| author | wenzelm | 
| Sun, 11 Sep 2022 10:26:41 +0200 | |
| changeset 76112 | 41bea72acc75 | 
| parent 71417 | 89d05db6dd1f | 
| child 76213 | e44d86131648 | 
| permissions | -rw-r--r-- | 
| 13634 | 1  | 
(* Title: ZF/Constructible/Rank_Separation.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
3  | 
*)  | 
|
4  | 
||
| 60770 | 5  | 
section \<open>Separation for Facts About Order Types, Rank Functions and  | 
6  | 
Well-Founded Relations\<close>  | 
|
| 13634 | 7  | 
|
| 16417 | 8  | 
theory Rank_Separation imports Rank Rec_Separation begin  | 
| 13634 | 9  | 
|
10  | 
||
| 60770 | 11  | 
text\<open>This theory proves all instances needed for locales  | 
| 61798 | 12  | 
\<open>M_ordertype\<close> and \<open>M_wfrank\<close>. But the material is not  | 
| 60770 | 13  | 
needed for proving the relative consistency of AC.\<close>  | 
| 13634 | 14  | 
|
| 61798 | 15  | 
subsection\<open>The Locale \<open>M_ordertype\<close>\<close>  | 
| 13634 | 16  | 
|
| 60770 | 17  | 
subsubsection\<open>Separation for Order-Isomorphisms\<close>  | 
| 13634 | 18  | 
|
19  | 
lemma well_ord_iso_Reflects:  | 
|
| 46823 | 20  | 
"REFLECTS[\<lambda>x. x\<in>A \<longrightarrow>  | 
| 13634 | 21  | 
(\<exists>y[L]. \<exists>p[L]. fun_apply(L,f,x,y) & pair(L,y,x,p) & p \<in> r),  | 
| 46823 | 22  | 
\<lambda>i x. x\<in>A \<longrightarrow> (\<exists>y \<in> Lset(i). \<exists>p \<in> Lset(i).  | 
| 
13807
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
23  | 
fun_apply(##Lset(i),f,x,y) & pair(##Lset(i),y,x,p) & p \<in> r)]"  | 
| 13634 | 24  | 
by (intro FOL_reflections function_reflections)  | 
25  | 
||
26  | 
lemma well_ord_iso_separation:  | 
|
27  | 
"[| L(A); L(f); L(r) |]  | 
|
| 46823 | 28  | 
==> separation (L, \<lambda>x. x\<in>A \<longrightarrow> (\<exists>y[L]. (\<exists>p[L].  | 
| 13634 | 29  | 
fun_apply(L,f,x,y) & pair(L,y,x,p) & p \<in> r)))"  | 
| 13687 | 30  | 
apply (rule gen_separation_multi [OF well_ord_iso_Reflects, of "{A,f,r}"], 
 | 
31  | 
auto)  | 
|
32  | 
apply (rule_tac env="[A,f,r]" in DPow_LsetI)  | 
|
| 13634 | 33  | 
apply (rule sep_rules | simp)+  | 
34  | 
done  | 
|
35  | 
||
36  | 
||
| 69593 | 37  | 
subsubsection\<open>Separation for \<^term>\<open>obase\<close>\<close>  | 
| 13634 | 38  | 
|
39  | 
lemma obase_reflects:  | 
|
40  | 
"REFLECTS[\<lambda>a. \<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].  | 
|
41  | 
ordinal(L,x) & membership(L,x,mx) & pred_set(L,A,a,r,par) &  | 
|
42  | 
order_isomorphism(L,par,r,x,mx,g),  | 
|
43  | 
\<lambda>i a. \<exists>x \<in> Lset(i). \<exists>g \<in> Lset(i). \<exists>mx \<in> Lset(i). \<exists>par \<in> Lset(i).  | 
|
| 
13807
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
44  | 
ordinal(##Lset(i),x) & membership(##Lset(i),x,mx) & pred_set(##Lset(i),A,a,r,par) &  | 
| 
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
45  | 
order_isomorphism(##Lset(i),par,r,x,mx,g)]"  | 
| 13634 | 46  | 
by (intro FOL_reflections function_reflections fun_plus_reflections)  | 
47  | 
||
48  | 
lemma obase_separation:  | 
|
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
49  | 
\<comment> \<open>part of the order type formalization\<close>  | 
| 13634 | 50  | 
"[| L(A); L(r) |]  | 
51  | 
