| author | haftmann | 
| Mon, 03 Feb 2014 08:23:21 +0100 | |
| changeset 55293 | 42cf5802d36a | 
| parent 54867 | c21a2465cac1 | 
| child 56166 | 9a241bc276cd | 
| permissions | -rw-r--r-- | 
| 32479 | 1 | (* Authors: Christophe Tabacznyj, Lawrence C. Paulson, Amine Chaieb, | 
| 31798 | 2 | Thomas M. Rasmussen, Jeremy Avigad, Tobias Nipkow | 
| 31706 | 3 | |
| 4 | ||
| 32479 | 5 | This file deals with the functions gcd and lcm. Definitions and | 
| 6 | lemmas are proved uniformly for the natural numbers and integers. | |
| 31706 | 7 | |
| 8 | This file combines and revises a number of prior developments. | |
| 9 | ||
| 10 | The original theories "GCD" and "Primes" were by Christophe Tabacznyj | |
| 11 | and Lawrence C. Paulson, based on \cite{davenport92}. They introduced
 | |
| 12 | gcd, lcm, and prime for the natural numbers. | |
| 13 | ||
| 14 | The original theory "IntPrimes" was by Thomas M. Rasmussen, and | |
| 15 | extended gcd, lcm, primes to the integers. Amine Chaieb provided | |
| 16 | another extension of the notions to the integers, and added a number | |
| 17 | of results to "Primes" and "GCD". IntPrimes also defined and developed | |
| 18 | the congruence relations on the integers. The notion was extended to | |
| 34915 | 19 | the natural numbers by Chaieb. | 
| 31706 | 20 | |
| 32036 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 21 | Jeremy Avigad combined all of these, made everything uniform for the | 
| 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 22 | natural numbers and the integers, and added a number of new theorems. | 
| 
8a9228872fbd
Moved factorial lemmas from Binomial.thy to Fact.thy and merged.
 avigad parents: 
31952diff
changeset | 23 | |
| 31798 | 24 | Tobias Nipkow cleaned up a lot. | 
| 21256 | 25 | *) | 
| 26 | ||
| 31706 | 27 | |
| 34915 | 28 | header {* Greatest common divisor and least common multiple *}
 | 
| 21256 | 29 | |
| 30 | theory GCD | |
| 33318 
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
 haftmann parents: 
33197diff
changeset | 31 | imports Fact Parity | 
| 31706 | 32 | begin | 
| 33 | ||
| 34 | declare One_nat_def [simp del] | |
| 35 | ||
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 36 | subsection {* GCD and LCM definitions *}
 | 
| 31706 | 37 | |
| 31992 | 38 | class gcd = zero + one + dvd + | 
| 41550 | 39 | fixes gcd :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 40 | and lcm :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" | |
| 21256 | 41 | begin | 
| 42 | ||
| 31706 | 43 | abbreviation | 
| 44 | coprime :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | |
| 45 | where | |
| 46 | "coprime x y == (gcd x y = 1)" | |
| 47 | ||
| 48 | end | |
| 49 | ||
| 50 | instantiation nat :: gcd | |
| 51 | begin | |
| 21256 | 52 | |
| 31706 | 53 | fun | 
| 54 | gcd_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | |
| 55 | where | |
| 56 | "gcd_nat x y = | |
| 57 | (if y = 0 then x else gcd y (x mod y))" | |
| 58 | ||
| 59 | definition | |
| 60 | lcm_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat" | |
| 61 | where | |
| 62 | "lcm_nat x y = x * y div (gcd x y)" | |
| 63 | ||
| 64 | instance proof qed | |
| 65 | ||
| 66 | end | |
| 67 | ||
| 68 | instantiation int :: gcd | |
| 69 | begin | |
| 21256 | 70 | |
| 31706 | 71 | definition | 
| 72 | gcd_int :: "int \<Rightarrow> int \<Rightarrow> int" | |
| 73 | where | |
| 74 | "gcd_int x y = int (gcd (nat (abs x)) (nat (abs y)))" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 75 | |
| 31706 | 76 | definition | 
| 77 | lcm_int :: "int \<Rightarrow> int \<Rightarrow> int" | |
| 78 | where | |
| 79 | "lcm_int x y = int (lcm (nat (abs x)) (nat (abs y)))" | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 80 | |
| 31706 | 81 | instance proof qed | 
| 82 | ||
| 83 | end | |
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 84 | |
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 85 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 86 | subsection {* Transfer setup *}
 | 
| 31706 | 87 | |
| 88 | lemma transfer_nat_int_gcd: | |
| 89 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> gcd (nat x) (nat y) = nat (gcd x y)" | |
| 90 | "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> lcm (nat x) (nat y) = nat (lcm x y)" | |
| 32479 | 91 | unfolding gcd_int_def lcm_int_def | 
| 31706 | 92 | by auto | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 93 | |
| 31706 | 94 | lemma transfer_nat_int_gcd_closures: | 
| 95 | "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> gcd x y >= 0" | |
| 96 | "x >= (0::int) \<Longrightarrow> y >= 0 \<Longrightarrow> lcm x y >= 0" | |
| 97 | by (auto simp add: gcd_int_def lcm_int_def) | |
| 98 | ||
| 35644 | 99 | declare transfer_morphism_nat_int[transfer add return: | 
| 31706 | 100 | transfer_nat_int_gcd transfer_nat_int_gcd_closures] | 
| 101 | ||
| 102 | lemma transfer_int_nat_gcd: | |
| 103 | "gcd (int x) (int y) = int (gcd x y)" | |
| 104 | "lcm (int x) (int y) = int (lcm x y)" | |
| 32479 | 105 | by (unfold gcd_int_def lcm_int_def, auto) | 
| 31706 | 106 | |
| 107 | lemma transfer_int_nat_gcd_closures: | |
| 108 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> gcd x y >= 0" | |
| 109 | "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> lcm x y >= 0" | |
| 110 | by (auto simp add: gcd_int_def lcm_int_def) | |
| 111 | ||
| 35644 | 112 | declare transfer_morphism_int_nat[transfer add return: | 
| 31706 | 113 | transfer_int_nat_gcd transfer_int_nat_gcd_closures] | 
| 114 | ||
| 115 | ||
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 116 | subsection {* GCD properties *}
 | 
| 31706 | 117 | |
| 118 | (* was gcd_induct *) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 119 | lemma gcd_nat_induct: | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 120 | fixes m n :: nat | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 121 | assumes "\<And>m. P m 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 122 | and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 123 | shows "P m n" | 
| 31706 | 124 | apply (rule gcd_nat.induct) | 
| 125 | apply (case_tac "y = 0") | |
| 126 | using assms apply simp_all | |
| 127 | done | |
| 128 | ||
| 129 | (* specific to int *) | |
| 130 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 131 | lemma gcd_neg1_int [simp]: "gcd (-x::int) y = gcd x y" | 
| 31706 | 132 | by (simp add: gcd_int_def) | 
| 133 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 134 | lemma gcd_neg2_int [simp]: "gcd (x::int) (-y) = gcd x y" | 
| 31706 | 135 | by (simp add: gcd_int_def) | 
| 136 | ||
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 137 | lemma gcd_neg_numeral_1_int [simp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 138 | "gcd (- numeral n :: int) x = gcd (numeral n) x" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 139 | by (fact gcd_neg1_int) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 140 | |
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 141 | lemma gcd_neg_numeral_2_int [simp]: | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 142 | "gcd x (- numeral n :: int) = gcd x (numeral n)" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 143 | by (fact gcd_neg2_int) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54437diff
changeset | 144 | |
| 31813 | 145 | lemma abs_gcd_int[simp]: "abs(gcd (x::int) y) = gcd x y" | 
| 146 | by(simp add: gcd_int_def) | |
| 147 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 148 | lemma gcd_abs_int: "gcd (x::int) y = gcd (abs x) (abs y)" | 
| 31813 | 149 | by (simp add: gcd_int_def) | 
| 150 | ||
| 151 | lemma gcd_abs1_int[simp]: "gcd (abs x) (y::int) = gcd x y" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 152 | by (metis abs_idempotent gcd_abs_int) | 
| 31813 | 153 | |
| 154 | lemma gcd_abs2_int[simp]: "gcd x (abs y::int) = gcd x y" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 155 | by (metis abs_idempotent gcd_abs_int) | 
| 31706 | 156 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 157 | lemma gcd_cases_int: | 
| 31706 | 158 | fixes x :: int and y | 
| 159 | assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd x y)" | |
| 160 | and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd x (-y))" | |
| 161 | and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (gcd (-x) y)" | |
| 162 | and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (gcd (-x) (-y))" | |
| 163 | shows "P (gcd x y)" | |
| 35216 | 164 | by (insert assms, auto, arith) | 
| 21256 | 165 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 166 | lemma gcd_ge_0_int [simp]: "gcd (x::int) y >= 0" | 
| 31706 | 167 | by (simp add: gcd_int_def) | 
| 168 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 169 | lemma lcm_neg1_int: "lcm (-x::int) y = lcm x y" | 
| 31706 | 170 | by (simp add: lcm_int_def) | 
| 171 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 172 | lemma lcm_neg2_int: "lcm (x::int) (-y) = lcm x y" | 
| 31706 | 173 | by (simp add: lcm_int_def) | 
| 174 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 175 | lemma lcm_abs_int: "lcm (x::int) y = lcm (abs x) (abs y)" | 
| 31706 | 176 | by (simp add: lcm_int_def) | 
| 21256 | 177 | |
| 31814 | 178 | lemma abs_lcm_int [simp]: "abs (lcm i j::int) = lcm i j" | 
| 179 | by(simp add:lcm_int_def) | |
| 180 | ||
| 181 | lemma lcm_abs1_int[simp]: "lcm (abs x) (y::int) = lcm x y" | |
| 182 | by (metis abs_idempotent lcm_int_def) | |
| 183 | ||
| 184 | lemma lcm_abs2_int[simp]: "lcm x (abs y::int) = lcm x y" | |
| 185 | by (metis abs_idempotent lcm_int_def) | |
| 186 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 187 | lemma lcm_cases_int: | 
| 31706 | 188 | fixes x :: int and y | 
| 189 | assumes "x >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm x y)" | |
| 190 | and "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm x (-y))" | |
| 191 | and "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> P (lcm (-x) y)" | |
| 192 | and "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> P (lcm (-x) (-y))" | |
| 193 | shows "P (lcm x y)" | |
| 41550 | 194 | using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith | 
| 31706 | 195 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 196 | lemma lcm_ge_0_int [simp]: "lcm (x::int) y >= 0" | 
| 31706 | 197 | by (simp add: lcm_int_def) | 
| 198 | ||
| 199 | (* was gcd_0, etc. *) | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 200 | lemma gcd_0_nat: "gcd (x::nat) 0 = x" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 201 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 202 | |
| 31706 | 203 | (* was igcd_0, etc. *) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 204 | lemma gcd_0_int [simp]: "gcd (x::int) 0 = abs x" | 
| 31706 | 205 | by (unfold gcd_int_def, auto) | 
| 206 | ||
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 207 | lemma gcd_0_left_nat: "gcd 0 (x::nat) = x" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 208 | by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 209 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 210 | lemma gcd_0_left_int [simp]: "gcd 0 (x::int) = abs x" | 
| 31706 | 211 | by (unfold gcd_int_def, auto) | 
| 212 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 213 | lemma gcd_red_nat: "gcd (x::nat) y = gcd y (x mod y)" | 
| 31706 | 214 | by (case_tac "y = 0", auto) | 
| 215 | ||
| 216 | (* weaker, but useful for the simplifier *) | |
| 217 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 218 | lemma gcd_non_0_nat: "y ~= (0::nat) \<Longrightarrow> gcd (x::nat) y = gcd y (x mod y)" | 
| 31706 | 219 | by simp | 
| 220 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 221 | lemma gcd_1_nat [simp]: "gcd (m::nat) 1 = 1" | 
| 21263 | 222 | by simp | 
| 21256 | 223 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 224 | lemma gcd_Suc_0 [simp]: "gcd (m::nat) (Suc 0) = Suc 0" | 
| 31706 | 225 | by (simp add: One_nat_def) | 
| 226 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 227 | lemma gcd_1_int [simp]: "gcd (m::int) 1 = 1" | 
| 31706 | 228 | by (simp add: gcd_int_def) | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
30042diff
changeset | 229 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 230 | lemma gcd_idem_nat: "gcd (x::nat) x = x" | 
| 31798 | 231 | by simp | 
| 31706 | 232 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 233 | lemma gcd_idem_int: "gcd (x::int) x = abs x" | 
| 31813 | 234 | by (auto simp add: gcd_int_def) | 
| 31706 | 235 | |
| 236 | declare gcd_nat.simps [simp del] | |
| 21256 | 237 | |
| 238 | text {*
 | |
| 27556 | 239 |   \medskip @{term "gcd m n"} divides @{text m} and @{text n}.  The
 | 
| 21256 | 240 | conjunctions don't seem provable separately. | 
| 241 | *} | |
| 242 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 243 | lemma gcd_dvd1_nat [iff]: "(gcd (m::nat)) n dvd m" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 244 | and gcd_dvd2_nat [iff]: "(gcd m n) dvd n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 245 | apply (induct m n rule: gcd_nat_induct) | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 246 | apply (simp_all add: gcd_non_0_nat gcd_0_nat) | 
| 21256 | 247 | apply (blast dest: dvd_mod_imp_dvd) | 
| 31706 | 248 | done | 
| 249 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 250 | lemma gcd_dvd1_int [iff]: "gcd (x::int) y dvd x" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 251 | by (metis gcd_int_def int_dvd_iff gcd_dvd1_nat) | 
| 21256 | 252 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 253 | lemma gcd_dvd2_int [iff]: "gcd (x::int) y dvd y" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 254 | by (metis gcd_int_def int_dvd_iff gcd_dvd2_nat) | 
