author | nipkow |
Fri, 04 Apr 1997 16:33:28 +0200 | |
changeset 2912 | 3fac3e8d5d3e |
parent 2891 | d8f254ad1ab9 |
child 2922 | 580647a879cf |
permissions | -rw-r--r-- |
1465 | 1 |
(* Title: HOL/equalities |
923 | 2 |
ID: $Id$ |
1465 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
923 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
6 |
Equalities involving union, intersection, inclusion, etc. |
|
7 |
*) |
|
8 |
||
9 |
writeln"File HOL/equalities"; |
|
10 |
||
1754
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
berghofe
parents:
1748
diff
changeset
|
11 |
AddSIs [equalityI]; |
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
berghofe
parents:
1748
diff
changeset
|
12 |
|
1548 | 13 |
section "{}"; |
14 |
||
1531 | 15 |
goal Set.thy "{x.False} = {}"; |
2891 | 16 |
by (Blast_tac 1); |
1531 | 17 |
qed "Collect_False_empty"; |
18 |
Addsimps [Collect_False_empty]; |
|
19 |
||
20 |
goal Set.thy "(A <= {}) = (A = {})"; |
|
2891 | 21 |
by (Blast_tac 1); |
1531 | 22 |
qed "subset_empty"; |
23 |
Addsimps [subset_empty]; |
|
24 |
||
1548 | 25 |
section "insert"; |
923 | 26 |
|
1531 | 27 |
(*NOT SUITABLE FOR REWRITING since {a} == insert a {}*) |
28 |
goal Set.thy "insert a A = {a} Un A"; |
|
2891 | 29 |
by (Blast_tac 1); |
1531 | 30 |
qed "insert_is_Un"; |
31 |
||
1179
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
32 |
goal Set.thy "insert a A ~= {}"; |
1754
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
berghofe
parents:
1748
diff
changeset
|
33 |
by (fast_tac (!claset addEs [equalityCE]) 1); |
1179
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
34 |
qed"insert_not_empty"; |
1531 | 35 |
Addsimps[insert_not_empty]; |
1179
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
36 |
|
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
37 |
bind_thm("empty_not_insert",insert_not_empty RS not_sym); |
1531 | 38 |
Addsimps[empty_not_insert]; |
1179
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
39 |
|
923 | 40 |
goal Set.thy "!!a. a:A ==> insert a A = A"; |
2891 | 41 |
by (Blast_tac 1); |
923 | 42 |
qed "insert_absorb"; |
43 |
||
1531 | 44 |
goal Set.thy "insert x (insert x A) = insert x A"; |
2891 | 45 |
by (Blast_tac 1); |
1531 | 46 |
qed "insert_absorb2"; |
47 |
Addsimps [insert_absorb2]; |
|
48 |
||
1879 | 49 |
goal Set.thy "insert x (insert y A) = insert y (insert x A)"; |
2891 | 50 |
by (Blast_tac 1); |
1879 | 51 |
qed "insert_commute"; |
52 |
||
923 | 53 |
goal Set.thy "(insert x A <= B) = (x:B & A <= B)"; |
2891 | 54 |
by (Blast_tac 1); |
923 | 55 |
qed "insert_subset"; |
1531 | 56 |
Addsimps[insert_subset]; |
57 |
||
58 |
(* use new B rather than (A-{a}) to avoid infinite unfolding *) |
|
59 |
goal Set.thy "!!a. a:A ==> ? B. A = insert a B & a ~: B"; |
|
1553 | 60 |
by (res_inst_tac [("x","A-{a}")] exI 1); |
2891 | 61 |
by (Blast_tac 1); |
1531 | 62 |
qed "mk_disjoint_insert"; |
923 | 63 |
|
1843
a6d7aef48c2f
Removed the unused eq_cs, and added some distributive laws
paulson
parents:
1786
diff
changeset
|
64 |
goal Set.thy |
a6d7aef48c2f
Removed the unused eq_cs, and added some distributive laws
paulson
parents:
1786
diff
changeset
|
65 |
"!!A. A~={} ==> (UN x:A. insert a (B x)) = insert a (UN x:A. B x)"; |
2891 | 66 |
by (Blast_tac 1); |
1843
a6d7aef48c2f
Removed the unused eq_cs, and added some distributive laws