==> separation(L, \<lambda>a. \<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].  | 
|
52  | 
ordinal(L,x) & membership(L,x,mx) & pred_set(L,A,a,r,par) &  | 
|
53  | 
order_isomorphism(L,par,r,x,mx,g))"  | 
|
| 13687 | 54  | 
apply (rule gen_separation_multi [OF obase_reflects, of "{A,r}"], auto)
 | 
55  | 
apply (rule_tac env="[A,r]" in DPow_LsetI)  | 
|
56  | 
apply (rule ordinal_iff_sats sep_rules | simp)+  | 
|
| 13634 | 57  | 
done  | 
58  | 
||
59  | 
||
| 69593 | 60  | 
subsubsection\<open>Separation for a Theorem about \<^term>\<open>obase\<close>\<close>  | 
| 13634 | 61  | 
|
62  | 
lemma obase_equals_reflects:  | 
|
| 46823 | 63  | 
"REFLECTS[\<lambda>x. x\<in>A \<longrightarrow> ~(\<exists>y[L]. \<exists>g[L].  | 
| 13634 | 64  | 
ordinal(L,y) & (\<exists>my[L]. \<exists>pxr[L].  | 
65  | 
membership(L,y,my) & pred_set(L,A,x,r,pxr) &  | 
|
66  | 
order_isomorphism(L,pxr,r,y,my,g))),  | 
|
| 46823 | 67  | 
\<lambda>i x. x\<in>A \<longrightarrow> ~(\<exists>y \<in> Lset(i). \<exists>g \<in> Lset(i).  | 
| 
13807
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
68  | 
ordinal(##Lset(i),y) & (\<exists>my \<in> Lset(i). \<exists>pxr \<in> Lset(i).  | 
| 
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
69  | 
membership(##Lset(i),y,my) & pred_set(##Lset(i),A,x,r,pxr) &  | 
| 
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
70  | 
order_isomorphism(##Lset(i),pxr,r,y,my,g)))]"  | 
| 13634 | 71  | 
by (intro FOL_reflections function_reflections fun_plus_reflections)  | 
72  | 
||
73  | 
lemma obase_equals_separation:  | 
|
74  | 
"[| L(A); L(r) |]  | 
|
| 46823 | 75  | 
==> separation (L, \<lambda>x. x\<in>A \<longrightarrow> ~(\<exists>y[L]. \<exists>g[L].  | 
| 13634 | 76  | 
ordinal(L,y) & (\<exists>my[L]. \<exists>pxr[L].  | 
77  | 
membership(L,y,my) & pred_set(L,A,x,r,pxr) &  | 
|
78  | 
order_isomorphism(L,pxr,r,y,my,g))))"  | 
|
| 13687 | 79  | 
apply (rule gen_separation_multi [OF obase_equals_reflects, of "{A,r}"], auto)
 | 
80  | 
apply (rule_tac env="[A,r]" in DPow_LsetI)  | 
|
| 13634 | 81  | 
apply (rule sep_rules | simp)+  | 
82  | 
done  | 
|
83  | 
||
84  | 
||
| 69593 | 85  | 
subsubsection\<open>Replacement for \<^term>\<open>omap\<close>\<close>  | 
| 13634 | 86  | 
|
87  | 
lemma omap_reflects:  | 
|
88  | 
"REFLECTS[\<lambda>z. \<exists>a[L]. a\<in>B & (\<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].  | 
|
89  | 
ordinal(L,x) & pair(L,a,x,z) & membership(L,x,mx) &  | 
|
90  | 
pred_set(L,A,a,r,par) & order_isomorphism(L,par,r,x,mx,g)),  | 
|
91  | 
\<lambda>i z. \<exists>a \<in> Lset(i). a\<in>B & (\<exists>x \<in> Lset(i). \<exists>g \<in> Lset(i). \<exists>mx \<in> Lset(i).  | 
|
92  | 
\<exists>par \<in> Lset(i).  | 
|
| 
13807
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
93  | 
ordinal(##Lset(i),x) & pair(##Lset(i),a,x,z) &  | 
| 
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
94  | 
membership(##Lset(i),x,mx) & pred_set(##Lset(i),A,a,r,par) &  | 
| 
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
95  | 
order_isomorphism(##Lset(i),par,r,x,mx,g))]"  | 
| 13634 | 96  | 
by (intro FOL_reflections function_reflections fun_plus_reflections)  | 
97  | 
||
98  | 
lemma omap_replacement:  | 
|
99  | 
"[| L(A); L(r) |]  | 
|
100  | 