| 31706 | 255 | |
| 31730 | 256 | lemma dvd_gcd_D1_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd m" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 257 | by(metis gcd_dvd1_nat dvd_trans) | 
| 31730 | 258 | |
| 259 | lemma dvd_gcd_D2_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd n" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 260 | by(metis gcd_dvd2_nat dvd_trans) | 
| 31730 | 261 | |
| 262 | lemma dvd_gcd_D1_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd m" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 263 | by(metis gcd_dvd1_int dvd_trans) | 
| 31730 | 264 | |
| 265 | lemma dvd_gcd_D2_int: "i dvd gcd m n \<Longrightarrow> (i::int) dvd n" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 266 | by(metis gcd_dvd2_int dvd_trans) | 
| 31730 | 267 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 268 | lemma gcd_le1_nat [simp]: "a \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> a" | 
| 31706 | 269 | by (rule dvd_imp_le, auto) | 
| 270 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 271 | lemma gcd_le2_nat [simp]: "b \<noteq> 0 \<Longrightarrow> gcd (a::nat) b \<le> b" | 
| 31706 | 272 | by (rule dvd_imp_le, auto) | 
| 273 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 274 | lemma gcd_le1_int [simp]: "a > 0 \<Longrightarrow> gcd (a::int) b \<le> a" | 
| 31706 | 275 | by (rule zdvd_imp_le, auto) | 
| 21256 | 276 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 277 | lemma gcd_le2_int [simp]: "b > 0 \<Longrightarrow> gcd (a::int) b \<le> b" | 
| 31706 | 278 | by (rule zdvd_imp_le, auto) | 
| 279 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 280 | lemma gcd_greatest_nat: "(k::nat) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n" | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 281 | by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat) | 
| 31706 | 282 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 283 | lemma gcd_greatest_int: | 
| 31813 | 284 | "(k::int) dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd gcd m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 285 | apply (subst gcd_abs_int) | 
| 31706 | 286 | apply (subst abs_dvd_iff [symmetric]) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 287 | apply (rule gcd_greatest_nat [transferred]) | 
| 31813 | 288 | apply auto | 
| 31706 | 289 | done | 
| 21256 | 290 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 291 | lemma gcd_greatest_iff_nat [iff]: "(k dvd gcd (m::nat) n) = | 
| 31706 | 292 | (k dvd m & k dvd n)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 293 | by (blast intro!: gcd_greatest_nat intro: dvd_trans) | 
| 31706 | 294 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 295 | lemma gcd_greatest_iff_int: "((k::int) dvd gcd m n) = (k dvd m & k dvd n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 296 | by (blast intro!: gcd_greatest_int intro: dvd_trans) | 
| 21256 | 297 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 298 | lemma gcd_zero_nat [simp]: "(gcd (m::nat) n = 0) = (m = 0 & n = 0)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 299 | by (simp only: dvd_0_left_iff [symmetric] gcd_greatest_iff_nat) | 
| 21256 | 300 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 301 | lemma gcd_zero_int [simp]: "(gcd (m::int) n = 0) = (m = 0 & n = 0)" | 
| 31706 | 302 | by (auto simp add: gcd_int_def) | 
| 21256 | 303 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 304 | lemma gcd_pos_nat [simp]: "(gcd (m::nat) n > 0) = (m ~= 0 | n ~= 0)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 305 | by (insert gcd_zero_nat [of m n], arith) | 
| 21256 | 306 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 307 | lemma gcd_pos_int [simp]: "(gcd (m::int) n > 0) = (m ~= 0 | n ~= 0)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 308 | by (insert gcd_zero_int [of m n], insert gcd_ge_0_int [of m n], arith) | 
| 31706 | 309 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 310 | lemma gcd_unique_nat: "(d::nat) dvd a \<and> d dvd b \<and> | 
| 31706 | 311 | (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | 
| 312 | apply auto | |
| 33657 | 313 | apply (rule dvd_antisym) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 314 | apply (erule (1) gcd_greatest_nat) | 
| 31706 | 315 | apply auto | 
| 316 | done | |
| 21256 | 317 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 318 | lemma gcd_unique_int: "d >= 0 & (d::int) dvd a \<and> d dvd b \<and> | 
| 31706 | 319 | (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" | 
| 33657 | 320 | apply (case_tac "d = 0") | 
| 321 | apply simp | |
| 322 | apply (rule iffI) | |
| 323 | apply (rule zdvd_antisym_nonneg) | |
| 324 | apply (auto intro: gcd_greatest_int) | |
| 31706 | 325 | done | 
| 30082 
43c5b7bfc791
make more proofs work whether or not One_nat_def is a simp rule
 huffman parents: 
30042diff
changeset | 326 | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 327 | interpretation gcd_nat: abel_semigroup "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 328 | + gcd_nat: semilattice_neutr_order "gcd :: nat \<Rightarrow> nat \<Rightarrow> nat" 0 "op dvd" "(\<lambda>m n. m dvd n \<and> \<not> n dvd m)" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 329 | apply default | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 330 | apply (auto intro: dvd_antisym dvd_trans)[4] | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 331 | apply (metis dvd.dual_order.refl gcd_unique_nat) | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 332 | apply (auto intro: dvdI elim: dvdE) | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 333 | done | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 334 | |
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 335 | interpretation gcd_int: abel_semigroup "gcd :: int \<Rightarrow> int \<Rightarrow> int" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 336 | proof | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 337 | qed (simp_all add: gcd_int_def gcd_nat.assoc gcd_nat.commute gcd_nat.left_commute) | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 338 | |
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 339 | lemmas gcd_assoc_nat = gcd_nat.assoc | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 340 | lemmas gcd_commute_nat = gcd_nat.commute | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 341 | lemmas gcd_left_commute_nat = gcd_nat.left_commute | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 342 | lemmas gcd_assoc_int = gcd_int.assoc | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 343 | lemmas gcd_commute_int = gcd_int.commute | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 344 | lemmas gcd_left_commute_int = gcd_int.left_commute | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 345 | |
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 346 | lemmas gcd_ac_nat = gcd_assoc_nat gcd_commute_nat gcd_left_commute_nat | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 347 | |
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 348 | lemmas gcd_ac_int = gcd_assoc_int gcd_commute_int gcd_left_commute_int | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 349 | |
| 31798 | 350 | lemma gcd_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> gcd x y = x" | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 351 | by (fact gcd_nat.absorb1) | 
| 31798 | 352 | |
| 353 | lemma gcd_proj2_if_dvd_nat [simp]: "(y::nat) dvd x \<Longrightarrow> gcd x y = y" | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 354 | by (fact gcd_nat.absorb2) | 
| 31798 | 355 | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 356 | lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd (x::int) y = abs x" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 357 | by (metis abs_dvd_iff gcd_0_left_int gcd_abs_int gcd_unique_int) | 
| 31798 | 358 | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 359 | lemma gcd_proj2_if_dvd_int [simp]: "y dvd x \<Longrightarrow> gcd (x::int) y = abs y" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 360 | by (metis gcd_proj1_if_dvd_int gcd_commute_int) | 
| 31798 | 361 | |
| 21256 | 362 | text {*
 | 
| 363 | \medskip Multiplication laws | |
| 364 | *} | |
| 365 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 366 | lemma gcd_mult_distrib_nat: "(k::nat) * gcd m n = gcd (k * m) (k * n)" | 
| 21256 | 367 |     -- {* \cite[page 27]{davenport92} *}
 | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 368 | apply (induct m n rule: gcd_nat_induct) | 
| 31706 | 369 | apply simp | 
| 21256 | 370 | apply (case_tac "k = 0") | 
| 45270 
d5b5c9259afd
fix bug in cancel_factor simprocs so they will work on goals like 'x * y < x * z' where the common term is already on the left
 huffman parents: 
45264diff
changeset | 371 | apply (simp_all add: gcd_non_0_nat) | 
| 31706 | 372 | done | 
| 21256 | 373 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 374 | lemma gcd_mult_distrib_int: "abs (k::int) * gcd m n = gcd (k * m) (k * n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 375 | apply (subst (1 2) gcd_abs_int) | 
| 31813 | 376 | apply (subst (1 2) abs_mult) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 377 | apply (rule gcd_mult_distrib_nat [transferred]) | 
| 31706 | 378 | apply auto | 
| 379 | done | |
| 21256 | 380 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 381 | lemma coprime_dvd_mult_nat: "coprime (k::nat) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 382 | apply (insert gcd_mult_distrib_nat [of m k n]) | 
| 21256 | 383 | apply simp | 
| 384 | apply (erule_tac t = m in ssubst) | |
| 385 | apply simp | |
| 386 | done | |
| 387 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 388 | lemma coprime_dvd_mult_int: | 
| 31813 | 389 | "coprime (k::int) n \<Longrightarrow> k dvd m * n \<Longrightarrow> k dvd m" | 
| 390 | apply (subst abs_dvd_iff [symmetric]) | |
| 391 | apply (subst dvd_abs_iff [symmetric]) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 392 | apply (subst (asm) gcd_abs_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 393 | apply (rule coprime_dvd_mult_nat [transferred]) | 
| 31813 | 394 | prefer 4 apply assumption | 
| 395 | apply auto | |
| 396 | apply (subst abs_mult [symmetric], auto) | |
| 31706 | 397 | done | 
| 398 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 399 | lemma coprime_dvd_mult_iff_nat: "coprime (k::nat) n \<Longrightarrow> | 
| 31706 | 400 | (k dvd m * n) = (k dvd m)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 401 | by (auto intro: coprime_dvd_mult_nat) | 
| 31706 | 402 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 403 | lemma coprime_dvd_mult_iff_int: "coprime (k::int) n \<Longrightarrow> | 
| 31706 | 404 | (k dvd m * n) = (k dvd m)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 405 | by (auto intro: coprime_dvd_mult_int) | 
| 31706 | 406 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 407 | lemma gcd_mult_cancel_nat: "coprime k n \<Longrightarrow> gcd ((k::nat) * m) n = gcd m n" | 
| 33657 | 408 | apply (rule dvd_antisym) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 409 | apply (rule gcd_greatest_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 410 | apply (rule_tac n = k in coprime_dvd_mult_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 411 | apply (simp add: gcd_assoc_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 412 | apply (simp add: gcd_commute_nat) | 
| 31706 | 413 | apply (simp_all add: mult_commute) | 
| 414 | done | |
| 21256 | 415 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 416 | lemma gcd_mult_cancel_int: | 
| 31813 | 417 | "coprime (k::int) n \<Longrightarrow> gcd (k * m) n = gcd m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 418 | apply (subst (1 2) gcd_abs_int) | 
| 31813 | 419 | apply (subst abs_mult) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 420 | apply (rule gcd_mult_cancel_nat [transferred], auto) | 
| 31706 | 421 | done | 
| 21256 | 422 | |
| 35368 | 423 | lemma coprime_crossproduct_nat: | 
| 424 | fixes a b c d :: nat | |
| 425 | assumes "coprime a d" and "coprime b c" | |
| 426 | shows "a * c = b * d \<longleftrightarrow> a = b \<and> c = d" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 427 | proof | |
| 428 | assume ?rhs then show ?lhs by simp | |
| 429 | next | |
| 430 | assume ?lhs | |
| 431 | from `?lhs` have "a dvd b * d" by (auto intro: dvdI dest: sym) | |
| 432 | with `coprime a d` have "a dvd b" by (simp add: coprime_dvd_mult_iff_nat) | |
| 433 | from `?lhs` have "b dvd a * c" by (auto intro: dvdI dest: sym) | |
| 434 | with `coprime b c` have "b dvd a" by (simp add: coprime_dvd_mult_iff_nat) | |
| 435 | from `?lhs` have "c dvd d * b" by (auto intro: dvdI dest: sym simp add: mult_commute) | |
| 436 | with `coprime b c` have "c dvd d" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat) | |
| 437 | from `?lhs` have "d dvd c * a" by (auto intro: dvdI dest: sym simp add: mult_commute) | |
| 438 | with `coprime a d` have "d dvd c" by (simp add: coprime_dvd_mult_iff_nat gcd_commute_nat) | |
| 439 | from `a dvd b` `b dvd a` have "a = b" by (rule Nat.dvd.antisym) | |
| 440 | moreover from `c dvd d` `d dvd c` have "c = d" by (rule Nat.dvd.antisym) | |
| 441 | ultimately show ?rhs .. | |
| 442 | qed | |
| 443 | ||
| 444 | lemma coprime_crossproduct_int: | |
| 445 | fixes a b c d :: int | |
| 446 | assumes "coprime a d" and "coprime b c" | |
| 447 | shows "\<bar>a\<bar> * \<bar>c\<bar> = \<bar>b\<bar> * \<bar>d\<bar> \<longleftrightarrow> \<bar>a\<bar> = \<bar>b\<bar> \<and> \<bar>c\<bar> = \<bar>d\<bar>" | |