paulson
parents:
1786
diff
changeset
|
67 |
qed "UN_insert_distrib"; |
a6d7aef48c2f
Removed the unused eq_cs, and added some distributive laws
paulson
parents:
1786
diff
changeset
|
68 |
|
a6d7aef48c2f
Removed the unused eq_cs, and added some distributive laws
paulson
parents:
1786
diff
changeset
|
69 |
goal Set.thy "(UN x. insert a (B x)) = insert a (UN x. B x)"; |
2891 | 70 |
by (Blast_tac 1); |
1843
a6d7aef48c2f
Removed the unused eq_cs, and added some distributive laws
paulson
parents:
1786
diff
changeset
|
71 |
qed "UN1_insert_distrib"; |
a6d7aef48c2f
Removed the unused eq_cs, and added some distributive laws
paulson
parents:
1786
diff
changeset
|
72 |
|
1660 | 73 |
section "``"; |
923 | 74 |
|
75 |
goal Set.thy "f``{} = {}"; |
|
2891 | 76 |
by (Blast_tac 1); |
923 | 77 |
qed "image_empty"; |
1531 | 78 |
Addsimps[image_empty]; |
923 | 79 |
|
80 |
goal Set.thy "f``insert a B = insert (f a) (f``B)"; |
|
2891 | 81 |
by (Blast_tac 1); |
923 | 82 |
qed "image_insert"; |
1531 | 83 |
Addsimps[image_insert]; |
923 | 84 |
|
1660 | 85 |
qed_goal "ball_image" Set.thy "(!y:F``S. P y) = (!x:S. P (F x))" |
2891 | 86 |
(fn _ => [Blast_tac 1]); |
1660 | 87 |
|
1884 | 88 |
goal Set.thy "!!x. x:A ==> insert (f x) (f``A) = f``A"; |
2891 | 89 |
by (Blast_tac 1); |
1884 | 90 |
qed "insert_image"; |
91 |
Addsimps [insert_image]; |
|
92 |
||
1748 | 93 |
goalw Set.thy [image_def] |
1763 | 94 |
"(%x. if P x then f x else g x) `` S \ |
1748 | 95 |
\ = (f `` ({x.x:S & P x})) Un (g `` ({x.x:S & ~(P x)}))"; |
2031 | 96 |
by (split_tac [expand_if] 1); |
2891 | 97 |
by (Blast_tac 1); |
1748 | 98 |
qed "if_image_distrib"; |
99 |
Addsimps[if_image_distrib]; |
|
100 |
||
101 |
||
1660 | 102 |
section "range"; |
103 |
||
104 |
qed_goal "ball_range" Set.thy "(!y:range f. P y) = (!x. P (f x))" |
|
2891 | 105 |
(fn _ => [Blast_tac 1]); |
1660 | 106 |
|
1884 | 107 |
qed_goalw "image_range" Set.thy [image_def] |
108 |
"f``range g = range (%x. f (g x))" |
|
2891 | 109 |
(fn _ => [rtac Collect_cong 1, Blast_tac 1]); |
1660 | 110 |
|
1548 | 111 |
section "Int"; |
923 | 112 |
|
113 |
goal Set.thy "A Int A = A"; |
|
2891 | 114 |
by (Blast_tac 1); |
923 | 115 |
qed "Int_absorb"; |
1531 | 116 |
Addsimps[Int_absorb]; |
923 | 117 |
|
118 |
goal Set.thy "A Int B = B Int A"; |
|
2891 | 119 |
by (Blast_tac 1); |
923 | 120 |
qed "Int_commute"; |
121 |
||
122 |
goal Set.thy "(A Int B) Int C = A Int (B Int C)"; |
|
2891 | 123 |
by (Blast_tac 1); |
923 | 124 |
qed "Int_assoc"; |
125 |
||
126 |
goal Set.thy "{} Int B = {}"; |
|
2891 | 127 |
by (Blast_tac 1); |
923 | 128 |
qed "Int_empty_left"; |
1531 | 129 |
Addsimps[Int_empty_left]; |
923 | 130 |
|
131 |
goal Set.thy "A Int {} = {}"; |
|
2891 | 132 |
by (Blast_tac 1); |
923 | 133 |
qed "Int_empty_right"; |
1531 | 134 |
Addsimps[Int_empty_right]; |
135 |
||
136 |
goal Set.thy "UNIV Int B = B"; |
|
2891 | 137 |
by (Blast_tac 1); |
1531 | 138 |
qed "Int_UNIV_left"; |
139 |
Addsimps[Int_UNIV_left]; |
|
140 |
||
141 |
goal Set.thy "A Int UNIV = A"; |
|
2891 | 142 |
by (Blast_tac 1); |
1531 | 143 |
qed "Int_UNIV_right"; |
144 |
Addsimps[Int_UNIV_right]; |
|
923 | 145 |
|
146 |
goal Set.thy "A Int (B Un C) = (A Int B) Un (A Int C)"; |
|
2891 | 147 |
by (Blast_tac 1); |
923 | 148 |
qed "Int_Un_distrib"; |
149 |
||
1618 | 150 |
goal Set.thy "(B Un C) Int A = (B Int A) Un (C Int A)"; |
