author | berghofe |
Wed, 07 May 2008 10:57:19 +0200 | |
changeset 26806 | 40b411ec05aa |
parent 23757 | 087b0a241557 |
child 27611 | 2c01c0bdb385 |
permissions | -rw-r--r-- |
12516 | 1 |
(* Title: HOL/MicroJava/BV/Listn.thy |
10496 | 2 |
ID: $Id$ |
3 |
Author: Tobias Nipkow |
|
4 |
Copyright 2000 TUM |
|
5 |
||
6 |
Lists of a fixed length |
|
7 |
*) |
|
8 |
||
12911 | 9 |
header {* \isaheader{Fixed Length Lists} *} |
10496 | 10 |
|
16417 | 11 |
theory Listn imports Err begin |
10496 | 12 |
|
13 |
constdefs |
|
14 |
||
13006 | 15 |
list :: "nat \<Rightarrow> 'a set \<Rightarrow> 'a list set" |
10496 | 16 |
"list n A == {xs. length xs = n & set xs <= A}" |
17 |
||
13006 | 18 |
le :: "'a ord \<Rightarrow> ('a list)ord" |
10496 | 19 |
"le r == list_all2 (%x y. x <=_r y)" |
20 |
||
13006 | 21 |
syntax "@lesublist" :: "'a list \<Rightarrow> 'a ord \<Rightarrow> 'a list \<Rightarrow> bool" |
10496 | 22 |
("(_ /<=[_] _)" [50, 0, 51] 50) |
13006 | 23 |
syntax "@lesssublist" :: "'a list \<Rightarrow> 'a ord \<Rightarrow> 'a list \<Rightarrow> bool" |
10496 | 24 |
("(_ /<[_] _)" [50, 0, 51] 50) |
25 |
translations |
|
26 |
"x <=[r] y" == "x <=_(Listn.le r) y" |
|
27 |
"x <[r] y" == "x <_(Listn.le r) y" |
|
28 |
||
29 |
constdefs |
|
13006 | 30 |
map2 :: "('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list" |
10496 | 31 |
"map2 f == (%xs ys. map (split f) (zip xs ys))" |
32 |
||
13006 | 33 |
syntax "@plussublist" :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b \<Rightarrow> 'c) \<Rightarrow> 'b list \<Rightarrow> 'c list" |
10496 | 34 |
("(_ /+[_] _)" [65, 0, 66] 65) |
35 |
translations "x +[f] y" == "x +_(map2 f) y" |
|
36 |
||
13006 | 37 |
consts coalesce :: "'a err list \<Rightarrow> 'a list err" |
10496 | 38 |
primrec |
39 |
"coalesce [] = OK[]" |
|
40 |
"coalesce (ex#exs) = Err.sup (op #) ex (coalesce exs)" |
|
41 |
||
42 |
constdefs |
|
13006 | 43 |
sl :: "nat \<Rightarrow> 'a sl \<Rightarrow> 'a list sl" |
10496 | 44 |
"sl n == %(A,r,f). (list n A, le r, map2 f)" |
45 |
||
13006 | 46 |
sup :: "('a \<Rightarrow> 'b \<Rightarrow> 'c err) \<Rightarrow> 'a list \<Rightarrow> 'b list \<Rightarrow> 'c list err" |
10496 | 47 |
"sup f == %xs ys. if size xs = size ys then coalesce(xs +[f] ys) else Err" |
48 |
||
13006 | 49 |
upto_esl :: "nat \<Rightarrow> 'a esl \<Rightarrow> 'a list esl" |
10496 | 50 |
"upto_esl m == %(A,r,f). (Union{list n A |n. n <= m}, le r, sup f)" |
51 |
||
52 |
lemmas [simp] = set_update_subsetI |
|
53 |
||
54 |
lemma unfold_lesub_list: |
|
55 |
"xs <=[r] ys == Listn.le r xs ys" |
|
56 |
by (simp add: lesub_def) |
|
57 |
||
58 |
lemma Nil_le_conv [iff]: |
|
59 |
"([] <=[r] ys) = (ys = [])" |
|
60 |
apply (unfold lesub_def Listn.le_def) |
|
61 |
apply simp |
|
62 |
done |
|
63 |
||
64 |
lemma Cons_notle_Nil [iff]: |
|
65 |
"~ x#xs <=[r] []" |
|
66 |
apply (unfold lesub_def Listn.le_def) |
