | using assms by (induct A rule: infinite_finite_induct) | |
| 113 | (auto simp add: left_commute [of a]) | |
| 114 | ||
| 115 | lemma union: | |
| 116 | "F (A \<union> B) = F A \<^bold>* F B" | |
| 117 | by (induct A rule: infinite_finite_induct) | |
| 118 | (simp_all add: ac_simps) | |
| 119 | ||
| 120 | lemma remove: | |
| 121 | assumes "a \<in> A" | |
| 122 |   shows "F A = a \<^bold>* F (A - {a})"
 | |
| 123 | proof - | |
| 124 | from assms obtain B where "A = insert a B" and "a \<notin> B" | |
| 125 | by (blast dest: mk_disjoint_insert) | |
| 126 | with assms show ?thesis by simp | |
| 127 | qed | |
| 128 | ||
| 129 | lemma insert_remove: | |
| 130 |   "F (insert a A) = a \<^bold>* F (A - {a})"
 | |
| 131 | by (cases "a \<in> A") (simp_all add: insert_absorb remove) | |
| 132 | ||
| 133 | lemma subset: | |
| 134 | assumes "B \<subseteq> A" | |
| 135 | shows "F B \<^bold>* F A = F A" | |
| 136 | using assms by (simp add: union [symmetric] Un_absorb1) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 137 | |
| 64850 | 138 | end | 
| 63489 | 139 | |
| 62345 | 140 | subsection \<open>Abstract GCD and LCM\<close> | 
| 31706 | 141 | |
| 31992 | 142 | class gcd = zero + one + dvd + | 
| 41550 | 143 | fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 144 | and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | |
| 21256 | 145 | begin | 
| 146 | ||
| 60686 | 147 | abbreviation coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 148 | where "coprime x y \<equiv> gcd x y = 1" | |
| 31706 | 149 | |
| 150 | end | |
| 151 | ||
| 60686 | 152 | class Gcd = gcd + | 
| 63025 | 153 | fixes Gcd :: "'a set \<Rightarrow> 'a" | 
| 154 | and Lcm :: "'a set \<Rightarrow> 'a" | |
| 62350 | 155 | begin | 
| 156 | ||
| 63025 | 157 | abbreviation GREATEST_COMMON_DIVISOR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 63489 | 158 | where "GREATEST_COMMON_DIVISOR A f \<equiv> Gcd (f ` A)" | 
| 62350 | 159 | |
| 63025 | 160 | abbreviation LEAST_COMMON_MULTIPLE :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a"
 | 
| 63489 | 161 | where "LEAST_COMMON_MULTIPLE A f \<equiv> Lcm (f ` A)" | 
| 62350 | 162 | |
| 163 | end | |
| 164 | ||
| 165 | syntax | |
| 63025 | 166 |   "_GCD1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3GCD _./ _)" [0, 10] 10)
 | 
| 167 |   "_GCD"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3GCD _\<in>_./ _)" [0, 0, 10] 10)
 | |
| 168 |   "_LCM1"     :: "pttrns \<Rightarrow> 'b \<Rightarrow> 'b"           ("(3LCM _./ _)" [0, 10] 10)
 | |
| 169 |   "_LCM"      :: "pttrn \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> 'b"  ("(3LCM _\<in>_./ _)" [0, 0, 10] 10)
 | |
| 62350 | 170 | translations | 
| 63025 | 171 | "GCD x y. B" \<rightleftharpoons> "GCD x. GCD y. B" | 
| 172 | "GCD x. B" \<rightleftharpoons> "CONST GREATEST_COMMON_DIVISOR CONST UNIV (\<lambda>x. B)" | |
| 173 | "GCD x. B" \<rightleftharpoons> "GCD x \<in> CONST UNIV. B" | |
| 174 | "GCD x\<in>A. B" \<rightleftharpoons> "CONST GREATEST_COMMON_DIVISOR A (\<lambda>x. B)" | |
| 175 | "LCM x y. B" \<rightleftharpoons> "LCM x. LCM y. B" | |
| 176 | "LCM x. B" \<rightleftharpoons> "CONST LEAST_COMMON_MULTIPLE CONST UNIV (\<lambda>x. B)" | |
| 177 | "LCM x. B" \<rightleftharpoons> "LCM x \<in> CONST UNIV. B" | |
| 178 | "LCM x\<in>A. B" \<rightleftharpoons> "CONST LEAST_COMMON_MULTIPLE A (\<lambda>x. B)" | |
| 62350 | 179 | |
| 180 | print_translation \<open> | |
| 63025 | 181 |   [Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax GREATEST_COMMON_DIVISOR} @{syntax_const "_GCD"},
 | 
| 182 |     Syntax_Trans.preserve_binder_abs2_tr' @{const_syntax LEAST_COMMON_MULTIPLE} @{syntax_const "_LCM"}]
 | |
| 62350 | 183 | \<close> \<comment> \<open>to avoid eta-contraction of body\<close> | 
| 60686 | 184 | |
| 185 | class semiring_gcd = normalization_semidom + gcd + | |
| 59008 | 186 | assumes gcd_dvd1 [iff]: "gcd a b dvd a" | 
| 59977 | 187 | and gcd_dvd2 [iff]: "gcd a b dvd b" | 
| 188 | and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b" | |
| 60686 | 189 | and normalize_gcd [simp]: "normalize (gcd a b) = gcd a b" | 
| 190 | and lcm_gcd: "lcm a b = normalize (a * b) div gcd a b" | |
| 63489 | 191 | begin | 
| 192 | ||
| 193 | lemma gcd_greatest_iff [simp]: "a dvd gcd b c \<longleftrightarrow> a dvd b \<and> a dvd c" | |
| 60686 | 194 | by (blast intro!: gcd_greatest intro: dvd_trans) | 
| 195 | ||
| 63489 | 196 | lemma gcd_dvdI1: "a dvd c \<Longrightarrow> gcd a b dvd c" | 
| 60689 | 197 | by (rule dvd_trans) (rule gcd_dvd1) | 
| 198 | ||
| 63489 | 199 | lemma gcd_dvdI2: "b dvd c \<Longrightarrow> gcd a b dvd c" | 
| 60689 | 200 | by (rule dvd_trans) (rule gcd_dvd2) | 
| 201 | ||
| 63489 | 202 | lemma dvd_gcdD1: "a dvd gcd b c \<Longrightarrow> a dvd b" | 
| 62345 | 203 | using gcd_dvd1 [of b c] by (blast intro: dvd_trans) | 
| 204 | ||
| 63489 | 205 | lemma dvd_gcdD2: "a dvd gcd b c \<Longrightarrow> a dvd c" | 
| 62345 | 206 | using gcd_dvd2 [of b c] by (blast intro: dvd_trans) | 
| 207 | ||
| 63489 | 208 | lemma gcd_0_left [simp]: "gcd 0 a = normalize a" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 209 | by (rule associated_eqI) simp_all | 
| 60686 | 210 | |
| 63489 | 211 | lemma gcd_0_right [simp]: "gcd a 0 = normalize a" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 212 | by (rule associated_eqI) simp_all | 
| 63489 | 213 | |
| 214 | lemma gcd_eq_0_iff [simp]: "gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" | |
| 215 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 216 | proof | 
| 63489 | 217 | assume ?P | 
| 218 | then have "0 dvd gcd a b" | |
| 219 | by simp | |
| 220 | then have "0 dvd a" and "0 dvd b" | |
| 221 | by (blast intro: dvd_trans)+ | |
| 222 | then show ?Q | |
| 223 | by simp | |
| 60686 | 224 | next | 
| 63489 | 225 | assume ?Q | 
| 226 | then show ?P | |
| 227 | by simp | |
| 60686 | 228 | qed | 
| 229 | ||
| 63489 | 230 | lemma unit_factor_gcd: "unit_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)" | 
| 60686 | 231 | proof (cases "gcd a b = 0") | 
| 63489 | 232 | case True | 
| 233 | then show ?thesis by simp | |
| 60686 | 234 | next | 
| 235 | case False | |
| 236 | have "unit_factor (gcd a b) * normalize (gcd a b) = gcd a b" | |
| 237 | by (rule unit_factor_mult_normalize) | |
| 238 | then have "unit_factor (gcd a b) * gcd a b = gcd a b" | |
| 239 | by simp | |
| 240 | then have "unit_factor (gcd a b) * gcd a b div gcd a b = gcd a b div gcd a b" | |
| 241 | by simp | |
| 63489 | 242 | with False show ?thesis | 
| 243 | by simp | |
| 60686 | 244 | qed | 
| 245 | ||
| 63489 | 246 | lemma is_unit_gcd [simp]: "is_unit (gcd a b) \<longleftrightarrow> coprime a b" | 
| 60690 | 247 | by (cases "a = 0 \<and> b = 0") (auto simp add: unit_factor_gcd dest: is_unit_unit_factor) | 
| 248 | ||
| 61605 | 249 | sublocale gcd: abel_semigroup gcd | 
| 60686 | 250 | proof | 
| 251 | fix a b c | |
| 252 | show "gcd a b = gcd b a" | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 253 | by (rule associated_eqI) simp_all | 
| 60686 | 254 | from gcd_dvd1 have "gcd (gcd a b) c dvd a" | 
| 255 | by (rule dvd_trans) simp | |
| 256 | moreover from gcd_dvd1 have "gcd (gcd a b) c dvd b" | |
| 257 | by (rule dvd_trans) simp | |
| 258 | ultimately have P1: "gcd (gcd a b) c dvd gcd a (gcd b c)" | |
| 259 | by (auto intro!: gcd_greatest) | |
| 260 | from gcd_dvd2 have "gcd a (gcd b c) dvd b" | |
| 261 | by (rule dvd_trans) simp | |
| 262 | moreover from gcd_dvd2 have "gcd a (gcd b c) dvd c" | |
| 263 | by (rule dvd_trans) simp | |
| 264 | ultimately have P2: "gcd a (gcd b c) dvd gcd (gcd a b) c" | |
| 265 | by (auto intro!: gcd_greatest) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 266 | from P1 P2 show "gcd (gcd a b) c = gcd a (gcd b c)" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 267 | by (rule associated_eqI) simp_all | 
| 60686 | 268 | qed | 
| 269 | ||
| 64850 | 270 | sublocale gcd: bounded_quasi_semilattice gcd 0 1 normalize | 
| 271 | proof | |
| 272 | show "gcd a a = normalize a" for a | |
| 273 | proof - | |
| 274 | have "a dvd gcd a a" | |
| 275 | by (rule gcd_greatest) simp_all | |
| 276 | then show ?thesis | |
| 277 | by (auto intro: associated_eqI) | |
| 278 | qed | |
| 279 | show "gcd (normalize a) b = gcd a b" for a b | |
| 280 | using gcd_dvd1 [of "normalize a" b] | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 281 | by (auto intro: associated_eqI) | 
| 64850 | 282 | show "coprime 1 a" for a | 
| 283 | by (rule associated_eqI) simp_all | |
| 284 | qed simp_all | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 285 | |
| 64850 | 286 | lemma gcd_self: "gcd a a = normalize a" | 
| 287 | by (fact gcd.idem_normalize) | |
| 288 | ||
| 289 | lemma gcd_left_idem: "gcd a (gcd a b) = gcd a b" | |
| 290 | by (fact gcd.left_idem) | |
| 291 | ||
| 292 | lemma gcd_right_idem: "gcd (gcd a b) b = gcd a b" | |
| 293 | by (fact gcd.right_idem) | |
| 294 | ||
| 295 | lemma coprime_1_left: "coprime 1 a" | |
| 296 | by (fact gcd.bottom_left_bottom) | |
| 297 | ||
| 298 | lemma coprime_1_right: "coprime a 1" | |
| 299 | by (fact gcd.bottom_right_bottom) | |
| 60686 | 300 | |
| 63489 | 301 | lemma gcd_mult_left: "gcd (c * a) (c * b) = normalize c * gcd a b" | 
| 60686 | 302 | proof (cases "c = 0") | 
| 63489 | 303 | case True | 
| 304 | then show ?thesis by simp | |
| 60686 | 305 | next | 
| 306 | case False | |
| 63489 | 307 | then have *: "c * gcd a b dvd gcd (c * a) (c * b)" | 
| 60686 | 308 | by (auto intro: gcd_greatest) | 
| 63489 | 309 | moreover from False * have "gcd (c * a) (c * b) dvd c * gcd a b" | 
| 60686 | 310 | by (metis div_dvd_iff_mult dvd_mult_left gcd_dvd1 gcd_dvd2 gcd_greatest mult_commute) | 
| 311 | ultimately have "normalize (gcd (c * a) (c * b)) = normalize (c * gcd a b)" | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 312 | by (auto intro: associated_eqI) | 
| 63489 | 313 | then show ?thesis | 
| 314 | by (simp add: normalize_mult) | |
| 60686 | 315 | qed | 
| 316 | ||
| 63489 | 317 | lemma gcd_mult_right: "gcd (a * c) (b * c) = gcd b a * normalize c" | 
| 60686 | 318 | using gcd_mult_left [of c a b] by (simp add: ac_simps) | 
| 319 | ||
| 63489 | 320 | lemma mult_gcd_left: "c * gcd a b = unit_factor c * gcd (c * a) (c * b)" | 
| 60686 | 321 | by (simp add: gcd_mult_left mult.assoc [symmetric]) | 
| 322 | ||
| 63489 | 323 | lemma mult_gcd_right: "gcd a b * c = gcd (a * c) (b * c) * unit_factor c" | 
| 60686 | 324 | using mult_gcd_left [of c a b] by (simp add: ac_simps) | 
| 325 | ||
| 63489 | 326 | lemma dvd_lcm1 [iff]: "a dvd lcm a b" | 
| 60686 | 327 | proof - | 
| 328 | have "normalize (a * b) div gcd a b = normalize a * (normalize b div gcd a b)" | |
| 329 | by (simp add: lcm_gcd normalize_mult div_mult_swap) | |
| 330 | then show ?thesis | |
| 331 | by (simp add: lcm_gcd) | |
| 332 | qed | |
| 63489 | 333 | |
| 334 | lemma dvd_lcm2 [iff]: "b dvd lcm a b" | |
| 60686 | 335 | proof - | 
| 336 | have "normalize (a * b) div gcd a b = normalize b * (normalize a div gcd a b)" | |
| 337 | by (simp add: lcm_gcd normalize_mult div_mult_swap ac_simps) | |
| 338 | then show ?thesis | |
| 339 | by (simp add: lcm_gcd) | |
| 340 | qed | |
| 341 | ||
| 63489 | 342 | lemma dvd_lcmI1: "a dvd b \<Longrightarrow> a dvd lcm b c" | 
| 343 | by (rule dvd_trans) (assumption, blast) | |
| 344 | ||
| 345 | lemma dvd_lcmI2: "a dvd c \<Longrightarrow> a dvd lcm b c" | |
| 60689 | 346 | by (rule dvd_trans) (assumption, blast) | 
| 347 | ||
| 63489 | 348 | lemma lcm_dvdD1: "lcm a b dvd c \<Longrightarrow> a dvd c" | 
| 62345 | 349 | using dvd_lcm1 [of a b] by (blast intro: dvd_trans) | 
| 350 | ||
| 63489 | 351 | lemma lcm_dvdD2: "lcm a b dvd c \<Longrightarrow> b dvd c" | 
| 62345 | 352 | using dvd_lcm2 [of a b] by (blast intro: dvd_trans) | 
| 353 | ||
| 60686 | 354 | lemma lcm_least: | 
| 355 | assumes "a dvd c" and "b dvd c" | |
| 356 | shows "lcm a b dvd c" | |
| 357 | proof (cases "c = 0") | |
| 63489 | 358 | case True | 
| 359 | then show ?thesis by simp | |
| 60686 | 360 | next | 
| 63489 | 361 | case False | 
| 362 | then have *: "is_unit (unit_factor c)" | |
| 363 | by simp | |
| 60686 | 364 | show ?thesis | 
| 365 | proof (cases "gcd a b = 0") | |
| 63489 | 366 | case True | 
| 367 | with assms show ?thesis by simp | |
| 60686 | 368 | next | 
| 63489 | 369 | case False | 
| 370 | then have "a \<noteq> 0 \<or> b \<noteq> 0" | |
| 371 | by simp | |
| 60686 | 372 | with \<open>c \<noteq> 0\<close> assms have "a * b dvd a * c" "a * b dvd c * b" | 
| 373 | by (simp_all add: mult_dvd_mono) | |
| 374 | then have "normalize (a * b) dvd gcd (a * c) (b * c)" | |
| 375 | by (auto intro: gcd_greatest simp add: ac_simps) | |
| 376 | then have "normalize (a * b) dvd gcd (a * c) (b * c) * unit_factor c" | |
| 63489 | 377 | using * by (simp add: dvd_mult_unit_iff) | 
| 60686 | 378 | then have "normalize (a * b) dvd gcd a b * c" | 
| 379 | by (simp add: mult_gcd_right [of a b c]) | |
| 380 | then have "normalize (a * b) div gcd a b dvd c" | |
| 381 | using False by (simp add: div_dvd_iff_mult ac_simps) | |
| 63489 | 382 | then show ?thesis | 
| 383 | by (simp add: lcm_gcd) | |
| 60686 | 384 | qed | 
| 385 | qed | |
| 386 | ||
| 63489 | 387 | lemma lcm_least_iff [simp]: "lcm a b dvd c \<longleftrightarrow> a dvd c \<and> b dvd c" | 
| 60686 | 388 | by (blast intro!: lcm_least intro: dvd_trans) | 
| 389 | ||
| 63489 | 390 | lemma normalize_lcm [simp]: "normalize (lcm a b) = lcm a b" | 
| 60686 | 391 | by (simp add: lcm_gcd dvd_normalize_div) | 
| 392 | ||
| 63489 | 393 | lemma lcm_0_left [simp]: "lcm 0 a = 0" | 
| 394 | by (simp add: lcm_gcd) | |
| 395 | ||
| 396 | lemma lcm_0_right [simp]: "lcm a 0 = 0" | |
| 60686 | 397 | by (simp add: lcm_gcd) | 
| 63489 | 398 | |
| 399 | lemma lcm_eq_0_iff: "lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | |
| 400 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 401 | proof | 
| 63489 | 402 | assume ?P | 
| 403 | then have "0 dvd lcm a b" | |
| 404 | by simp | |
| 60686 | 405 | then have "0 dvd normalize (a * b) div gcd a b" | 
| 406 | by (simp add: lcm_gcd) | |
| 407 | then have "0 * gcd a b dvd normalize (a * b)" | |
| 408 | using dvd_div_iff_mult [of "gcd a b" _ 0] by (cases "gcd a b = 0") simp_all | |
| 409 | then have "normalize (a * b) = 0" | |
| 410 | by simp | |
| 63489 | 411 | then show ?Q | 
| 412 | by simp | |
| 60686 | 413 | next | 
| 63489 | 414 | assume ?Q | 
| 415 | then show ?P | |
| 416 | by auto | |
| 60686 | 417 | qed | 
| 418 | ||
| 63489 | 419 | lemma lcm_eq_1_iff [simp]: "lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b" | 
| 61913 | 420 | by (auto intro: associated_eqI) | 
| 421 | ||
| 63489 | 422 | lemma unit_factor_lcm: "unit_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)" | 
| 60686 | 423 | by (simp add: unit_factor_gcd dvd_unit_factor_div lcm_gcd) | 
| 424 | ||
| 61605 | 425 | sublocale lcm: abel_semigroup lcm | 
| 60686 | 426 | proof | 
| 427 | fix a b c | |
| 428 | show "lcm a b = lcm b a" | |
| 429 | by (simp add: lcm_gcd ac_simps normalize_mult dvd_normalize_div) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 430 | have "lcm (lcm a b) c dvd lcm a (lcm b c)" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 431 | and "lcm a (lcm b c) dvd lcm (lcm a b) c" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 432 | by (auto intro: lcm_least | 
| 60686 | 433 | dvd_trans [of b "lcm b c" "lcm a (lcm b c)"] | 
| 434 | dvd_trans [of c "lcm b c" "lcm a (lcm b c)"] | |
| 435 | dvd_trans [of a "lcm a b" "lcm (lcm a b) c"] | |
| 436 | dvd_trans [of b "lcm a b" "lcm (lcm a b) c"]) | |
| 437 | then show "lcm (lcm a b) c = lcm a (lcm b c)" | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 438 | by (rule associated_eqI) simp_all | 
| 60686 | 439 | qed | 
| 440 | ||
| 64850 | 441 | sublocale lcm: bounded_quasi_semilattice lcm 1 0 normalize | 
| 442 | proof | |
| 443 | show "lcm a a = normalize a" for a | |
| 444 | proof - | |
| 445 | have "lcm a a dvd a" | |
| 446 | by (rule lcm_least) simp_all | |
| 447 | then show ?thesis | |
| 448 | by (auto intro: associated_eqI) | |
| 449 | qed | |
| 450 | show "lcm (normalize a) b = lcm a b" for a b | |
| 451 | using dvd_lcm1 [of "normalize a" b] unfolding normalize_dvd_iff | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60687diff
changeset | 452 | by (auto intro: associated_eqI) | 
| 64850 | 453 | show "lcm 1 a = normalize a" for a | 
| 454 | by (rule associated_eqI) simp_all | |
| 455 | qed simp_all | |
| 456 | ||
| 457 | lemma lcm_self: "lcm a a = normalize a" | |
| 458 | by (fact lcm.idem_normalize) | |
| 459 | ||
| 460 | lemma lcm_left_idem: "lcm a (lcm a b) = lcm a b" | |
| 461 | by (fact lcm.left_idem) | |
| 462 | ||
| 463 | lemma lcm_right_idem: "lcm (lcm a b) b = lcm a b" | |
| 464 | by (fact lcm.right_idem) | |
| 61913 | 465 | |
| 63489 | 466 | lemma gcd_mult_lcm [simp]: "gcd a b * lcm a b = normalize a * normalize b" | 
| 60686 | 467 | by (simp add: lcm_gcd normalize_mult) | 
| 468 | ||
| 63489 | 469 | lemma lcm_mult_gcd [simp]: "lcm a b * gcd a b = normalize a * normalize b" | 
| 470 | using gcd_mult_lcm [of a b] by (simp add: ac_simps) | |
| 60686 | 471 | |
| 472 | lemma gcd_lcm: | |
| 473 | assumes "a \<noteq> 0" and "b \<noteq> 0" | |
| 474 | shows "gcd a b = normalize (a * b) div lcm a b" | |
| 475 | proof - | |
| 476 | from assms have "lcm a b \<noteq> 0" | |
| 477 | by (simp add: lcm_eq_0_iff) | |
| 63489 | 478 | have "gcd a b * lcm a b = normalize a * normalize b" | 
| 479 | by simp | |
| 60686 | 480 | then have "gcd a b * lcm a b div lcm a b = normalize (a * b) div lcm a b" | 
| 481 | by (simp_all add: normalize_mult) | |
| 482 | with \<open>lcm a b \<noteq> 0\<close> show ?thesis | |
| 64240 | 483 | using nonzero_mult_div_cancel_right [of "lcm a b" "gcd a b"] by simp | 
| 60686 | 484 | qed | 
| 485 | ||
| 64850 | 486 | lemma lcm_1_left: "lcm 1 a = normalize a" | 
| 487 | by (fact lcm.top_left_normalize) | |
| 488 | ||
| 489 | lemma lcm_1_right: "lcm a 1 = normalize a" | |
| 490 | by (fact lcm.top_right_normalize) | |
| 63489 | 491 | |
| 492 | lemma lcm_mult_left: "lcm (c * a) (c * b) = normalize c * lcm a b" | |
| 60686 | 493 | by (cases "c = 0") | 
| 494 | (simp_all add: gcd_mult_right lcm_gcd div_mult_swap normalize_mult ac_simps, | |
| 495 | simp add: dvd_div_mult2_eq mult.left_commute [of "normalize c", symmetric]) | |
| 496 | ||
| 63489 | 497 | lemma lcm_mult_right: "lcm (a * c) (b * c) = lcm b a * normalize c" | 
| 60686 | 498 | using lcm_mult_left [of c a b] by (simp add: ac_simps) | 
| 499 | ||
| 63489 | 500 | lemma mult_lcm_left: "c * lcm a b = unit_factor c * lcm (c * a) (c * b)" | 
| 60686 | 501 | by (simp add: lcm_mult_left mult.assoc [symmetric]) | 
| 502 | ||
| 63489 | 503 | lemma mult_lcm_right: "lcm a b * c = lcm (a * c) (b * c) * unit_factor c" | 
| 60686 | 504 | using mult_lcm_left [of c a b] by (simp add: ac_simps) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 505 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 506 | lemma gcdI: | 
| 63489 | 507 | assumes "c dvd a" and "c dvd b" | 
| 508 | and greatest: "\<And>d. d dvd a \<Longrightarrow> d dvd b \<Longrightarrow> d dvd c" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 509 | and "normalize c = c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 510 | shows "c = gcd a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 511 | by (rule associated_eqI) (auto simp: assms intro: gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 512 | |
| 63489 | 513 | lemma gcd_unique: | 
| 514 | "d dvd a \<and> d dvd b \<and> normalize d = d \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 515 | by rule (auto intro: gcdI simp: gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 516 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 517 | lemma gcd_dvd_prod: "gcd a b dvd k * b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 518 | using mult_dvd_mono [of 1] by auto | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 519 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 520 | lemma gcd_proj2_if_dvd: "b dvd a \<Longrightarrow> gcd a b = normalize b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 521 | by (rule gcdI [symmetric]) simp_all | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 522 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 523 | lemma gcd_proj1_if_dvd: "a dvd b \<Longrightarrow> gcd a b = normalize a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 524 | by (rule gcdI [symmetric]) simp_all | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 525 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 526 | lemma gcd_proj1_iff: "gcd m n = normalize m \<longleftrightarrow> m dvd n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 527 | proof | 