2891 | 151 |
by (Blast_tac 1); |
1618 | 152 |
qed "Int_Un_distrib2"; |
153 |
||
923 | 154 |
goal Set.thy "(A<=B) = (A Int B = A)"; |
1754
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
berghofe
parents:
1748
diff
changeset
|
155 |
by (fast_tac (!claset addSEs [equalityE]) 1); |
923 | 156 |
qed "subset_Int_eq"; |
157 |
||
1531 | 158 |
goal Set.thy "(A Int B = UNIV) = (A = UNIV & B = UNIV)"; |
1754
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
berghofe
parents:
1748
diff
changeset
|
159 |
by (fast_tac (!claset addEs [equalityCE]) 1); |
1531 | 160 |
qed "Int_UNIV"; |
161 |
Addsimps[Int_UNIV]; |
|
162 |
||
1548 | 163 |
section "Un"; |
923 | 164 |
|
165 |
goal Set.thy "A Un A = A"; |
|
2891 | 166 |
by (Blast_tac 1); |
923 | 167 |
qed "Un_absorb"; |
1531 | 168 |
Addsimps[Un_absorb]; |
923 | 169 |
|
170 |
goal Set.thy "A Un B = B Un A"; |
|
2891 | 171 |
by (Blast_tac 1); |
923 | 172 |
qed "Un_commute"; |
173 |
||
174 |
goal Set.thy "(A Un B) Un C = A Un (B Un C)"; |
|
2891 | 175 |
by (Blast_tac 1); |
923 | 176 |
qed "Un_assoc"; |
177 |
||
178 |
goal Set.thy "{} Un B = B"; |
|
2891 | 179 |
by (Blast_tac 1); |
923 | 180 |
qed "Un_empty_left"; |
1531 | 181 |
Addsimps[Un_empty_left]; |
923 | 182 |
|
183 |
goal Set.thy "A Un {} = A"; |
|
2891 | 184 |
by (Blast_tac 1); |
923 | 185 |
qed "Un_empty_right"; |
1531 | 186 |
Addsimps[Un_empty_right]; |
187 |
||
188 |
goal Set.thy "UNIV Un B = UNIV"; |
|
2891 | 189 |
by (Blast_tac 1); |
1531 | 190 |
qed "Un_UNIV_left"; |
191 |
Addsimps[Un_UNIV_left]; |
|
192 |
||
193 |
goal Set.thy "A Un UNIV = UNIV"; |
|
2891 | 194 |
by (Blast_tac 1); |
1531 | 195 |
qed "Un_UNIV_right"; |
196 |
Addsimps[Un_UNIV_right]; |
|
923 | 197 |
|
1843
a6d7aef48c2f
Removed the unused eq_cs, and added some distributive laws
paulson
parents:
1786
diff
changeset
|
198 |
goal Set.thy "(insert a B) Un C = insert a (B Un C)"; |
2891 | 199 |
by (Blast_tac 1); |
923 | 200 |
qed "Un_insert_left"; |
201 |
||
1917 | 202 |
goal Set.thy "A Un (insert a B) = insert a (A Un B)"; |
2891 | 203 |
by (Blast_tac 1); |
1917 | 204 |
qed "Un_insert_right"; |
205 |
||
923 | 206 |
goal Set.thy "(A Int B) Un C = (A Un C) Int (B Un C)"; |
2891 | 207 |
by (Blast_tac 1); |
923 | 208 |
qed "Un_Int_distrib"; |
209 |
||
210 |
goal Set.thy |
|
211 |
"(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"; |
|
2891 | 212 |
by (Blast_tac 1); |
923 | 213 |
qed "Un_Int_crazy"; |
214 |
||
215 |
goal Set.thy "(A<=B) = (A Un B = B)"; |
|
1754
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
berghofe
parents:
1748
diff
changeset
|
216 |
by (fast_tac (!claset addSEs [equalityE]) 1); |
923 | 217 |
qed "subset_Un_eq"; |
218 |
||
219 |
goal Set.thy "(A <= insert b C) = (A <= C | b:A & A-{b} <= C)"; |
|
2891 | 220 |
by (Blast_tac 1); |
923 | 221 |
qed "subset_insert_iff"; |
222 |
||
223 |
goal Set.thy "(A Un B = {}) = (A = {} & B = {})"; |
|
1754
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
berghofe
parents:
1748
diff
changeset
|
224 |
by (fast_tac (!claset addEs [equalityCE]) 1); |
923 | 225 |
qed "Un_empty"; |
1531 | 226 |
Addsimps[Un_empty]; |
923 | 227 |
|
1548 | 228 |
section "Compl"; |
923 | 229 |
|
230 |
goal Set.thy "A Int Compl(A) = {}"; |
|
2891 | 231 |
by (Blast_tac 1); |
923 | 232 |
qed "Compl_disjoint"; |
1531 | 233 |
Addsimps[Compl_disjoint]; |