|
67 |
apply simp |
|
68 |
done |
|
69 |
||
70 |
||
71 |
lemma Cons_le_Cons [iff]: |
|
72 |
"x#xs <=[r] y#ys = (x <=_r y & xs <=[r] ys)" |
|
73 |
apply (unfold lesub_def Listn.le_def) |
|
74 |
apply simp |
|
75 |
done |
|
76 |
||
77 |
lemma Cons_less_Conss [simp]: |
|
13006 | 78 |
"order r \<Longrightarrow> |
10496 | 79 |
x#xs <_(Listn.le r) y#ys = |
80 |
(x <_r y & xs <=[r] ys | x = y & xs <_(Listn.le r) ys)" |
|
81 |
apply (unfold lesssub_def) |
|
82 |
apply blast |
|
83 |
done |
|
84 |
||
85 |
lemma list_update_le_cong: |
|
13006 | 86 |
"\<lbrakk> i<size xs; xs <=[r] ys; x <=_r y \<rbrakk> \<Longrightarrow> xs[i:=x] <=[r] ys[i:=y]"; |
10496 | 87 |
apply (unfold unfold_lesub_list) |
88 |
apply (unfold Listn.le_def) |
|
89 |
apply (simp add: list_all2_conv_all_nth nth_list_update) |
|
90 |
done |
|
91 |
||
92 |
||
93 |
lemma le_listD: |
|
13006 | 94 |
"\<lbrakk> xs <=[r] ys; p < size xs \<rbrakk> \<Longrightarrow> xs!p <=_r ys!p" |
10496 | 95 |
apply (unfold Listn.le_def lesub_def) |
96 |
apply (simp add: list_all2_conv_all_nth) |
|
97 |
done |
|
98 |
||
99 |
lemma le_list_refl: |
|
13006 | 100 |
"!x. x <=_r x \<Longrightarrow> xs <=[r] xs" |
10496 | 101 |
apply (unfold unfold_lesub_list) |
102 |
apply (simp add: Listn.le_def list_all2_conv_all_nth) |
|
103 |
done |
|
104 |
||
105 |
lemma le_list_trans: |
|
13006 | 106 |
"\<lbrakk> order r; xs <=[r] ys; ys <=[r] zs \<rbrakk> \<Longrightarrow> xs <=[r] zs" |
10496 | 107 |
apply (unfold unfold_lesub_list) |
108 |
apply (simp add: Listn.le_def list_all2_conv_all_nth) |
|
109 |
apply clarify |
|
110 |
apply simp |
|
111 |
apply (blast intro: order_trans) |
|
112 |
done |
|
113 |
||
114 |
lemma le_list_antisym: |
|
13006 | 115 |
"\<lbrakk> order r; xs <=[r] ys; ys <=[r] xs \<rbrakk> \<Longrightarrow> xs = ys" |
10496 | 116 |
apply (unfold unfold_lesub_list) |
117 |
apply (simp add: Listn.le_def list_all2_conv_all_nth) |
|
118 |
apply (rule nth_equalityI) |
|
119 |
apply blast |
|
120 |
apply clarify |
|
121 |
apply simp |
|
122 |
apply (blast intro: order_antisym) |
|
123 |
done |
|
124 |
||
125 |
lemma order_listI [simp, intro!]: |
|
13006 | 126 |
"order r \<Longrightarrow> order(Listn.le r)" |
22068 | 127 |
apply (subst Semilat.order_def) |
10496 | 128 |
apply (blast intro: le_list_refl le_list_trans le_list_antisym |
129 |
dest: order_refl) |
|
130 |
done |
|
131 |
||
132 |
||
133 |
lemma lesub_list_impl_same_size [simp]: |
|
13006 | 134 |
"xs <=[r] ys \<Longrightarrow> size ys = size xs" |
10496 | 135 |
apply (unfold Listn.le_def lesub_def) |
136 |
apply (simp add: list_all2_conv_all_nth) |
|
137 |
done |
|
138 |
||
139 |
lemma lesssub_list_impl_same_size: |
|
13006 | 140 |
"xs <_(Listn.le r) ys \<Longrightarrow> size ys = size xs" |
10496 | 141 |
apply (unfold lesssub_def) |
142 |
apply auto |
|
143 |
done |
|
144 |
||
13066 | 145 |
lemma le_list_appendI: |