| 63489 | 528 | assume *: "gcd m n = normalize m" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 529 | show "m dvd n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 530 | proof (cases "m = 0") | 
| 63489 | 531 | case True | 
| 532 | with * show ?thesis by simp | |
| 533 | next | |
| 534 | case [simp]: False | |
| 535 | from * have **: "m = gcd m n * unit_factor m" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 536 | by (simp add: unit_eq_div2) | 
| 63489 | 537 | show ?thesis | 
| 538 | by (subst **) (simp add: mult_unit_dvd_iff) | |
| 539 | qed | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 540 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 541 | assume "m dvd n" | 
| 63489 | 542 | then show "gcd m n = normalize m" | 
| 543 | by (rule gcd_proj1_if_dvd) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 544 | qed | 
| 63489 | 545 | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 546 | lemma gcd_proj2_iff: "gcd m n = normalize n \<longleftrightarrow> n dvd m" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 547 | using gcd_proj1_iff [of n m] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 548 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 549 | lemma gcd_mult_distrib': "normalize c * gcd a b = gcd (c * a) (c * b)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 550 | by (rule gcdI) (auto simp: normalize_mult gcd_greatest mult_dvd_mono gcd_mult_left[symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 551 | |
| 63489 | 552 | lemma gcd_mult_distrib: "k * gcd a b = gcd (k * a) (k * b) * unit_factor k" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 553 | proof- | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 554 | have "normalize k * gcd a b = gcd (k * a) (k * b)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 555 | by (simp add: gcd_mult_distrib') | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 556 | then have "normalize k * gcd a b * unit_factor k = gcd (k * a) (k * b) * unit_factor k" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 557 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 558 | then have "normalize k * unit_factor k * gcd a b = gcd (k * a) (k * b) * unit_factor k" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 559 | by (simp only: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 560 | then show ?thesis | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 561 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 562 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 563 | |
| 63489 | 564 | lemma lcm_mult_unit1: "is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 565 | by (rule associated_eqI) (simp_all add: mult_unit_dvd_iff dvd_lcmI1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 566 | |
| 63489 | 567 | lemma lcm_mult_unit2: "is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 568 | using lcm_mult_unit1 [of a c b] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 569 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 570 | lemma lcm_div_unit1: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 571 | "is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c" | 
| 63489 | 572 | by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1) | 
| 573 | ||
| 574 | lemma lcm_div_unit2: "is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 575 | by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 576 | |
| 64850 | 577 | lemma normalize_lcm_left: "lcm (normalize a) b = lcm a b" | 
| 578 | by (fact lcm.normalize_left_idem) | |
| 579 | ||
| 580 | lemma normalize_lcm_right: "lcm a (normalize b) = lcm a b" | |
| 581 | by (fact lcm.normalize_right_idem) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 582 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 583 | lemma gcd_mult_unit1: "is_unit a \<Longrightarrow> gcd (b * a) c = gcd b c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 584 | apply (rule gcdI) | 
| 63489 | 585 | apply simp_all | 
| 586 | apply (rule dvd_trans) | |
| 587 | apply (rule gcd_dvd1) | |
| 588 | apply (simp add: unit_simps) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 589 | done | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 590 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 591 | lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c" | 
| 63489 | 592 | apply (subst gcd.commute) | 
| 593 | apply (subst gcd_mult_unit1) | |
| 594 | apply assumption | |
| 595 | apply (rule gcd.commute) | |
| 596 | done | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 597 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 598 | lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 599 | by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 600 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 601 | lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 602 | by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 603 | |
| 64850 | 604 | lemma normalize_gcd_left: "gcd (normalize a) b = gcd a b" | 
| 605 | by (fact gcd.normalize_left_idem) | |
| 606 | ||
| 607 | lemma normalize_gcd_right: "gcd a (normalize b) = gcd a b" | |
| 608 | by (fact gcd.normalize_right_idem) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 609 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 610 | lemma comp_fun_idem_gcd: "comp_fun_idem gcd" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 611 | by standard (simp_all add: fun_eq_iff ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 612 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 613 | lemma comp_fun_idem_lcm: "comp_fun_idem lcm" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 614 | by standard (simp_all add: fun_eq_iff ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 615 | |
| 63489 | 616 | lemma gcd_dvd_antisym: "gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 617 | proof (rule gcdI) | 
| 63489 | 618 | assume *: "gcd a b dvd gcd c d" | 
| 619 | and **: "gcd c d dvd gcd a b" | |
| 620 | have "gcd c d dvd c" | |
| 621 | by simp | |
| 622 | with * show "gcd a b dvd c" | |
| 623 | by (rule dvd_trans) | |
| 624 | have "gcd c d dvd d" | |
| 625 | by simp | |
| 626 | with * show "gcd a b dvd d" | |
| 627 | by (rule dvd_trans) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 628 | show "normalize (gcd a b) = gcd a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 629 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 630 | fix l assume "l dvd c" and "l dvd d" | 
| 63489 | 631 | then have "l dvd gcd c d" | 
| 632 | by (rule gcd_greatest) | |
| 633 | from this and ** show "l dvd gcd a b" | |
| 634 | by (rule dvd_trans) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 635 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 636 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 637 | lemma coprime_dvd_mult: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 638 | assumes "coprime a b" and "a dvd c * b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 639 | shows "a dvd c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 640 | proof (cases "c = 0") | 
| 63489 | 641 | case True | 
| 642 | then show ?thesis by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 643 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 644 | case False | 
| 63489 | 645 | then have unit: "is_unit (unit_factor c)" | 
| 646 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 647 | from \<open>coprime a b\<close> mult_gcd_left [of c a b] | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 648 | have "gcd (c * a) (c * b) * unit_factor c = c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 649 | by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 650 | moreover from \<open>a dvd c * b\<close> have "a dvd gcd (c * a) (c * b) * unit_factor c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 651 | by (simp add: dvd_mult_unit_iff unit) | 
| 63489 | 652 | ultimately show ?thesis | 
| 653 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 654 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 655 | |
| 63489 | 656 | lemma coprime_dvd_mult_iff: "coprime a c \<Longrightarrow> a dvd b * c \<longleftrightarrow> a dvd b" | 
| 657 | by (auto intro: coprime_dvd_mult) | |
| 658 | ||
| 659 | lemma gcd_mult_cancel: "coprime c b \<Longrightarrow> gcd (c * a) b = gcd a b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 660 | apply (rule associated_eqI) | 
| 63489 | 661 | apply (rule gcd_greatest) | 
| 662 | apply (rule_tac b = c in coprime_dvd_mult) | |
| 663 | apply (simp add: gcd.assoc) | |
| 664 | apply (simp_all add: ac_simps) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 665 | done | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 666 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 667 | lemma coprime_crossproduct: | 
| 63489 | 668 | fixes a b c d :: 'a | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 669 | assumes "coprime a d" and "coprime b c" | 
| 63489 | 670 | shows "normalize a * normalize c = normalize b * normalize d \<longleftrightarrow> | 
| 671 | normalize a = normalize b \<and> normalize c = normalize d" | |
| 672 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 673 | proof | 
| 63489 | 674 | assume ?rhs | 
| 675 | then show ?lhs by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 676 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 677 | assume ?lhs | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 678 | from \<open>?lhs\<close> have "normalize a dvd normalize b * normalize d" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 679 | by (auto intro: dvdI dest: sym) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 680 | with \<open>coprime a d\<close> have "a dvd b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 681 | by (simp add: coprime_dvd_mult_iff normalize_mult [symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 682 | from \<open>?lhs\<close> have "normalize b dvd normalize a * normalize c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 683 | by (auto intro: dvdI dest: sym) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 684 | with \<open>coprime b c\<close> have "b dvd a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 685 | by (simp add: coprime_dvd_mult_iff normalize_mult [symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 686 | from \<open>?lhs\<close> have "normalize c dvd normalize d * normalize b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 687 | by (auto intro: dvdI dest: sym simp add: mult.commute) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 688 | with \<open>coprime b c\<close> have "c dvd d" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 689 | by (simp add: coprime_dvd_mult_iff gcd.commute normalize_mult [symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 690 | from \<open>?lhs\<close> have "normalize d dvd normalize c * normalize a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 691 | by (auto intro: dvdI dest: sym simp add: mult.commute) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 692 | with \<open>coprime a d\<close> have "d dvd c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 693 | by (simp add: coprime_dvd_mult_iff gcd.commute normalize_mult [symmetric]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 694 | from \<open>a dvd b\<close> \<open>b dvd a\<close> have "normalize a = normalize b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 695 | by (rule associatedI) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 696 | moreover from \<open>c dvd d\<close> \<open>d dvd c\<close> have "normalize c = normalize d" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 697 | by (rule associatedI) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 698 | ultimately show ?rhs .. | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 699 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 700 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 701 | lemma gcd_add1 [simp]: "gcd (m + n) n = gcd m n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 702 | by (rule gcdI [symmetric]) (simp_all add: dvd_add_left_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 703 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 704 | lemma gcd_add2 [simp]: "gcd m (m + n) = gcd m n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 705 | using gcd_add1 [of n m] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 706 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 707 | lemma gcd_add_mult: "gcd m (k * m + n) = gcd m n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 708 | by (rule gcdI [symmetric]) (simp_all add: dvd_add_right_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 709 | |
| 63489 | 710 | lemma coprimeI: "(\<And>l. l dvd a \<Longrightarrow> l dvd b \<Longrightarrow> l dvd 1) \<Longrightarrow> gcd a b = 1" | 
| 711 | by (rule sym, rule gcdI) simp_all | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 712 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 713 | lemma coprime: "gcd a b = 1 \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> is_unit d)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 714 | by (auto intro: coprimeI gcd_greatest dvd_gcdD1 dvd_gcdD2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 715 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 716 | lemma div_gcd_coprime: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 717 | assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 718 | shows "coprime (a div gcd a b) (b div gcd a b)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 719 | proof - | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 720 | let ?g = "gcd a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 721 | let ?a' = "a div ?g" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 722 | let ?b' = "b div ?g" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 723 | let ?g' = "gcd ?a' ?b'" | 
| 63489 | 724 | have dvdg: "?g dvd a" "?g dvd b" | 
| 725 | by simp_all | |
| 726 | have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" | |
| 727 | by simp_all | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 728 | from dvdg dvdg' obtain ka kb ka' kb' where | 
| 63489 | 729 | kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 730 | unfolding dvd_def by blast | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 731 | from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 732 | by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 733 | then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" | 
| 63489 | 734 | by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] dvd_mult_div_cancel [OF dvdg(2)] dvd_def) | 
| 735 | have "?g \<noteq> 0" | |
| 736 | using nz by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 737 | moreover from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" . | 
| 63489 | 738 | ultimately show ?thesis | 
| 739 | using dvd_times_left_cancel_iff [of "gcd a b" _ 1] by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 740 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 741 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 742 | lemma divides_mult: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 743 | assumes "a dvd c" and nr: "b dvd c" and "coprime a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 744 | shows "a * b dvd c" | 
| 63489 | 745 | proof - | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 746 | from \<open>b dvd c\<close> obtain b' where"c = b * b'" .. | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 747 | with \<open>a dvd c\<close> have "a dvd b' * b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 748 | by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 749 | with \<open>coprime a b\<close> have "a dvd b'" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 750 | by (simp add: coprime_dvd_mult_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 751 | then obtain a' where "b' = a * a'" .. | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 752 | with \<open>c = b * b'\<close> have "c = (a * b) * a'" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 753 | by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 754 | then show ?thesis .. | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 755 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 756 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 757 | lemma coprime_lmult: | 
| 63489 | 758 | assumes dab: "gcd d (a * b) = 1" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 759 | shows "gcd d a = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 760 | proof (rule coprimeI) | 
| 63489 | 761 | fix l | 
| 762 | assume "l dvd d" and "l dvd a" | |
| 763 | then have "l dvd a * b" | |
| 764 | by simp | |
| 765 | with \<open>l dvd d\<close> and dab show "l dvd 1" | |
| 766 | by (auto intro: gcd_greatest) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 767 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 768 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 769 | lemma coprime_rmult: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 770 | assumes dab: "gcd d (a * b) = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 771 | shows "gcd d b = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 772 | proof (rule coprimeI) | 
| 63489 | 773 | fix l | 
| 774 | assume "l dvd d" and "l dvd b" | |
| 775 | then have "l dvd a * b" | |
| 776 | by simp | |
| 777 | with \<open>l dvd d\<close> and dab show "l dvd 1" | |
| 778 | by (auto intro: gcd_greatest) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 779 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 780 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 781 | lemma coprime_mult: | 
| 63489 | 782 | assumes "coprime d a" | 
| 783 | and "coprime d b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 784 | shows "coprime d (a * b)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 785 | apply (subst gcd.commute) | 
| 63489 | 786 | using assms(1) apply (subst gcd_mult_cancel) | 
| 787 | apply (subst gcd.commute) | |
| 788 | apply assumption | |
| 789 | apply (subst gcd.commute) | |
| 790 | apply (rule assms(2)) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 791 | done | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 792 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 793 | lemma coprime_mul_eq: "gcd d (a * b) = 1 \<longleftrightarrow> gcd d a = 1 \<and> gcd d b = 1" | 
| 63489 | 794 | using coprime_rmult[of d a b] coprime_lmult[of d a b] coprime_mult[of d a b] | 
| 795 | by blast | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 796 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 797 | lemma coprime_mul_eq': | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 798 | "coprime (a * b) d \<longleftrightarrow> coprime a d \<and> coprime b d" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 799 | using coprime_mul_eq [of d a b] by (simp add: gcd.commute) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 800 | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 801 | lemma gcd_coprime: | 
| 63489 | 802 | assumes c: "gcd a b \<noteq> 0" | 
| 803 | and a: "a = a' * gcd a b" | |
| 804 | and b: "b = b' * gcd a b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 805 | shows "gcd a' b' = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 806 | proof - | 
| 63489 | 807 | from c have "a \<noteq> 0 \<or> b \<noteq> 0" | 
| 808 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 809 | with div_gcd_coprime have "gcd (a div gcd a b) (b div gcd a b) = 1" . | 
| 63489 | 810 | also from assms have "a div gcd a b = a'" | 
| 811 | using dvd_div_eq_mult local.gcd_dvd1 by blast | |
| 812 | also from assms have "b div gcd a b = b'" | |