923 | 234 |
|
1531 | 235 |
goal Set.thy "A Un Compl(A) = UNIV"; |
2891 | 236 |
by (Blast_tac 1); |
923 | 237 |
qed "Compl_partition"; |
238 |
||
239 |
goal Set.thy "Compl(Compl(A)) = A"; |
|
2891 | 240 |
by (Blast_tac 1); |
923 | 241 |
qed "double_complement"; |
1531 | 242 |
Addsimps[double_complement]; |
923 | 243 |
|
244 |
goal Set.thy "Compl(A Un B) = Compl(A) Int Compl(B)"; |
|
2891 | 245 |
by (Blast_tac 1); |
923 | 246 |
qed "Compl_Un"; |
247 |
||
248 |
goal Set.thy "Compl(A Int B) = Compl(A) Un Compl(B)"; |
|
2891 | 249 |
by (Blast_tac 1); |
923 | 250 |
qed "Compl_Int"; |
251 |
||
252 |
goal Set.thy "Compl(UN x:A. B(x)) = (INT x:A. Compl(B(x)))"; |
|
2891 | 253 |
by (Blast_tac 1); |
923 | 254 |
qed "Compl_UN"; |
255 |
||
256 |
goal Set.thy "Compl(INT x:A. B(x)) = (UN x:A. Compl(B(x)))"; |
|
2891 | 257 |
by (Blast_tac 1); |
923 | 258 |
qed "Compl_INT"; |
259 |
||
260 |
(*Halmos, Naive Set Theory, page 16.*) |
|
261 |
||
262 |
goal Set.thy "((A Int B) Un C = A Int (B Un C)) = (C<=A)"; |
|
1754
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
berghofe
parents:
1748
diff
changeset
|
263 |
by (fast_tac (!claset addSEs [equalityE]) 1); |
923 | 264 |
qed "Un_Int_assoc_eq"; |
265 |
||
266 |
||
1548 | 267 |
section "Union"; |
923 | 268 |
|
269 |
goal Set.thy "Union({}) = {}"; |
|
2891 | 270 |
by (Blast_tac 1); |
923 | 271 |
qed "Union_empty"; |
1531 | 272 |
Addsimps[Union_empty]; |
273 |
||
274 |
goal Set.thy "Union(UNIV) = UNIV"; |
|
2891 | 275 |
by (Blast_tac 1); |
1531 | 276 |
qed "Union_UNIV"; |
277 |
Addsimps[Union_UNIV]; |
|
923 | 278 |
|
279 |
goal Set.thy "Union(insert a B) = a Un Union(B)"; |
|
2891 | 280 |
by (Blast_tac 1); |
923 | 281 |
qed "Union_insert"; |
1531 | 282 |
Addsimps[Union_insert]; |
923 | 283 |
|
284 |
goal Set.thy "Union(A Un B) = Union(A) Un Union(B)"; |
|
2891 | 285 |
by (Blast_tac 1); |
923 | 286 |
qed "Union_Un_distrib"; |
1531 | 287 |
Addsimps[Union_Un_distrib]; |
923 | 288 |
|
289 |
goal Set.thy "Union(A Int B) <= Union(A) Int Union(B)"; |
|
2891 | 290 |
by (Blast_tac 1); |
923 | 291 |
qed "Union_Int_subset"; |
292 |
||
293 |
val prems = goal Set.thy |
|
294 |
"(Union(C) Int A = {}) = (! B:C. B Int A = {})"; |
|
1754
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
berghofe
parents:
1748
diff
changeset
|
295 |
by (fast_tac (!claset addSEs [equalityE]) 1); |
923 | 296 |
qed "Union_disjoint"; |
297 |
||
1548 | 298 |
section "Inter"; |
299 |
||
1531 | 300 |
goal Set.thy "Inter({}) = UNIV"; |
2891 | 301 |
by (Blast_tac 1); |
1531 | 302 |
qed "Inter_empty"; |
303 |
Addsimps[Inter_empty]; |
|
304 |
||
305 |
goal Set.thy "Inter(UNIV) = {}"; |
|
2891 | 306 |
by (Blast_tac 1); |
1531 | 307 |
qed "Inter_UNIV"; |
308 |
Addsimps[Inter_UNIV]; |
|
309 |
||
310 |
goal Set.thy "Inter(insert a B) = a Int Inter(B)"; |
|
2891 | 311 |
by (Blast_tac 1); |
1531 | 312 |
qed "Inter_insert"; |
313 |
Addsimps[Inter_insert]; |
|
314 |
||
1564
822575c737bd
Deleted faulty comment; proved new rule Inter_Un_subset
paulson
parents:
1553
diff
changeset
|
315 |
goal Set.thy "Inter(A) Un Inter(B) <= Inter(A Int B)"; |
2891 | 316 |
by (Blast_tac 1); |
1564
822575c737bd
Deleted faulty comment; proved new rule Inter_Un_subset
paulson
parents:
1553
diff
changeset
|
317 |
qed "Inter_Un_subset"; |
1531 | 318 |
|
923 | 319 |
goal Set.thy "Inter(A Un B) = Inter(A) Int Inter(B)"; |