146 |
"\<And>b c d. a <=[r] b \<Longrightarrow> c <=[r] d \<Longrightarrow> a@c <=[r] b@d" |
|
147 |
apply (induct a) |
|
148 |
apply simp |
|
149 |
apply (case_tac b) |
|
150 |
apply auto |
|
151 |
done |
|
152 |
||
153 |
lemma le_listI: |
|
154 |
"length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> a!n <=_r b!n) \<Longrightarrow> a <=[r] b" |
|
155 |
apply (unfold lesub_def Listn.le_def) |
|
156 |
apply (simp add: list_all2_conv_all_nth) |
|
157 |
done |
|
158 |
||
10496 | 159 |
lemma listI: |
13006 | 160 |
"\<lbrakk> length xs = n; set xs <= A \<rbrakk> \<Longrightarrow> xs : list n A" |
10496 | 161 |
apply (unfold list_def) |
162 |
apply blast |
|
163 |
done |
|
164 |
||
165 |
lemma listE_length [simp]: |
|
13006 | 166 |
"xs : list n A \<Longrightarrow> length xs = n" |
10496 | 167 |
apply (unfold list_def) |
168 |
apply blast |
|
169 |
done |
|
170 |
||
171 |
lemma less_lengthI: |
|
13006 | 172 |
"\<lbrakk> xs : list n A; p < n \<rbrakk> \<Longrightarrow> p < length xs" |
10496 | 173 |
by simp |
174 |
||
175 |
lemma listE_set [simp]: |
|
13006 | 176 |
"xs : list n A \<Longrightarrow> set xs <= A" |
10496 | 177 |
apply (unfold list_def) |
178 |
apply blast |
|
179 |
done |
|
180 |
||
181 |
lemma list_0 [simp]: |
|
182 |
"list 0 A = {[]}" |
|
183 |
apply (unfold list_def) |
|
184 |
apply auto |
|
185 |
done |
|
186 |
||
187 |
lemma in_list_Suc_iff: |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
188 |
"(xs : list (Suc n) A) = (\<exists>y\<in> A. \<exists>ys\<in> list n A. xs = y#ys)" |
10496 | 189 |
apply (unfold list_def) |
190 |
apply (case_tac "xs") |
|
191 |
apply auto |
|
192 |
done |
|
193 |
||
194 |
lemma Cons_in_list_Suc [iff]: |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
195 |
"(x#xs : list (Suc n) A) = (x\<in> A & xs : list n A)"; |
10496 | 196 |
apply (simp add: in_list_Suc_iff) |
197 |
done |
|
198 |
||
199 |
lemma list_not_empty: |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
200 |
"\<exists>a. a\<in> A \<Longrightarrow> \<exists>xs. xs : list n A"; |
10496 | 201 |
apply (induct "n") |
202 |
apply simp |
|
203 |
apply (simp add: in_list_Suc_iff) |
|
204 |
apply blast |
|
205 |
done |
|
206 |
||
207 |
||
208 |
lemma nth_in [rule_format, simp]: |
|
13006 | 209 |
"!i n. length xs = n \<longrightarrow> set xs <= A \<longrightarrow> i < n \<longrightarrow> (xs!i) : A" |
10496 | 210 |
apply (induct "xs") |
211 |
apply simp |
|
212 |
apply (simp add: nth_Cons split: nat.split) |
|
213 |
done |
|
214 |
||
215 |
lemma listE_nth_in: |
|
13006 | 216 |
"\<lbrakk> xs : list n A; i < n \<rbrakk> \<Longrightarrow> (xs!i) : A" |
10496 | 217 |
by auto |
218 |
||
13066 | 219 |
|
220 |
lemma listn_Cons_Suc [elim!]: |
|
221 |
"l#xs \<in> list n A \<Longrightarrow> (\<And>n'. n = Suc n' \<Longrightarrow> l \<in> A \<Longrightarrow> xs \<in> list n' A \<Longrightarrow> P) \<Longrightarrow> P" |