| 448 | using assms by (intro coprime_crossproduct_nat [transferred]) auto | |
| 449 | ||
| 21256 | 450 | text {* \medskip Addition laws *}
 | 
| 451 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 452 | lemma gcd_add1_nat [simp]: "gcd ((m::nat) + n) n = gcd m n" | 
| 31706 | 453 | apply (case_tac "n = 0") | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 454 | apply (simp_all add: gcd_non_0_nat) | 
| 31706 | 455 | done | 
| 456 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 457 | lemma gcd_add2_nat [simp]: "gcd (m::nat) (m + n) = gcd m n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 458 | apply (subst (1 2) gcd_commute_nat) | 
| 31706 | 459 | apply (subst add_commute) | 
| 460 | apply simp | |
| 461 | done | |
| 462 | ||
| 463 | (* to do: add the other variations? *) | |
| 464 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 465 | lemma gcd_diff1_nat: "(m::nat) >= n \<Longrightarrow> gcd (m - n) n = gcd m n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 466 | by (subst gcd_add1_nat [symmetric], auto) | 
| 31706 | 467 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 468 | lemma gcd_diff2_nat: "(n::nat) >= m \<Longrightarrow> gcd (n - m) n = gcd m n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 469 | apply (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 470 | apply (subst gcd_diff1_nat [symmetric]) | 
| 31706 | 471 | apply auto | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 472 | apply (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 473 | apply (subst gcd_diff1_nat) | 
| 31706 | 474 | apply assumption | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 475 | apply (rule gcd_commute_nat) | 
| 31706 | 476 | done | 
| 477 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 478 | lemma gcd_non_0_int: "(y::int) > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)" | 
| 31706 | 479 | apply (frule_tac b = y and a = x in pos_mod_sign) | 
| 480 | apply (simp del: pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 481 | apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric] | 
| 31706 | 482 | zmod_zminus1_eq_if) | 
| 483 | apply (frule_tac a = x in pos_mod_bound) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 484 | apply (subst (1 2) gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 485 | apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2_nat | 
| 31706 | 486 | nat_le_eq_zle) | 
| 487 | done | |
| 21256 | 488 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 489 | lemma gcd_red_int: "gcd (x::int) y = gcd y (x mod y)" | 
| 31706 | 490 | apply (case_tac "y = 0") | 
| 491 | apply force | |
| 492 | apply (case_tac "y > 0") | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 493 | apply (subst gcd_non_0_int, auto) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 494 | apply (insert gcd_non_0_int [of "-y" "-x"]) | 
| 35216 | 495 | apply auto | 
| 31706 | 496 | done | 
| 497 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 498 | lemma gcd_add1_int [simp]: "gcd ((m::int) + n) n = gcd m n" | 
| 44821 | 499 | by (metis gcd_red_int mod_add_self1 add_commute) | 
| 31706 | 500 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 501 | lemma gcd_add2_int [simp]: "gcd m ((m::int) + n) = gcd m n" | 
| 44821 | 502 | by (metis gcd_add1_int gcd_commute_int add_commute) | 
| 21256 | 503 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 504 | lemma gcd_add_mult_nat: "gcd (m::nat) (k * m + n) = gcd m n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 505 | by (metis mod_mult_self3 gcd_commute_nat gcd_red_nat) | 
| 21256 | 506 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 507 | lemma gcd_add_mult_int: "gcd (m::int) (k * m + n) = gcd m n" | 
| 44821 | 508 | by (metis gcd_commute_int gcd_red_int mod_mult_self1 add_commute) | 
| 31798 | 509 | |
| 21256 | 510 | |
| 31706 | 511 | (* to do: differences, and all variations of addition rules | 
| 512 | as simplification rules for nat and int *) | |
| 513 | ||
| 31798 | 514 | (* FIXME remove iff *) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 515 | lemma gcd_dvd_prod_nat [iff]: "gcd (m::nat) n dvd k * n" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 516 | using mult_dvd_mono [of 1] by auto | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 517 | |
| 31706 | 518 | (* to do: add the three variations of these, and for ints? *) | 
| 519 | ||
| 31992 | 520 | lemma finite_divisors_nat[simp]: | 
| 521 |   assumes "(m::nat) ~= 0" shows "finite{d. d dvd m}"
 | |
| 31734 | 522 | proof- | 
| 523 |   have "finite{d. d <= m}" by(blast intro: bounded_nat_set_is_finite)
 | |
| 524 | from finite_subset[OF _ this] show ?thesis using assms | |
| 525 | by(bestsimp intro!:dvd_imp_le) | |
| 526 | qed | |
| 527 | ||
| 31995 | 528 | lemma finite_divisors_int[simp]: | 
| 31734 | 529 |   assumes "(i::int) ~= 0" shows "finite{d. d dvd i}"
 | 
| 530 | proof- | |
| 531 |   have "{d. abs d <= abs i} = {- abs i .. abs i}" by(auto simp:abs_if)
 | |
| 532 |   hence "finite{d. abs d <= abs i}" by simp
 | |
| 533 | from finite_subset[OF _ this] show ?thesis using assms | |
| 534 | by(bestsimp intro!:dvd_imp_le_int) | |
| 535 | qed | |
| 536 | ||
| 31995 | 537 | lemma Max_divisors_self_nat[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::nat. d dvd n} = n"
 | 
| 538 | apply(rule antisym) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 539 | apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le) | 
| 31995 | 540 | apply simp | 
| 541 | done | |
| 542 | ||
| 543 | lemma Max_divisors_self_int[simp]: "n\<noteq>0 \<Longrightarrow> Max{d::int. d dvd n} = abs n"
 | |
| 544 | apply(rule antisym) | |
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
42871diff
changeset | 545 | apply(rule Max_le_iff [THEN iffD2]) | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
42871diff
changeset | 546 | apply (auto intro: abs_le_D1 dvd_imp_le_int) | 
| 31995 | 547 | done | 
| 548 | ||
| 31734 | 549 | lemma gcd_is_Max_divisors_nat: | 
| 550 |   "m ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> gcd (m::nat) n = (Max {d. d dvd m & d dvd n})"
 | |
| 551 | apply(rule Max_eqI[THEN sym]) | |
| 31995 | 552 | apply (metis finite_Collect_conjI finite_divisors_nat) | 
| 31734 | 553 | apply simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 554 | apply(metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff_nat gcd_pos_nat) | 
| 31734 | 555 | apply simp | 
| 556 | done | |
| 557 | ||
| 558 | lemma gcd_is_Max_divisors_int: | |
| 559 |   "m ~= 0 ==> n ~= 0 ==> gcd (m::int) n = (Max {d. d dvd m & d dvd n})"
 | |
| 560 | apply(rule Max_eqI[THEN sym]) | |
| 31995 | 561 | apply (metis finite_Collect_conjI finite_divisors_int) | 
| 31734 | 562 | apply simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 563 | apply (metis gcd_greatest_iff_int gcd_pos_int zdvd_imp_le) | 
| 31734 | 564 | apply simp | 
| 565 | done | |
| 566 | ||
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 567 | lemma gcd_code_int [code]: | 
| 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 568 | "gcd k l = \<bar>if l = (0::int) then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>" | 
| 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 569 | by (simp add: gcd_int_def nat_mod_distrib gcd_non_0_nat) | 
| 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 570 | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 571 | |
| 31706 | 572 | subsection {* Coprimality *}
 | 
| 573 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 574 | lemma div_gcd_coprime_nat: | 
| 31706 | 575 | assumes nz: "(a::nat) \<noteq> 0 \<or> b \<noteq> 0" | 
| 576 | shows "coprime (a div gcd a b) (b div gcd a b)" | |
| 22367 | 577 | proof - | 
| 27556 | 578 | let ?g = "gcd a b" | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 579 | let ?a' = "a div ?g" | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 580 | let ?b' = "b div ?g" | 
| 27556 | 581 | let ?g' = "gcd ?a' ?b'" | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 582 | have dvdg: "?g dvd a" "?g dvd b" by simp_all | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 583 | have dvdg': "?g' dvd ?a'" "?g' dvd ?b'" by simp_all | 
| 22367 | 584 | from dvdg dvdg' obtain ka kb ka' kb' where | 
| 585 | kab: "a = ?g * ka" "b = ?g * kb" "?a' = ?g' * ka'" "?b' = ?g' * kb'" | |
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 586 | unfolding dvd_def by blast | 
| 31706 | 587 | then have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'" | 
| 588 | by simp_all | |
| 22367 | 589 | then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b" | 
| 590 | by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] | |
| 591 | dvd_mult_div_cancel [OF dvdg(2)] dvd_def) | |
| 35216 | 592 | have "?g \<noteq> 0" using nz by simp | 
| 31706 | 593 | then have gp: "?g > 0" by arith | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 594 | from gcd_greatest_nat [OF dvdgg'] have "?g * ?g' dvd ?g" . | 
| 22367 | 595 | with dvd_mult_cancel1 [OF gp] show "?g' = 1" by simp | 
| 22027 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 596 | qed | 
| 
e4a08629c4bd
A few lemmas about relative primes when dividing trough gcd
 chaieb parents: 
21404diff
changeset | 597 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 598 | lemma div_gcd_coprime_int: | 
| 31706 | 599 | assumes nz: "(a::int) \<noteq> 0 \<or> b \<noteq> 0" | 
| 600 | shows "coprime (a div gcd a b) (b div gcd a b)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 601 | apply (subst (1 2 3) gcd_abs_int) | 
| 31813 | 602 | apply (subst (1 2) abs_div) | 
| 603 | apply simp | |
| 604 | apply simp | |
| 605 | apply(subst (1 2) abs_gcd_int) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 606 | apply (rule div_gcd_coprime_nat [transferred]) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 607 | using nz apply (auto simp add: gcd_abs_int [symmetric]) | 
| 31706 | 608 | done | 
| 609 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 610 | lemma coprime_nat: "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 611 | using gcd_unique_nat[of 1 a b, simplified] by auto | 
| 31706 | 612 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 613 | lemma coprime_Suc_0_nat: | 
| 31706 | 614 | "coprime (a::nat) b \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> d = Suc 0)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 615 | using coprime_nat by (simp add: One_nat_def) | 
| 31706 | 616 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 617 | lemma coprime_int: "coprime (a::int) b \<longleftrightarrow> | 
| 31706 | 618 | (\<forall>d. d >= 0 \<and> d dvd a \<and> d dvd b \<longleftrightarrow> d = 1)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 619 | using gcd_unique_int [of 1 a b] | 
| 31706 | 620 | apply clarsimp | 
| 621 | apply (erule subst) | |
| 622 | apply (rule iffI) | |
| 623 | apply force | |
| 48562 
f6d6d58fa318
tuned proofs -- avoid odd situations of polymorphic Frees in goal state;
 wenzelm parents: 
45992diff
changeset | 624 | apply (drule_tac x = "abs ?e" in exI) | 
| 
f6d6d58fa318
tuned proofs -- avoid odd situations of polymorphic Frees in goal state;
 wenzelm parents: 
45992diff
changeset | 625 | apply (case_tac "(?e::int) >= 0") | 
| 31706 | 626 | apply force | 
| 627 | apply force | |
| 628 | done | |
| 629 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 630 | lemma gcd_coprime_nat: | 
| 31706 | 631 | assumes z: "gcd (a::nat) b \<noteq> 0" and a: "a = a' * gcd a b" and | 
| 632 | b: "b = b' * gcd a b" | |
| 633 | shows "coprime a' b'" | |
| 634 | ||
| 635 | apply (subgoal_tac "a' = a div gcd a b") | |
| 636 | apply (erule ssubst) | |
| 637 | apply (subgoal_tac "b' = b div gcd a b") | |
| 638 | apply (erule ssubst) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 639 | apply (rule div_gcd_coprime_nat) | 
| 41550 | 640 | using z apply force | 
| 31706 | 641 | apply (subst (1) b) | 
| 642 | using z apply force | |
| 643 | apply (subst (1) a) | |
| 644 | using z apply force | |
| 41550 | 645 | done | 
| 31706 | 646 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 647 | lemma gcd_coprime_int: | 
| 31706 | 648 | assumes z: "gcd (a::int) b \<noteq> 0" and a: "a = a' * gcd a b" and | 
| 649 | b: "b = b' * gcd a b" | |
| 650 | shows "coprime a' b'" | |
| 651 | ||
| 652 | apply (subgoal_tac "a' = a div gcd a b") | |
| 653 | apply (erule ssubst) | |
| 654 | apply (subgoal_tac "b' = b div gcd a b") | |
| 655 | apply (erule ssubst) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 656 | apply (rule div_gcd_coprime_int) | 
| 41550 | 657 | using z apply force | 
| 31706 | 658 | apply (subst (1) b) | 
| 659 | using z apply force | |
| 660 | apply (subst (1) a) | |
| 661 | using z apply force | |
| 41550 | 662 | done | 
| 31706 | 663 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 664 | lemma coprime_mult_nat: assumes da: "coprime (d::nat) a" and db: "coprime d b" | 
| 31706 | 665 | shows "coprime d (a * b)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 666 | apply (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 667 | using da apply (subst gcd_mult_cancel_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 668 | apply (subst gcd_commute_nat, assumption) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 669 | apply (subst gcd_commute_nat, rule db) | 
| 31706 | 670 | done | 
| 671 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 672 | lemma coprime_mult_int: assumes da: "coprime (d::int) a" and db: "coprime d b" | 