| 813 | using dvd_div_eq_mult local.gcd_dvd1 by blast | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 814 | finally show ?thesis . | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 815 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 816 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 817 | lemma coprime_power: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 818 | assumes "0 < n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 819 | shows "gcd a (b ^ n) = 1 \<longleftrightarrow> gcd a b = 1" | 
| 63489 | 820 | using assms | 
| 821 | proof (induct n) | |
| 822 | case 0 | |
| 823 | then show ?case by simp | |
| 824 | next | |
| 825 | case (Suc n) | |
| 826 | then show ?case | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 827 | by (cases n) (simp_all add: coprime_mul_eq) | 
| 63489 | 828 | qed | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 829 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 830 | lemma gcd_coprime_exists: | 
| 63489 | 831 | assumes "gcd a b \<noteq> 0" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 832 | shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> gcd a' b' = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 833 | apply (rule_tac x = "a div gcd a b" in exI) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 834 | apply (rule_tac x = "b div gcd a b" in exI) | 
| 63489 | 835 | using assms | 
| 836 | apply (auto intro: div_gcd_coprime) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 837 | done | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 838 | |
| 63489 | 839 | lemma coprime_exp: "gcd d a = 1 \<Longrightarrow> gcd d (a^n) = 1" | 
| 840 | by (induct n) (simp_all add: coprime_mult) | |
| 841 | ||
| 842 | lemma coprime_exp_left: "coprime a b \<Longrightarrow> coprime (a ^ n) b" | |
| 843 | by (induct n) (simp_all add: gcd_mult_cancel) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 844 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 845 | lemma coprime_exp2: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 846 | assumes "coprime a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 847 | shows "coprime (a ^ n) (b ^ m)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 848 | proof (rule coprime_exp_left) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 849 | from assms show "coprime a (b ^ m)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 850 | by (induct m) (simp_all add: gcd_mult_cancel gcd.commute [of a]) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 851 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 852 | |
| 63489 | 853 | lemma gcd_exp: "gcd (a ^ n) (b ^ n) = gcd a b ^ n" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 854 | proof (cases "a = 0 \<and> b = 0") | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 855 | case True | 
| 63489 | 856 | then show ?thesis | 
| 857 | by (cases n) simp_all | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 858 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 859 | case False | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 860 | then have "1 = gcd ((a div gcd a b) ^ n) ((b div gcd a b) ^ n)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 861 | using coprime_exp2[OF div_gcd_coprime[of a b], of n n, symmetric] by simp | 
| 63489 | 862 | then have "gcd a b ^ n = gcd a b ^ n * \<dots>" | 
| 863 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 864 | also note gcd_mult_distrib | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 865 | also have "unit_factor (gcd a b ^ n) = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 866 | using False by (auto simp add: unit_factor_power unit_factor_gcd) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 867 | also have "(gcd a b)^n * (a div gcd a b)^n = a^n" | 
| 63489 | 868 | apply (subst ac_simps) | 
| 869 | apply (subst div_power) | |
| 870 | apply simp | |
| 871 | apply (rule dvd_div_mult_self) | |
| 872 | apply (rule dvd_power_same) | |
| 873 | apply simp | |
| 874 | done | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 875 | also have "(gcd a b)^n * (b div gcd a b)^n = b^n" | 
| 63489 | 876 | apply (subst ac_simps) | 
| 877 | apply (subst div_power) | |
| 878 | apply simp | |
| 879 | apply (rule dvd_div_mult_self) | |
| 880 | apply (rule dvd_power_same) | |
| 881 | apply simp | |
| 882 | done | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 883 | finally show ?thesis by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 884 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 885 | |
| 63489 | 886 | lemma coprime_common_divisor: "gcd a b = 1 \<Longrightarrow> a dvd a \<Longrightarrow> a dvd b \<Longrightarrow> is_unit a" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 887 | apply (subgoal_tac "a dvd gcd a b") | 
| 63489 | 888 | apply simp | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 889 | apply (erule (1) gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 890 | done | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 891 | |
| 63489 | 892 | lemma division_decomp: | 
| 893 | assumes "a dvd b * c" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 894 | shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 895 | proof (cases "gcd a b = 0") | 
| 63489 | 896 | case True | 
| 897 | then have "a = 0 \<and> b = 0" | |
| 898 | by simp | |
| 899 | then have "a = 0 * c \<and> 0 dvd b \<and> c dvd c" | |
| 900 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 901 | then show ?thesis by blast | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 902 | next | 
| 63489 | 903 | case False | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 904 | let ?d = "gcd a b" | 
| 63489 | 905 | from gcd_coprime_exists [OF False] | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 906 | obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 907 | by blast | 
| 63489 | 908 | from ab'(1) have "a' dvd a" | 
| 909 | unfolding dvd_def by blast | |
| 910 | with assms have "a' dvd b * c" | |
| 65555 
85ed070017b7
include GCD as integral part of computational algebra in session HOL
 haftmann parents: 
65552diff
changeset | 911 | using dvd_trans [of a' a "b * c"] by simp | 
| 63489 | 912 | from assms ab'(1,2) have "a' * ?d dvd (b' * ?d) * c" | 
| 913 | by simp | |
| 914 | then have "?d * a' dvd ?d * (b' * c)" | |
| 915 | by (simp add: mult_ac) | |
| 916 | with \<open>?d \<noteq> 0\<close> have "a' dvd b' * c" | |
| 917 | by simp | |
| 918 | with coprime_dvd_mult[OF ab'(3)] have "a' dvd c" | |
| 919 | by (subst (asm) ac_simps) blast | |
| 920 | with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c" | |
| 921 | by (simp add: mult_ac) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 922 | then show ?thesis by blast | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 923 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 924 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 925 | lemma pow_divs_pow: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 926 | assumes ab: "a ^ n dvd b ^ n" and n: "n \<noteq> 0" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 927 | shows "a dvd b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 928 | proof (cases "gcd a b = 0") | 
| 63489 | 929 | case True | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 930 | then show ?thesis by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 931 | next | 
| 63489 | 932 | case False | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 933 | let ?d = "gcd a b" | 
| 63489 | 934 | from n obtain m where m: "n = Suc m" | 
| 935 | by (cases n) simp_all | |
| 936 | from False have zn: "?d ^ n \<noteq> 0" | |
| 937 | by (rule power_not_zero) | |
| 938 | from gcd_coprime_exists [OF False] | |
| 939 | obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 940 | by blast | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 941 | from ab have "(a' * ?d) ^ n dvd (b' * ?d) ^ n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 942 | by (simp add: ab'(1,2)[symmetric]) | 
| 63489 | 943 | then have "?d^n * a'^n dvd ?d^n * b'^n" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 944 | by (simp only: power_mult_distrib ac_simps) | 
| 63489 | 945 | with zn have "a'^n dvd b'^n" | 
| 946 | by simp | |
| 947 | then have "a' dvd b'^n" | |
| 948 | using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m) | |
| 949 | then have "a' dvd b'^m * b'" | |
| 950 | by (simp add: m ac_simps) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 951 | with coprime_dvd_mult[OF coprime_exp[OF ab'(3), of m]] | 
| 63489 | 952 | have "a' dvd b'" by (subst (asm) ac_simps) blast | 
| 953 | then have "a' * ?d dvd b' * ?d" | |
| 954 | by (rule mult_dvd_mono) simp | |
| 955 | with ab'(1,2) show ?thesis | |
| 956 | by simp | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 957 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 958 | |
| 63489 | 959 | lemma pow_divs_eq [simp]: "n \<noteq> 0 \<Longrightarrow> a ^ n dvd b ^ n \<longleftrightarrow> a dvd b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 960 | by (auto intro: pow_divs_pow dvd_power_same) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 961 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 962 | lemma coprime_plus_one [simp]: "gcd (n + 1) n = 1" | 
| 63489 | 963 | by (subst add_commute) simp | 
| 964 | ||
| 64272 | 965 | lemma prod_coprime [rule_format]: "(\<forall>i\<in>A. gcd (f i) a = 1) \<longrightarrow> gcd (\<Prod>i\<in>A. f i) a = 1" | 
| 63915 | 966 | by (induct A rule: infinite_finite_induct) (auto simp add: gcd_mult_cancel) | 
| 63489 | 967 | |
| 63882 
018998c00003
renamed listsum -> sum_list, listprod ~> prod_list
 nipkow parents: 
63489diff
changeset | 968 | lemma prod_list_coprime: "(\<And>x. x \<in> set xs \<Longrightarrow> coprime x y) \<Longrightarrow> coprime (prod_list xs) y" | 
| 63489 | 969 | by (induct xs) (simp_all add: gcd_mult_cancel) | 
| 970 | ||
| 971 | lemma coprime_divisors: | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 972 | assumes "d dvd a" "e dvd b" "gcd a b = 1" | 
| 63489 | 973 | shows "gcd d e = 1" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 974 | proof - | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 975 | from assms obtain k l where "a = d * k" "b = e * l" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 976 | unfolding dvd_def by blast | 
| 63489 | 977 | with assms have "gcd (d * k) (e * l) = 1" | 
| 978 | by simp | |
| 979 | then have "gcd (d * k) e = 1" | |
| 980 | by (rule coprime_lmult) | |
| 981 | also have "gcd (d * k) e = gcd e (d * k)" | |
| 982 | by (simp add: ac_simps) | |
| 983 | finally have "gcd e d = 1" | |
| 984 | by (rule coprime_lmult) | |
| 985 | then show ?thesis | |
| 986 | by (simp add: ac_simps) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 987 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 988 | |
| 63489 | 989 | lemma lcm_gcd_prod: "lcm a b * gcd a b = normalize (a * b)" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 990 | by (simp add: lcm_gcd) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 991 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 992 | declare unit_factor_lcm [simp] | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 993 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 994 | lemma lcmI: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 995 | assumes "a dvd c" and "b dvd c" and "\<And>d. a dvd d \<Longrightarrow> b dvd d \<Longrightarrow> c dvd d" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 996 | and "normalize c = c" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 997 | shows "c = lcm a b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 998 | by (rule associated_eqI) (auto simp: assms intro: lcm_least) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 999 | |
| 63489 | 1000 | lemma gcd_dvd_lcm [simp]: "gcd a b dvd lcm a b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1001 | using gcd_dvd2 by (rule dvd_lcmI2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1002 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1003 | lemmas lcm_0 = lcm_0_right | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1004 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1005 | lemma lcm_unique: | 
| 63489 | 1006 | "a dvd d \<and> b dvd d \<and> normalize d = d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1007 | by rule (auto intro: lcmI simp: lcm_least lcm_eq_0_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1008 | |
| 63489 | 1009 | lemma lcm_coprime: "gcd a b = 1 \<Longrightarrow> lcm a b = normalize (a * b)" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1010 | by (subst lcm_gcd) simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1011 | |
| 63489 | 1012 | lemma lcm_proj1_if_dvd: "b dvd a \<Longrightarrow> lcm a b = normalize a" | 
| 1013 | apply (cases "a = 0") | |
| 1014 | apply simp | |
| 1015 | apply (rule sym) | |
| 1016 | apply (rule lcmI) | |
| 1017 | apply simp_all | |
| 1018 | done | |
| 1019 | ||
| 1020 | lemma lcm_proj2_if_dvd: "a dvd b \<Longrightarrow> lcm a b = normalize b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1021 | using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1022 | |
| 63489 | 1023 | lemma lcm_proj1_iff: "lcm m n = normalize m \<longleftrightarrow> n dvd m" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1024 | proof | 
| 63489 | 1025 | assume *: "lcm m n = normalize m" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1026 | show "n dvd m" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1027 | proof (cases "m = 0") | 
| 63489 | 1028 | case True | 
| 1029 | then show ?thesis by simp | |
| 1030 | next | |
| 1031 | case [simp]: False | |
| 1032 | from * have **: "m = lcm m n * unit_factor m" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1033 | by (simp add: unit_eq_div2) | 
| 63489 | 1034 | show ?thesis by (subst **) simp | 
| 1035 | qed | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1036 | next | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1037 | assume "n dvd m" | 
| 63489 | 1038 | then show "lcm m n = normalize m" | 
| 1039 | by (rule lcm_proj1_if_dvd) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1040 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1041 | |
| 63489 | 1042 | lemma lcm_proj2_iff: "lcm m n = normalize n \<longleftrightarrow> m dvd n" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1043 | using lcm_proj1_iff [of n m] by (simp add: ac_simps) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1044 | |
| 64850 | 1045 | lemma lcm_mult_distrib': "normalize c * lcm a b = lcm (c * a) (c * b)" | 
| 1046 | by (rule lcmI) (auto simp: normalize_mult lcm_least mult_dvd_mono lcm_mult_left [symmetric]) | |
| 1047 | ||
| 1048 | lemma lcm_mult_distrib: "k * lcm a b = lcm (k * a) (k * b) * unit_factor k" | |
| 1049 | proof- | |
| 1050 | have "normalize k * lcm a b = lcm (k * a) (k * b)" | |
| 1051 | by (simp add: lcm_mult_distrib') | |
| 1052 | then have "normalize k * lcm a b * unit_factor k = lcm (k * a) (k * b) * unit_factor k" | |
| 1053 | by simp | |
| 1054 | then have "normalize k * unit_factor k * lcm a b = lcm (k * a) (k * b) * unit_factor k" | |
| 1055 | by (simp only: ac_simps) | |
| 1056 | then show ?thesis | |
| 1057 | by simp | |
| 1058 | qed | |
| 1059 | ||
| 63924 | 1060 | lemma dvd_productE: | 
| 1061 | assumes "p dvd (a * b)" | |
| 1062 | obtains x y where "p = x * y" "x dvd a" "y dvd b" | |
| 1063 | proof (cases "a = 0") | |
| 1064 | case True | |
| 1065 | thus ?thesis by (intro that[of p 1]) simp_all | |
| 1066 | next | |
| 1067 | case False | |
| 1068 | define x y where "x = gcd a p" and "y = p div x" | |
| 1069 | have "p = x * y" by (simp add: x_def y_def) | |
| 1070 | moreover have "x dvd a" by (simp add: x_def) | |
| 1071 | moreover from assms have "p dvd gcd (b * a) (b * p)" | |
| 1072 | by (intro gcd_greatest) (simp_all add: mult.commute) | |
| 1073 | hence "p dvd b * gcd a p" by (simp add: gcd_mult_distrib) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1074 | with False have "y dvd b" | 
| 63924 | 1075 | by (simp add: x_def y_def div_dvd_iff_mult assms) | 
| 1076 | ultimately show ?thesis by (rule that) | |
| 1077 | qed | |
| 1078 | ||
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1079 | lemma coprime_crossproduct': | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1080 | fixes a b c d | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1081 | assumes "b \<noteq> 0" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1082 | assumes unit_factors: "unit_factor b = unit_factor d" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1083 | assumes coprime: "coprime a b" "coprime c d" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1084 | shows "a * d = b * c \<longleftrightarrow> a = c \<and> b = d" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1085 | proof safe | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1086 | assume eq: "a * d = b * c" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1087 | hence "normalize a * normalize d = normalize c * normalize b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1088 | by (simp only: normalize_mult [symmetric] mult_ac) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1089 | with coprime have "normalize b = normalize d" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1090 | by (subst (asm) coprime_crossproduct) simp_all | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1091 | from this and unit_factors show "b = d" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1092 | by (rule normalize_unit_factor_eqI) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1093 | from eq have "a * d = c * d" by (simp only: \<open>b = d\<close> mult_ac) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1094 | with \<open>b \<noteq> 0\<close> \<open>b = d\<close> show "a = c" by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1095 | qed (simp_all add: mult_ac) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64272diff
changeset | 1096 | |
| 60686 | 1097 | end | 
| 1098 | ||
| 62345 | 1099 | class ring_gcd = comm_ring_1 + semiring_gcd | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1100 | begin | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1101 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1102 | lemma coprime_minus_one: "coprime (n - 1) n" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1103 | using coprime_plus_one[of "n - 1"] by (simp add: gcd.commute) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1104 | |
| 63489 | 1105 | lemma gcd_neg1 [simp]: "gcd (-a) b = gcd a b" | 
| 1106 | by (rule sym, rule gcdI) (simp_all add: gcd_greatest) | |
| 1107 | ||
| 1108 | lemma gcd_neg2 [simp]: "gcd a (-b) = gcd a b" | |
| 1109 | by (rule sym, rule gcdI) (simp_all add: gcd_greatest) | |
| 1110 | ||
| 1111 | lemma gcd_neg_numeral_1 [simp]: "gcd (- numeral n) a = gcd (numeral n) a" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1112 | by (fact gcd_neg1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1113 | |
| 63489 | 1114 | lemma gcd_neg_numeral_2 [simp]: "gcd a (- numeral n) = gcd a (numeral n)" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1115 | by (fact gcd_neg2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1116 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1117 | lemma gcd_diff1: "gcd (m - n) n = gcd m n" | 
| 63489 | 1118 | by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1119 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1120 | lemma gcd_diff2: "gcd (n - m) n = gcd m n" | 
| 63489 | 1121 | by (subst gcd_neg1[symmetric]) (simp only: minus_diff_eq gcd_diff1) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1122 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1123 | lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b" | 
| 63489 | 1124 | by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1125 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1126 | lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b" | 
| 63489 | 1127 | by (rule sym, rule lcmI) (simp_all add: lcm_least lcm_eq_0_iff) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1128 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1129 | lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1130 | by (fact lcm_neg1) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1131 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1132 | lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1133 | by (fact lcm_neg2) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1134 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1135 | end | 