==> strong_replacement(L,  | 
|
101  | 
\<lambda>a z. \<exists>x[L]. \<exists>g[L]. \<exists>mx[L]. \<exists>par[L].  | 
|
102  | 
ordinal(L,x) & pair(L,a,x,z) & membership(L,x,mx) &  | 
|
103  | 
pred_set(L,A,a,r,par) & order_isomorphism(L,par,r,x,mx,g))"  | 
|
104  | 
apply (rule strong_replacementI)  | 
|
| 13687 | 105  | 
apply (rule_tac u="{A,r,B}" in gen_separation_multi [OF omap_reflects], auto)
 | 
106  | 
apply (rule_tac env="[A,B,r]" in DPow_LsetI)  | 
|
| 13634 | 107  | 
apply (rule sep_rules | simp)+  | 
108  | 
done  | 
|
109  | 
||
110  | 
||
111  | 
||
| 61798 | 112  | 
subsection\<open>Instantiating the locale \<open>M_ordertype\<close>\<close>  | 
| 60770 | 113  | 
text\<open>Separation (and Strong Replacement) for basic set-theoretic constructions  | 
114  | 
such as intersection, Cartesian Product and image.\<close>  | 
|
| 13634 | 115  | 
|
116  | 
lemma M_ordertype_axioms_L: "M_ordertype_axioms(L)"  | 
|
117  | 
apply (rule M_ordertype_axioms.intro)  | 
|
118  | 
apply (assumption | rule well_ord_iso_separation  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
19931 
diff
changeset
 | 
119  | 
obase_separation obase_equals_separation  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
19931 
diff
changeset
 | 
120  | 
omap_replacement)+  | 
| 13634 | 121  | 
done  | 
122  | 
||
| 
71417
 
89d05db6dd1f
Simplified, generalised version of Constructible due to E. Gunther, M. Pagano and P. Sánchez Terraf
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
123  | 
theorem M_ordertype_L: "M_ordertype(L)"  | 
| 
19931
 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 
ballarin 
parents: 
16417 
diff
changeset
 | 
124  | 
apply (rule M_ordertype.intro)  | 
| 
 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 
ballarin 
parents: 
16417 
diff
changeset
 | 
125  | 
apply (rule M_basic_L)  | 
| 
 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 
ballarin 
parents: 
16417 
diff
changeset
 | 
126  | 
apply (rule M_ordertype_axioms_L)  | 
| 
 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 
ballarin 
parents: 
16417 
diff
changeset
 | 
127  | 
done  | 
| 13634 | 128  | 
|
129  | 
||
| 61798 | 130  | 
subsection\<open>The Locale \<open>M_wfrank\<close>\<close>  | 
| 13634 | 131  | 
|
| 69593 | 132  | 
subsubsection\<open>Separation for \<^term>\<open>wfrank\<close>\<close>  | 
| 13634 | 133  | 
|
134  | 
lemma wfrank_Reflects:  | 
|
| 46823 | 135  | 
"REFLECTS[\<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) \<longrightarrow>  | 
| 13634 | 136  | 
~ (\<exists>f[L]. M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f)),  | 
| 46823 | 137  | 
\<lambda>i x. \<forall>rplus \<in> Lset(i). tran_closure(##Lset(i),r,rplus) \<longrightarrow>  | 
| 13634 | 138  | 
~ (\<exists>f \<in> Lset(i).  | 
| 
13807
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
139  | 
M_is_recfun(##Lset(i), %x f y. is_range(##Lset(i),f,y),  | 
| 13634 | 140  | 
rplus, x, f))]"  | 
141  | 
by (intro FOL_reflections function_reflections is_recfun_reflection tran_closure_reflection)  | 
|
142  | 
||
143  | 
lemma wfrank_separation:  | 
|
144  | 
"L(r) ==>  | 
|
| 46823 | 145  | 
separation (L, \<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) \<longrightarrow>  | 
| 13634 | 146  | 