| 31706 | 673 | shows "coprime d (a * b)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 674 | apply (subst gcd_commute_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 675 | using da apply (subst gcd_mult_cancel_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 676 | apply (subst gcd_commute_int, assumption) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 677 | apply (subst gcd_commute_int, rule db) | 
| 31706 | 678 | done | 
| 679 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 680 | lemma coprime_lmult_nat: | 
| 31706 | 681 | assumes dab: "coprime (d::nat) (a * b)" shows "coprime d a" | 
| 682 | proof - | |
| 683 | have "gcd d a dvd gcd d (a * b)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 684 | by (rule gcd_greatest_nat, auto) | 
| 31706 | 685 | with dab show ?thesis | 
| 686 | by auto | |
| 687 | qed | |
| 688 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 689 | lemma coprime_lmult_int: | 
| 31798 | 690 | assumes "coprime (d::int) (a * b)" shows "coprime d a" | 
| 31706 | 691 | proof - | 
| 692 | have "gcd d a dvd gcd d (a * b)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 693 | by (rule gcd_greatest_int, auto) | 
| 31798 | 694 | with assms show ?thesis | 
| 31706 | 695 | by auto | 
| 696 | qed | |
| 697 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 698 | lemma coprime_rmult_nat: | 
| 31798 | 699 | assumes "coprime (d::nat) (a * b)" shows "coprime d b" | 
| 31706 | 700 | proof - | 
| 701 | have "gcd d b dvd gcd d (a * b)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 702 | by (rule gcd_greatest_nat, auto intro: dvd_mult) | 
| 31798 | 703 | with assms show ?thesis | 
| 31706 | 704 | by auto | 
| 705 | qed | |
| 706 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 707 | lemma coprime_rmult_int: | 
| 31706 | 708 | assumes dab: "coprime (d::int) (a * b)" shows "coprime d b" | 
| 709 | proof - | |
| 710 | have "gcd d b dvd gcd d (a * b)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 711 | by (rule gcd_greatest_int, auto intro: dvd_mult) | 
| 31706 | 712 | with dab show ?thesis | 
| 713 | by auto | |
| 714 | qed | |
| 715 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 716 | lemma coprime_mul_eq_nat: "coprime (d::nat) (a * b) \<longleftrightarrow> | 
| 31706 | 717 | coprime d a \<and> coprime d b" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 718 | using coprime_rmult_nat[of d a b] coprime_lmult_nat[of d a b] | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 719 | coprime_mult_nat[of d a b] | 
| 31706 | 720 | by blast | 
| 721 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 722 | lemma coprime_mul_eq_int: "coprime (d::int) (a * b) \<longleftrightarrow> | 
| 31706 | 723 | coprime d a \<and> coprime d b" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 724 | using coprime_rmult_int[of d a b] coprime_lmult_int[of d a b] | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 725 | coprime_mult_int[of d a b] | 
| 31706 | 726 | by blast | 
| 727 | ||
| 52397 | 728 | lemma coprime_power_int: | 
| 729 | assumes "0 < n" shows "coprime (a :: int) (b ^ n) \<longleftrightarrow> coprime a b" | |
| 730 | using assms | |
| 731 | proof (induct n) | |
| 732 | case (Suc n) then show ?case | |
| 733 | by (cases n) (simp_all add: coprime_mul_eq_int) | |
| 734 | qed simp | |
| 735 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 736 | lemma gcd_coprime_exists_nat: | 
| 31706 | 737 | assumes nz: "gcd (a::nat) b \<noteq> 0" | 
| 738 | shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" | |
| 739 | apply (rule_tac x = "a div gcd a b" in exI) | |
| 740 | apply (rule_tac x = "b div gcd a b" in exI) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 741 | using nz apply (auto simp add: div_gcd_coprime_nat dvd_div_mult) | 
| 31706 | 742 | done | 
| 743 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 744 | lemma gcd_coprime_exists_int: | 
| 31706 | 745 | assumes nz: "gcd (a::int) b \<noteq> 0" | 
| 746 | shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'" | |
| 747 | apply (rule_tac x = "a div gcd a b" in exI) | |
| 748 | apply (rule_tac x = "b div gcd a b" in exI) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 749 | using nz apply (auto simp add: div_gcd_coprime_int dvd_div_mult_self) | 
| 31706 | 750 | done | 
| 751 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 752 | lemma coprime_exp_nat: "coprime (d::nat) a \<Longrightarrow> coprime d (a^n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 753 | by (induct n, simp_all add: coprime_mult_nat) | 
| 31706 | 754 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 755 | lemma coprime_exp_int: "coprime (d::int) a \<Longrightarrow> coprime d (a^n)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 756 | by (induct n, simp_all add: coprime_mult_int) | 
| 31706 | 757 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 758 | lemma coprime_exp2_nat [intro]: "coprime (a::nat) b \<Longrightarrow> coprime (a^n) (b^m)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 759 | apply (rule coprime_exp_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 760 | apply (subst gcd_commute_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 761 | apply (rule coprime_exp_nat) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 762 | apply (subst gcd_commute_nat, assumption) | 
| 31706 | 763 | done | 
| 764 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 765 | lemma coprime_exp2_int [intro]: "coprime (a::int) b \<Longrightarrow> coprime (a^n) (b^m)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 766 | apply (rule coprime_exp_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 767 | apply (subst gcd_commute_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 768 | apply (rule coprime_exp_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 769 | apply (subst gcd_commute_int, assumption) | 
| 31706 | 770 | done | 
| 771 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 772 | lemma gcd_exp_nat: "gcd ((a::nat)^n) (b^n) = (gcd a b)^n" | 
| 31706 | 773 | proof (cases) | 
| 774 | assume "a = 0 & b = 0" | |
| 775 | thus ?thesis by simp | |
| 776 | next assume "~(a = 0 & b = 0)" | |
| 777 | hence "coprime ((a div gcd a b)^n) ((b div gcd a b)^n)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 778 | by (auto simp:div_gcd_coprime_nat) | 
| 31706 | 779 | hence "gcd ((a div gcd a b)^n * (gcd a b)^n) | 
| 780 | ((b div gcd a b)^n * (gcd a b)^n) = (gcd a b)^n" | |
| 781 | apply (subst (1 2) mult_commute) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 782 | apply (subst gcd_mult_distrib_nat [symmetric]) | 
| 31706 | 783 | apply simp | 
| 784 | done | |
| 785 | also have "(a div gcd a b)^n * (gcd a b)^n = a^n" | |
| 786 | apply (subst div_power) | |
| 787 | apply auto | |
| 788 | apply (rule dvd_div_mult_self) | |
| 789 | apply (rule dvd_power_same) | |
| 790 | apply auto | |
| 791 | done | |
| 792 | also have "(b div gcd a b)^n * (gcd a b)^n = b^n" | |
| 793 | apply (subst div_power) | |
| 794 | apply auto | |
| 795 | apply (rule dvd_div_mult_self) | |
| 796 | apply (rule dvd_power_same) | |
| 797 | apply auto | |
| 798 | done | |
| 799 | finally show ?thesis . | |
| 800 | qed | |
| 801 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 802 | lemma gcd_exp_int: "gcd ((a::int)^n) (b^n) = (gcd a b)^n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 803 | apply (subst (1 2) gcd_abs_int) | 
| 31706 | 804 | apply (subst (1 2) power_abs) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 805 | apply (rule gcd_exp_nat [where n = n, transferred]) | 
| 31706 | 806 | apply auto | 
| 807 | done | |
| 808 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 809 | lemma division_decomp_nat: assumes dc: "(a::nat) dvd b * c" | 
| 31706 | 810 | shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" | 
| 811 | proof- | |
| 812 | let ?g = "gcd a b" | |
| 813 |   {assume "?g = 0" with dc have ?thesis by auto}
 | |
| 814 | moreover | |
| 815 |   {assume z: "?g \<noteq> 0"
 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 816 | from gcd_coprime_exists_nat[OF z] | 
| 31706 | 817 | obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" | 
| 818 | by blast | |
| 819 | have thb: "?g dvd b" by auto | |
| 820 | from ab'(1) have "a' dvd a" unfolding dvd_def by blast | |
| 821 | with dc have th0: "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp | |
| 822 | from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto | |
| 823 | hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc) | |
| 824 | with z have th_1: "a' dvd b' * c" by auto | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 825 | from coprime_dvd_mult_nat[OF ab'(3)] th_1 | 
| 31706 | 826 | have thc: "a' dvd c" by (subst (asm) mult_commute, blast) | 
| 827 | from ab' have "a = ?g*a'" by algebra | |
| 828 | with thb thc have ?thesis by blast } | |
| 829 | ultimately show ?thesis by blast | |
| 830 | qed | |
| 831 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 832 | lemma division_decomp_int: assumes dc: "(a::int) dvd b * c" | 
| 31706 | 833 | shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" | 
| 834 | proof- | |
| 835 | let ?g = "gcd a b" | |
| 836 |   {assume "?g = 0" with dc have ?thesis by auto}
 | |
| 837 | moreover | |
| 838 |   {assume z: "?g \<noteq> 0"
 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 839 | from gcd_coprime_exists_int[OF z] | 
| 31706 | 840 | obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" | 
| 841 | by blast | |
| 842 | have thb: "?g dvd b" by auto | |
| 843 | from ab'(1) have "a' dvd a" unfolding dvd_def by blast | |
| 844 | with dc have th0: "a' dvd b*c" | |
| 845 | using dvd_trans[of a' a "b*c"] by simp | |
| 846 | from dc ab'(1,2) have "a'*?g dvd (b'*?g) *c" by auto | |
| 847 | hence "?g*a' dvd ?g * (b' * c)" by (simp add: mult_assoc) | |
| 848 | with z have th_1: "a' dvd b' * c" by auto | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 849 | from coprime_dvd_mult_int[OF ab'(3)] th_1 | 
| 31706 | 850 | have thc: "a' dvd c" by (subst (asm) mult_commute, blast) | 
| 851 | from ab' have "a = ?g*a'" by algebra | |
| 852 | with thb thc have ?thesis by blast } | |
| 853 | ultimately show ?thesis by blast | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 854 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 855 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 856 | lemma pow_divides_pow_nat: | 
| 31706 | 857 | assumes ab: "(a::nat) ^ n dvd b ^n" and n:"n \<noteq> 0" | 
| 858 | shows "a dvd b" | |
| 859 | proof- | |
| 860 | let ?g = "gcd a b" | |
| 861 | from n obtain m where m: "n = Suc m" by (cases n, simp_all) | |
| 862 |   {assume "?g = 0" with ab n have ?thesis by auto }
 | |
| 863 | moreover | |
| 864 |   {assume z: "?g \<noteq> 0"
 | |
| 35216 | 865 | hence zn: "?g ^ n \<noteq> 0" using n by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 866 | from gcd_coprime_exists_nat[OF z] | 
| 31706 | 867 | obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" | 
| 868 | by blast | |
| 869 | from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" | |
| 870 | by (simp add: ab'(1,2)[symmetric]) | |
| 871 | hence "?g^n*a'^n dvd ?g^n *b'^n" | |
| 872 | by (simp only: power_mult_distrib mult_commute) | |
| 873 | with zn z n have th0:"a'^n dvd b'^n" by auto | |
| 874 | have "a' dvd a'^n" by (simp add: m) | |
| 875 | with th0 have "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by simp | |
| 876 | hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 877 | from coprime_dvd_mult_nat[OF coprime_exp_nat [OF ab'(3), of m]] th1 | 
| 31706 | 878 | have "a' dvd b'" by (subst (asm) mult_commute, blast) | 
| 879 | hence "a'*?g dvd b'*?g" by simp | |
| 880 | with ab'(1,2) have ?thesis by simp } | |
| 881 | ultimately show ?thesis by blast | |
| 882 | qed | |
| 883 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 884 | lemma pow_divides_pow_int: | 
| 31706 | 885 | assumes ab: "(a::int) ^ n dvd b ^n" and n:"n \<noteq> 0" | 
| 886 | shows "a dvd b" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 887 | proof- | 
| 31706 | 888 | let ?g = "gcd a b" | 
| 889 | from n obtain m where m: "n = Suc m" by (cases n, simp_all) | |
| 890 |   {assume "?g = 0" with ab n have ?thesis by auto }
 | |
| 891 | moreover | |
| 892 |   {assume z: "?g \<noteq> 0"
 | |
| 35216 | 893 | hence zn: "?g ^ n \<noteq> 0" using n by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 894 | from gcd_coprime_exists_int[OF z] | 
| 31706 | 895 | obtain a' b' where ab': "a = a' * ?g" "b = b' * ?g" "coprime a' b'" | 
| 896 | by blast | |
| 897 | from ab have "(a' * ?g) ^ n dvd (b' * ?g)^n" | |
| 898 | by (simp add: ab'(1,2)[symmetric]) | |
| 899 | hence "?g^n*a'^n dvd ?g^n *b'^n" | |
| 900 | by (simp only: power_mult_distrib mult_commute) | |
| 901 | with zn z n have th0:"a'^n dvd b'^n" by auto | |
| 902 | have "a' dvd a'^n" by (simp add: m) | |
| 903 | with th0 have "a' dvd b'^n" | |
| 904 | using dvd_trans[of a' "a'^n" "b'^n"] by simp | |
| 905 | hence th1: "a' dvd b'^m * b'" by (simp add: m mult_commute) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 906 | from coprime_dvd_mult_int[OF coprime_exp_int [OF ab'(3), of m]] th1 | 
| 31706 | 907 | have "a' dvd b'" by (subst (asm) mult_commute, blast) | 
| 908 | hence "a'*?g dvd b'*?g" by simp | |
| 909 | with ab'(1,2) have ?thesis by simp } | |
| 910 | ultimately show ?thesis by blast | |
| 911 | qed | |
| 912 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 913 | lemma pow_divides_eq_nat [simp]: "n ~= 0 \<Longrightarrow> ((a::nat)^n dvd b^n) = (a dvd b)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 914 | by (auto intro: pow_divides_pow_nat dvd_power_same) | 