2891 | 320 |
by (Blast_tac 1); |
923 | 321 |
qed "Inter_Un_distrib"; |
322 |
||
1548 | 323 |
section "UN and INT"; |
923 | 324 |
|
325 |
(*Basic identities*) |
|
326 |
||
1179
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
327 |
goal Set.thy "(UN x:{}. B x) = {}"; |
2891 | 328 |
by (Blast_tac 1); |
1179
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
329 |
qed "UN_empty"; |
1531 | 330 |
Addsimps[UN_empty]; |
331 |
||
332 |
goal Set.thy "(UN x:UNIV. B x) = (UN x. B x)"; |
|
2891 | 333 |
by (Blast_tac 1); |
1531 | 334 |
qed "UN_UNIV"; |
335 |
Addsimps[UN_UNIV]; |
|
336 |
||
337 |
goal Set.thy "(INT x:{}. B x) = UNIV"; |
|
2891 | 338 |
by (Blast_tac 1); |
1531 | 339 |
qed "INT_empty"; |
340 |
Addsimps[INT_empty]; |
|
341 |
||
342 |
goal Set.thy "(INT x:UNIV. B x) = (INT x. B x)"; |
|
2891 | 343 |
by (Blast_tac 1); |
1531 | 344 |
qed "INT_UNIV"; |
345 |
Addsimps[INT_UNIV]; |
|
1179
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
346 |
|
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
347 |
goal Set.thy "(UN x:insert a A. B x) = B a Un UNION A B"; |
2891 | 348 |
by (Blast_tac 1); |
1179
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
349 |
qed "UN_insert"; |
1531 | 350 |
Addsimps[UN_insert]; |
351 |
||
352 |
goal Set.thy "(INT x:insert a A. B x) = B a Int INTER A B"; |
|
2891 | 353 |
by (Blast_tac 1); |
1531 | 354 |
qed "INT_insert"; |
355 |
Addsimps[INT_insert]; |
|
1179
7678408f9751
Added insert_not_empty, UN_empty and UN_insert (to set_ss).
nipkow
parents:
923
diff
changeset
|
356 |
|
2021 | 357 |
goal Set.thy |
358 |
"!!A. A~={} ==> (INT x:A. insert a (B x)) = insert a (INT x:A. B x)"; |
|
2891 | 359 |
by (Blast_tac 1); |
2021 | 360 |
qed "INT_insert_distrib"; |
361 |
||
362 |
goal Set.thy "(INT x. insert a (B x)) = insert a (INT x. B x)"; |
|
2891 | 363 |
by (Blast_tac 1); |
2021 | 364 |
qed "INT1_insert_distrib"; |
365 |
||
923 | 366 |
goal Set.thy "Union(range(f)) = (UN x.f(x))"; |
2891 | 367 |
by (Blast_tac 1); |
923 | 368 |
qed "Union_range_eq"; |
369 |
||
370 |
goal Set.thy "Inter(range(f)) = (INT x.f(x))"; |
|
2891 | 371 |
by (Blast_tac 1); |
923 | 372 |
qed "Inter_range_eq"; |
373 |
||
374 |
goal Set.thy "Union(B``A) = (UN x:A. B(x))"; |
|
2891 | 375 |
by (Blast_tac 1); |
923 | 376 |
qed "Union_image_eq"; |
377 |
||
378 |
goal Set.thy "Inter(B``A) = (INT x:A. B(x))"; |
|
2891 | 379 |
by (Blast_tac 1); |
923 | 380 |
qed "Inter_image_eq"; |
381 |
||
382 |
goal Set.thy "!!A. a: A ==> (UN y:A. c) = c"; |
|
2891 | 383 |
by (Blast_tac 1); |
923 | 384 |
qed "UN_constant"; |
385 |
||
386 |
goal Set.thy "!!A. a: A ==> (INT y:A. c) = c"; |
|
2891 | 387 |
by (Blast_tac 1); |
923 | 388 |
qed "INT_constant"; |
389 |
||
390 |
goal Set.thy "(UN x.B) = B"; |
|
2891 | 391 |
by (Blast_tac 1); |
923 | 392 |
qed "UN1_constant"; |
1531 | 393 |
Addsimps[UN1_constant]; |
923 | 394 |
|
395 |
goal Set.thy "(INT x.B) = B"; |
|
2891 | 396 |
by (Blast_tac 1); |
923 | 397 |
qed "INT1_constant"; |
1531 | 398 |
Addsimps[INT1_constant]; |
923 | 399 |
|
400 |
goal Set.thy "(UN x:A. B(x)) = Union({Y. ? x:A. Y=B(x)})"; |
|
2891 | 401 |
by (Blast_tac 1); |
923 | 402 |
qed "UN_eq"; |
403 |
||
404 |
(*Look: it has an EXISTENTIAL quantifier*) |
|
405 |
goal Set.thy "(INT x:A. B(x)) = Inter({Y. ? x:A. Y=B(x)})"; |
|
2891 | 406 |
by (Blast_tac 1); |