|
222 |
by (cases n) auto |
|
223 |
||
224 |
lemma listn_appendE [elim!]: |
|
225 |
"a@b \<in> list n A \<Longrightarrow> (\<And>n1 n2. n=n1+n2 \<Longrightarrow> a \<in> list n1 A \<Longrightarrow> b \<in> list n2 A \<Longrightarrow> P) \<Longrightarrow> P" |
|
226 |
proof - |
|
227 |
have "\<And>n. a@b \<in> list n A \<Longrightarrow> \<exists>n1 n2. n=n1+n2 \<and> a \<in> list n1 A \<and> b \<in> list n2 A" |
|
228 |
(is "\<And>n. ?list a n \<Longrightarrow> \<exists>n1 n2. ?P a n n1 n2") |
|
229 |
proof (induct a) |
|
230 |
fix n assume "?list [] n" |
|
231 |
hence "?P [] n 0 n" by simp |
|
232 |
thus "\<exists>n1 n2. ?P [] n n1 n2" by fast |
|
233 |
next |
|
234 |
fix n l ls |
|
235 |
assume "?list (l#ls) n" |
|
23464 | 236 |
then obtain n' where n: "n = Suc n'" "l \<in> A" and list_n': "ls@b \<in> list n' A" by fastsimp |
13066 | 237 |
assume "\<And>n. ls @ b \<in> list n A \<Longrightarrow> \<exists>n1 n2. n = n1 + n2 \<and> ls \<in> list n1 A \<and> b \<in> list n2 A" |
23464 | 238 |
hence "\<exists>n1 n2. n' = n1 + n2 \<and> ls \<in> list n1 A \<and> b \<in> list n2 A" by this (rule list_n') |
13066 | 239 |
then obtain n1 n2 where "n' = n1 + n2" "ls \<in> list n1 A" "b \<in> list n2 A" by fast |
240 |
with n have "?P (l#ls) n (n1+1) n2" by simp |
|
241 |
thus "\<exists>n1 n2. ?P (l#ls) n n1 n2" by fastsimp |
|
242 |
qed |
|
243 |
moreover |
|
244 |
assume "a@b \<in> list n A" "\<And>n1 n2. n=n1+n2 \<Longrightarrow> a \<in> list n1 A \<Longrightarrow> b \<in> list n2 A \<Longrightarrow> P" |
|
245 |
ultimately |
|
246 |
show ?thesis by blast |
|
247 |
qed |
|
248 |
||
249 |
||
10496 | 250 |
lemma listt_update_in_list [simp, intro!]: |
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
251 |
"\<lbrakk> xs : list n A; x\<in> A \<rbrakk> \<Longrightarrow> xs[i := x] : list n A" |
10496 | 252 |
apply (unfold list_def) |
253 |
apply simp |
|
254 |
done |
|
255 |
||
256 |
lemma plus_list_Nil [simp]: |
|
257 |
"[] +[f] xs = []" |
|
258 |
apply (unfold plussub_def map2_def) |
|
259 |
apply simp |
|
260 |
done |
|
261 |
||
262 |
lemma plus_list_Cons [simp]: |
|
13006 | 263 |
"(x#xs) +[f] ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x +_f y)#(xs +[f] ys))" |
10496 | 264 |
by (simp add: plussub_def map2_def split: list.split) |
265 |
||
266 |
lemma length_plus_list [rule_format, simp]: |
|
267 |
"!ys. length(xs +[f] ys) = min(length xs) (length ys)" |
|
268 |
apply (induct xs) |
|
269 |
apply simp |
|
270 |
apply clarify |
|
271 |
apply (simp (no_asm_simp) split: list.split) |
|
272 |
done |
|
273 |
||
274 |
lemma nth_plus_list [rule_format, simp]: |
|
13006 | 275 |
"!xs ys i. length xs = n \<longrightarrow> length ys = n \<longrightarrow> i<n \<longrightarrow> |
10496 | 276 |
(xs +[f] ys)!i = (xs!i) +_f (ys!i)" |
277 |
apply (induct n) |
|
278 |
apply simp |
|
279 |
apply clarify |
|
280 |