| 31706 | 915 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 916 | lemma pow_divides_eq_int [simp]: "n ~= 0 \<Longrightarrow> ((a::int)^n dvd b^n) = (a dvd b)" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 917 | by (auto intro: pow_divides_pow_int dvd_power_same) | 
| 31706 | 918 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 919 | lemma divides_mult_nat: | 
| 31706 | 920 | assumes mr: "(m::nat) dvd r" and nr: "n dvd r" and mn:"coprime m n" | 
| 921 | shows "m * n dvd r" | |
| 922 | proof- | |
| 923 | from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" | |
| 924 | unfolding dvd_def by blast | |
| 925 | from mr n' have "m dvd n'*n" by (simp add: mult_commute) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 926 | hence "m dvd n'" using coprime_dvd_mult_iff_nat[OF mn] by simp | 
| 31706 | 927 | then obtain k where k: "n' = m*k" unfolding dvd_def by blast | 
| 928 | from n' k show ?thesis unfolding dvd_def by auto | |
| 929 | qed | |
| 930 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 931 | lemma divides_mult_int: | 
| 31706 | 932 | assumes mr: "(m::int) dvd r" and nr: "n dvd r" and mn:"coprime m n" | 
| 933 | shows "m * n dvd r" | |
| 934 | proof- | |
| 935 | from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" | |
| 936 | unfolding dvd_def by blast | |
| 937 | from mr n' have "m dvd n'*n" by (simp add: mult_commute) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 938 | hence "m dvd n'" using coprime_dvd_mult_iff_int[OF mn] by simp | 
| 31706 | 939 | then obtain k where k: "n' = m*k" unfolding dvd_def by blast | 
| 940 | from n' k show ?thesis unfolding dvd_def by auto | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 941 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 942 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 943 | lemma coprime_plus_one_nat [simp]: "coprime ((n::nat) + 1) n" | 
| 31706 | 944 | apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)") | 
| 945 | apply force | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 946 | apply (rule dvd_diff_nat) | 
| 31706 | 947 | apply auto | 
| 948 | done | |
| 949 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 950 | lemma coprime_Suc_nat [simp]: "coprime (Suc n) n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 951 | using coprime_plus_one_nat by (simp add: One_nat_def) | 
| 31706 | 952 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 953 | lemma coprime_plus_one_int [simp]: "coprime ((n::int) + 1) n" | 
| 31706 | 954 | apply (subgoal_tac "gcd (n + 1) n dvd (n + 1 - n)") | 
| 955 | apply force | |
| 956 | apply (rule dvd_diff) | |
| 957 | apply auto | |
| 958 | done | |
| 959 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 960 | lemma coprime_minus_one_nat: "(n::nat) \<noteq> 0 \<Longrightarrow> coprime (n - 1) n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 961 | using coprime_plus_one_nat [of "n - 1"] | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 962 | gcd_commute_nat [of "n - 1" n] by auto | 
| 31706 | 963 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 964 | lemma coprime_minus_one_int: "coprime ((n::int) - 1) n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 965 | using coprime_plus_one_int [of "n - 1"] | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 966 | gcd_commute_int [of "n - 1" n] by auto | 
| 31706 | 967 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 968 | lemma setprod_coprime_nat [rule_format]: | 
| 31706 | 969 | "(ALL i: A. coprime (f i) (x::nat)) --> coprime (PROD i:A. f i) x" | 
| 970 | apply (case_tac "finite A") | |
| 971 | apply (induct set: finite) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 972 | apply (auto simp add: gcd_mult_cancel_nat) | 
| 31706 | 973 | done | 
| 974 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 975 | lemma setprod_coprime_int [rule_format]: | 
| 31706 | 976 | "(ALL i: A. coprime (f i) (x::int)) --> coprime (PROD i:A. f i) x" | 
| 977 | apply (case_tac "finite A") | |
| 978 | apply (induct set: finite) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 979 | apply (auto simp add: gcd_mult_cancel_int) | 
| 31706 | 980 | done | 
| 981 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 982 | lemma coprime_common_divisor_nat: "coprime (a::nat) b \<Longrightarrow> x dvd a \<Longrightarrow> | 
| 31706 | 983 | x dvd b \<Longrightarrow> x = 1" | 
| 984 | apply (subgoal_tac "x dvd gcd a b") | |
| 985 | apply simp | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 986 | apply (erule (1) gcd_greatest_nat) | 
| 31706 | 987 | done | 
| 988 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 989 | lemma coprime_common_divisor_int: "coprime (a::int) b \<Longrightarrow> x dvd a \<Longrightarrow> | 
| 31706 | 990 | x dvd b \<Longrightarrow> abs x = 1" | 
| 991 | apply (subgoal_tac "x dvd gcd a b") | |
| 992 | apply simp | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 993 | apply (erule (1) gcd_greatest_int) | 
| 31706 | 994 | done | 
| 995 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 996 | lemma coprime_divisors_nat: "(d::int) dvd a \<Longrightarrow> e dvd b \<Longrightarrow> coprime a b \<Longrightarrow> | 
| 31706 | 997 | coprime d e" | 
| 998 | apply (auto simp add: dvd_def) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 999 | apply (frule coprime_lmult_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1000 | apply (subst gcd_commute_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1001 | apply (subst (asm) (2) gcd_commute_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1002 | apply (erule coprime_lmult_int) | 
| 31706 | 1003 | done | 
| 1004 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1005 | lemma invertible_coprime_nat: "(x::nat) * y mod m = 1 \<Longrightarrow> coprime x m" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1006 | apply (metis coprime_lmult_nat gcd_1_nat gcd_commute_nat gcd_red_nat) | 
| 31706 | 1007 | done | 
| 1008 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1009 | lemma invertible_coprime_int: "(x::int) * y mod m = 1 \<Longrightarrow> coprime x m" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1010 | apply (metis coprime_lmult_int gcd_1_int gcd_commute_int gcd_red_int) | 
| 31706 | 1011 | done | 
| 1012 | ||
| 1013 | ||
| 1014 | subsection {* Bezout's theorem *}
 | |
| 1015 | ||
| 1016 | (* Function bezw returns a pair of witnesses to Bezout's theorem -- | |
| 1017 | see the theorems that follow the definition. *) | |
| 1018 | fun | |
| 1019 | bezw :: "nat \<Rightarrow> nat \<Rightarrow> int * int" | |
| 1020 | where | |
| 1021 | "bezw x y = | |
| 1022 | (if y = 0 then (1, 0) else | |
| 1023 | (snd (bezw y (x mod y)), | |
| 1024 | fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y)))" | |
| 1025 | ||
| 1026 | lemma bezw_0 [simp]: "bezw x 0 = (1, 0)" by simp | |
| 1027 | ||
| 1028 | lemma bezw_non_0: "y > 0 \<Longrightarrow> bezw x y = (snd (bezw y (x mod y)), | |
| 1029 | fst (bezw y (x mod y)) - snd (bezw y (x mod y)) * int(x div y))" | |
| 1030 | by simp | |
| 1031 | ||
| 1032 | declare bezw.simps [simp del] | |
| 1033 | ||
| 1034 | lemma bezw_aux [rule_format]: | |
| 1035 | "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1036 | proof (induct x y rule: gcd_nat_induct) | 
| 31706 | 1037 | fix m :: nat | 
| 1038 | show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)" | |
| 1039 | by auto | |
| 1040 | next fix m :: nat and n | |
| 1041 | assume ngt0: "n > 0" and | |
| 1042 | ih: "fst (bezw n (m mod n)) * int n + | |
| 1043 | snd (bezw n (m mod n)) * int (m mod n) = | |
| 1044 | int (gcd n (m mod n))" | |
| 1045 | thus "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)" | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1046 | apply (simp add: bezw_non_0 gcd_non_0_nat) | 
| 31706 | 1047 | apply (erule subst) | 
| 36350 | 1048 | apply (simp add: field_simps) | 
| 31706 | 1049 | apply (subst mod_div_equality [of m n, symmetric]) | 
| 1050 | (* applying simp here undoes the last substitution! | |
| 1051 | what is procedure cancel_div_mod? *) | |
| 44821 | 1052 | apply (simp only: field_simps of_nat_add of_nat_mult) | 
| 31706 | 1053 | done | 
| 1054 | qed | |
| 1055 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1056 | lemma bezout_int: | 
| 31706 | 1057 | fixes x y | 
| 1058 | shows "EX u v. u * (x::int) + v * y = gcd x y" | |
| 1059 | proof - | |
| 1060 | have bezout_aux: "!!x y. x \<ge> (0::int) \<Longrightarrow> y \<ge> 0 \<Longrightarrow> | |
| 1061 | EX u v. u * x + v * y = gcd x y" | |
| 1062 | apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI) | |
| 1063 | apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI) | |
| 1064 | apply (unfold gcd_int_def) | |
| 1065 | apply simp | |
| 1066 | apply (subst bezw_aux [symmetric]) | |
| 1067 | apply auto | |
| 1068 | done | |
| 1069 | have "(x \<ge> 0 \<and> y \<ge> 0) | (x \<ge> 0 \<and> y \<le> 0) | (x \<le> 0 \<and> y \<ge> 0) | | |
| 1070 | (x \<le> 0 \<and> y \<le> 0)" | |
| 1071 | by auto | |
| 1072 | moreover have "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> ?thesis" | |
| 1073 | by (erule (1) bezout_aux) | |
| 1074 | moreover have "x >= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis" | |
| 1075 | apply (insert bezout_aux [of x "-y"]) | |
| 1076 | apply auto | |
| 1077 | apply (rule_tac x = u in exI) | |
| 1078 | apply (rule_tac x = "-v" in exI) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1079 | apply (subst gcd_neg2_int [symmetric]) | 
| 31706 | 1080 | apply auto | 
| 1081 | done | |
| 1082 | moreover have "x <= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> ?thesis" | |
| 1083 | apply (insert bezout_aux [of "-x" y]) | |
| 1084 | apply auto | |
| 1085 | apply (rule_tac x = "-u" in exI) | |
| 1086 | apply (rule_tac x = v in exI) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1087 | apply (subst gcd_neg1_int [symmetric]) | 
| 31706 | 1088 | apply auto | 
| 1089 | done | |
| 1090 | moreover have "x <= 0 \<Longrightarrow> y <= 0 \<Longrightarrow> ?thesis" | |
| 1091 | apply (insert bezout_aux [of "-x" "-y"]) | |
| 1092 | apply auto | |
| 1093 | apply (rule_tac x = "-u" in exI) | |
| 1094 | apply (rule_tac x = "-v" in exI) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1095 | apply (subst gcd_neg1_int [symmetric]) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1096 | apply (subst gcd_neg2_int [symmetric]) | 
| 31706 | 1097 | apply auto | 
| 1098 | done | |
| 1099 | ultimately show ?thesis by blast | |
| 1100 | qed | |
| 1101 | ||
| 1102 | text {* versions of Bezout for nat, by Amine Chaieb *}
 | |
| 1103 | ||
| 1104 | lemma ind_euclid: | |
| 1105 | assumes c: " \<forall>a b. P (a::nat) b \<longleftrightarrow> P b a" and z: "\<forall>a. P a 0" | |
| 1106 | and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)" | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1107 | shows "P a b" | 
| 34915 | 1108 | proof(induct "a + b" arbitrary: a b rule: less_induct) | 
| 1109 | case less | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1110 | have "a = b \<or> a < b \<or> b < a" by arith | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1111 |   moreover {assume eq: "a= b"
 | 
| 31706 | 1112 | from add[rule_format, OF z[rule_format, of a]] have "P a b" using eq | 
| 1113 | by simp} | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1114 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1115 |   {assume lt: "a < b"
 | 
| 34915 | 1116 | hence "a + b - a < a + b \<or> a = 0" by arith | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1117 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1118 |     {assume "a =0" with z c have "P a b" by blast }
 | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1119 | moreover | 
| 34915 | 1120 |     {assume "a + b - a < a + b"
 | 
| 1121 | also have th0: "a + b - a = a + (b - a)" using lt by arith | |
| 1122 | finally have "a + (b - a) < a + b" . | |
| 1123 | then have "P a (a + (b - a))" by (rule add[rule_format, OF less]) | |
| 1124 | then have "P a b" by (simp add: th0[symmetric])} | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1125 | ultimately have "P a b" by blast} | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1126 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1127 |   {assume lt: "a > b"
 | 
| 34915 | 1128 | hence "b + a - b < a + b \<or> b = 0" by arith | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1129 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1130 |     {assume "b =0" with z c have "P a b" by blast }
 | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1131 | moreover | 
| 34915 | 1132 |     {assume "b + a - b < a + b"
 | 
| 1133 | also have th0: "b + a - b = b + (a - b)" using lt by arith | |
| 1134 | finally have "b + (a - b) < a + b" . | |
| 1135 | then have "P b (b + (a - b))" by (rule add[rule_format, OF less]) | |
| 1136 | then have "P b a" by (simp add: th0[symmetric]) | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1137 | hence "P a b" using c by blast } | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1138 | ultimately have "P a b" by blast} | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1139 | ultimately show "P a b" by blast | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1140 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1141 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1142 | lemma bezout_lemma_nat: | 
| 31706 | 1143 | assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 1144 | (a * x = b * y + d \<or> b * x = a * y + d)" | |
| 1145 | shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and> | |
| 1146 | (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)" | |
| 1147 | using ex | |
| 1148 | apply clarsimp | |