923 | 407 |
qed "INT_eq"; |
408 |
||
409 |
(*Distributive laws...*) |
|
410 |
||
411 |
goal Set.thy "A Int Union(B) = (UN C:B. A Int C)"; |
|
2891 | 412 |
by (Blast_tac 1); |
923 | 413 |
qed "Int_Union"; |
414 |
||
2912 | 415 |
(* Devlin, Setdamentals of Contemporary Set Theory, page 12, exercise 5: |
923 | 416 |
Union of a family of unions **) |
417 |
goal Set.thy "(UN x:C. A(x) Un B(x)) = Union(A``C) Un Union(B``C)"; |
|
2891 | 418 |
by (Blast_tac 1); |
923 | 419 |
qed "Un_Union_image"; |
420 |
||
421 |
(*Equivalent version*) |
|
422 |
goal Set.thy "(UN i:I. A(i) Un B(i)) = (UN i:I. A(i)) Un (UN i:I. B(i))"; |
|
2891 | 423 |
by (Blast_tac 1); |
923 | 424 |
qed "UN_Un_distrib"; |
425 |
||
426 |
goal Set.thy "A Un Inter(B) = (INT C:B. A Un C)"; |
|
2891 | 427 |
by (Blast_tac 1); |
923 | 428 |
qed "Un_Inter"; |
429 |
||
430 |
goal Set.thy "(INT x:C. A(x) Int B(x)) = Inter(A``C) Int Inter(B``C)"; |
|
2891 | 431 |
by (Blast_tac 1); |
923 | 432 |
qed "Int_Inter_image"; |
433 |
||
434 |
(*Equivalent version*) |
|
435 |
goal Set.thy "(INT i:I. A(i) Int B(i)) = (INT i:I. A(i)) Int (INT i:I. B(i))"; |
|
2891 | 436 |
by (Blast_tac 1); |
923 | 437 |
qed "INT_Int_distrib"; |
438 |
||
439 |
(*Halmos, Naive Set Theory, page 35.*) |
|
440 |
goal Set.thy "B Int (UN i:I. A(i)) = (UN i:I. B Int A(i))"; |
|
2891 | 441 |
by (Blast_tac 1); |
923 | 442 |
qed "Int_UN_distrib"; |
443 |
||
444 |
goal Set.thy "B Un (INT i:I. A(i)) = (INT i:I. B Un A(i))"; |
|
2891 | 445 |
by (Blast_tac 1); |
923 | 446 |
qed "Un_INT_distrib"; |
447 |
||
448 |
goal Set.thy |
|
449 |
"(UN i:I. A(i)) Int (UN j:J. B(j)) = (UN i:I. UN j:J. A(i) Int B(j))"; |
|
2891 | 450 |
by (Blast_tac 1); |
923 | 451 |
qed "Int_UN_distrib2"; |
452 |
||
453 |
goal Set.thy |
|
454 |
"(INT i:I. A(i)) Un (INT j:J. B(j)) = (INT i:I. INT j:J. A(i) Un B(j))"; |
|
2891 | 455 |
by (Blast_tac 1); |
923 | 456 |
qed "Un_INT_distrib2"; |
457 |
||
2512 | 458 |
|
459 |
section"Bounded quantifiers"; |
|
460 |
||
2519 | 461 |
(** These are not added to the default simpset because (a) they duplicate the |
462 |
body and (b) there are no similar rules for Int. **) |
|
2512 | 463 |
|
2519 | 464 |
goal Set.thy "(ALL x:A Un B.P x) = ((ALL x:A.P x) & (ALL x:B.P x))"; |
2891 | 465 |
by (Blast_tac 1); |
2519 | 466 |
qed "ball_Un"; |
467 |
||
468 |
goal Set.thy "(EX x:A Un B.P x) = ((EX x:A.P x) | (EX x:B.P x))"; |
|
2891 | 469 |
by (Blast_tac 1); |
2519 | 470 |
qed "bex_Un"; |
2512 | 471 |
|
472 |
||
1548 | 473 |
section "-"; |
923 | 474 |
|
475 |
goal Set.thy "A-A = {}"; |
|
2891 | 476 |
by (Blast_tac 1); |
923 | 477 |
qed "Diff_cancel"; |
1531 | 478 |
Addsimps[Diff_cancel]; |
923 | 479 |
|
480 |
goal Set.thy "{}-A = {}"; |
|
2891 | 481 |
by (Blast_tac 1); |
923 | 482 |
qed "empty_Diff"; |
1531 | 483 |
Addsimps[empty_Diff]; |
923 | 484 |
|
485 |
goal Set.thy "A-{} = A"; |
|
2891 | 486 |
by (Blast_tac 1); |
923 | 487 |
qed "Diff_empty"; |
1531 | 488 |
Addsimps[Diff_empty]; |
489 |
||
490 |
goal Set.thy "A-UNIV = {}"; |
|
2891 | 491 |
by (Blast_tac 1); |
1531 | 492 |
qed "Diff_UNIV"; |
493 |
Addsimps[Diff_UNIV]; |
|
494 |
||
495 |
goal Set.thy "!!x. x~:A ==> A - insert x B = A-B"; |
|
2891 | 496 |
by (Blast_tac 1); |
1531 | 497 |
qed "Diff_insert0"; |
498 |
Addsimps [Diff_insert0]; |
|
923 | 499 |
|
500 |
(*NOT SUITABLE FOR REWRITING since {a} == insert a 0*) |