apply (case_tac xs) |
|
281 |
apply simp |
|
282 |
apply (force simp add: nth_Cons split: list.split nat.split) |
|
283 |
done |
|
284 |
||
285 |
||
13074 | 286 |
lemma (in semilat) plus_list_ub1 [rule_format]: |
287 |
"\<lbrakk> set xs <= A; set ys <= A; size xs = size ys \<rbrakk> |
|
13006 | 288 |
\<Longrightarrow> xs <=[r] xs +[f] ys" |
10496 | 289 |
apply (unfold unfold_lesub_list) |
290 |
apply (simp add: Listn.le_def list_all2_conv_all_nth) |
|
291 |
done |
|
292 |
||
13074 | 293 |
lemma (in semilat) plus_list_ub2: |
294 |
"\<lbrakk>set xs <= A; set ys <= A; size xs = size ys \<rbrakk> |
|
13006 | 295 |
\<Longrightarrow> ys <=[r] xs +[f] ys" |
10496 | 296 |
apply (unfold unfold_lesub_list) |
297 |
apply (simp add: Listn.le_def list_all2_conv_all_nth) |
|
13074 | 298 |
done |
10496 | 299 |
|
13074 | 300 |
lemma (in semilat) plus_list_lub [rule_format]: |
301 |
shows "!xs ys zs. set xs <= A \<longrightarrow> set ys <= A \<longrightarrow> set zs <= A |
|
13006 | 302 |
\<longrightarrow> size xs = n & size ys = n \<longrightarrow> |
303 |
xs <=[r] zs & ys <=[r] zs \<longrightarrow> xs +[f] ys <=[r] zs" |
|
10496 | 304 |
apply (unfold unfold_lesub_list) |
305 |
apply (simp add: Listn.le_def list_all2_conv_all_nth) |
|
13074 | 306 |
done |
10496 | 307 |
|
13074 | 308 |
lemma (in semilat) list_update_incr [rule_format]: |
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
309 |
"x\<in> A \<Longrightarrow> set xs <= A \<longrightarrow> |
13006 | 310 |
(!i. i<size xs \<longrightarrow> xs <=[r] xs[i := x +_f xs!i])" |
10496 | 311 |
apply (unfold unfold_lesub_list) |
312 |
apply (simp add: Listn.le_def list_all2_conv_all_nth) |
|
313 |
apply (induct xs) |
|
314 |
apply simp |
|
315 |
apply (simp add: in_list_Suc_iff) |
|
316 |
apply clarify |
|
317 |
apply (simp add: nth_Cons split: nat.split) |
|
13074 | 318 |
done |
10496 | 319 |
|
320 |
lemma acc_le_listI [intro!]: |
|
13006 | 321 |
"\<lbrakk> order r; acc r \<rbrakk> \<Longrightarrow> acc(Listn.le r)" |
10496 | 322 |
apply (unfold acc_def) |
323 |
apply (subgoal_tac |
|
22271 | 324 |
"wfP (SUP n. (\<lambda>ys xs. size xs = n & size ys = n & xs <_(Listn.le r) ys))") |
325 |
apply (erule wfP_subset) |
|
10496 | 326 |
apply (blast intro: lesssub_list_impl_same_size) |
22271 | 327 |
apply (rule wfP_SUP) |
10496 | 328 |
prefer 2 |
329 |
apply clarify |
|
330 |
apply (rename_tac m n) |
|
331 |
apply (case_tac "m=n") |
|
332 |
apply simp |
|
26806 | 333 |
apply (fast intro!: equals0I [to_pred bot_empty_eq pred_equals_eq] dest: not_sym) |
10496 | 334 |
apply clarify |
335 |
apply (rename_tac n) |
|
336 |
apply (induct_tac n) |
|
337 |
apply (simp add: lesssub_def cong: conj_cong) |
|
338 |
apply (rename_tac k) |
|
22271 | 339 |
apply (simp add: wfP_eq_minimal) |
10496 | 340 |
apply (simp (no_asm) add: length_Suc_conv cong: conj_cong) |
341 |
apply clarify |
|
342 |