~ (\<exists>f[L]. M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f)))"  | 
147  | 
apply (rule gen_separation [OF wfrank_Reflects], simp)  | 
|
| 13687 | 148  | 
apply (rule_tac env="[r]" in DPow_LsetI)  | 
149  | 
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+  | 
|
| 13634 | 150  | 
done  | 
151  | 
||
152  | 
||
| 69593 | 153  | 
subsubsection\<open>Replacement for \<^term>\<open>wfrank\<close>\<close>  | 
| 13634 | 154  | 
|
155  | 
lemma wfrank_replacement_Reflects:  | 
|
156  | 
"REFLECTS[\<lambda>z. \<exists>x[L]. x \<in> A &  | 
|
| 46823 | 157  | 
(\<forall>rplus[L]. tran_closure(L,r,rplus) \<longrightarrow>  | 
| 13634 | 158  | 
(\<exists>y[L]. \<exists>f[L]. pair(L,x,y,z) &  | 
159  | 
M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f) &  | 
|
160  | 
is_range(L,f,y))),  | 
|
161  | 
\<lambda>i z. \<exists>x \<in> Lset(i). x \<in> A &  | 
|
| 46823 | 162  | 
(\<forall>rplus \<in> Lset(i). tran_closure(##Lset(i),r,rplus) \<longrightarrow>  | 
| 
13807
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
163  | 
(\<exists>y \<in> Lset(i). \<exists>f \<in> Lset(i). pair(##Lset(i),x,y,z) &  | 
| 
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
164  | 
M_is_recfun(##Lset(i), %x f y. is_range(##Lset(i),f,y), rplus, x, f) &  | 
| 
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
165  | 
is_range(##Lset(i),f,y)))]"  | 
| 13634 | 166  | 
by (intro FOL_reflections function_reflections fun_plus_reflections  | 
167  | 
is_recfun_reflection tran_closure_reflection)  | 
|
168  | 
||
169  | 
lemma wfrank_strong_replacement:  | 
|
170  | 
"L(r) ==>  | 
|
171  | 
strong_replacement(L, \<lambda>x z.  | 
|
| 46823 | 172  | 
\<forall>rplus[L]. tran_closure(L,r,rplus) \<longrightarrow>  | 
| 13634 | 173  | 
(\<exists>y[L]. \<exists>f[L]. pair(L,x,y,z) &  | 
174  | 
M_is_recfun(L, %x f y. is_range(L,f,y), rplus, x, f) &  | 
|
175  | 
is_range(L,f,y)))"  | 
|
176  | 
apply (rule strong_replacementI)  | 
|
| 13687 | 177  | 
apply (rule_tac u="{r,B}" 
 | 
178  | 
in gen_separation_multi [OF wfrank_replacement_Reflects],  | 
|
179  | 
auto)  | 
|
180  | 
apply (rule_tac env="[r,B]" in DPow_LsetI)  | 
|
181  | 
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+  | 
|
| 13634 | 182  | 
done  | 
183  | 
||
184  | 
||
| 61798 | 185  | 
subsubsection\<open>Separation for Proving \<open>Ord_wfrank_range\<close>\<close>  | 
| 13634 | 186  | 
|
187  | 
lemma Ord_wfrank_Reflects:  | 
|
| 46823 | 188  | 
"REFLECTS[\<lambda>x. \<forall>rplus[L]. tran_closure(L,r,rplus) \<longrightarrow>  | 
| 13634 | 189  | 
~ (\<forall>f[L]. \<forall>rangef[L].  | 
| 46823 | 190  | 
is_range(L,f,rangef) \<longrightarrow>  | 
191  | 
M_is_recfun(L, \<lambda>x f y. is_range(L,f,y), rplus, x, f) \<longrightarrow>  | 
|
| 13634 | 192  | 
ordinal(L,rangef)),  | 
| 46823 | 193  | 
\<lambda>i x. \<forall>rplus \<in> Lset(i). tran_closure(##Lset(i),r,rplus) \<longrightarrow>  | 
| 13634 | 194  | 
~ (\<forall>f \<in> Lset(i). \<forall>rangef \<in> Lset(i).  | 
| 46823 | 195  | 
is_range(##Lset(i),f,rangef) \<longrightarrow>  | 
| 
13807
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
196  | 
M_is_recfun(##Lset(i), \<lambda>x f y. is_range(##Lset(i),f,y),  | 
| 46823 | 197  | 
rplus, x, f) \<longrightarrow>  | 