| 62345 | 1136 | |
| 60686 | 1137 | class semiring_Gcd = semiring_gcd + Gcd + | 
| 1138 | assumes Gcd_dvd: "a \<in> A \<Longrightarrow> Gcd A dvd a" | |
| 1139 | and Gcd_greatest: "(\<And>b. b \<in> A \<Longrightarrow> a dvd b) \<Longrightarrow> a dvd Gcd A" | |
| 1140 | and normalize_Gcd [simp]: "normalize (Gcd A) = Gcd A" | |
| 62345 | 1141 | assumes dvd_Lcm: "a \<in> A \<Longrightarrow> a dvd Lcm A" | 
| 1142 | and Lcm_least: "(\<And>b. b \<in> A \<Longrightarrow> b dvd a) \<Longrightarrow> Lcm A dvd a" | |
| 1143 | and normalize_Lcm [simp]: "normalize (Lcm A) = Lcm A" | |
| 60686 | 1144 | begin | 
| 1145 | ||
| 63489 | 1146 | lemma Lcm_Gcd: "Lcm A = Gcd {b. \<forall>a\<in>A. a dvd b}"
 | 
| 62345 | 1147 | by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) | 
| 1148 | ||
| 63489 | 1149 | lemma Gcd_Lcm: "Gcd A = Lcm {b. \<forall>a\<in>A. b dvd a}"
 | 
| 62345 | 1150 | by (rule associated_eqI) (auto intro: Gcd_dvd dvd_Lcm Gcd_greatest Lcm_least) | 
| 1151 | ||
| 63489 | 1152 | lemma Gcd_empty [simp]: "Gcd {} = 0"
 | 
| 60686 | 1153 | by (rule dvd_0_left, rule Gcd_greatest) simp | 
| 1154 | ||
| 63489 | 1155 | lemma Lcm_empty [simp]: "Lcm {} = 1"
 | 
| 62345 | 1156 | by (auto intro: associated_eqI Lcm_least) | 
| 1157 | ||
| 63489 | 1158 | lemma Gcd_insert [simp]: "Gcd (insert a A) = gcd a (Gcd A)" | 
| 62345 | 1159 | proof - | 
| 1160 | have "Gcd (insert a A) dvd gcd a (Gcd A)" | |
| 1161 | by (auto intro: Gcd_dvd Gcd_greatest) | |
| 1162 | moreover have "gcd a (Gcd A) dvd Gcd (insert a A)" | |
| 1163 | proof (rule Gcd_greatest) | |
| 1164 | fix b | |
| 1165 | assume "b \<in> insert a A" | |
| 1166 | then show "gcd a (Gcd A) dvd b" | |
| 1167 | proof | |
| 63489 | 1168 | assume "b = a" | 
| 1169 | then show ?thesis | |
| 1170 | by simp | |
| 62345 | 1171 | next | 
| 1172 | assume "b \<in> A" | |
| 63489 | 1173 | then have "Gcd A dvd b" | 
| 1174 | by (rule Gcd_dvd) | |
| 1175 | moreover have "gcd a (Gcd A) dvd Gcd A" | |
| 1176 | by simp | |
| 1177 | ultimately show ?thesis | |
| 1178 | by (blast intro: dvd_trans) | |
| 62345 | 1179 | qed | 
| 1180 | qed | |
| 1181 | ultimately show ?thesis | |
| 1182 | by (auto intro: associated_eqI) | |
| 1183 | qed | |
| 1184 | ||
| 63489 | 1185 | lemma Lcm_insert [simp]: "Lcm (insert a A) = lcm a (Lcm A)" | 
| 62345 | 1186 | proof (rule sym) | 
| 1187 | have "lcm a (Lcm A) dvd Lcm (insert a A)" | |
| 1188 | by (auto intro: dvd_Lcm Lcm_least) | |
| 1189 | moreover have "Lcm (insert a A) dvd lcm a (Lcm A)" | |
| 1190 | proof (rule Lcm_least) | |
| 1191 | fix b | |
| 1192 | assume "b \<in> insert a A" | |
| 1193 | then show "b dvd lcm a (Lcm A)" | |
| 1194 | proof | |
| 63489 | 1195 | assume "b = a" | 
| 1196 | then show ?thesis by simp | |
| 62345 | 1197 | next | 
| 1198 | assume "b \<in> A" | |
| 63489 | 1199 | then have "b dvd Lcm A" | 
| 1200 | by (rule dvd_Lcm) | |
| 1201 | moreover have "Lcm A dvd lcm a (Lcm A)" | |
| 1202 | by simp | |
| 1203 | ultimately show ?thesis | |
| 1204 | by (blast intro: dvd_trans) | |
| 62345 | 1205 | qed | 
| 1206 | qed | |
| 1207 | ultimately show "lcm a (Lcm A) = Lcm (insert a A)" | |
| 1208 | by (rule associated_eqI) (simp_all add: lcm_eq_0_iff) | |
| 1209 | qed | |
| 1210 | ||
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1211 | lemma LcmI: | 
| 63489 | 1212 | assumes "\<And>a. a \<in> A \<Longrightarrow> a dvd b" | 
| 1213 | and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> a dvd c) \<Longrightarrow> b dvd c" | |
| 1214 | and "normalize b = b" | |
| 1215 | shows "b = Lcm A" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1216 | by (rule associated_eqI) (auto simp: assms dvd_Lcm intro: Lcm_least) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1217 | |
| 63489 | 1218 | lemma Lcm_subset: "A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1219 | by (blast intro: Lcm_least dvd_Lcm) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1220 | |
| 63489 | 1221 | lemma Lcm_Un: "Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1222 | apply (rule lcmI) | 
| 63489 | 1223 | apply (blast intro: Lcm_subset) | 
| 1224 | apply (blast intro: Lcm_subset) | |
| 1225 | apply (intro Lcm_least ballI, elim UnE) | |
| 1226 | apply (rule dvd_trans, erule dvd_Lcm, assumption) | |
| 1227 | apply (rule dvd_trans, erule dvd_Lcm, assumption) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1228 | apply simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1229 | done | 
| 63489 | 1230 | |
| 1231 | lemma Gcd_0_iff [simp]: "Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}"
 | |
| 1232 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 1233 | proof | 
| 1234 | assume ?P | |
| 1235 | show ?Q | |
| 1236 | proof | |
| 1237 | fix a | |
| 1238 | assume "a \<in> A" | |
| 63489 | 1239 | then have "Gcd A dvd a" | 
| 1240 | by (rule Gcd_dvd) | |
| 1241 | with \<open>?P\<close> have "a = 0" | |
| 1242 | by simp | |
| 1243 |     then show "a \<in> {0}"
 | |
| 1244 | by simp | |
| 60686 | 1245 | qed | 
| 1246 | next | |
| 1247 | assume ?Q | |
| 1248 | have "0 dvd Gcd A" | |
| 1249 | proof (rule Gcd_greatest) | |
| 1250 | fix a | |
| 1251 | assume "a \<in> A" | |
| 63489 | 1252 | with \<open>?Q\<close> have "a = 0" | 
| 1253 | by auto | |
| 1254 | then show "0 dvd a" | |
| 1255 | by simp | |
| 60686 | 1256 | qed | 
| 63489 | 1257 | then show ?P | 
| 1258 | by simp | |
| 60686 | 1259 | qed | 
| 1260 | ||
| 63489 | 1261 | lemma Lcm_1_iff [simp]: "Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)" | 
| 1262 | (is "?P \<longleftrightarrow> ?Q") | |
| 60686 | 1263 | proof | 
| 1264 | assume ?P | |
| 1265 | show ?Q | |
| 1266 | proof | |
| 1267 | fix a | |
| 1268 | assume "a \<in> A" | |
| 1269 | then have "a dvd Lcm A" | |
| 1270 | by (rule dvd_Lcm) | |
| 1271 | with \<open>?P\<close> show "is_unit a" | |
| 1272 | by simp | |
| 1273 | qed | |
| 1274 | next | |
| 1275 | assume ?Q | |
| 1276 | then have "is_unit (Lcm A)" | |
| 1277 | by (blast intro: Lcm_least) | |
| 1278 | then have "normalize (Lcm A) = 1" | |
| 1279 | by (rule is_unit_normalize) | |
| 1280 | then show ?P | |
| 1281 | by simp | |
| 1282 | qed | |
| 1283 | ||
| 63489 | 1284 | lemma unit_factor_Lcm: "unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" | 
| 62345 | 1285 | proof (cases "Lcm A = 0") | 
| 63489 | 1286 | case True | 
| 1287 | then show ?thesis | |
| 1288 | by simp | |
| 62345 | 1289 | next | 
| 1290 | case False | |
| 1291 | with unit_factor_normalize have "unit_factor (normalize (Lcm A)) = 1" | |
| 1292 | by blast | |
| 1293 | with False show ?thesis | |
| 1294 | by simp | |
| 1295 | qed | |
| 1296 | ||
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1297 | lemma unit_factor_Gcd: "unit_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)" | 
| 63489 | 1298 | by (simp add: Gcd_Lcm unit_factor_Lcm) | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1299 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1300 | lemma GcdI: | 
| 63489 | 1301 | assumes "\<And>a. a \<in> A \<Longrightarrow> b dvd a" | 
| 1302 | and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> c dvd a) \<Longrightarrow> c dvd b" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1303 | and "normalize b = b" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1304 | shows "b = Gcd A" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1305 | by (rule associated_eqI) (auto simp: assms Gcd_dvd intro: Gcd_greatest) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1306 | |
| 62345 | 1307 | lemma Gcd_eq_1_I: | 
| 1308 | assumes "is_unit a" and "a \<in> A" | |
| 1309 | shows "Gcd A = 1" | |
| 1310 | proof - | |
| 1311 | from assms have "is_unit (Gcd A)" | |
| 1312 | by (blast intro: Gcd_dvd dvd_unit_imp_unit) | |
| 1313 | then have "normalize (Gcd A) = 1" | |
| 1314 | by (rule is_unit_normalize) | |
| 1315 | then show ?thesis | |
| 1316 | by simp | |
| 1317 | qed | |
| 1318 | ||
| 60686 | 1319 | lemma Lcm_eq_0_I: | 
| 1320 | assumes "0 \<in> A" | |
| 1321 | shows "Lcm A = 0" | |
| 1322 | proof - | |
| 1323 | from assms have "0 dvd Lcm A" | |
| 1324 | by (rule dvd_Lcm) | |
| 1325 | then show ?thesis | |
| 1326 | by simp | |
| 1327 | qed | |
| 1328 | ||
| 63489 | 1329 | lemma Gcd_UNIV [simp]: "Gcd UNIV = 1" | 
| 62345 | 1330 | using dvd_refl by (rule Gcd_eq_1_I) simp | 
| 1331 | ||
| 63489 | 1332 | lemma Lcm_UNIV [simp]: "Lcm UNIV = 0" | 
| 61929 | 1333 | by (rule Lcm_eq_0_I) simp | 
| 60686 | 1334 | |
| 61929 | 1335 | lemma Lcm_0_iff: | 
| 1336 | assumes "finite A" | |
| 1337 | shows "Lcm A = 0 \<longleftrightarrow> 0 \<in> A" | |
| 1338 | proof (cases "A = {}")
 | |
| 63489 | 1339 | case True | 
| 1340 | then show ?thesis by simp | |
| 61929 | 1341 | next | 
| 63489 | 1342 | case False | 
| 1343 | with assms show ?thesis | |
| 1344 | by (induct A rule: finite_ne_induct) (auto simp add: lcm_eq_0_iff) | |
| 60686 | 1345 | qed | 
| 61929 | 1346 | |
| 63489 | 1347 | lemma Gcd_image_normalize [simp]: "Gcd (normalize ` A) = Gcd A" | 
| 62345 | 1348 | proof - | 
| 1349 | have "Gcd (normalize ` A) dvd a" if "a \<in> A" for a | |
| 1350 | proof - | |
| 63489 | 1351 | from that obtain B where "A = insert a B" | 
| 1352 | by blast | |
| 62350 | 1353 | moreover have "gcd (normalize a) (Gcd (normalize ` B)) dvd normalize a" | 
| 62345 | 1354 | by (rule gcd_dvd1) | 
| 1355 | ultimately show "Gcd (normalize ` A) dvd a" | |
| 1356 | by simp | |
| 1357 | qed | |
| 1358 | then have "Gcd (normalize ` A) dvd Gcd A" and "Gcd A dvd Gcd (normalize ` A)" | |
| 1359 | by (auto intro!: Gcd_greatest intro: Gcd_dvd) | |
| 1360 | then show ?thesis | |
| 1361 | by (auto intro: associated_eqI) | |
| 1362 | qed | |
| 1363 | ||
| 62346 | 1364 | lemma Gcd_eqI: | 
| 1365 | assumes "normalize a = a" | |
| 1366 | assumes "\<And>b. b \<in> A \<Longrightarrow> a dvd b" | |
| 1367 | and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> c dvd b) \<Longrightarrow> c dvd a" | |
| 1368 | shows "Gcd A = a" | |
| 1369 | using assms by (blast intro: associated_eqI Gcd_greatest Gcd_dvd normalize_Gcd) | |
| 1370 | ||
| 63489 | 1371 | lemma dvd_GcdD: "x dvd Gcd A \<Longrightarrow> y \<in> A \<Longrightarrow> x dvd y" | 
| 1372 | using Gcd_dvd dvd_trans by blast | |
| 1373 | ||
| 1374 | lemma dvd_Gcd_iff: "x dvd Gcd A \<longleftrightarrow> (\<forall>y\<in>A. x dvd y)" | |
| 63359 | 1375 | by (blast dest: dvd_GcdD intro: Gcd_greatest) | 
| 1376 | ||
| 1377 | lemma Gcd_mult: "Gcd (op * c ` A) = normalize c * Gcd A" | |
| 1378 | proof (cases "c = 0") | |
| 63489 | 1379 | case True | 
| 1380 | then show ?thesis by auto | |
| 1381 | next | |
| 63359 | 1382 | case [simp]: False | 
| 1383 | have "Gcd (op * c ` A) div c dvd Gcd A" | |
| 1384 | by (intro Gcd_greatest, subst div_dvd_iff_mult) | |
| 1385 | (auto intro!: Gcd_greatest Gcd_dvd simp: mult.commute[of _ c]) | |
| 63489 | 1386 | then have "Gcd (op * c ` A) dvd c * Gcd A" | 
| 63359 | 1387 | by (subst (asm) div_dvd_iff_mult) (auto intro: Gcd_greatest simp: mult_ac) | 
| 1388 | also have "c * Gcd A = (normalize c * Gcd A) * unit_factor c" | |
| 1389 | by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac) | |
| 1390 | also have "Gcd (op * c ` A) dvd \<dots> \<longleftrightarrow> Gcd (op * c ` A) dvd normalize c * Gcd A" | |
| 1391 | by (simp add: dvd_mult_unit_iff) | |
| 1392 | finally have "Gcd (op * c ` A) dvd normalize c * Gcd A" . | |
| 1393 | moreover have "normalize c * Gcd A dvd Gcd (op * c ` A)" | |
| 1394 | by (intro Gcd_greatest) (auto intro: mult_dvd_mono Gcd_dvd) | |
| 1395 | ultimately have "normalize (Gcd (op * c ` A)) = normalize (normalize c * Gcd A)" | |
| 1396 | by (rule associatedI) | |
| 63489 | 1397 | then show ?thesis | 
| 1398 | by (simp add: normalize_mult) | |
| 1399 | qed | |
| 63359 | 1400 | |
| 62346 | 1401 | lemma Lcm_eqI: | 
| 1402 | assumes "normalize a = a" | |
| 63489 | 1403 | and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" | 
| 62346 | 1404 | and "\<And>c. (\<And>b. b \<in> A \<Longrightarrow> b dvd c) \<Longrightarrow> a dvd c" | 
| 1405 | shows "Lcm A = a" | |
| 1406 | using assms by (blast intro: associated_eqI Lcm_least dvd_Lcm normalize_Lcm) | |
| 1407 | ||
| 63489 | 1408 | lemma Lcm_dvdD: "Lcm A dvd x \<Longrightarrow> y \<in> A \<Longrightarrow> y dvd x" | 
| 1409 | using dvd_Lcm dvd_trans by blast | |
| 1410 | ||
| 1411 | lemma Lcm_dvd_iff: "Lcm A dvd x \<longleftrightarrow> (\<forall>y\<in>A. y dvd x)" | |
| 63359 | 1412 | by (blast dest: Lcm_dvdD intro: Lcm_least) | 
| 1413 | ||
| 63489 | 1414 | lemma Lcm_mult: | 
| 63359 | 1415 |   assumes "A \<noteq> {}"
 | 
| 63489 | 1416 | shows "Lcm (op * c ` A) = normalize c * Lcm A" | 
| 63359 | 1417 | proof (cases "c = 0") | 
| 1418 | case True | |
| 63489 | 1419 |   with assms have "op * c ` A = {0}"
 | 
| 1420 | by auto | |
| 1421 | with True show ?thesis by auto | |
| 63359 | 1422 | next | 
| 1423 | case [simp]: False | |
| 63489 | 1424 | from assms obtain x where x: "x \<in> A" | 
| 1425 | by blast | |
| 1426 | have "c dvd c * x" | |
| 1427 | by simp | |
| 1428 | also from x have "c * x dvd Lcm (op * c ` A)" | |
| 1429 | by (intro dvd_Lcm) auto | |
| 63359 | 1430 | finally have dvd: "c dvd Lcm (op * c ` A)" . | 
| 1431 | ||
| 1432 | have "Lcm A dvd Lcm (op * c ` A) div c" | |
| 1433 | by (intro Lcm_least dvd_mult_imp_div) | |
| 63489 | 1434 | (auto intro!: Lcm_least dvd_Lcm simp: mult.commute[of _ c]) | 
| 1435 | then have "c * Lcm A dvd Lcm (op * c ` A)" | |
| 63359 | 1436 | by (subst (asm) dvd_div_iff_mult) (auto intro!: Lcm_least simp: mult_ac dvd) | 
| 1437 | also have "c * Lcm A = (normalize c * Lcm A) * unit_factor c" | |
| 1438 | by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac) | |
| 1439 | also have "\<dots> dvd Lcm (op * c ` A) \<longleftrightarrow> normalize c * Lcm A dvd Lcm (op * c ` A)" | |
| 1440 | by (simp add: mult_unit_dvd_iff) | |
| 1441 | finally have "normalize c * Lcm A dvd Lcm (op * c ` A)" . | |
| 1442 | moreover have "Lcm (op * c ` A) dvd normalize c * Lcm A" | |
| 1443 | by (intro Lcm_least) (auto intro: mult_dvd_mono dvd_Lcm) | |
| 1444 | ultimately have "normalize (normalize c * Lcm A) = normalize (Lcm (op * c ` A))" | |
| 1445 | by (rule associatedI) | |
| 63489 | 1446 | then show ?thesis | 
| 1447 | by (simp add: normalize_mult) | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1448 | qed | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1449 | |
| 63489 | 1450 | lemma Lcm_no_units: "Lcm A = Lcm (A - {a. is_unit a})"
 | 
| 1451 | proof - | |
| 1452 |   have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A"
 | |
| 1453 | by blast | |
| 1454 |   then have "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})"
 | |
| 1455 | by (simp add: Lcm_Un [symmetric]) | |
| 1456 |   also have "Lcm {a\<in>A. is_unit a} = 1"
 | |
| 1457 | by simp | |
| 1458 | finally show ?thesis | |
| 1459 | by simp | |
| 1460 | qed | |
| 1461 | ||
| 1462 | lemma Lcm_0_iff': "Lcm A = 0 \<longleftrightarrow> (\<nexists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1463 | by (metis Lcm_least dvd_0_left dvd_Lcm) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1464 | |
| 63489 | 1465 | lemma Lcm_no_multiple: "(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not> a dvd m)) \<Longrightarrow> Lcm A = 0" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1466 | by (auto simp: Lcm_0_iff') | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1467 | |
| 63489 | 1468 | lemma Lcm_singleton [simp]: "Lcm {a} = normalize a"
 | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1469 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1470 | |
| 63489 | 1471 | lemma Lcm_2 [simp]: "Lcm {a, b} = lcm a b"
 | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1472 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1473 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1474 | lemma Lcm_coprime: | 
| 63489 | 1475 | assumes "finite A" | 
| 1476 |     and "A \<noteq> {}"
 | |
| 1477 | and "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1478 | shows "Lcm A = normalize (\<Prod>A)" | 
| 63489 | 1479 | using assms | 
| 1480 | proof (induct rule: finite_ne_induct) | |
| 1481 | case singleton | |
| 1482 | then show ?case by simp | |
| 1483 | next | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1484 | case (insert a A) | 
| 63489 | 1485 | have "Lcm (insert a A) = lcm a (Lcm A)" | 
| 1486 | by simp | |
| 1487 | also from insert have "Lcm A = normalize (\<Prod>A)" | |
| 1488 | by blast | |
| 1489 | also have "lcm a \<dots> = lcm a (\<Prod>A)" | |
| 1490 | by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2) | |
| 1491 | also from insert have "gcd a (\<Prod>A) = 1" | |
| 64272 | 1492 | by (subst gcd.commute, intro prod_coprime) auto | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1493 | with insert have "lcm a (\<Prod>A) = normalize (\<Prod>(insert a A))" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1494 | by (simp add: lcm_coprime) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1495 | finally show ?case . | 
| 63489 | 1496 | qed | 
| 1497 | ||
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1498 | lemma Lcm_coprime': | 
| 63489 | 1499 | "card A \<noteq> 0 \<Longrightarrow> | 
| 1500 | (\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1) \<Longrightarrow> | |
| 1501 | Lcm A = normalize (\<Prod>A)" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1502 | by (rule Lcm_coprime) (simp_all add: card_eq_0_iff) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1503 | |
| 63489 | 1504 | lemma Gcd_1: "1 \<in> A \<Longrightarrow> Gcd A = 1" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1505 | by (auto intro!: Gcd_eq_1_I) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1506 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1507 | lemma Gcd_singleton [simp]: "Gcd {a} = normalize a"
 | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1508 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1509 | |
| 63489 | 1510 | lemma Gcd_2 [simp]: "Gcd {a, b} = gcd a b"
 | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1511 | by simp | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1512 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1513 | |
| 63489 | 1514 | definition pairwise_coprime | 
| 1515 | where "pairwise_coprime A = (\<forall>x y. x \<in> A \<and> y \<in> A \<and> x \<noteq> y \<longrightarrow> coprime x y)" | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1516 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1517 | lemma pairwise_coprimeI [intro?]: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1518 | "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> coprime x y) \<Longrightarrow> pairwise_coprime A" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1519 | by (simp add: pairwise_coprime_def) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1520 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1521 | lemma pairwise_coprimeD: | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1522 | "pairwise_coprime A \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> coprime x y" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1523 | by (simp add: pairwise_coprime_def) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1524 | |
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1525 | lemma pairwise_coprime_subset: "pairwise_coprime A \<Longrightarrow> B \<subseteq> A \<Longrightarrow> pairwise_coprime B" | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1526 | by (force simp: pairwise_coprime_def) | 
| 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 1527 | |
| 62350 | 1528 | end | 
| 62345 | 1529 | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1530 | |
| 64850 | 1531 | subsection \<open>An aside: GCD and LCM on finite sets for incomplete gcd rings\<close> | 
| 1532 | ||
| 1533 | context semiring_gcd | |
| 1534 | begin | |
| 1535 | ||
| 1536 | sublocale Gcd_fin: bounded_quasi_semilattice_set gcd 0 1 normalize | |
| 1537 | defines | |
| 1538 |   Gcd_fin ("Gcd\<^sub>f\<^sub>i\<^sub>n _" [900] 900) = "Gcd_fin.F :: 'a set \<Rightarrow> 'a" ..