| 35216 | 1149 | apply (rule_tac x="d" in exI, simp) | 
| 31706 | 1150 | apply (case_tac "a * x = b * y + d" , simp_all) | 
| 1151 | apply (rule_tac x="x + y" in exI) | |
| 1152 | apply (rule_tac x="y" in exI) | |
| 1153 | apply algebra | |
| 1154 | apply (rule_tac x="x" in exI) | |
| 1155 | apply (rule_tac x="x + y" in exI) | |
| 1156 | apply algebra | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1157 | done | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1158 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1159 | lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 31706 | 1160 | (a * x = b * y + d \<or> b * x = a * y + d)" | 
| 1161 | apply(induct a b rule: ind_euclid) | |
| 1162 | apply blast | |
| 1163 | apply clarify | |
| 35216 | 1164 | apply (rule_tac x="a" in exI, simp) | 
| 31706 | 1165 | apply clarsimp | 
| 1166 | apply (rule_tac x="d" in exI) | |
| 35216 | 1167 | apply (case_tac "a * x = b * y + d", simp_all) | 
| 31706 | 1168 | apply (rule_tac x="x+y" in exI) | 
| 1169 | apply (rule_tac x="y" in exI) | |
| 1170 | apply algebra | |
| 1171 | apply (rule_tac x="x" in exI) | |
| 1172 | apply (rule_tac x="x+y" in exI) | |
| 1173 | apply algebra | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1174 | done | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1175 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1176 | lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> | 
| 31706 | 1177 | (a * x - b * y = d \<or> b * x - a * y = d)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1178 | using bezout_add_nat[of a b] | 
| 31706 | 1179 | apply clarsimp | 
| 1180 | apply (rule_tac x="d" in exI, simp) | |
| 1181 | apply (rule_tac x="x" in exI) | |
| 1182 | apply (rule_tac x="y" in exI) | |
| 1183 | apply auto | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1184 | done | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1185 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1186 | lemma bezout_add_strong_nat: assumes nz: "a \<noteq> (0::nat)" | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1187 | shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d" | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1188 | proof- | 
| 31706 | 1189 | from nz have ap: "a > 0" by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1190 | from bezout_add_nat[of a b] | 
| 31706 | 1191 | have "(\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d) \<or> | 
| 1192 | (\<exists>d x y. d dvd a \<and> d dvd b \<and> b * x = a * y + d)" by blast | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1193 | moreover | 
| 31706 | 1194 |     {fix d x y assume H: "d dvd a" "d dvd b" "a * x = b * y + d"
 | 
| 1195 | from H have ?thesis by blast } | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1196 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1197 |  {fix d x y assume H: "d dvd a" "d dvd b" "b * x = a * y + d"
 | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1198 |    {assume b0: "b = 0" with H  have ?thesis by simp}
 | 
| 31706 | 1199 | moreover | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1200 |    {assume b: "b \<noteq> 0" hence bp: "b > 0" by simp
 | 
| 31706 | 1201 | from b dvd_imp_le [OF H(2)] have "d < b \<or> d = b" | 
| 1202 | by auto | |
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1203 | moreover | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1204 |      {assume db: "d=b"
 | 
| 41550 | 1205 | with nz H have ?thesis apply simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1206 | apply (rule exI[where x = b], simp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1207 | apply (rule exI[where x = b]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1208 | by (rule exI[where x = "a - 1"], simp add: diff_mult_distrib2)} | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1209 | moreover | 
| 31706 | 1210 |     {assume db: "d < b"
 | 
| 41550 | 1211 |         {assume "x=0" hence ?thesis using nz H by simp }
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1212 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1213 |         {assume x0: "x \<noteq> 0" hence xp: "x > 0" by simp
 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1214 | from db have "d \<le> b - 1" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1215 | hence "d*b \<le> b*(b - 1)" by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1216 | with xp mult_mono[of "1" "x" "d*b" "b*(b - 1)"] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1217 | have dble: "d*b \<le> x*b*(b - 1)" using bp by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1218 | from H (3) have "d + (b - 1) * (b*x) = d + (b - 1) * (a*y + d)" | 
| 31706 | 1219 | by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1220 | hence "d + (b - 1) * a * y + (b - 1) * d = d + (b - 1) * b * x" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
48562diff
changeset | 1221 | by (simp only: mult_assoc distrib_left) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1222 | hence "a * ((b - 1) * y) + d * (b - 1 + 1) = d + x*b*(b - 1)" | 
| 31706 | 1223 | by algebra | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1224 | hence "a * ((b - 1) * y) = d + x*b*(b - 1) - d*b" using bp by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1225 | hence "a * ((b - 1) * y) = d + (x*b*(b - 1) - d*b)" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1226 | by (simp only: diff_add_assoc[OF dble, of d, symmetric]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1227 | hence "a * ((b - 1) * y) = b*(x*(b - 1) - d) + d" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1228 | by (simp only: diff_mult_distrib2 add_commute mult_ac) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1229 | hence ?thesis using H(1,2) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1230 | apply - | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1231 | apply (rule exI[where x=d], simp) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1232 | apply (rule exI[where x="(b - 1) * y"]) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1233 | by (rule exI[where x="x*(b - 1) - d"], simp)} | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32879diff
changeset | 1234 | ultimately have ?thesis by blast} | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1235 | ultimately have ?thesis by blast} | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1236 | ultimately have ?thesis by blast} | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1237 | ultimately show ?thesis by blast | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1238 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1239 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1240 | lemma bezout_nat: assumes a: "(a::nat) \<noteq> 0" | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1241 | shows "\<exists>x y. a * x = b * y + gcd a b" | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1242 | proof- | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1243 | let ?g = "gcd a b" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1244 | from bezout_add_strong_nat[OF a, of b] | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1245 | obtain d x y where d: "d dvd a" "d dvd b" "a * x = b * y + d" by blast | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1246 | from d(1,2) have "d dvd ?g" by simp | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1247 | then obtain k where k: "?g = d*k" unfolding dvd_def by blast | 
| 31706 | 1248 | from d(3) have "a * x * k = (b * y + d) *k " by auto | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1249 | hence "a * (x * k) = b * (y*k) + ?g" by (algebra add: k) | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1250 | thus ?thesis by blast | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1251 | qed | 
| 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1252 | |
| 31706 | 1253 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 1254 | subsection {* LCM properties *}
 | 
| 31706 | 1255 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 1256 | lemma lcm_altdef_int [code]: "lcm (a::int) b = (abs a) * (abs b) div gcd a b" | 
| 31706 | 1257 | by (simp add: lcm_int_def lcm_nat_def zdiv_int | 
| 44821 | 1258 | of_nat_mult gcd_int_def) | 
| 31706 | 1259 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1260 | lemma prod_gcd_lcm_nat: "(m::nat) * n = gcd m n * lcm m n" | 
| 31706 | 1261 | unfolding lcm_nat_def | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1262 | by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod_nat]) | 
| 31706 | 1263 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1264 | lemma prod_gcd_lcm_int: "abs(m::int) * abs n = gcd m n * lcm m n" | 
| 31706 | 1265 | unfolding lcm_int_def gcd_int_def | 
| 1266 | apply (subst int_mult [symmetric]) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1267 | apply (subst prod_gcd_lcm_nat [symmetric]) | 
| 31706 | 1268 | apply (subst nat_abs_mult_distrib [symmetric]) | 
| 1269 | apply (simp, simp add: abs_mult) | |
| 1270 | done | |
| 1271 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1272 | lemma lcm_0_nat [simp]: "lcm (m::nat) 0 = 0" | 
| 31706 | 1273 | unfolding lcm_nat_def by simp | 
| 1274 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1275 | lemma lcm_0_int [simp]: "lcm (m::int) 0 = 0" | 
| 31706 | 1276 | unfolding lcm_int_def by simp | 
| 1277 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1278 | lemma lcm_0_left_nat [simp]: "lcm (0::nat) n = 0" | 
| 31706 | 1279 | unfolding lcm_nat_def by simp | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1280 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1281 | lemma lcm_0_left_int [simp]: "lcm (0::int) n = 0" | 
| 31706 | 1282 | unfolding lcm_int_def by simp | 
| 1283 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1284 | lemma lcm_pos_nat: | 
| 31798 | 1285 | "(m::nat) > 0 \<Longrightarrow> n>0 \<Longrightarrow> lcm m n > 0" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1286 | by (metis gr0I mult_is_0 prod_gcd_lcm_nat) | 
| 27669 
4b1642284dd7
Tuned and simplified proofs; Rules added to presburger's and algebra's context; moved Bezout theorems from Primes.thy
 chaieb parents: 
27651diff
changeset | 1287 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1288 | lemma lcm_pos_int: | 
| 31798 | 1289 | "(m::int) ~= 0 \<Longrightarrow> n ~= 0 \<Longrightarrow> lcm m n > 0" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1290 | apply (subst lcm_abs_int) | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1291 | apply (rule lcm_pos_nat [transferred]) | 
| 31798 | 1292 | apply auto | 
| 31706 | 1293 | done | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1294 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1295 | lemma dvd_pos_nat: | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1296 | fixes n m :: nat | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1297 | assumes "n > 0" and "m dvd n" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1298 | shows "m > 0" | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1299 | using assms by (cases m) auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1300 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1301 | lemma lcm_least_nat: | 
| 31706 | 1302 | assumes "(m::nat) dvd k" and "n dvd k" | 
| 27556 | 1303 | shows "lcm m n dvd k" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1304 | proof (cases k) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1305 | case 0 then show ?thesis by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1306 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1307 | case (Suc _) then have pos_k: "k > 0" by auto | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1308 | from assms dvd_pos_nat [OF this] have pos_mn: "m > 0" "n > 0" by auto | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1309 | with gcd_zero_nat [of m n] have pos_gcd: "gcd m n > 0" by simp | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1310 | from assms obtain p where k_m: "k = m * p" using dvd_def by blast | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1311 | from assms obtain q where k_n: "k = n * q" using dvd_def by blast | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1312 | from pos_k k_m have pos_p: "p > 0" by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1313 | from pos_k k_n have pos_q: "q > 0" by auto | 
| 27556 | 1314 | have "k * k * gcd q p = k * gcd (k * q) (k * p)" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1315 | by (simp add: mult_ac gcd_mult_distrib_nat) | 
| 27556 | 1316 | also have "\<dots> = k * gcd (m * p * q) (n * q * p)" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1317 | by (simp add: k_m [symmetric] k_n [symmetric]) | 
| 27556 | 1318 | also have "\<dots> = k * p * q * gcd m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1319 | by (simp add: mult_ac gcd_mult_distrib_nat) | 
| 27556 | 1320 | finally have "(m * p) * (n * q) * gcd q p = k * p * q * gcd m n" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1321 | by (simp only: k_m [symmetric] k_n [symmetric]) | 
| 27556 | 1322 | then have "p * q * m * n * gcd q p = p * q * k * gcd m n" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1323 | by (simp add: mult_ac) | 
| 27556 | 1324 | with pos_p pos_q have "m * n * gcd q p = k * gcd m n" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1325 | by simp | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1326 | with prod_gcd_lcm_nat [of m n] | 
| 27556 | 1327 | have "lcm m n * gcd q p * gcd m n = k * gcd m n" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1328 | by (simp add: mult_ac) | 