| 
13807
 
a28a8fbc76d4
changed ** to ## to avoid conflict with new comment syntax
 
paulson 
parents: 
13687 
diff
changeset
 | 
198  | 
ordinal(##Lset(i),rangef))]"  | 
| 13634 | 199  | 
by (intro FOL_reflections function_reflections is_recfun_reflection  | 
200  | 
tran_closure_reflection ordinal_reflection)  | 
|
201  | 
||
202  | 
lemma Ord_wfrank_separation:  | 
|
203  | 
"L(r) ==>  | 
|
204  | 
separation (L, \<lambda>x.  | 
|
| 46823 | 205  | 
\<forall>rplus[L]. tran_closure(L,r,rplus) \<longrightarrow>  | 
| 13634 | 206  | 
~ (\<forall>f[L]. \<forall>rangef[L].  | 
| 46823 | 207  | 
is_range(L,f,rangef) \<longrightarrow>  | 
208  | 
M_is_recfun(L, \<lambda>x f y. is_range(L,f,y), rplus, x, f) \<longrightarrow>  | 
|
| 13634 | 209  | 
ordinal(L,rangef)))"  | 
210  | 
apply (rule gen_separation [OF Ord_wfrank_Reflects], simp)  | 
|
| 13687 | 211  | 
apply (rule_tac env="[r]" in DPow_LsetI)  | 
212  | 
apply (rule sep_rules tran_closure_iff_sats is_recfun_iff_sats | simp)+  | 
|
| 13634 | 213  | 
done  | 
214  | 
||
215  | 
||
| 61798 | 216  | 
subsubsection\<open>Instantiating the locale \<open>M_wfrank\<close>\<close>  | 
| 13634 | 217  | 
|
218  | 
lemma M_wfrank_axioms_L: "M_wfrank_axioms(L)"  | 
|
219  | 
apply (rule M_wfrank_axioms.intro)  | 
|
220  | 
apply (assumption | rule  | 
|
221  | 
wfrank_separation wfrank_strong_replacement Ord_wfrank_separation)+  | 
|
222  | 
done  | 
|
223  | 
||
| 
71417
 
89d05db6dd1f
Simplified, generalised version of Constructible due to E. Gunther, M. Pagano and P. Sánchez Terraf
 
paulson <lp15@cam.ac.uk> 
parents: 
69593 
diff
changeset
 | 
224  | 
theorem M_wfrank_L: "M_wfrank(L)"  | 
| 13634 | 225  | 
apply (rule M_wfrank.intro)  | 
| 
19931
 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 
ballarin 
parents: 
16417 
diff
changeset
 | 
226  | 
apply (rule M_trancl_L)  | 
| 13634 | 227  | 
apply (rule M_wfrank_axioms_L)  | 
228  | 
done  | 
|
229  | 
||
230  | 
lemmas exists_wfrank = M_wfrank.exists_wfrank [OF M_wfrank_L]  | 
|
231  | 
and M_wellfoundedrank = M_wfrank.M_wellfoundedrank [OF M_wfrank_L]  | 
|
232  | 
and Ord_wfrank_range = M_wfrank.Ord_wfrank_range [OF M_wfrank_L]  | 
|
233  | 
and Ord_range_wellfoundedrank = M_wfrank.Ord_range_wellfoundedrank [OF M_wfrank_L]  | 
|
234  | 
and function_wellfoundedrank = M_wfrank.function_wellfoundedrank [OF M_wfrank_L]  | 
|
235  | 
and domain_wellfoundedrank = M_wfrank.domain_wellfoundedrank [OF M_wfrank_L]  | 
|
236  | 
and wellfoundedrank_type = M_wfrank.wellfoundedrank_type [OF M_wfrank_L]  | 
|
237  | 
and Ord_wellfoundedrank = M_wfrank.Ord_wellfoundedrank [OF M_wfrank_L]  | 
|
238  | 
and wellfoundedrank_eq = M_wfrank.wellfoundedrank_eq [OF M_wfrank_L]  | 
|
239  | 
and wellfoundedrank_lt = M_wfrank.wellfoundedrank_lt [OF M_wfrank_L]  | 
|
240  | 
and wellfounded_imp_subset_rvimage = M_wfrank.wellfounded_imp_subset_rvimage [OF M_wfrank_L]  | 
|
241  | 
and wellfounded_imp_wf = M_wfrank.wellfounded_imp_wf [OF M_wfrank_L]  | 
|
242  | 
and wellfounded_on_imp_wf_on = M_wfrank.wellfounded_on_imp_wf_on [OF M_wfrank_L]  | 
|
243  | 
and wf_abs = M_wfrank.wf_abs [OF M_wfrank_L]  | 
|
244  | 
and wf_on_abs = M_wfrank.wf_on_abs [OF M_wfrank_L]  | 
|
245  | 
||
| 67399 | 246  | 
end  |