 | |
| 1539 | ||
| 1540 | abbreviation gcd_list :: "'a list \<Rightarrow> 'a" | |
| 1541 | where "gcd_list xs \<equiv> Gcd\<^sub>f\<^sub>i\<^sub>n (set xs)" | |
| 1542 | ||
| 1543 | sublocale Lcm_fin: bounded_quasi_semilattice_set lcm 1 0 normalize | |
| 1544 | defines | |
| 1545 |   Lcm_fin ("Lcm\<^sub>f\<^sub>i\<^sub>n _" [900] 900) = Lcm_fin.F ..
 | |
| 1546 | ||
| 1547 | abbreviation lcm_list :: "'a list \<Rightarrow> 'a" | |
| 1548 | where "lcm_list xs \<equiv> Lcm\<^sub>f\<^sub>i\<^sub>n (set xs)" | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1549 | |
| 64850 | 1550 | lemma Gcd_fin_dvd: | 
| 1551 | "a \<in> A \<Longrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A dvd a" | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1552 | by (induct A rule: infinite_finite_induct) | 
| 64850 | 1553 | (auto intro: dvd_trans) | 
| 1554 | ||
| 1555 | lemma dvd_Lcm_fin: | |
| 1556 | "a \<in> A \<Longrightarrow> a dvd Lcm\<^sub>f\<^sub>i\<^sub>n A" | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1557 | by (induct A rule: infinite_finite_induct) | 
| 64850 | 1558 | (auto intro: dvd_trans) | 
| 1559 | ||
| 1560 | lemma Gcd_fin_greatest: | |
| 1561 | "a dvd Gcd\<^sub>f\<^sub>i\<^sub>n A" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> a dvd b" | |
| 1562 | using that by (induct A) simp_all | |
| 1563 | ||
| 1564 | lemma Lcm_fin_least: | |
| 1565 | "Lcm\<^sub>f\<^sub>i\<^sub>n A dvd a" if "finite A" and "\<And>b. b \<in> A \<Longrightarrow> b dvd a" | |
| 1566 | using that by (induct A) simp_all | |
| 1567 | ||
| 1568 | lemma gcd_list_greatest: | |
| 1569 | "a dvd gcd_list bs" if "\<And>b. b \<in> set bs \<Longrightarrow> a dvd b" | |
| 1570 | by (rule Gcd_fin_greatest) (simp_all add: that) | |
| 1571 | ||
| 1572 | lemma lcm_list_least: | |
| 1573 | "lcm_list bs dvd a" if "\<And>b. b \<in> set bs \<Longrightarrow> b dvd a" | |
| 1574 | by (rule Lcm_fin_least) (simp_all add: that) | |
| 1575 | ||
| 1576 | lemma dvd_Gcd_fin_iff: | |
| 1577 | "b dvd Gcd\<^sub>f\<^sub>i\<^sub>n A \<longleftrightarrow> (\<forall>a\<in>A. b dvd a)" if "finite A" | |
| 1578 | using that by (auto intro: Gcd_fin_greatest Gcd_fin_dvd dvd_trans [of b "Gcd\<^sub>f\<^sub>i\<^sub>n A"]) | |
| 1579 | ||
| 1580 | lemma dvd_gcd_list_iff: | |
| 1581 | "b dvd gcd_list xs \<longleftrightarrow> (\<forall>a\<in>set xs. b dvd a)" | |
| 1582 | by (simp add: dvd_Gcd_fin_iff) | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64850diff
changeset | 1583 | |
| 64850 | 1584 | lemma Lcm_fin_dvd_iff: | 
| 1585 | "Lcm\<^sub>f\<^sub>i\<^sub>n A dvd b \<longleftrightarrow> (\<forall>a\<in>A. a dvd b)" if "finite A" | |
| 1586 | using that by (auto intro: Lcm_fin_least dvd_Lcm_fin dvd_trans [of _ "Lcm\<^sub>f\<^sub>i\<^sub>n A" b]) | |
| 1587 | ||
| 1588 | lemma lcm_list_dvd_iff: | |
| 1589 | "lcm_list xs dvd b \<longleftrightarrow> (\<forall>a\<in>set xs. a dvd b)" | |
| 1590 | by (simp add: Lcm_fin_dvd_iff) | |
| 1591 | ||
| 1592 | lemma Gcd_fin_mult: | |
| 1593 | "Gcd\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize b * Gcd\<^sub>f\<^sub>i\<^sub>n A" if "finite A" | |
| 1594 | using that proof induct | |
| 1595 | case empty | |
| 1596 | then show ?case | |
| 1597 | by simp | |
| 1598 | next | |
| 1599 | case (insert a A) | |
| 1600 | have "gcd (b * a) (b * Gcd\<^sub>f\<^sub>i\<^sub>n A) = gcd (b * a) (normalize (b * Gcd\<^sub>f\<^sub>i\<^sub>n A))" | |
| 1601 | by simp | |
| 1602 | also have "\<dots> = gcd (b * a) (normalize b * Gcd\<^sub>f\<^sub>i\<^sub>n A)" | |
| 1603 | by (simp add: normalize_mult) | |
| 1604 | finally show ?case | |
| 1605 | using insert by (simp add: gcd_mult_distrib') | |
| 1606 | qed | |
| 1607 | ||
| 1608 | lemma Lcm_fin_mult: | |
| 1609 |   "Lcm\<^sub>f\<^sub>i\<^sub>n (image (times b) A) = normalize b * Lcm\<^sub>f\<^sub>i\<^sub>n A" if "A \<noteq> {}"
 | |
| 1610 | proof (cases "b = 0") | |
| 1611 | case True | |
| 1612 |   moreover from that have "times 0 ` A = {0}"
 | |
| 1613 | by auto | |
| 1614 | ultimately show ?thesis | |
| 1615 | by simp | |
| 1616 | next | |
| 1617 | case False | |
| 1618 | then have "inj (times b)" | |
| 1619 | by (rule inj_times) | |
| 1620 | show ?thesis proof (cases "finite A") | |
| 1621 | case False | |
| 1622 | moreover from \<open>inj (times b)\<close> | |
| 1623 | have "inj_on (times b) A" | |
| 1624 | by (rule inj_on_subset) simp | |
| 1625 | ultimately have "infinite (times b ` A)" | |
| 1626 | by (simp add: finite_image_iff) | |
| 1627 | with False show ?thesis | |
| 1628 | by simp | |
| 1629 | next | |
| 1630 | case True | |
| 1631 | then show ?thesis using that proof (induct A rule: finite_ne_induct) | |
| 1632 | case (singleton a) | |
| 1633 | then show ?case | |
| 1634 | by (simp add: normalize_mult) | |
| 1635 | next | |
| 1636 | case (insert a A) | |
| 1637 | have "lcm (b * a) (b * Lcm\<^sub>f\<^sub>i\<^sub>n A) = lcm (b * a) (normalize (b * Lcm\<^sub>f\<^sub>i\<^sub>n A))" | |
| 1638 | by simp | |
| 1639 | also have "\<dots> = lcm (b * a) (normalize b * Lcm\<^sub>f\<^sub>i\<^sub>n A)" | |
| 1640 | by (simp add: normalize_mult) | |
| 1641 | finally show ?case | |
| 1642 | using insert by (simp add: lcm_mult_distrib') | |
| 1643 | qed | |
| 1644 | qed | |
| 1645 | qed | |
| 1646 | ||
| 65811 | 1647 | lemma unit_factor_Gcd_fin: | 
| 1648 | "unit_factor (Gcd\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Gcd\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)" | |
| 1649 | by (rule normalize_idem_imp_unit_factor_eq) simp | |
| 1650 | ||
| 1651 | lemma unit_factor_Lcm_fin: | |
| 1652 | "unit_factor (Lcm\<^sub>f\<^sub>i\<^sub>n A) = of_bool (Lcm\<^sub>f\<^sub>i\<^sub>n A \<noteq> 0)" | |
| 1653 | by (rule normalize_idem_imp_unit_factor_eq) simp | |
| 1654 | ||
| 1655 | lemma is_unit_Gcd_fin_iff [simp]: | |
| 1656 | "is_unit (Gcd\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Gcd\<^sub>f\<^sub>i\<^sub>n A = 1" | |
| 1657 | by (rule normalize_idem_imp_is_unit_iff) simp | |
| 1658 | ||
| 1659 | lemma is_unit_Lcm_fin_iff [simp]: | |
| 1660 | "is_unit (Lcm\<^sub>f\<^sub>i\<^sub>n A) \<longleftrightarrow> Lcm\<^sub>f\<^sub>i\<^sub>n A = 1" | |
| 1661 | by (rule normalize_idem_imp_is_unit_iff) simp | |
| 1662 | ||
| 1663 | lemma Gcd_fin_0_iff: | |
| 1664 |   "Gcd\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> A \<subseteq> {0} \<and> finite A"
 | |
| 1665 | by (induct A rule: infinite_finite_induct) simp_all | |
| 1666 | ||
| 1667 | lemma Lcm_fin_0_iff: | |
| 1668 | "Lcm\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> 0 \<in> A" if "finite A" | |
| 1669 | using that by (induct A) (auto simp add: lcm_eq_0_iff) | |
| 1670 | ||
| 1671 | lemma Lcm_fin_1_iff: | |
| 1672 | "Lcm\<^sub>f\<^sub>i\<^sub>n A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a) \<and> finite A" | |
| 1673 | by (induct A rule: infinite_finite_induct) simp_all | |
| 1674 | ||
| 64850 | 1675 | end | 
| 1676 | ||
| 1677 | context semiring_Gcd | |
| 1678 | begin | |
| 1679 | ||
| 1680 | lemma Gcd_fin_eq_Gcd [simp]: | |
| 1681 | "Gcd\<^sub>f\<^sub>i\<^sub>n A = Gcd A" if "finite A" for A :: "'a set" | |
| 1682 | using that by induct simp_all | |
| 1683 | ||
| 1684 | lemma Gcd_set_eq_fold [code_unfold]: | |
| 1685 | "Gcd (set xs) = fold gcd xs 0" | |
| 1686 | by (simp add: Gcd_fin.set_eq_fold [symmetric]) | |
| 1687 | ||
| 1688 | lemma Lcm_fin_eq_Lcm [simp]: | |
| 1689 | "Lcm\<^sub>f\<^sub>i\<^sub>n A = Lcm A" if "finite A" for A :: "'a set" | |
| 1690 | using that by induct simp_all | |
| 1691 | ||
| 1692 | lemma Lcm_set_eq_fold [code_unfold]: | |
| 1693 | "Lcm (set xs) = fold lcm xs 1" | |
| 1694 | by (simp add: Lcm_fin.set_eq_fold [symmetric]) | |
| 1695 | ||
| 1696 | end | |
| 63489 | 1697 | |
| 62345 | 1698 | subsection \<open>GCD and LCM on @{typ nat} and @{typ int}\<close>
 | 
| 59008 | 1699 | |
| 31706 | 1700 | instantiation nat :: gcd | 
| 1701 | begin | |
| 21256 | 1702 | |
| 62345 | 1703 | fun gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 63489 | 1704 | where "gcd_nat x y = (if y = 0 then x else gcd y (x mod y))" | 
| 31706 | 1705 | |
| 62345 | 1706 | definition lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 63489 | 1707 | where "lcm_nat x y = x * y div (gcd x y)" | 
| 1708 | ||
| 1709 | instance .. | |
| 31706 | 1710 | |
| 1711 | end | |
| 1712 | ||
| 1713 | instantiation int :: gcd | |
| 1714 | begin | |
| 21256 | 1715 | |
| 62345 | 1716 | definition gcd_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 1717 | where "gcd_int x y = int (gcd (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1718 | |
| 62345 | 1719 | definition lcm_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 1720 | where "lcm_int x y = int (lcm (nat \<bar>x\<bar>) (nat \<bar>y\<bar>))" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1721 | |
| 61944 | 1722 | instance .. | 
| 31706 | 1723 | |
| 1724 | end | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1725 | |
| 62345 | 1726 | text \<open>Transfer setup\<close> | 
| 31706 | 1727 | |
| 1728 | lemma transfer_nat_int_gcd: | |
| 63489 | 1729 | "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)" | 
| 1730 | "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)" | |
| 1731 | for x y :: int | |
| 1732 | unfolding gcd_int_def lcm_int_def by auto | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1733 | |
| 31706 | 1734 | lemma transfer_nat_int_gcd_closures: | 
| 63489 | 1735 | "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> gcd x y \<ge> 0" | 
| 1736 | "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> lcm x y \<ge> 0" | |
| 1737 | for x y :: int | |
| 31706 | 1738 | by (auto simp add: gcd_int_def lcm_int_def) | 
| 1739 | ||
| 63489 | 1740 | declare transfer_morphism_nat_int | 
| 1741 | [transfer add return: transfer_nat_int_gcd transfer_nat_int_gcd_closures] | |
| 31706 | 1742 | |
| 1743 | lemma transfer_int_nat_gcd: | |
| 1744 | "gcd (int x) (int y) = int (gcd x y)" | |
| 1745 | "lcm (int x) (int y) = int (lcm x y)" | |
| 63489 | 1746 | by (auto simp: gcd_int_def lcm_int_def) | 
| 31706 | 1747 | |
| 1748 | lemma transfer_int_nat_gcd_closures: | |
| 1749 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0" | |
| 1750 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0" | |
| 63489 | 1751 | by (auto simp: gcd_int_def lcm_int_def) | 
| 1752 | ||
| 1753 | declare transfer_morphism_int_nat | |
| 1754 | [transfer add return: transfer_int_nat_gcd transfer_int_nat_gcd_closures] | |
| 31706 | 1755 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1756 | lemma gcd_nat_induct: | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1757 | fixes m n :: nat | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1758 | assumes "\<And>m. P m 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1759 | and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1760 | shows "P m n" | 
| 31706 | 1761 | apply (rule gcd_nat.induct) | 
| 1762 | apply (case_tac "y = 0") | |
| 63489 | 1763 | using assms | 
| 1764 | apply simp_all | |
| 1765 | done | |
| 1766 | ||
| 1767 | ||
| 1768 | text \<open>Specific to \<open>int\<close>.\<close> | |
| 1769 | ||
| 1770 | lemma gcd_eq_int_iff: "gcd k l = int n \<longleftrightarrow> gcd (nat \<bar>k\<bar>) (nat \<bar>l\<bar>) = n" | |
| 62346 | 1771 | by (simp add: gcd_int_def) | 
| 1772 | ||
| 63489 | 1773 | lemma lcm_eq_int_iff: "lcm k l = int n \<longleftrightarrow> lcm (nat \<bar>k\<bar>) (nat \<bar>l\<bar>) = n" | 
| 62346 | 1774 | by (simp add: lcm_int_def) | 
| 1775 | ||
| 63489 | 1776 | lemma gcd_neg1_int [simp]: "gcd (- x) y = gcd x y" | 
| 1777 | for x y :: int | |
| 31706 | 1778 | by (simp add: gcd_int_def) | 
| 1779 | ||
| 63489 | 1780 | lemma gcd_neg2_int [simp]: "gcd x (- y) = gcd x y" | 
| 1781 | for x y :: int | |
| 1782 | by (simp add: gcd_int_def) | |
| 1783 | ||
| 1784 | lemma abs_gcd_int [simp]: "\<bar>gcd x y\<bar> = gcd x y" | |
| 1785 | for x y :: int | |
| 31706 | 1786 | by (simp add: gcd_int_def) | 
| 1787 | ||
| 63489 | 1788 | lemma gcd_abs_int: "gcd x y = gcd \<bar>x\<bar> \<bar>y\<bar>" | 
| 1789 | for x y :: int | |
| 1790 | by (simp add: gcd_int_def) | |
| 1791 | ||
| 1792 | lemma gcd_abs1_int [simp]: "gcd \<bar>x\<bar> y = gcd x y" | |
| 1793 | for x y :: int | |
| 1794 | by (metis abs_idempotent gcd_abs_int) | |
| 1795 | ||
| 1796 | lemma gcd_abs2_int [simp]: "gcd x \<bar>y\<bar> = gcd x y" | |
| 1797 | for x y :: int | |
| 1798 | by (metis abs_idempotent gcd_abs_int) | |
| 31706 | 1799 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1800 | lemma gcd_cases_int: | 
| 63489 | 1801 | fixes x y :: int | 
| 1802 | assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd x y)" | |
| 1803 | and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd x (- y))" | |
| 1804 | and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (gcd (- x) y)" | |
| 1805 | and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (gcd (- x) (- y))" | |
| 31706 | 1806 | shows "P (gcd x y)" | 
| 63489 | 1807 | using assms by auto arith | 
| 21256 | 1808 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1809 | lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0" | 
| 63489 | 1810 | for x y :: int | 
| 31706 | 1811 | by (simp add: gcd_int_def) | 
| 1812 | ||
| 63489 | 1813 | lemma lcm_neg1_int: "lcm (- x) y = lcm x y" | 
| 1814 | for x y :: int | |
| 31706 | 1815 | by (simp add: lcm_int_def) | 
| 1816 | ||
| 63489 | 1817 | lemma lcm_neg2_int: "lcm x (- y) = lcm x y" | 
| 1818 | for x y :: int | |
| 31706 | 1819 | by (simp add: lcm_int_def) | 
| 1820 | ||
| 63489 | 1821 | lemma lcm_abs_int: "lcm x y = lcm \<bar>x\<bar> \<bar>y\<bar>" | 
| 1822 | for x y :: int | |
| 31706 | 1823 | by (simp add: lcm_int_def) | 
| 21256 | 1824 | |
| 63489 | 1825 | lemma abs_lcm_int [simp]: "\<bar>lcm i j\<bar> = lcm i j" | 
| 1826 | for i j :: int | |
| 61944 | 1827 | by (simp add:lcm_int_def) | 
| 31814 | 1828 | |
| 63489 | 1829 | lemma lcm_abs1_int [simp]: "lcm \<bar>x\<bar> y = lcm x y" | 
| 1830 | for x y :: int | |
| 61944 | 1831 | by (metis abs_idempotent lcm_int_def) | 
| 31814 | 1832 | |
| 63489 | 1833 | lemma lcm_abs2_int [simp]: "lcm x \<bar>y\<bar> = lcm x y" | 
| 1834 | for x y :: int | |
| 61944 | 1835 | by (metis abs_idempotent lcm_int_def) | 
| 31814 | 1836 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1837 | lemma lcm_cases_int: | 
| 63489 | 1838 | fixes x y :: int | 
| 1839 | assumes "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm x y)" | |
| 1840 | and "x \<ge> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm x (- y))" | |
| 1841 | and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm (- x) y)" | |
| 1842 | and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm (- x) (- y))" | |
| 31706 | 1843 | shows "P (lcm x y)" | 
| 41550 | 1844 | using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith | 
| 31706 | 1845 | |
| 63489 | 1846 | lemma lcm_ge_0_int [simp]: "lcm x y \<ge> 0" | 
| 1847 | for x y :: int | |
| 31706 | 1848 | by (simp add: lcm_int_def) | 
| 1849 | ||
| 63489 | 1850 | lemma gcd_0_nat: "gcd x 0 = x" | 
| 1851 | for x :: nat | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1852 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1853 | |
| 63489 | 1854 | lemma gcd_0_int [simp]: "gcd x 0 = \<bar>x\<bar>" | 
| 1855 | for x :: int | |
| 1856 | by (auto simp: gcd_int_def) | |
| 1857 | ||
| 1858 | lemma gcd_0_left_nat: "gcd 0 x = x" | |
| 1859 | for x :: nat | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1860 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1861 | |
| 63489 | 1862 | lemma gcd_0_left_int [simp]: "gcd 0 x = \<bar>x\<bar>" | 
| 1863 | for x :: int | |
| 1864 | by (auto simp:gcd_int_def) | |
| 1865 | ||
| 1866 | lemma gcd_red_nat: "gcd x y = gcd y (x mod y)" | |
| 1867 | for x y :: nat | |
| 1868 | by (cases "y = 0") auto | |
| 1869 | ||
| 1870 | ||
| 1871 | text \<open>Weaker, but useful for the simplifier.\<close> | |
| 1872 | ||
| 1873 | lemma gcd_non_0_nat: "y \<noteq> 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" | |
| 1874 | for x y :: nat | |
| 21263 | 1875 | by simp | 
| 21256 | 1876 | |
| 63489 | 1877 | lemma gcd_1_nat [simp]: "gcd m 1 = 1" | 
| 1878 | for m :: nat | |
| 60690 | 1879 | by simp | 
| 31706 | 1880 | |
| 63489 | 1881 | lemma gcd_Suc_0 [simp]: "gcd m (Suc 0) = Suc 0" | 
| 1882 | for m :: nat | |
| 1883 | by simp | |
| 1884 | ||
| 1885 | lemma gcd_1_int [simp]: "gcd m 1 = 1" | |
| 1886 | for m :: int | |
| 31706 | 1887 | by (simp add: gcd_int_def) | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