|
501 |
goal Set.thy "A - insert a B = A - B - {a}"; |
|
2891 | 502 |
by (Blast_tac 1); |
923 | 503 |
qed "Diff_insert"; |
504 |
||
505 |
(*NOT SUITABLE FOR REWRITING since {a} == insert a 0*) |
|
506 |
goal Set.thy "A - insert a B = A - {a} - B"; |
|
2891 | 507 |
by (Blast_tac 1); |
923 | 508 |
qed "Diff_insert2"; |
509 |
||
1531 | 510 |
goal Set.thy "insert x A - B = (if x:B then A-B else insert x (A-B))"; |
1553 | 511 |
by (simp_tac (!simpset setloop split_tac[expand_if]) 1); |
2891 | 512 |
by (Blast_tac 1); |
1531 | 513 |
qed "insert_Diff_if"; |
514 |
||
515 |
goal Set.thy "!!x. x:B ==> insert x A - B = A-B"; |
|
2891 | 516 |
by (Blast_tac 1); |
1531 | 517 |
qed "insert_Diff1"; |
518 |
Addsimps [insert_Diff1]; |
|
519 |
||
923 | 520 |
val prems = goal Set.thy "a:A ==> insert a (A-{a}) = A"; |
1754
852093aeb0ab
Replaced fast_tac by Fast_tac (which uses default claset)
berghofe
parents:
1748
diff
changeset
|
521 |
by (fast_tac (!claset addSIs prems) 1); |
923 | 522 |
qed "insert_Diff"; |
523 |
||
524 |
goal Set.thy "A Int (B-A) = {}"; |
|
2891 | 525 |
by (Blast_tac 1); |
923 | 526 |
qed "Diff_disjoint"; |
1531 | 527 |
Addsimps[Diff_disjoint]; |
923 | 528 |
|
529 |
goal Set.thy "!!A. A<=B ==> A Un (B-A) = B"; |
|
2891 | 530 |
by (Blast_tac 1); |
923 | 531 |
qed "Diff_partition"; |
532 |
||
533 |
goal Set.thy "!!A. [| A<=B; B<= C |] ==> (B - (C - A)) = (A :: 'a set)"; |
|
2891 | 534 |
by (Blast_tac 1); |
923 | 535 |
qed "double_diff"; |
536 |
||
537 |
goal Set.thy "A - (B Un C) = (A-B) Int (A-C)"; |
|
2891 | 538 |
by (Blast_tac 1); |
923 | 539 |
qed "Diff_Un"; |
540 |
||
541 |
goal Set.thy "A - (B Int C) = (A-B) Un (A-C)"; |
|
2891 | 542 |
by (Blast_tac 1); |
923 | 543 |
qed "Diff_Int"; |
544 |
||
1531 | 545 |
Addsimps[subset_UNIV, empty_subsetI, subset_refl]; |
2021 | 546 |
|
547 |
||
548 |
(** Miniscoping: pushing in big Unions and Intersections **) |
|
549 |
local |
|
2891 | 550 |
fun prover s = prove_goal Set.thy s (fn _ => [Blast_tac 1]) |
2021 | 551 |
in |
552 |
val UN1_simps = map prover |
|
2031 | 553 |
["(UN x. insert a (B x)) = insert a (UN x. B x)", |
554 |
"(UN x. A x Int B) = ((UN x.A x) Int B)", |
|
555 |
"(UN x. A Int B x) = (A Int (UN x.B x))", |
|
556 |
"(UN x. A x Un B) = ((UN x.A x) Un B)", |
|
557 |
"(UN x. A Un B x) = (A Un (UN x.B x))", |
|
558 |
"(UN x. A x - B) = ((UN x.A x) - B)", |
|
559 |
"(UN x. A - B x) = (A - (INT x.B x))"]; |
|
2021 | 560 |
|
561 |
val INT1_simps = map prover |
|
2031 | 562 |
["(INT x. insert a (B x)) = insert a (INT x. B x)", |
563 |
"(INT x. A x Int B) = ((INT x.A x) Int B)", |
|
564 |
"(INT x. A Int B x) = (A Int (INT x.B x))", |
|
565 |
"(INT x. A x Un B) = ((INT x.A x) Un B)", |
|
566 |
"(INT x. A Un B x) = (A Un (INT x.B x))", |
|
567 |
"(INT x. A x - B) = ((INT x.A x) - B)", |
|
568 |
"(INT x. A - B x) = (A - (UN x.B x))"]; |
|
2021 | 569 |
|
2513
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
570 |
val UN_simps = map prover |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
571 |
["(UN x:C. A x Int B) = ((UN x:C.A x) Int B)", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
572 |
"(UN x:C. A Int B x) = (A Int (UN x:C.B x))", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
573 |
"(UN x:C. A x - B) = ((UN x:C.A x) - B)", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