| 31706 | 1329 | with pos_gcd have "lcm m n * gcd q p = k" by auto | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1330 | then show ?thesis using dvd_def by auto | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1331 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1332 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1333 | lemma lcm_least_int: | 
| 31798 | 1334 | "(m::int) dvd k \<Longrightarrow> n dvd k \<Longrightarrow> lcm m n dvd k" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1335 | apply (subst lcm_abs_int) | 
| 31798 | 1336 | apply (rule dvd_trans) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1337 | apply (rule lcm_least_nat [transferred, of _ "abs k" _]) | 
| 31798 | 1338 | apply auto | 
| 31706 | 1339 | done | 
| 1340 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1341 | lemma lcm_dvd1_nat: "(m::nat) dvd lcm m n" | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1342 | proof (cases m) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1343 | case 0 then show ?thesis by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1344 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1345 | case (Suc _) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1346 | then have mpos: "m > 0" by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1347 | show ?thesis | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1348 | proof (cases n) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1349 | case 0 then show ?thesis by simp | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1350 | next | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1351 | case (Suc _) | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1352 | then have npos: "n > 0" by simp | 
| 27556 | 1353 | have "gcd m n dvd n" by simp | 
| 1354 | then obtain k where "n = gcd m n * k" using dvd_def by auto | |
| 31706 | 1355 | then have "m * n div gcd m n = m * (gcd m n * k) div gcd m n" | 
| 1356 | by (simp add: mult_ac) | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1357 | also have "\<dots> = m * k" using mpos npos gcd_zero_nat by simp | 
| 31706 | 1358 | finally show ?thesis by (simp add: lcm_nat_def) | 
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1359 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1360 | qed | 
| 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1361 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1362 | lemma lcm_dvd1_int: "(m::int) dvd lcm m n" | 
| 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1363 | apply (subst lcm_abs_int) | 
| 31706 | 1364 | apply (rule dvd_trans) | 
| 1365 | prefer 2 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1366 | apply (rule lcm_dvd1_nat [transferred]) | 
| 31706 | 1367 | apply auto | 
| 1368 | done | |
| 1369 | ||
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1370 | lemma lcm_dvd2_nat: "(n::nat) dvd lcm m n" | 
| 35726 | 1371 | using lcm_dvd1_nat [of n m] by (simp only: lcm_nat_def mult.commute gcd_nat.commute) | 
| 31706 | 1372 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1373 | lemma lcm_dvd2_int: "(n::int) dvd lcm m n" | 
| 35726 | 1374 | using lcm_dvd1_int [of n m] by (simp only: lcm_int_def lcm_nat_def mult.commute gcd_nat.commute) | 
| 31706 | 1375 | |
| 31730 | 1376 | lemma dvd_lcm_I1_nat[simp]: "(k::nat) dvd m \<Longrightarrow> k dvd lcm m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1377 | by(metis lcm_dvd1_nat dvd_trans) | 
| 31729 | 1378 | |
| 31730 | 1379 | lemma dvd_lcm_I2_nat[simp]: "(k::nat) dvd n \<Longrightarrow> k dvd lcm m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1380 | by(metis lcm_dvd2_nat dvd_trans) | 
| 31729 | 1381 | |
| 31730 | 1382 | lemma dvd_lcm_I1_int[simp]: "(i::int) dvd m \<Longrightarrow> i dvd lcm m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1383 | by(metis lcm_dvd1_int dvd_trans) | 
| 31729 | 1384 | |
| 31730 | 1385 | lemma dvd_lcm_I2_int[simp]: "(i::int) dvd n \<Longrightarrow> i dvd lcm m n" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1386 | by(metis lcm_dvd2_int dvd_trans) | 
| 31729 | 1387 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1388 | lemma lcm_unique_nat: "(a::nat) dvd d \<and> b dvd d \<and> | 
| 31706 | 1389 | (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | 
| 33657 | 1390 | by (auto intro: dvd_antisym lcm_least_nat lcm_dvd1_nat lcm_dvd2_nat) | 
| 27568 
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
 chaieb parents: 
27556diff
changeset | 1391 | |
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1392 | lemma lcm_unique_int: "d >= 0 \<and> (a::int) dvd d \<and> b dvd d \<and> | 
| 31706 | 1393 | (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" | 
| 33657 | 1394 | by (auto intro: dvd_antisym [transferred] lcm_least_int) | 
| 31706 | 1395 | |
| 37770 
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
 haftmann parents: 
36350diff
changeset | 1396 | interpretation lcm_nat: abel_semigroup "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat" | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1397 | + lcm_nat: semilattice_neutr "lcm :: nat \<Rightarrow> nat \<Rightarrow> nat" 1 | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1398 | proof | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1399 | fix n m p :: nat | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1400 | show "lcm (lcm n m) p = lcm n (lcm m p)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1401 | by (rule lcm_unique_nat [THEN iffD1]) (metis dvd.order_trans lcm_unique_nat) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1402 | show "lcm m n = lcm n m" | 
| 36350 | 1403 | by (simp add: lcm_nat_def gcd_commute_nat field_simps) | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1404 | show "lcm m m = m" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1405 | by (metis dvd.order_refl lcm_unique_nat) | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1406 | show "lcm m 1 = m" | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1407 | by (metis dvd.dual_order.refl lcm_unique_nat one_dvd) | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1408 | qed | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1409 | |
| 37770 
cddb3106adb8
avoid explicit mandatory prefix markers when prefixes are mandatory implicitly
 haftmann parents: 
36350diff
changeset | 1410 | interpretation lcm_int: abel_semigroup "lcm :: int \<Rightarrow> int \<Rightarrow> int" | 
| 34973 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1411 | proof | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1412 | fix n m p :: int | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1413 | show "lcm (lcm n m) p = lcm n (lcm m p)" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1414 | by (rule lcm_unique_int [THEN iffD1]) (metis dvd_trans lcm_unique_int) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1415 | show "lcm m n = lcm n m" | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1416 | by (simp add: lcm_int_def lcm_nat.commute) | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1417 | qed | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1418 | |
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1419 | lemmas lcm_assoc_nat = lcm_nat.assoc | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1420 | lemmas lcm_commute_nat = lcm_nat.commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1421 | lemmas lcm_left_commute_nat = lcm_nat.left_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1422 | lemmas lcm_assoc_int = lcm_int.assoc | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1423 | lemmas lcm_commute_int = lcm_int.commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1424 | lemmas lcm_left_commute_int = lcm_int.left_commute | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1425 | |
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1426 | lemmas lcm_ac_nat = lcm_assoc_nat lcm_commute_nat lcm_left_commute_nat | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1427 | lemmas lcm_ac_int = lcm_assoc_int lcm_commute_int lcm_left_commute_int | 
| 
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
 haftmann parents: 
34915diff
changeset | 1428 | |
| 31798 | 1429 | lemma lcm_proj2_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm x y = y" | 
| 31706 | 1430 | apply (rule sym) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1431 | apply (subst lcm_unique_nat [symmetric]) | 
| 31706 | 1432 | apply auto | 
| 1433 | done | |
| 1434 | ||
| 31798 | 1435 | lemma lcm_proj2_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm x y = abs y" | 
| 31706 | 1436 | apply (rule sym) | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1437 | apply (subst lcm_unique_int [symmetric]) | 
| 31706 | 1438 | apply auto | 
| 1439 | done | |
| 1440 | ||
| 31798 | 1441 | lemma lcm_proj1_if_dvd_nat [simp]: "(x::nat) dvd y \<Longrightarrow> lcm y x = y" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1442 | by (subst lcm_commute_nat, erule lcm_proj2_if_dvd_nat) | 
| 31706 | 1443 | |
| 31798 | 1444 | lemma lcm_proj1_if_dvd_int [simp]: "(x::int) dvd y \<Longrightarrow> lcm y x = abs y" | 
| 31952 
40501bb2d57c
renamed lemmas: nat_xyz/int_xyz -> xyz_nat/xyz_int
 nipkow parents: 
31814diff
changeset | 1445 | by (subst lcm_commute_int, erule lcm_proj2_if_dvd_int) | 
| 31706 | 1446 | |
| 31992 | 1447 | lemma lcm_proj1_iff_nat[simp]: "lcm m n = (m::nat) \<longleftrightarrow> n dvd m" | 
| 1448 | by (metis lcm_proj1_if_dvd_nat lcm_unique_nat) | |
| 1449 | ||
| 1450 | lemma lcm_proj2_iff_nat[simp]: "lcm m n = (n::nat) \<longleftrightarrow> m dvd n" | |
| 1451 | by (metis lcm_proj2_if_dvd_nat lcm_unique_nat) | |
| 1452 | ||
| 1453 | lemma lcm_proj1_iff_int[simp]: "lcm m n = abs(m::int) \<longleftrightarrow> n dvd m" | |
| 1454 | by (metis dvd_abs_iff lcm_proj1_if_dvd_int lcm_unique_int) | |
| 1455 | ||
| 1456 | lemma lcm_proj2_iff_int[simp]: "lcm m n = abs(n::int) \<longleftrightarrow> m dvd n" | |
| 1457 | by (metis dvd_abs_iff lcm_proj2_if_dvd_int lcm_unique_int) | |
| 27568 
9949dc7a24de
Theorem names as in IntPrimes.thy, also several theorems moved from there
 chaieb parents: 
27556diff
changeset | 1458 | |
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
41792diff
changeset | 1459 | lemma comp_fun_idem_gcd_nat: "comp_fun_idem (gcd :: nat\<Rightarrow>nat\<Rightarrow>nat)" | 
| 31992 | 1460 | proof qed (auto simp add: gcd_ac_nat) | 
| 1461 | ||
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
41792diff
changeset | 1462 | lemma comp_fun_idem_gcd_int: "comp_fun_idem (gcd :: int\<Rightarrow>int\<Rightarrow>int)" | 
| 31992 | 1463 | proof qed (auto simp add: gcd_ac_int) | 
| 1464 | ||
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
41792diff
changeset | 1465 | lemma comp_fun_idem_lcm_nat: "comp_fun_idem (lcm :: nat\<Rightarrow>nat\<Rightarrow>nat)" | 
| 31992 | 1466 | proof qed (auto simp add: lcm_ac_nat) | 
| 1467 | ||
| 42871 
1c0b99f950d9
names of fold_set locales resemble name of characteristic property more closely
 haftmann parents: 
41792diff
changeset | 1468 | lemma comp_fun_idem_lcm_int: "comp_fun_idem (lcm :: int\<Rightarrow>int\<Rightarrow>int)" | 
| 31992 | 1469 | proof qed (auto simp add: lcm_ac_int) | 
| 1470 | ||
| 23687 
06884f7ffb18
extended - convers now basic lcm properties also
 haftmann parents: 
23431diff
changeset | 1471 | |
| 31995 | 1472 | (* FIXME introduce selimattice_bot/top and derive the following lemmas in there: *) | 
| 1473 | ||
| 1474 | lemma lcm_0_iff_nat[simp]: "lcm (m::nat) n = 0 \<longleftrightarrow> m=0 \<or> n=0" | |
| 1475 | by (metis lcm_0_left_nat lcm_0_nat mult_is_0 prod_gcd_lcm_nat) | |
| 1476 | ||
| 1477 | lemma lcm_0_iff_int[simp]: "lcm (m::int) n = 0 \<longleftrightarrow> m=0 \<or> n=0" | |
| 44766 | 1478 | by (metis lcm_0_int lcm_0_left_int lcm_pos_int less_le) | 
| 31995 | 1479 | |
| 1480 | lemma lcm_1_iff_nat[simp]: "lcm (m::nat) n = 1 \<longleftrightarrow> m=1 \<and> n=1" | |
| 1481 | by (metis gcd_1_nat lcm_unique_nat nat_mult_1 prod_gcd_lcm_nat) | |
| 1482 | ||
| 1483 | lemma lcm_1_iff_int[simp]: "lcm (m::int) n = 1 \<longleftrightarrow> (m=1 \<or> m = -1) \<and> (n=1 \<or> n = -1)" | |
| 31996 
1d93369079c4
Tuned proof of lcm_1_iff_int, because metis produced enormous proof term.
 berghofe parents: 
31995diff
changeset | 1484 | by (auto simp add: abs_mult_self trans [OF lcm_unique_int eq_commute, symmetric] zmult_eq_1_iff) | 
| 31995 | 1485 | |
| 34030 
829eb528b226
resorted code equations from "old" number theory version
 haftmann parents: 
33946diff
changeset | 1486 | |
| 45264 | 1487 | subsection {* The complete divisibility lattice *}
 | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1488 | |
| 44845 | 1489 | interpretation gcd_semilattice_nat: semilattice_inf gcd "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1490 | proof | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1491 | case goal3 thus ?case by(metis gcd_unique_nat) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1492 | qed auto | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1493 | |
| 44845 | 1494 | interpretation lcm_semilattice_nat: semilattice_sup lcm "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1495 | proof | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1496 | case goal3 thus ?case by(metis lcm_unique_nat) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1497 | qed auto | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1498 | |
| 44845 | 1499 | interpretation gcd_lcm_lattice_nat: lattice gcd "op dvd" "(%m n::nat. m dvd n & ~ n dvd m)" lcm .. | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1500 | |
| 45264 | 1501 | text{* Lifting gcd and lcm to sets (Gcd/Lcm).