30042diff
changeset | 1888 | |
| 63489 | 1889 | lemma gcd_idem_nat: "gcd x x = x" | 
| 1890 | for x :: nat | |
| 1891 | by simp | |
| 1892 | ||
| 1893 | lemma gcd_idem_int: "gcd x x = \<bar>x\<bar>" | |
| 1894 | for x :: int | |
| 1895 | by (auto simp add: gcd_int_def) | |
| 31706 | 1896 | |
| 1897 | declare gcd_nat.simps [simp del] | |
| 21256 | 1898 | |
| 60758 | 1899 | text \<open> | 
| 63489 | 1900 |   \<^medskip> @{term "gcd m n"} divides \<open>m\<close> and \<open>n\<close>.
 | 
| 1901 | The conjunctions don't seem provable separately. | |
| 60758 | 1902 | \<close> | 
| 21256 | 1903 | |
| 59008 | 1904 | instance nat :: semiring_gcd | 
| 1905 | proof | |
| 1906 | fix m n :: nat | |
| 1907 | show "gcd m n dvd m" and "gcd m n dvd n" | |
| 1908 | proof (induct m n rule: gcd_nat_induct) | |
| 1909 | fix m n :: nat | |
| 63489 | 1910 | assume "gcd n (m mod n) dvd m mod n" | 
| 1911 | and "gcd n (m mod n) dvd n" | |
| 59008 | 1912 | then have "gcd n (m mod n) dvd m" | 
| 1913 | by (rule dvd_mod_imp_dvd) | |
| 1914 | moreover assume "0 < n" | |
| 1915 | ultimately show "gcd m n dvd m" | |
| 1916 | by (simp add: gcd_non_0_nat) | |
| 1917 | qed (simp_all add: gcd_0_nat gcd_non_0_nat) | |
| 1918 | next | |
| 1919 | fix m n k :: nat | |
| 1920 | assume "k dvd m" and "k dvd n" | |
| 1921 | then show "k dvd gcd m n" | |
| 1922 | by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat) | |
| 60686 | 1923 | qed (simp_all add: lcm_nat_def) | 
| 59667 
651ea265d568
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
 paulson <lp15@cam.ac.uk> parents: 
59545diff
changeset | 1924 | |
| 59008 | 1925 | instance int :: ring_gcd | 
| 60686 | 1926 | by standard | 
| 63489 | 1927 | (simp_all add: dvd_int_unfold_dvd_nat gcd_int_def lcm_int_def | 
| 1928 | zdiv_int nat_abs_mult_distrib [symmetric] lcm_gcd gcd_greatest) | |
| 1929 | ||
| 1930 | lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd a b \<le> a" | |
| 1931 | for a b :: nat | |
| 1932 | by (rule dvd_imp_le) auto | |
| 1933 | ||
| 1934 | lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd a b \<le> b" | |
| 1935 | for a b :: nat | |
| 1936 | by (rule dvd_imp_le) auto | |
| 1937 | ||
| 1938 | lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd a b \<le> a" | |
| 1939 | for a b :: int | |
| 1940 | by (rule zdvd_imp_le) auto | |
| 1941 | ||
| 1942 | lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd a b \<le> b" | |
| 1943 | for a b :: int | |
| 1944 | by (rule zdvd_imp_le) auto | |
| 1945 | ||
| 1946 | lemma gcd_pos_nat [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" | |
| 1947 | for m n :: nat | |
| 1948 | using gcd_eq_0_iff [of m n] by arith | |
| 1949 | ||
| 1950 | lemma gcd_pos_int [simp]: "gcd m n > 0 \<longleftrightarrow> m \<noteq> 0 \<or> n \<noteq> 0" | |
| 1951 | for m n :: int | |
| 1952 | using gcd_eq_0_iff [of m n] gcd_ge_0_int [of m n] by arith | |
| 1953 | ||
| 1954 | lemma gcd_unique_nat: "d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | |
| 1955 | for d a :: nat | |
| 31706 | 1956 | apply auto | 
| 33657 | 1957 | apply (rule dvd_antisym) | 
| 63489 | 1958 | apply (erule (1) gcd_greatest) | 
| 31706 | 1959 | apply auto | 
| 63489 | 1960 | done | 
| 1961 | ||
| 1962 | lemma gcd_unique_int: | |
| 1963 | "d \<ge> 0 \<and> d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | |
| 1964 | for d a :: int | |
| 1965 | apply (cases "d = 0") | |
| 1966 | apply simp | |
| 1967 | apply (rule iffI) | |
| 1968 | apply (rule zdvd_antisym_nonneg) | |
| 1969 | apply (auto intro: gcd_greatest) | |
| 1970 | done | |
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
30042diff
changeset | 1971 | |
| 61913 | 1972 | interpretation gcd_nat: | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1973 | semilattice_neutr_order gcd "0::nat" Rings.dvd "\<lambda>m n. m dvd n \<and> m \<noteq> n" | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1974 | by standard (auto simp add: gcd_unique_nat [symmetric] intro: dvd_antisym dvd_trans) | 
| 31798 | 1975 | |
| 63489 | 1976 | lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd x y = \<bar>x\<bar>" | 
| 1977 | for x y :: int | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1978 | by (metis abs_dvd_iff gcd_0_left_int gcd_abs_int gcd_unique_int) | 
| 31798 | 1979 | |
| 63489 | 1980 | lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd x y = \<bar>y\<bar>" | 
| 1981 | for x y :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 1982 | by (metis gcd_proj1_if_dvd_int gcd.commute) | 
| 31798 | 1983 | |
| 63489 | 1984 | |
| 1985 | text \<open>\<^medskip> Multiplication laws.\<close> | |
| 1986 | ||
| 1987 | lemma gcd_mult_distrib_nat: "k * gcd m n = gcd (k * m) (k * n)" | |
| 1988 | for k m n :: nat | |
| 1989 |   \<comment> \<open>@{cite \<open>page 27\<close> davenport92}\<close>
 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1990 | apply (induct m n rule: gcd_nat_induct) | 
| 63489 | 1991 | apply simp | 
| 1992 | apply (cases "k = 0") | |
| 1993 | apply (simp_all add: gcd_non_0_nat) | |
| 1994 | done | |
| 1995 | ||
| 1996 | lemma gcd_mult_distrib_int: "\<bar>k\<bar> * gcd m n = gcd (k * m) (k * n)" | |
| 1997 | for k m n :: int | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1998 | apply (subst (1 2) gcd_abs_int) | 
| 31813 | 1999 | apply (subst (1 2) abs_mult) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2000 | apply (rule gcd_mult_distrib_nat [transferred]) | 
| 63489 | 2001 | apply auto | 
| 2002 | done | |
| 21256 | 2003 | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2004 | lemma coprime_crossproduct_nat: | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2005 | fixes a b c d :: nat | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2006 | assumes "coprime a d" and "coprime b c" | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2007 | shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2008 | using assms coprime_crossproduct [of a d b c] by simp | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2009 | |
| 35368 | 2010 | lemma coprime_crossproduct_int: | 
| 2011 | fixes a b c d :: int | |
| 2012 | assumes "coprime a d" and "coprime b c" | |
| 2013 | shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>" | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2014 | using assms coprime_crossproduct [of a d b c] by simp | 
| 35368 | 2015 | |
| 63489 | 2016 | |
| 2017 | text \<open>\medskip Addition laws.\<close> | |
| 2018 | ||
| 2019 | (* TODO: add the other variations? *) | |
| 2020 | ||
| 2021 | lemma gcd_diff1_nat: "m \<ge> n \<Longrightarrow> gcd (m - n) n = gcd m n" | |
| 2022 | for m n :: nat | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2023 | by (subst gcd_add1 [symmetric]) auto | 
| 31706 | 2024 | |
| 63489 | 2025 | lemma gcd_diff2_nat: "n \<ge> m \<Longrightarrow> gcd (n - m) n = gcd m n" | 
| 2026 | for m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2027 | apply (subst gcd.commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2028 | apply (subst gcd_diff1_nat [symmetric]) | 
| 63489 | 2029 | apply auto | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2030 | apply (subst gcd.commute) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2031 | apply (subst gcd_diff1_nat) | 
| 63489 | 2032 | apply assumption | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2033 | apply (rule gcd.commute) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2034 | done | 
| 31706 | 2035 | |
| 63489 | 2036 | lemma gcd_non_0_int: "y > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" | 
| 2037 | for x y :: int | |
| 31706 | 2038 | apply (frule_tac b = y and a = x in pos_mod_sign) | 
| 2039 | apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib) | |
| 63489 | 2040 | apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric] zmod_zminus1_eq_if) | 
| 31706 | 2041 | apply (frule_tac a = x in pos_mod_bound) | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2042 | apply (subst (1 2) gcd.commute) | 
| 63489 | 2043 | apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat nat_le_eq_zle) | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2044 | done | 
| 21256 | 2045 | |
| 63489 | 2046 | lemma gcd_red_int: "gcd x y = gcd y (x mod y)" | 
| 2047 | for x y :: int | |
| 2048 | apply (cases "y = 0") | |
| 2049 | apply force | |
| 2050 | apply (cases "y > 0") | |
| 2051 | apply (subst gcd_non_0_int, auto) | |
| 2052 | apply (insert gcd_non_0_int [of "- y" "- x"]) | |
| 35216 | 2053 | apply auto | 
| 63489 | 2054 | done | 
| 2055 | ||
| 2056 | (* TODO: differences, and all variations of addition rules | |
| 31706 | 2057 | as simplification rules for nat and int *) | 
| 2058 | ||
| 63489 | 2059 | (* TODO: add the three variations of these, and for ints? *) | 
| 2060 | ||
| 2061 | lemma finite_divisors_nat [simp]: (* FIXME move *) | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2062 | fixes m :: nat | 
| 63489 | 2063 | assumes "m > 0" | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2064 |   shows "finite {d. d dvd m}"
 | 
| 31734 | 2065 | proof- | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2066 |   from assms have "{d. d dvd m} \<subseteq> {d. d \<le> m}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2067 | by (auto dest: dvd_imp_le) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2068 | then show ?thesis | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2069 | using finite_Collect_le_nat by (rule finite_subset) | 
| 31734 | 2070 | qed | 
| 2071 | ||
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2072 | lemma finite_divisors_int [simp]: | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2073 | fixes i :: int | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2074 | assumes "i \<noteq> 0" | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2075 |   shows "finite {d. d dvd i}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2076 | proof - | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2077 |   have "{d. \<bar>d\<bar> \<le> \<bar>i\<bar>} = {- \<bar>i\<bar>..\<bar>i\<bar>}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2078 | by (auto simp: abs_if) | 
| 63489 | 2079 |   then have "finite {d. \<bar>d\<bar> \<le> \<bar>i\<bar>}"
 | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2080 | by simp | 
| 63489 | 2081 | from finite_subset [OF _ this] show ?thesis | 
| 2082 | using assms by (simp add: dvd_imp_le_int subset_iff) | |
| 31734 | 2083 | qed | 
| 2084 | ||
| 63489 | 2085 | lemma Max_divisors_self_nat [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::nat. d dvd n} = n"
 | 
| 2086 | apply (rule antisym) | |
| 2087 | apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le) | |
| 2088 | apply simp | |
| 2089 | done | |
| 2090 | ||
| 2091 | lemma Max_divisors_self_int [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::int. d dvd n} = \<bar>n\<bar>"
 | |
| 2092 | apply (rule antisym) | |
| 2093 | apply (rule Max_le_iff [THEN iffD2]) | |
| 2094 | apply (auto intro: abs_le_D1 dvd_imp_le_int) | |
| 2095 | done | |
| 2096 | ||
| 2097 | lemma gcd_is_Max_divisors_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}"
 | |
| 2098 | for m n :: nat | |
| 2099 | apply (rule Max_eqI[THEN sym]) | |
| 2100 | apply (metis finite_Collect_conjI finite_divisors_nat) | |
| 2101 | apply simp | |
| 2102 | apply (metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff gcd_pos_nat) | |
| 2103 | apply simp | |
| 2104 | done | |
| 2105 | ||
| 2106 | lemma gcd_is_Max_divisors_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}"
 | |
| 2107 | for m n :: int | |
| 2108 | apply (rule Max_eqI[THEN sym]) | |
| 2109 | apply (metis finite_Collect_conjI finite_divisors_int) | |
| 2110 | apply simp | |
| 2111 | apply (metis gcd_greatest_iff gcd_pos_int zdvd_imp_le) | |
| 2112 | apply simp | |
| 2113 | done | |
| 2114 | ||
| 2115 | lemma gcd_code_int [code]: "gcd k l = \<bar>if l = 0 then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" | |
| 2116 | for k l :: int | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 2117 | by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat) | 
| 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 2118 | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 2119 | |
| 60758 | 2120 | subsection \<open>Coprimality\<close> | 
| 31706 | 2121 | |
| 63489 | 2122 | lemma coprime_nat: "coprime a b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" | 
| 2123 | for a b :: nat | |
| 62345 | 2124 | using coprime [of a b] by simp | 
| 31706 | 2125 | |
| 63489 | 2126 | lemma coprime_Suc_0_nat: "coprime a b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)" | 
| 2127 | for a b :: nat | |
| 60690 | 2128 | using coprime_nat by simp | 
| 31706 | 2129 | |
| 63489 | 2130 | lemma coprime_int: "coprime a b \<longleftrightarrow> (\<forall>d. d \<ge> 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" | 
| 2131 | for a b :: int | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2132 | using gcd_unique_int [of 1 a b] | 
| 31706 | 2133 | apply clarsimp | 
| 2134 | apply (erule subst) | |
| 2135 | apply (rule iffI) | |
| 63489 | 2136 | apply force | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61605diff
changeset | 2137 | using abs_dvd_iff abs_ge_zero apply blast | 
| 59807 | 2138 | done | 
| 31706 | 2139 | |
| 63489 | 2140 | lemma pow_divides_eq_nat [simp]: "n > 0 \<Longrightarrow> a^n dvd b^n \<longleftrightarrow> a dvd b" | 
| 2141 | for a b n :: nat | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2142 | using pow_divs_eq[of n] by simp | 
| 31706 | 2143 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2144 | lemma coprime_Suc_nat [simp]: "coprime (Suc n) n" | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2145 | using coprime_plus_one[of n] by simp | 
| 31706 | 2146 | |
| 63489 | 2147 | lemma coprime_minus_one_nat: "n \<noteq> 0 \<Longrightarrow> coprime (n - 1) n" | 
| 2148 | for n :: nat | |
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2149 | using coprime_Suc_nat [of "n - 1"] gcd.commute [of "n - 1" n] by auto | 
| 31706 | 2150 | |
| 63489 | 2151 | lemma coprime_common_divisor_nat: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> x = 1" | 
| 2152 | for a b :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2153 | by (metis gcd_greatest_iff nat_dvd_1_iff_1) | 
| 31706 | 2154 | |
| 63489 | 2155 | lemma coprime_common_divisor_int: "coprime a b \<Longrightarrow> x dvd a \<Longrightarrow> x dvd b \<Longrightarrow> \<bar>x\<bar> = 1" | 
| 2156 | for a b :: int | |
| 60686 | 2157 | using gcd_greatest_iff [of x a b] by auto | 
| 31706 | 2158 | |
| 63489 | 2159 | lemma invertible_coprime_nat: "x * y mod m = 1 \<Longrightarrow> coprime x m" | 
| 2160 | for m x y :: nat | |
| 2161 | by (metis coprime_lmult gcd_1_nat gcd.commute gcd_red_nat) | |
| 2162 | ||
| 2163 | lemma invertible_coprime_int: "x * y mod m = 1 \<Longrightarrow> coprime x m" | |
| 2164 | for m x y :: int | |
| 2165 | by (metis coprime_lmult gcd_1_int gcd.commute gcd_red_int) | |
| 31706 | 2166 | |
| 2167 | ||
| 60758 | 2168 | subsection \<open>Bezout's theorem\<close> | 
| 31706 | 2169 | |
| 63489 | 2170 | text \<open> | 
| 2171 | Function \<open>bezw\<close> returns a pair of witnesses to Bezout's theorem -- | |
| 2172 | see the theorems that follow the definition. | |
| 2173 | \<close> | |
| 2174 | ||
| 2175 | fun bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int" | |
| 2176 | where "bezw x y = | |
| 2177 | (if y = 0 then (1, 0) | |
| 2178 | else | |
| 31706 | 2179 | (snd (bezw y (x mod y)), | 
| 2180 | fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))" | |
| 2181 | ||
| 63489 | 2182 | lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" | 
| 2183 | by simp | |
| 2184 | ||
| 2185 | lemma bezw_non_0: | |
| 2186 | "y > 0 \<Longrightarrow> bezw x y = | |
| 2187 | (snd (bezw y (x mod y)), fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))" | |
| 31706 | 2188 | by simp | 
| 2189 | ||
| 2190 | declare bezw.simps [simp del] | |
| 2191 | ||
| 63489 | 2192 | lemma bezw_aux: "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2193 | proof (induct x y rule: gcd_nat_induct) | 
| 31706 | 2194 | fix m :: nat | 
| 2195 | show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)" | |
| 2196 | by auto | |
| 63489 | 2197 | next | 
| 2198 | fix m n :: nat | |
| 2199 | assume ngt0: "n > 0" | |
| 2200 | and ih: "fst (bezw n (m mod n)) * int n + snd (bezw n (m mod n)) * int (m mod n) = | |
| 2201 | int (gcd n (m mod n))" | |