apply (rename_tac M m) |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
343 |
apply (case_tac "\<exists>x xs. size xs = k & x#xs : M") |
10496 | 344 |
prefer 2 |
345 |
apply (erule thin_rl) |
|
346 |
apply (erule thin_rl) |
|
347 |
apply blast |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
348 |
apply (erule_tac x = "{a. \<exists>xs. size xs = k & a#xs:M}" in allE) |
10496 | 349 |
apply (erule impE) |
350 |
apply blast |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
351 |
apply (thin_tac "\<exists>x xs. ?P x xs") |
10496 | 352 |
apply clarify |
353 |
apply (rename_tac maxA xs) |
|
354 |
apply (erule_tac x = "{ys. size ys = size xs & maxA#ys : M}" in allE) |
|
355 |
apply (erule impE) |
|
356 |
apply blast |
|
357 |
apply clarify |
|
358 |
apply (thin_tac "m : M") |
|
359 |
apply (thin_tac "maxA#xs : M") |
|
360 |
apply (rule bexI) |
|
361 |
prefer 2 |
|
362 |
apply assumption |
|
363 |
apply clarify |
|
364 |
apply simp |
|
365 |
apply blast |
|
366 |
done |
|
367 |
||
368 |
lemma closed_listI: |
|
13006 | 369 |
"closed S f \<Longrightarrow> closed (list n S) (map2 f)" |
10496 | 370 |
apply (unfold closed_def) |
371 |
apply (induct n) |
|
372 |
apply simp |
|
373 |
apply clarify |
|
374 |
apply (simp add: in_list_Suc_iff) |
|
375 |
apply clarify |
|
376 |
apply simp |
|
13074 | 377 |
done |
10496 | 378 |
|
379 |
||
13074 | 380 |
lemma Listn_sl_aux: |
381 |
includes semilat shows "semilat (Listn.sl n (A,r,f))" |
|
10496 | 382 |
apply (unfold Listn.sl_def) |
10918 | 383 |
apply (simp (no_asm) only: semilat_Def split_conv) |
10496 | 384 |
apply (rule conjI) |
385 |
apply simp |
|
386 |
apply (rule conjI) |
|
13074 | 387 |
apply (simp only: closedI closed_listI) |
10496 | 388 |
apply (simp (no_asm) only: list_def) |
389 |
apply (simp (no_asm_simp) add: plus_list_ub1 plus_list_ub2 plus_list_lub) |
|
13074 | 390 |
done |
10496 | 391 |
|
13074 | 392 |
lemma Listn_sl: "\<And>L. semilat L \<Longrightarrow> semilat (Listn.sl n L)" |
393 |
by(simp add: Listn_sl_aux split_tupled_all) |
|
10496 | 394 |
|
395 |
lemma coalesce_in_err_list [rule_format]: |
|
13006 | 396 |
"!xes. xes : list n (err A) \<longrightarrow> coalesce xes : err(list n A)" |
10496 | 397 |
apply (induct n) |
398 |
apply simp |
|
399 |
apply clarify |
|
400 |
apply (simp add: in_list_Suc_iff) |
|
401 |
apply clarify |
|
402 |
apply (simp (no_asm) add: plussub_def Err.sup_def lift2_def split: err.split) |
|
403 |
apply force |
|
404 |
done |
|
405 |
||
13006 | 406 |
lemma lem: "\<And>x xs. x +_(op #) xs = x#xs" |
10496 | 407 |
by (simp add: plussub_def) |
408 |
||
409 |
lemma coalesce_eq_OK1_D [rule_format]: |
|
13006 | 410 |
"semilat(err A, Err.le r, lift2 f) \<Longrightarrow> |
411 |
!xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> |
|
412 |
(!zs. coalesce (xs +[f] ys) = OK zs \<longrightarrow> xs <=[r] zs))" |
|
10496 | 413 |