 | 
| 1502 | Gcd is defined via Lcm to facilitate the proof that we have a complete lattice. | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1503 | *} | 
| 45264 | 1504 | |
| 1505 | class Gcd = gcd + | |
| 1506 | fixes Gcd :: "'a set \<Rightarrow> 'a" | |
| 1507 | fixes Lcm :: "'a set \<Rightarrow> 'a" | |
| 1508 | ||
| 1509 | instantiation nat :: Gcd | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1510 | begin | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1511 | |
| 45264 | 1512 | definition | 
| 51489 | 1513 | "Lcm (M::nat set) = (if finite M then semilattice_neutr_set.F lcm 1 M else 0)" | 
| 1514 | ||
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1515 | interpretation semilattice_neutr_set lcm "1::nat" .. | 
| 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1516 | |
| 51489 | 1517 | lemma Lcm_nat_infinite: | 
| 1518 | "\<not> finite M \<Longrightarrow> Lcm M = (0::nat)" | |
| 1519 | by (simp add: Lcm_nat_def) | |
| 1520 | ||
| 1521 | lemma Lcm_nat_empty: | |
| 1522 |   "Lcm {} = (1::nat)"
 | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1523 | by (simp add: Lcm_nat_def) | 
| 51489 | 1524 | |
| 1525 | lemma Lcm_nat_insert: | |
| 1526 | "Lcm (insert n M) = lcm (n::nat) (Lcm M)" | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1527 | by (cases "finite M") (simp_all add: Lcm_nat_def Lcm_nat_infinite) | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1528 | |
| 45264 | 1529 | definition | 
| 1530 |   "Gcd (M::nat set) = Lcm {d. \<forall>m\<in>M. d dvd m}"
 | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1531 | |
| 45264 | 1532 | instance .. | 
| 51489 | 1533 | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1534 | end | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1535 | |
| 45264 | 1536 | lemma dvd_Lcm_nat [simp]: | 
| 51489 | 1537 | fixes M :: "nat set" | 
| 1538 | assumes "m \<in> M" | |
| 1539 | shows "m dvd Lcm M" | |
| 1540 | proof (cases "finite M") | |
| 1541 | case False then show ?thesis by (simp add: Lcm_nat_infinite) | |
| 1542 | next | |
| 1543 | case True then show ?thesis using assms by (induct M) (auto simp add: Lcm_nat_insert) | |
| 1544 | qed | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1545 | |
| 45264 | 1546 | lemma Lcm_dvd_nat [simp]: | 
| 51489 | 1547 | fixes M :: "nat set" | 
| 1548 | assumes "\<forall>m\<in>M. m dvd n" | |
| 1549 | shows "Lcm M dvd n" | |
| 45264 | 1550 | proof (cases "n = 0") | 
| 1551 | assume "n \<noteq> 0" | |
| 1552 |   hence "finite {d. d dvd n}" by (rule finite_divisors_nat)
 | |
| 1553 |   moreover have "M \<subseteq> {d. d dvd n}" using assms by fast
 | |
| 1554 | ultimately have "finite M" by (rule rev_finite_subset) | |
| 51489 | 1555 | then show ?thesis using assms by (induct M) (simp_all add: Lcm_nat_empty Lcm_nat_insert) | 
| 45264 | 1556 | qed simp | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1557 | |
| 45264 | 1558 | interpretation gcd_lcm_complete_lattice_nat: | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1559 | complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat" | 
| 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1560 | where | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
52729diff
changeset | 1561 | "Inf.INFI Gcd A f = Gcd (f ` A :: nat set)" | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
52729diff
changeset | 1562 | and "Sup.SUPR Lcm A f = Lcm (f ` A)" | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1563 | proof - | 
| 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1564 | show "class.complete_lattice Gcd Lcm gcd Rings.dvd (\<lambda>m n. m dvd n \<and> \<not> n dvd m) lcm 1 (0::nat)" | 
| 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1565 | proof | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1566 | case goal1 thus ?case by (simp add: Gcd_nat_def) | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1567 | next | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1568 | case goal2 thus ?case by (simp add: Gcd_nat_def) | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1569 | next | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1570 | case goal5 show ?case by (simp add: Gcd_nat_def Lcm_nat_infinite) | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1571 | next | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1572 | case goal6 show ?case by (simp add: Lcm_nat_empty) | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1573 | next | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1574 | case goal3 thus ?case by simp | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1575 | next | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52397diff
changeset | 1576 | case goal4 thus ?case by simp | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1577 | qed | 
| 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1578 | then interpret gcd_lcm_complete_lattice_nat: | 
| 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1579 | complete_lattice Gcd Lcm gcd Rings.dvd "\<lambda>m n. m dvd n \<and> \<not> n dvd m" lcm 1 "0::nat" . | 
| 54257 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
52729diff
changeset | 1580 | from gcd_lcm_complete_lattice_nat.INF_def show "Inf.INFI Gcd A f = Gcd (f ` A)" . | 
| 
5c7a3b6b05a9
generalize SUP and INF to the syntactic type classes Sup and Inf
 hoelzl parents: 
52729diff
changeset | 1581 | from gcd_lcm_complete_lattice_nat.SUP_def show "Sup.SUPR Lcm A f = Lcm (f ` A)" . | 
| 45264 | 1582 | qed | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1583 | |
| 45264 | 1584 | lemma Lcm_empty_nat: "Lcm {} = (1::nat)"
 | 
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1585 | by (fact Lcm_nat_empty) | 
| 45264 | 1586 | |
| 1587 | lemma Gcd_empty_nat: "Gcd {} = (0::nat)"
 | |
| 1588 | by (fact gcd_lcm_complete_lattice_nat.Inf_empty) (* already simp *) | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1589 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1590 | lemma Lcm_insert_nat [simp]: | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1591 | shows "Lcm (insert (n::nat) N) = lcm n (Lcm N)" | 
| 45264 | 1592 | by (fact gcd_lcm_complete_lattice_nat.Sup_insert) | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1593 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1594 | lemma Gcd_insert_nat [simp]: | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1595 | shows "Gcd (insert (n::nat) N) = gcd n (Gcd N)" | 
| 45264 | 1596 | by (fact gcd_lcm_complete_lattice_nat.Inf_insert) | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1597 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1598 | lemma Lcm0_iff[simp]: "finite (M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> Lcm M = 0 \<longleftrightarrow> 0 : M"
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1599 | by(induct rule:finite_ne_induct) auto | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1600 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1601 | lemma Lcm_eq_0[simp]: "finite (M::nat set) \<Longrightarrow> 0 : M \<Longrightarrow> Lcm M = 0" | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1602 | by (metis Lcm0_iff empty_iff) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1603 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1604 | lemma Gcd_dvd_nat [simp]: | 
| 45264 | 1605 | fixes M :: "nat set" | 
| 1606 | assumes "m \<in> M" shows "Gcd M dvd m" | |
| 1607 | using assms by (fact gcd_lcm_complete_lattice_nat.Inf_lower) | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1608 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1609 | lemma dvd_Gcd_nat[simp]: | 
| 45264 | 1610 | fixes M :: "nat set" | 
| 1611 | assumes "\<forall>m\<in>M. n dvd m" shows "n dvd Gcd M" | |
| 1612 | using assms by (simp only: gcd_lcm_complete_lattice_nat.Inf_greatest) | |
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1613 | |
| 45264 | 1614 | text{* Alternative characterizations of Gcd: *}
 | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1615 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1616 | lemma Gcd_eq_Max: "finite(M::nat set) \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> Gcd M = Max(\<Inter>m\<in>M. {d. d dvd m})"
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1617 | apply(rule antisym) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1618 | apply(rule Max_ge) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1619 | apply (metis all_not_in_conv finite_divisors_nat finite_INT) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1620 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1621 | apply (rule Max_le_iff[THEN iffD2]) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1622 | apply (metis all_not_in_conv finite_divisors_nat finite_INT) | 
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
44845diff
changeset | 1623 | apply fastforce | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1624 | apply clarsimp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1625 | apply (metis Gcd_dvd_nat Max_in dvd_0_left dvd_Gcd_nat dvd_imp_le linorder_antisym_conv3 not_less0) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1626 | done | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1627 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1628 | lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0::nat})"
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1629 | apply(induct pred:finite) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1630 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1631 | apply(case_tac "x=0") | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1632 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1633 | apply(subgoal_tac "insert x F - {0} = insert x (F - {0})")
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1634 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1635 | apply blast | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1636 | done | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1637 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1638 | lemma Lcm_in_lcm_closed_set_nat: | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1639 |   "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M : M"
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1640 | apply(induct rule:finite_linorder_min_induct) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1641 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1642 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1643 | apply(subgoal_tac "ALL m n :: nat. m:A \<longrightarrow> n:A \<longrightarrow> lcm m n : A") | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1644 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1645 |  apply(case_tac "A={}")
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1646 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1647 | apply simp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1648 | apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1649 | done | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1650 | |
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1651 | lemma Lcm_eq_Max_nat: | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1652 |   "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> ALL m n :: nat. m:M \<longrightarrow> n:M \<longrightarrow> lcm m n : M \<Longrightarrow> Lcm M = Max M"
 | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1653 | apply(rule antisym) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1654 | apply(rule Max_ge, assumption) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1655 | apply(erule (2) Lcm_in_lcm_closed_set_nat) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1656 | apply clarsimp | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1657 | apply (metis Lcm0_iff dvd_Lcm_nat dvd_imp_le neq0_conv) | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1658 | done | 
| 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1659 | |
| 54437 
0060957404c7
proper code equations for Gcd and Lcm on nat and int
 haftmann parents: 
54257diff
changeset | 1660 | lemma Lcm_set_nat [code, code_unfold]: | 
| 45992 | 1661 | "Lcm (set ns) = fold lcm ns (1::nat)" | 
| 45264 | 1662 | by (fact gcd_lcm_complete_lattice_nat.Sup_set_fold) | 
| 32112 
6da9c2a49fed
Made dvd/gcd/lcm a complete lattice by introducing Gcd/GCD/Lcm/LCM
 nipkow parents: 
32111diff
changeset | 1663 | |
| 54437 
0060957404c7
proper code equations for Gcd and Lcm on nat and int
 haftmann parents: 
54257diff
changeset | 1664 | lemma Gcd_set_nat [code, code_unfold]: | 
| 45992 | 1665 | "Gcd (set ns) = fold gcd ns (0::nat)" | 
| 45264 | 1666 | by (fact gcd_lcm_complete_lattice_nat.Inf_set_fold) | 
| 34222 | 1667 | |
| 1668 | lemma mult_inj_if_coprime_nat: | |
| 1669 | "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> ALL a:A. ALL b:B. coprime (f a) (g b) | |
| 1670 | \<Longrightarrow> inj_on (%(a,b). f a * g b::nat) (A \<times> B)" | |
| 1671 | apply(auto simp add:inj_on_def) | |
| 35216 | 1672 | apply (metis coprime_dvd_mult_iff_nat dvd.neq_le_trans dvd_triv_left) | 
| 34223 | 1673 | apply (metis gcd_semilattice_nat.inf_commute coprime_dvd_mult_iff_nat | 
| 1674 | dvd.neq_le_trans dvd_triv_right mult_commute) | |
| 34222 | 1675 | done | 
| 1676 | ||
| 1677 | text{* Nitpick: *}
 | |
| 1678 | ||
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 1679 | lemma gcd_eq_nitpick_gcd [nitpick_unfold]: "gcd x y = Nitpick.nat_gcd x y" | 
| 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 1680 | by (induct x y rule: nat_gcd.induct) | 
| 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 1681 | (simp add: gcd_nat.simps Nitpick.nat_gcd.simps) | 
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32960diff
changeset | 1682 | |
| 41792 
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
 blanchet parents: 
41550diff
changeset | 1683 | lemma lcm_eq_nitpick_lcm [nitpick_unfold]: "lcm x y = Nitpick.nat_lcm x y" | 
| 33197 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32960diff
changeset | 1684 | by (simp only: lcm_nat_def Nitpick.nat_lcm_def gcd_eq_nitpick_gcd) | 
| 
de6285ebcc05
continuation of Nitpick's integration into Isabelle;
 blanchet parents: 
32960diff
changeset | 1685 | |
| 54867 
c21a2465cac1
prefer ephemeral interpretation over interpretation in proof contexts;
 haftmann parents: 
54489diff
changeset | 1686 | |
| 45264 | 1687 | subsubsection {* Setwise gcd and lcm for integers *}
 | 
| 1688 | ||
| 1689 | instantiation int :: Gcd | |
| 1690 | begin | |
| 1691 | ||
| 1692 | definition | |
| 1693 | "Lcm M = int (Lcm (nat ` abs ` M))" | |
| 1694 | ||
| 1695 | definition | |
| 1696 | "Gcd M = int (Gcd (nat ` abs ` M))" | |
| 1697 | ||
| 1698 | instance .. | |
| 21256 | 1699 | end | 
| 45264 | 1700 | |
| 1701 | lemma Lcm_empty_int [simp]: "Lcm {} = (1::int)"
 | |
| 1702 | by (simp add: Lcm_int_def) | |
| 1703 | ||
| 1704 | lemma Gcd_empty_int [simp]: "Gcd {} = (0::int)"
 | |
| 1705 | by (simp add: Gcd_int_def) | |
| 1706 | ||
| 1707 | lemma Lcm_insert_int [simp]: | |
| 1708 | shows "Lcm (insert (n::int) N) = lcm n (Lcm N)" | |
| 1709 | by (simp add: Lcm_int_def lcm_int_def) | |
| 1710 | ||
| 1711 | lemma Gcd_insert_int [simp]: | |
| 1712 | shows "Gcd (insert (n::int) N) = gcd n (Gcd N)" | |
| 1713 | by (simp add: Gcd_int_def gcd_int_def) | |
| 1714 | ||
| 1715 | lemma dvd_int_iff: "x dvd y \<longleftrightarrow> nat (abs x) dvd nat (abs y)" | |
| 1716 | by (simp add: zdvd_int) | |
| 1717 | ||
| 1718 | lemma dvd_Lcm_int [simp]: | |
| 1719 | fixes M :: "int set" assumes "m \<in> M" shows "m dvd Lcm M" | |
| 1720 | using assms by (simp add: Lcm_int_def dvd_int_iff) | |
| 1721 | ||
| 1722 | lemma Lcm_dvd_int [simp]: | |
| 1723 | fixes M :: "int set" | |
| 1724 | assumes "\<forall>m\<in>M. m dvd n" shows "Lcm M dvd n" | |
| 1725 | using assms by (simp add: Lcm_int_def dvd_int_iff) | |
| 1726 | ||
| 1727 | lemma Gcd_dvd_int [simp]: | |
| 1728 | fixes M :: "int set" | |
| 1729 | assumes "m \<in> M" shows "Gcd M dvd m" | |
| 1730 | using assms by (simp add: Gcd_int_def dvd_int_iff) | |
| 1731 | ||
| 1732 | lemma dvd_Gcd_int[simp]: | |
| 1733 | fixes M :: "int set" | |
| 1734 | assumes "\<forall>m\<in>M. n dvd m" shows "n dvd Gcd M" | |
| 1735 | using assms by (simp add: Gcd_int_def dvd_int_iff) | |
| 1736 | ||
| 54437 
0060957404c7
proper code equations for Gcd and Lcm on nat and int
 haftmann parents: 
54257diff
changeset | 1737 | lemma Lcm_set_int [code, code_unfold]: | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1738 | "Lcm (set xs) = fold lcm xs (1::int)" | 
| 45264 | 1739 | by (induct xs rule: rev_induct, simp_all add: lcm_commute_int) | 
| 1740 | ||
| 54437 
0060957404c7
proper code equations for Gcd and Lcm on nat and int
 haftmann parents: 
54257diff
changeset | 1741 | lemma Gcd_set_int [code, code_unfold]: | 
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1742 | "Gcd (set xs) = fold gcd xs (0::int)" | 
| 45264 | 1743 | by (induct xs rule: rev_induct, simp_all add: gcd_commute_int) | 
| 1744 | ||
| 1745 | end | |
| 51547 
604d73671fa7
avoid odd foundational terms after interpretation;
 haftmann parents: 
51489diff
changeset | 1746 |