| 2202 | then show "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)" | |
| 2203 | apply (simp add: bezw_non_0 gcd_non_0_nat) | |
| 2204 | apply (erule subst) | |
| 2205 | apply (simp add: field_simps) | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 2206 | apply (subst div_mult_mod_eq [of m n, symmetric]) | 
| 63489 | 2207 | (* applying simp here undoes the last substitution! what is procedure cancel_div_mod? *) | 
| 2208 | apply (simp only: NO_MATCH_def field_simps of_nat_add of_nat_mult) | |
| 2209 | done | |
| 31706 | 2210 | qed | 
| 2211 | ||
| 63489 | 2212 | lemma bezout_int: "\<exists>u v. u * x + v * y = gcd x y" | 
| 2213 | for x y :: int | |
| 31706 | 2214 | proof - | 
| 63489 | 2215 | have aux: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> \<exists>u v. u * x + v * y = gcd x y" for x y :: int | 
| 31706 | 2216 | apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI) | 
| 2217 | apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI) | |
| 2218 | apply (unfold gcd_int_def) | |
| 2219 | apply simp | |
| 2220 | apply (subst bezw_aux [symmetric]) | |
| 2221 | apply auto | |
| 2222 | done | |
| 63489 | 2223 | consider "x \<ge> 0" "y \<ge> 0" | "x \<ge> 0" "y \<le> 0" | "x \<le> 0" "y \<ge> 0" | "x \<le> 0" "y \<le> 0" | 
| 2224 | by atomize_elim auto | |
| 2225 | then show ?thesis | |
| 2226 | proof cases | |
| 2227 | case 1 | |
| 2228 | then show ?thesis by (rule aux) | |
| 2229 | next | |
| 2230 | case 2 | |
| 2231 | then show ?thesis | |
| 2232 | apply - | |
| 2233 | apply (insert aux [of x "-y"]) | |
| 2234 | apply auto | |
| 2235 | apply (rule_tac x = u in exI) | |
| 2236 | apply (rule_tac x = "-v" in exI) | |
| 2237 | apply (subst gcd_neg2_int [symmetric]) | |
| 2238 | apply auto | |
| 2239 | done | |
| 2240 | next | |
| 2241 | case 3 | |
| 2242 | then show ?thesis | |
| 2243 | apply - | |
| 2244 | apply (insert aux [of "-x" y]) | |
| 2245 | apply auto | |
| 2246 | apply (rule_tac x = "-u" in exI) | |
| 2247 | apply (rule_tac x = v in exI) | |
| 2248 | apply (subst gcd_neg1_int [symmetric]) | |
| 2249 | apply auto | |
| 2250 | done | |
| 2251 | next | |
| 2252 | case 4 | |
| 2253 | then show ?thesis | |
| 2254 | apply - | |
| 2255 | apply (insert aux [of "-x" "-y"]) | |
| 2256 | apply auto | |
| 2257 | apply (rule_tac x = "-u" in exI) | |
| 2258 | apply (rule_tac x = "-v" in exI) | |
| 2259 | apply (subst gcd_neg1_int [symmetric]) | |
| 2260 | apply (subst gcd_neg2_int [symmetric]) | |
| 2261 | apply auto | |
| 2262 | done | |
| 2263 | qed | |
| 31706 | 2264 | qed | 
| 2265 | ||
| 63489 | 2266 | |
| 2267 | text \<open>Versions of Bezout for \<open>nat\<close>, by Amine Chaieb.\<close> | |
| 31706 | 2268 | |
| 2269 | lemma ind_euclid: | |
| 63489 | 2270 | fixes P :: "nat \<Rightarrow> nat \<Rightarrow> bool" | 
| 2271 | assumes c: " \<forall>a b. P a b \<longleftrightarrow> P b a" | |
| 2272 | and z: "\<forall>a. P a 0" | |
| 2273 | and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2274 | shows "P a b" | 
| 63489 | 2275 | proof (induct "a + b" arbitrary: a b rule: less_induct) | 
| 34915 | 2276 | case less | 
| 63489 | 2277 | consider (eq) "a = b" | (lt) "a < b" "a + b - a < a + b" | "b = 0" | "b + a - b < a + b" | 
| 2278 | by arith | |
| 2279 | show ?case | |
| 2280 | proof (cases a b rule: linorder_cases) | |
| 2281 | case equal | |
| 2282 | with add [rule_format, OF z [rule_format, of a]] show ?thesis by simp | |
| 2283 | next | |
| 2284 | case lt: less | |
| 2285 | then consider "a = 0" | "a + b - a < a + b" by arith | |
| 2286 | then show ?thesis | |
| 2287 | proof cases | |
| 2288 | case 1 | |
| 2289 | with z c show ?thesis by blast | |
| 2290 | next | |
| 2291 | case 2 | |
| 2292 | also have *: "a + b - a = a + (b - a)" using lt by arith | |
| 34915 | 2293 | finally have "a + (b - a) < a + b" . | 
| 63489 | 2294 | then have "P a (a + (b - a))" by (rule add [rule_format, OF less]) | 
| 2295 | then show ?thesis by (simp add: *[symmetric]) | |
| 2296 | qed | |
| 2297 | next | |
| 2298 | case gt: greater | |
| 2299 | then consider "b = 0" | "b + a - b < a + b" by arith | |
| 2300 | then show ?thesis | |
| 2301 | proof cases | |
| 2302 | case 1 | |
| 2303 | with z c show ?thesis by blast | |
| 2304 | next | |
| 2305 | case 2 | |
| 2306 | also have *: "b + a - b = b + (a - b)" using gt by arith | |
| 34915 | 2307 | finally have "b + (a - b) < a + b" . | 
| 63489 | 2308 | then have "P b (b + (a - b))" by (rule add [rule_format, OF less]) | 
| 2309 | then have "P b a" by (simp add: *[symmetric]) | |
| 2310 | with c show ?thesis by blast | |
| 2311 | qed | |
| 2312 | qed | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2313 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2314 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2315 | lemma bezout_lemma_nat: | 
| 31706 | 2316 | assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 2317 | (a * x = b * y + d \<or> b * x = a * y + d)" | |
| 2318 | shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and> | |
| 2319 | (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)" | |
| 2320 | using ex | |
| 2321 | apply clarsimp | |
| 63489 | 2322 | apply (rule_tac x="d" in exI) | 
| 2323 | apply simp | |
| 2324 | apply (case_tac "a * x = b * y + d") | |
| 2325 | apply simp_all | |
| 2326 | apply (rule_tac x="x + y" in exI) | |
| 2327 | apply (rule_tac x="y" in exI) | |
| 2328 | apply algebra | |
| 31706 | 2329 | apply (rule_tac x="x" in exI) | 
| 2330 | apply (rule_tac x="x + y" in exI) | |
| 2331 | apply algebra | |
| 63489 | 2332 | done | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2333 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2334 | lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 31706 | 2335 | (a * x = b * y + d \<or> b * x = a * y + d)" | 
| 63489 | 2336 | apply (induct a b rule: ind_euclid) | 
| 2337 | apply blast | |
| 2338 | apply clarify | |
| 2339 | apply (rule_tac x="a" in exI) | |
| 2340 | apply simp | |
| 31706 | 2341 | apply clarsimp | 
| 2342 | apply (rule_tac x="d" in exI) | |
| 63489 | 2343 | apply (case_tac "a * x = b * y + d") | 
| 2344 | apply simp_all | |
| 2345 | apply (rule_tac x="x+y" in exI) | |
| 2346 | apply (rule_tac x="y" in exI) | |
| 2347 | apply algebra | |
| 31706 | 2348 | apply (rule_tac x="x" in exI) | 
| 2349 | apply (rule_tac x="x+y" in exI) | |
| 2350 | apply algebra | |
| 63489 | 2351 | done | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2352 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2353 | lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 31706 | 2354 | (a * x - b * y = d \<or> b * x - a * y = d)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2355 | using bezout_add_nat[of a b] | 
| 31706 | 2356 | apply clarsimp | 
| 63489 | 2357 | apply (rule_tac x="d" in exI) | 
| 2358 | apply simp | |
| 31706 | 2359 | apply (rule_tac x="x" in exI) | 
| 2360 | apply (rule_tac x="y" in exI) | |
| 2361 | apply auto | |
| 63489 | 2362 | done | 
| 2363 | ||
| 2364 | lemma bezout_add_strong_nat: | |
| 2365 | fixes a b :: nat | |
| 2366 | assumes a: "a \<noteq> 0" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2367 | shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d" | 
| 63489 | 2368 | proof - | 
| 2369 | consider d x y where "d dvd a" "d dvd b" "a * x = b * y + d" | |
| 2370 | | d x y where "d dvd a" "d dvd b" "b * x = a * y + d" | |
| 2371 | using bezout_add_nat [of a b] by blast | |
| 2372 | then show ?thesis | |
| 2373 | proof cases | |
| 2374 | case 1 | |
| 2375 | then show ?thesis by blast | |
| 2376 | next | |
| 2377 | case H: 2 | |
| 2378 | show ?thesis | |
| 2379 | proof (cases "b = 0") | |
| 2380 | case True | |
| 2381 | with H show ?thesis by simp | |
| 2382 | next | |
| 2383 | case False | |
| 2384 | then have bp: "b > 0" by simp | |
| 2385 | with dvd_imp_le [OF H(2)] consider "d = b" | "d < b" | |
| 2386 | by atomize_elim auto | |
| 2387 | then show ?thesis | |
| 2388 | proof cases | |
| 2389 | case 1 | |
| 2390 | with a H show ?thesis | |
| 2391 | apply simp | |
| 2392 | apply (rule exI[where x = b]) | |
| 2393 | apply simp | |
| 2394 | apply (rule exI[where x = b]) | |
| 2395 | apply (rule exI[where x = "a - 1"]) | |
| 2396 | apply (simp add: diff_mult_distrib2) | |
| 2397 | done | |
| 2398 | next | |
| 2399 | case 2 | |
| 2400 | show ?thesis | |
| 2401 | proof (cases "x = 0") | |
| 2402 | case True | |
| 2403 | with a H show ?thesis by simp | |
| 2404 | next | |
| 2405 | case x0: False | |
| 2406 | then have xp: "x > 0" by simp | |
| 2407 | from \<open>d < b\<close> have "d \<le> b - 1" by simp | |
| 2408 | then have "d * b \<le> b * (b - 1)" by simp | |
| 2409 | with xp mult_mono[of "1" "x" "d * b" "b * (b - 1)"] | |
| 2410 | have dble: "d * b \<le> x * b * (b - 1)" using bp by simp | |
| 2411 | from H(3) have "d + (b - 1) * (b * x) = d + (b - 1) * (a * y + d)" | |
| 31706 | 2412 | by simp | 
| 63489 | 2413 | then have "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
56218diff
changeset | 2414 | by (simp only: mult.assoc distrib_left) | 
| 63489 | 2415 | then have "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x * b * (b - 1)" | 
| 31706 | 2416 | by algebra | 
| 63489 | 2417 | then have "a * ((b - 1) * y) = d + x * b * (b - 1) - d * b" | 
| 2418 | using bp by simp | |
| 2419 | then have "a * ((b - 1) * y) = d + (x * b * (b - 1) - d * b)" | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 2420 | by (simp only: diff_add_assoc[OF dble, of d, symmetric]) | 
| 63489 | 2421 | then have "a * ((b - 1) * y) = b * (x * (b - 1) - d) + d" | 
| 59008 | 2422 | by (simp only: diff_mult_distrib2 ac_simps) | 
| 63489 | 2423 | with H(1,2) show ?thesis | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 2424 | apply - | 
| 63489 | 2425 | apply (rule exI [where x = d]) | 
| 2426 | apply simp | |
| 2427 | apply (rule exI [where x = "(b - 1) * y"]) | |
| 2428 | apply (rule exI [where x = "x * (b - 1) - d"]) | |
| 2429 | apply simp | |
| 2430 | done | |
| 2431 | qed | |
| 2432 | qed | |
| 2433 | qed | |
| 2434 | qed | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2435 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2436 | |
| 63489 | 2437 | lemma bezout_nat: | 
| 2438 | fixes a :: nat | |
| 2439 | assumes a: "a \<noteq> 0" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2440 | shows "\<exists>x y. a * x = b * y + gcd a b" | 
| 63489 | 2441 | proof - | 
| 2442 | obtain d x y where d: "d dvd a" "d dvd b" and eq: "a * x = b * y + d" | |
| 2443 | using bezout_add_strong_nat [OF a, of b] by blast | |
| 2444 | from d have "d dvd gcd a b" | |
| 2445 | by simp | |
| 2446 | then obtain k where k: "gcd a b = d * k" | |
| 2447 | unfolding dvd_def by blast | |
| 2448 | from eq have "a * x * k = (b * y + d) * k" | |
| 2449 | by auto | |
| 2450 | then have "a * (x * k) = b * (y * k) + gcd a b" | |
| 2451 | by (algebra add: k) | |
| 2452 | then show ?thesis | |
| 2453 | by blast | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2454 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 2455 | |
| 31706 | 2456 | |
| 63489 | 2457 | subsection \<open>LCM properties on @{typ nat} and @{typ int}\<close>
 | 
| 2458 | ||
| 2459 | lemma lcm_altdef_int [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" | |
| 2460 | for a b :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2461 | by (simp add: lcm_int_def lcm_nat_def zdiv_int gcd_int_def) | 
| 31706 | 2462 | |
| 63489 | 2463 | lemma prod_gcd_lcm_nat: "m * n = gcd m n * lcm m n" | 
| 2464 | for m n :: nat | |
| 31706 | 2465 | unfolding lcm_nat_def | 
| 62429 
25271ff79171
Tuned Euclidean Rings/GCD rings
 Manuel Eberl <eberlm@in.tum.de> parents: 
62353diff
changeset | 2466 | by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod]) | 
| 31706 | 2467 | |
| 63489 | 2468 | lemma prod_gcd_lcm_int: "\<bar>m\<bar> * \<bar>n\<bar> = gcd m n * lcm m n" | 
| 2469 | for m n :: int | |
| 31706 | 2470 | unfolding lcm_int_def gcd_int_def | 
| 62348 | 2471 | apply (subst of_nat_mult [symmetric]) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2472 | apply (subst prod_gcd_lcm_nat [symmetric]) | 
| 31706 | 2473 | apply (subst nat_abs_mult_distrib [symmetric]) | 
| 63489 | 2474 | apply (simp add: abs_mult) | 
| 2475 | done | |
| 2476 | ||
| 2477 | lemma lcm_pos_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> lcm m n > 0" | |
| 2478 | for m n :: nat | |
| 2479 | by (metis gr0I mult_is_0 prod_gcd_lcm_nat) | |
| 2480 | ||
| 2481 | lemma lcm_pos_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> lcm m n > 0" | |
| 2482 | for m n :: int | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2483 | apply (subst lcm_abs_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2484 | apply (rule lcm_pos_nat [transferred]) | 
| 63489 | 2485 | apply auto | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2486 | done | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 2487 | |
| 63489 | 2488 | lemma dvd_pos_nat: "n > 0 \<Longrightarrow> m dvd n \<Longrightarrow> m > 0" (* FIXME move *) | 
| 2489 | for m n :: nat | |
| 2490 | by (cases m) auto | |
| 2491 | ||
| 2492 | lemma lcm_unique_nat: | |
| 2493 | "a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | |
| 2494 | for a b d :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2495 | by (auto intro: dvd_antisym lcm_least) | 
| 27568 
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
 chaieb parents: 
27556diff
changeset | 2496 | |
| 63489 | 2497 | lemma lcm_unique_int: | 
| 2498 | "d \<ge> 0 \<and> a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | |
| 2499 | for a b d :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2500 | using lcm_least zdvd_antisym_nonneg by auto | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 2501 | |
| 63489 | 2502 | lemma lcm_proj2_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm x y = y" | 
| 2503 | for x y :: nat | |
| 31706 | 2504 | apply (rule sym) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2505 | apply (subst lcm_unique_nat [symmetric]) | 
| 31706 | 2506 | apply auto | 
| 63489 | 2507 | done | 
| 2508 | ||
| 2509 | lemma lcm_proj2_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm x y = \<bar>y\<bar>" | |
| 2510 | for x y :: int | |
| 31706 | 2511 | apply (rule sym) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 2512 | apply (subst lcm_unique_int [symmetric]) | 
| 31706 | 2513 | apply auto | 
| 63489 | 2514 | done | 
| 2515 | ||
| 2516 | lemma lcm_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm y x = y" | |
| 2517 | for x y :: nat | |
| 2518 | by (subst lcm.commute) (erule lcm_proj2_if_dvd_nat) | |
| 2519 | ||
| 2520 | lemma lcm_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm y x = \<bar>y\<bar>" | |
| 2521 | for x y :: int | |
| 2522 | by (subst lcm.commute) (erule lcm_proj2_if_dvd_int) | |
| 2523 | ||
| 2524 | lemma lcm_proj1_iff_nat [simp]: "lcm m n = m \<longleftrightarrow> n dvd m" | |
| 2525 | for m n :: nat | |
| 2526 | by (metis lcm_proj1_if_dvd_nat lcm_unique_nat) | |
| 2527 | ||
| 2528 | lemma lcm_proj2_iff_nat [simp]: "lcm m n = n \<longleftrightarrow> m dvd n" | |
| 2529 | for m n :: nat | |
| 2530 | by (metis lcm_proj2_if_dvd_nat lcm_unique_nat) | |
| 2531 | ||
| 2532 | lemma lcm_proj1_iff_int [simp]: "lcm m n = \<bar>m\<bar> \<longleftrightarrow> n dvd m" | |
| 2533 | for m n :: int | |
| 2534 | by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int) | |
| 2535 | ||
| 2536 | lemma lcm_proj2_iff_int [simp]: "lcm m n = \<bar>n\<bar> \<longleftrightarrow> m dvd n" | |
| 2537 | for m n :: int | |
| 2538 | by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int) | |
| 2539 | ||
| 2540 | lemma lcm_1_iff_nat [simp]: "lcm m n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0" | |
| 2541 | for m n :: nat | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2542 | using lcm_eq_1_iff [of m n] by simp | 
| 63489 | 2543 | |
| 2544 | lemma lcm_1_iff_int [simp]: "lcm m n = 1 \<longleftrightarrow> (m = 1 \<or> m = -1) \<and> (n = 1 \<or> n = -1)" | |
| 2545 | for m n :: int | |
| 61913 | 2546 | by auto | 
| 31995 | 2547 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 2548 | |
| 62345 | 2549 | subsection \<open>The complete divisibility lattice on @{typ nat} and @{typ int}\<close>
 | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2550 | |
| 63489 | 2551 | text \<open> | 
| 2552 | Lifting \<open>gcd\<close> and \<open>lcm\<close> to sets (\<open>Gcd\<close> / \<open>Lcm\<close>). | |