apply (induct n) |
414 |
apply simp |
|
415 |
apply clarify |
|
416 |
apply (simp add: in_list_Suc_iff) |
|
417 |
apply clarify |
|
418 |
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def) |
|
419 |
apply (force simp add: semilat_le_err_OK1) |
|
420 |
done |
|
421 |
||
422 |
lemma coalesce_eq_OK2_D [rule_format]: |
|
13006 | 423 |
"semilat(err A, Err.le r, lift2 f) \<Longrightarrow> |
424 |
!xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> |
|
425 |
(!zs. coalesce (xs +[f] ys) = OK zs \<longrightarrow> ys <=[r] zs))" |
|
10496 | 426 |
apply (induct n) |
427 |
apply simp |
|
428 |
apply clarify |
|
429 |
apply (simp add: in_list_Suc_iff) |
|
430 |
apply clarify |
|
431 |
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def) |
|
432 |
apply (force simp add: semilat_le_err_OK2) |
|
433 |
done |
|
434 |
||
435 |
lemma lift2_le_ub: |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
436 |
"\<lbrakk> semilat(err A, Err.le r, lift2 f); x\<in> A; y\<in> A; x +_f y = OK z; |
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
437 |
u\<in> A; x <=_r u; y <=_r u \<rbrakk> \<Longrightarrow> z <=_r u" |
10496 | 438 |
apply (unfold semilat_Def plussub_def err_def) |
439 |
apply (simp add: lift2_def) |
|
440 |
apply clarify |
|
441 |
apply (rotate_tac -3) |
|
442 |
apply (erule thin_rl) |
|
443 |
apply (erule thin_rl) |
|
444 |
apply force |
|
13074 | 445 |
done |
10496 | 446 |
|
447 |
lemma coalesce_eq_OK_ub_D [rule_format]: |
|
13006 | 448 |
"semilat(err A, Err.le r, lift2 f) \<Longrightarrow> |
449 |
!xs. xs : list n A \<longrightarrow> (!ys. ys : list n A \<longrightarrow> |
|
10496 | 450 |
(!zs us. coalesce (xs +[f] ys) = OK zs & xs <=[r] us & ys <=[r] us |
13006 | 451 |
& us : list n A \<longrightarrow> zs <=[r] us))" |
10496 | 452 |
apply (induct n) |
453 |
apply simp |
|
454 |
apply clarify |
|
455 |
apply (simp add: in_list_Suc_iff) |
|
456 |
apply clarify |
|
457 |
apply (simp (no_asm_use) split: err.split_asm add: lem Err.sup_def lift2_def) |
|
458 |
apply clarify |
|
459 |
apply (rule conjI) |
|
460 |
apply (blast intro: lift2_le_ub) |
|
461 |
apply blast |
|
462 |
done |
|
463 |
||
464 |
lemma lift2_eq_ErrD: |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
465 |
"\<lbrakk> x +_f y = Err; semilat(err A, Err.le r, lift2 f); x\<in> A; y\<in> A \<rbrakk> |
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
466 |
\<Longrightarrow> ~(\<exists>u\<in> A. x <=_r u & y <=_r u)" |
10496 | 467 |
by (simp add: OK_plus_OK_eq_Err_conv [THEN iffD1]) |
468 |
||
469 |
||
470 |
lemma coalesce_eq_Err_D [rule_format]: |
|
13006 | 471 |
"\<lbrakk> semilat(err A, Err.le r, lift2 f) \<rbrakk> |
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
472 |
\<Longrightarrow> !xs. xs\<in> list n A \<longrightarrow> (!ys. ys\<in> list n A \<longrightarrow> |
13006 | 473 |
coalesce (xs +[f] ys) = Err \<longrightarrow> |