574 |
"(UN x:C. A - B x) = (A - (INT x:C.B x))"]; |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
575 |
|
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
576 |
val INT_simps = map prover |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
577 |
["(INT x:C. insert a (B x)) = insert a (INT x:C. B x)", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
578 |
"(INT x:C. A x Un B) = ((INT x:C.A x) Un B)", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
579 |
"(INT x:C. A Un B x) = (A Un (INT x:C.B x))"]; |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
580 |
|
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
581 |
(*The missing laws for bounded Unions and Intersections are conditional |
2021 | 582 |
on the index set's being non-empty. Thus they are probably NOT worth |
583 |
adding as default rewrites.*) |
|
2513
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
584 |
|
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
585 |
val ball_simps = map prover |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
586 |
["(ALL x:A. P x | Q) = ((ALL x:A. P x) | Q)", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
587 |
"(ALL x:A. P | Q x) = (P | (ALL x:A. Q x))", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
588 |
"(ALL x:{}. P x) = True", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
589 |
"(ALL x:insert a B. P x) = (P(a) & (ALL x:B. P x))", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
590 |
"(ALL x:Union(A). P x) = (ALL y:A. ALL x:y. P x)", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
591 |
"(ALL x:Collect Q. P x) = (ALL x. Q x --> P x)"]; |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
592 |
|
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
593 |
val ball_conj_distrib = |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
594 |
prover "(ALL x:A. P x & Q x) = ((ALL x:A. P x) & (ALL x:A. Q x))"; |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
595 |
|
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
596 |
val bex_simps = map prover |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
597 |
["(EX x:A. P x & Q) = ((EX x:A. P x) & Q)", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
598 |
"(EX x:A. P & Q x) = (P & (EX x:A. Q x))", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
599 |
"(EX x:{}. P x) = False", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
600 |
"(EX x:insert a B. P x) = (P(a) | (EX x:B. P x))", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
601 |
"(EX x:Union(A). P x) = (EX y:A. EX x:y. P x)", |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
602 |
"(EX x:Collect Q. P x) = (EX x. Q x & P x)"]; |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
603 |
|
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
604 |
val bex_conj_distrib = |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
605 |
prover "(EX x:A. P x | Q x) = ((EX x:A. P x) | (EX x:A. Q x))"; |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
606 |
|
2021 | 607 |
end; |
608 |
||
2513
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
609 |
Addsimps (UN1_simps @ INT1_simps @ UN_simps @ INT_simps @ |
d708d8cdc8e8
New miniscoping rules for the bounded quantifiers and UN/INT operators
paulson
parents:
2512
diff
changeset
|
610 |
ball_simps @ bex_simps); |