| 2553 | \<open>Gcd\<close> is defined via \<open>Lcm\<close> to facilitate the proof that we have a complete lattice. | |
| 60758 | 2554 | \<close> | 
| 45264 | 2555 | |
| 62345 | 2556 | instantiation nat :: semiring_Gcd | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2557 | begin | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2558 | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2559 | interpretation semilattice_neutr_set lcm "1::nat" | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2560 | by standard simp_all | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 2561 | |
| 63489 | 2562 | definition "Lcm M = (if finite M then F M else 0)" for M :: "nat set" | 
| 2563 | ||
| 2564 | lemma Lcm_nat_empty: "Lcm {} = (1::nat)"
 | |
| 60690 | 2565 | by (simp add: Lcm_nat_def del: One_nat_def) | 
| 51489 | 2566 | |
| 63489 | 2567 | lemma Lcm_nat_insert: "Lcm (insert n M) = lcm n (Lcm M)" for n :: nat | 
| 61929 | 2568 | by (cases "finite M") (auto simp add: Lcm_nat_def simp del: One_nat_def) | 
| 2569 | ||
| 63489 | 2570 | lemma Lcm_nat_infinite: "infinite M \<Longrightarrow> Lcm M = 0" for M :: "nat set" | 
| 61929 | 2571 | by (simp add: Lcm_nat_def) | 
| 2572 | ||
| 2573 | lemma dvd_Lcm_nat [simp]: | |
| 2574 | fixes M :: "nat set" | |
| 2575 | assumes "m \<in> M" | |
| 2576 | shows "m dvd Lcm M" | |
| 2577 | proof - | |
| 63489 | 2578 | from assms have "insert m M = M" | 
| 2579 | by auto | |
| 61929 | 2580 | moreover have "m dvd Lcm (insert m M)" | 
| 2581 | by (simp add: Lcm_nat_insert) | |
| 63489 | 2582 | ultimately show ?thesis | 
| 2583 | by simp | |
| 61929 | 2584 | qed | 
| 2585 | ||
| 2586 | lemma Lcm_dvd_nat [simp]: | |
| 2587 | fixes M :: "nat set" | |
| 2588 | assumes "\<forall>m\<in>M. m dvd n" | |
| 2589 | shows "Lcm M dvd n" | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2590 | proof (cases "n > 0") | 
| 63489 | 2591 | case False | 
| 2592 | then show ?thesis by simp | |
| 61929 | 2593 | next | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2594 | case True | 
| 63489 | 2595 |   then have "finite {d. d dvd n}"
 | 
| 2596 | by (rule finite_divisors_nat) | |
| 2597 |   moreover have "M \<subseteq> {d. d dvd n}"
 | |
| 2598 | using assms by fast | |
| 2599 | ultimately have "finite M" | |
| 2600 | by (rule rev_finite_subset) | |
| 2601 | then show ?thesis | |
| 2602 | using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert) | |
| 61929 | 2603 | qed | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2604 | |
| 63489 | 2605 | definition "Gcd M = Lcm {d. \<forall>m\<in>M. d dvd m}" for M :: "nat set"
 | 
| 2606 | ||
| 2607 | instance | |
| 2608 | proof | |
| 2609 | fix N :: "nat set" | |
| 2610 | fix n :: nat | |
| 2611 | show "Gcd N dvd n" if "n \<in> N" | |
| 2612 | using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def) | |
| 2613 | show "n dvd Gcd N" if "\<And>m. m \<in> N \<Longrightarrow> n dvd m" | |
| 2614 | using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def) | |
| 2615 | show "n dvd Lcm N" if "n \<in> N" | |
| 2616 | using that by (induct N rule: infinite_finite_induct) auto | |
| 2617 | show "Lcm N dvd n" if "\<And>m. m \<in> N \<Longrightarrow> m dvd n" | |
| 2618 | using that by (induct N rule: infinite_finite_induct) auto | |
| 2619 | show "normalize (Gcd N) = Gcd N" and "normalize (Lcm N) = Lcm N" | |
| 2620 | by simp_all | |
| 2621 | qed | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2622 | |
| 62345 | 2623 | end | 
| 61913 | 2624 | |
| 63489 | 2625 | lemma Gcd_nat_eq_one: "1 \<in> N \<Longrightarrow> Gcd N = 1" | 
| 2626 | for N :: "nat set" | |
| 62346 | 2627 | by (rule Gcd_eq_1_I) auto | 
| 2628 | ||
| 63489 | 2629 | |
| 2630 | text \<open>Alternative characterizations of Gcd:\<close> | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2631 | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2632 | lemma Gcd_eq_Max: | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2633 | fixes M :: "nat set" | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2634 |   assumes "finite (M::nat set)" and "M \<noteq> {}" and "0 \<notin> M"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2635 |   shows "Gcd M = Max (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2636 | proof (rule antisym) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2637 | from assms obtain m where "m \<in> M" and "m > 0" | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2638 | by auto | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2639 |   from \<open>m > 0\<close> have "finite {d. d dvd m}"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2640 | by (blast intro: finite_divisors_nat) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2641 |   with \<open>m \<in> M\<close> have fin: "finite (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2642 | by blast | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2643 |   from fin show "Gcd M \<le> Max (\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2644 | by (auto intro: Max_ge Gcd_dvd) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2645 |   from fin show "Max (\<Inter>m\<in>M. {d. d dvd m}) \<le> Gcd M"
 | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2646 | apply (rule Max.boundedI) | 
| 63489 | 2647 | apply auto | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2648 | apply (meson Gcd_dvd Gcd_greatest \<open>0 < m\<close> \<open>m \<in> M\<close> dvd_imp_le dvd_pos_nat) | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2649 | done | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2650 | qed | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2651 | |
| 63489 | 2652 | lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0})"
 | 
| 2653 | for M :: "nat set" | |
| 2654 | apply (induct pred: finite) | |
| 2655 | apply simp | |
| 2656 | apply (case_tac "x = 0") | |
| 2657 | apply simp | |
| 2658 |   apply (subgoal_tac "insert x F - {0} = insert x (F - {0})")
 | |
| 2659 | apply simp | |
| 2660 | apply blast | |
| 2661 | done | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2662 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2663 | lemma Lcm_in_lcm_closed_set_nat: | 
| 63489 | 2664 |   "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M \<in> M"
 | 
| 2665 | for M :: "nat set" | |
| 2666 | apply (induct rule: finite_linorder_min_induct) | |
| 2667 | apply simp | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2668 | apply simp | 
| 63489 | 2669 | apply (subgoal_tac "\<forall>m n. m \<in> A \<longrightarrow> n \<in> A \<longrightarrow> lcm m n \<in> A") | 
| 2670 | apply simp | |
| 2671 |    apply(case_tac "A = {}")
 | |
| 2672 | apply simp | |
| 2673 | apply simp | |
| 2674 | apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0) | |
| 2675 | done | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2676 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2677 | lemma Lcm_eq_Max_nat: | 
| 63489 | 2678 |   "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M = Max M"
 | 
| 2679 | for M :: "nat set" | |
| 2680 | apply (rule antisym) | |
| 2681 | apply (rule Max_ge) | |
| 2682 | apply assumption | |
| 2683 | apply (erule (2) Lcm_in_lcm_closed_set_nat) | |
| 2684 | apply (auto simp add: not_le Lcm_0_iff dvd_imp_le leD le_neq_trans) | |
| 2685 | done | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 2686 | |
| 34222 | 2687 | lemma mult_inj_if_coprime_nat: | 
| 63489 | 2688 | "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> \<forall>a\<in>A. \<forall>b\<in>B. coprime (f a) (g b) \<Longrightarrow> | 
| 2689 | inj_on (\<lambda>(a, b). f a * g b) (A \<times> B)" | |
| 2690 | for f :: "'a \<Rightarrow> nat" and g :: "'b \<Rightarrow> nat" | |
| 61913 | 2691 | by (auto simp add: inj_on_def coprime_crossproduct_nat simp del: One_nat_def) | 
| 34222 | 2692 | |
| 63489 | 2693 | |
| 2694 | subsubsection \<open>Setwise GCD and LCM for integers\<close> | |
| 45264 | 2695 | |
| 62345 | 2696 | instantiation int :: semiring_Gcd | 
| 45264 | 2697 | begin | 
| 2698 | ||
| 63489 | 2699 | definition "Lcm M = int (LCM m\<in>M. (nat \<circ> abs) m)" | 
| 2700 | ||
| 2701 | definition "Gcd M = int (GCD m\<in>M. (nat \<circ> abs) m)" | |
| 2702 | ||
| 2703 | instance | |
| 2704 | by standard | |
| 2705 | (auto intro!: Gcd_dvd Gcd_greatest simp add: Gcd_int_def | |
| 2706 | Lcm_int_def int_dvd_iff dvd_int_iff dvd_int_unfold_dvd_nat [symmetric]) | |
| 62345 | 2707 | |
| 2708 | end | |
| 2709 | ||
| 63489 | 2710 | lemma abs_Gcd [simp]: "\<bar>Gcd K\<bar> = Gcd K" | 
| 2711 | for K :: "int set" | |
| 62346 | 2712 | using normalize_Gcd [of K] by simp | 
| 2713 | ||
| 63489 | 2714 | lemma abs_Lcm [simp]: "\<bar>Lcm K\<bar> = Lcm K" | 
| 2715 | for K :: "int set" | |
| 62346 | 2716 | using normalize_Lcm [of K] by simp | 
| 2717 | ||
| 63489 | 2718 | lemma Gcm_eq_int_iff: "Gcd K = int n \<longleftrightarrow> Gcd ((nat \<circ> abs) ` K) = n" | 
| 62346 | 2719 | by (simp add: Gcd_int_def comp_def image_image) | 
| 2720 | ||
| 63489 | 2721 | lemma Lcm_eq_int_iff: "Lcm K = int n \<longleftrightarrow> Lcm ((nat \<circ> abs) ` K) = n" | 
| 62346 | 2722 | by (simp add: Lcm_int_def comp_def image_image) | 
| 2723 | ||
| 62345 | 2724 | |
| 2725 | subsection \<open>GCD and LCM on @{typ integer}\<close>
 | |
| 2726 | ||
| 2727 | instantiation integer :: gcd | |
| 2728 | begin | |
| 2729 | ||
| 2730 | context | |
| 2731 | includes integer.lifting | |
| 2732 | begin | |
| 2733 | ||
| 63489 | 2734 | lift_definition gcd_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is gcd . | 
| 2735 | ||
| 2736 | lift_definition lcm_integer :: "integer \<Rightarrow> integer \<Rightarrow> integer" is lcm . | |
| 62345 | 2737 | |
| 2738 | end | |
| 63489 | 2739 | |
| 45264 | 2740 | instance .. | 
| 60686 | 2741 | |
| 21256 | 2742 | end | 
| 45264 | 2743 | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2744 | lifting_update integer.lifting | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2745 | lifting_forget integer.lifting | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2746 | |
| 62345 | 2747 | context | 
| 2748 | includes integer.lifting | |
| 2749 | begin | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2750 | |
| 63489 | 2751 | lemma gcd_code_integer [code]: "gcd k l = \<bar>if l = (0::integer) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" | 
| 62345 | 2752 | by transfer (fact gcd_code_int) | 
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2753 | |
| 63489 | 2754 | lemma lcm_code_integer [code]: "lcm a b = \<bar>a\<bar> * \<bar>b\<bar> div gcd a b" | 
| 2755 | for a b :: integer | |
| 62345 | 2756 | by transfer (fact lcm_altdef_int) | 
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2757 | |
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2758 | end | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2759 | |
| 63489 | 2760 | code_printing | 
| 2761 | constant "gcd :: integer \<Rightarrow> _" \<rightharpoonup> | |
| 2762 | (OCaml) "Big'_int.gcd'_big'_int" | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2763 | and (Haskell) "Prelude.gcd" | 
| 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2764 | and (Scala) "_.gcd'((_)')" | 
| 61975 | 2765 | \<comment> \<open>There is no gcd operation in the SML standard library, so no code setup for SML\<close> | 
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2766 | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2767 | text \<open>Some code equations\<close> | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2768 | |
| 64850 | 2769 | lemmas Gcd_nat_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = nat] | 
| 2770 | lemmas Lcm_nat_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = nat] | |
| 2771 | lemmas Gcd_int_set_eq_fold [code] = Gcd_set_eq_fold [where ?'a = int] | |
| 2772 | lemmas Lcm_int_set_eq_fold [code] = Lcm_set_eq_fold [where ?'a = int] | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2773 | |
| 63489 | 2774 | text \<open>Fact aliases.\<close> | 
| 2775 | ||
| 2776 | lemma lcm_0_iff_nat [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" | |
| 2777 | for m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2778 | by (fact lcm_eq_0_iff) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2779 | |
| 63489 | 2780 | lemma lcm_0_iff_int [simp]: "lcm m n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" | 
| 2781 | for m n :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2782 | by (fact lcm_eq_0_iff) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2783 | |
| 63489 | 2784 | lemma dvd_lcm_I1_nat [simp]: "k dvd m \<Longrightarrow> k dvd lcm m n" | 
| 2785 | for k m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2786 | by (fact dvd_lcmI1) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2787 | |
| 63489 | 2788 | lemma dvd_lcm_I2_nat [simp]: "k dvd n \<Longrightarrow> k dvd lcm m n" | 
| 2789 | for k m n :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2790 | by (fact dvd_lcmI2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2791 | |
| 63489 | 2792 | lemma dvd_lcm_I1_int [simp]: "i dvd m \<Longrightarrow> i dvd lcm m n" | 
| 2793 | for i m n :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2794 | by (fact dvd_lcmI1) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2795 | |
| 63489 | 2796 | lemma dvd_lcm_I2_int [simp]: "i dvd n \<Longrightarrow> i dvd lcm m n" | 
| 2797 | for i m n :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2798 | by (fact dvd_lcmI2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2799 | |
| 63489 | 2800 | lemma coprime_exp2_nat [intro]: "coprime a b \<Longrightarrow> coprime (a^n) (b^m)" | 
| 2801 | for a b :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2802 | by (fact coprime_exp2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2803 | |
| 63489 | 2804 | lemma coprime_exp2_int [intro]: "coprime a b \<Longrightarrow> coprime (a^n) (b^m)" | 
| 2805 | for a b :: int | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2806 | by (fact coprime_exp2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2807 | |
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2808 | lemmas Gcd_dvd_nat [simp] = Gcd_dvd [where ?'a = nat] | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2809 | lemmas Gcd_dvd_int [simp] = Gcd_dvd [where ?'a = int] | 
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2810 | lemmas Gcd_greatest_nat [simp] = Gcd_greatest [where ?'a = nat] | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2811 | lemmas Gcd_greatest_int [simp] = Gcd_greatest [where ?'a = int] | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2812 | |
| 63489 | 2813 | lemma dvd_Lcm_int [simp]: "m \<in> M \<Longrightarrow> m dvd Lcm M" | 
| 2814 | for M :: "int set" | |
| 2815 | by (fact dvd_Lcm) | |
| 2816 | ||
| 2817 | lemma gcd_neg_numeral_1_int [simp]: "gcd (- numeral n :: int) x = gcd (numeral n) x" | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2818 | by (fact gcd_neg1_int) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2819 | |
| 63489 | 2820 | lemma gcd_neg_numeral_2_int [simp]: "gcd x (- numeral n :: int) = gcd x (numeral n)" | 
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2821 | by (fact gcd_neg2_int) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2822 | |
| 63489 | 2823 | lemma gcd_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> gcd x y = x" | 
| 2824 | for x y :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2825 | by (fact gcd_nat.absorb1) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2826 | |
| 63489 | 2827 | lemma gcd_proj2_if_dvd_nat [simp]: "y dvd x \<Longrightarrow> gcd x y = y" | 
| 2828 | for x y :: nat | |
| 62344 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2829 | by (fact gcd_nat.absorb2) | 
| 
759d684c0e60
pulled out legacy aliasses and infamous dvd interpretations into theory appendix
 haftmann parents: 
62343diff
changeset | 2830 | |
| 62353 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2831 | lemmas Lcm_eq_0_I_nat [simp] = Lcm_eq_0_I [where ?'a = nat] | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2832 | lemmas Lcm_0_iff_nat [simp] = Lcm_0_iff [where ?'a = nat] | 
| 
7f927120b5a2
dropped various legacy fact bindings and tuned proofs
 haftmann parents: 
62350diff
changeset | 2833 | lemmas Lcm_least_int [simp] = Lcm_least [where ?'a = int] | 
| 62345 | 2834 | |
| 61856 
4b1b85f38944
add gcd instance for integer and serialisation to target language operations
 Andreas Lochbihler parents: 
61799diff
changeset | 2835 | end |