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
474 |
~(\<exists>zs\<in> list n A. xs <=[r] zs & ys <=[r] zs))" |
10496 | 475 |
apply (induct n) |
476 |
apply simp |
|
477 |
apply clarify |
|
478 |
apply (simp add: in_list_Suc_iff) |
|
479 |
apply clarify |
|
480 |
apply (simp split: err.split_asm add: lem Err.sup_def lift2_def) |
|
481 |
apply (blast dest: lift2_eq_ErrD) |
|
482 |
done |
|
483 |
||
484 |
lemma closed_err_lift2_conv: |
|
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
485 |
"closed (err A) (lift2 f) = (\<forall>x\<in> A. \<forall>y\<in> A. x +_f y : err A)" |
10496 | 486 |
apply (unfold closed_def) |
487 |
apply (simp add: err_def) |
|
488 |
done |
|
489 |
||
490 |
lemma closed_map2_list [rule_format]: |
|
13006 | 491 |
"closed (err A) (lift2 f) \<Longrightarrow> |
15341
254f6f00b60e
converted to Isar script, simplifying some results
paulson
parents:
13601
diff
changeset
|
492 |
\<forall>xs. xs : list n A \<longrightarrow> (\<forall>ys. ys : list n A \<longrightarrow> |
10496 | 493 |
map2 f xs ys : list n (err A))" |
494 |
apply (unfold map2_def) |
|
495 |
apply (induct n) |
|
496 |
apply simp |
|
497 |
apply clarify |
|
498 |
apply (simp add: in_list_Suc_iff) |
|
499 |
apply clarify |
|
500 |
apply (simp add: plussub_def closed_err_lift2_conv) |
|
13074 | 501 |
done |
10496 | 502 |
|
503 |
lemma closed_lift2_sup: |
|
13006 | 504 |
"closed (err A) (lift2 f) \<Longrightarrow> |
10496 | 505 |
closed (err (list n A)) (lift2 (sup f))" |
506 |
by (fastsimp simp add: closed_def plussub_def sup_def lift2_def |
|
507 |
coalesce_in_err_list closed_map2_list |
|
508 |
split: err.split) |
|
509 |
||
510 |
lemma err_semilat_sup: |
|
13006 | 511 |
"err_semilat (A,r,f) \<Longrightarrow> |
10496 | 512 |
err_semilat (list n A, Listn.le r, sup f)" |
513 |
apply (unfold Err.sl_def) |
|
10918 | 514 |
apply (simp only: split_conv) |
10496 | 515 |
apply (simp (no_asm) only: semilat_Def plussub_def) |
13074 | 516 |
apply (simp (no_asm_simp) only: semilat.closedI closed_lift2_sup) |
10496 | 517 |
apply (rule conjI) |
13074 | 518 |
apply (drule semilat.orderI) |
10496 | 519 |
apply simp |
520 |
apply (simp (no_asm) only: unfold_lesub_err Err.le_def err_def sup_def lift2_def) |
|
521 |
apply (simp (no_asm_simp) add: coalesce_eq_OK1_D coalesce_eq_OK2_D split: err.split) |
|
522 |
apply (blast intro: coalesce_eq_OK_ub_D dest: coalesce_eq_Err_D) |
|
523 |
done |
|
524 |
||
525 |
lemma err_semilat_upto_esl: |
|
13006 | 526 |
"\<And>L. err_semilat L \<Longrightarrow> err_semilat(upto_esl m L)" |
10496 | 527 |
apply (unfold Listn.upto_esl_def) |
528 |
apply (simp (no_asm_simp) only: split_tupled_all) |
|
529 |
apply simp |
|
530 |
apply (fastsimp intro!: err_semilat_UnionI err_semilat_sup |
|
531 |
dest: lesub_list_impl_same_size |
|
532 |
simp add: plussub_def Listn.sup_def) |
|
533 |
done |
|
534 |
||
535 |
end |