| author | haftmann | 
| Tue, 02 Jun 2009 15:53:04 +0200 | |
| changeset 31376 | 4356b52b03f7 | 
| parent 31362 | edf74583715a | 
| child 31407 | 689df1591793 | 
| permissions | -rw-r--r-- | 
| 31360 
fef52c5c1462
Enclosed parts of subsection in @{text ...} to make LaTeX happy.
 berghofe parents: 
31289diff
changeset | 1 | (* Title: HOL/Library/Convex_Euclidean_Space.thy | 
| 
fef52c5c1462
Enclosed parts of subsection in @{text ...} to make LaTeX happy.
 berghofe parents: 
31289diff
changeset | 2 | Author: Robert Himmelmann, TU Muenchen | 
| 
fef52c5c1462
Enclosed parts of subsection in @{text ...} to make LaTeX happy.
 berghofe parents: 
31289diff
changeset | 3 | *) | 
| 31276 | 4 | |
| 5 | header {* Convex sets, functions and related things. *}
 | |
| 6 | ||
| 31278 
60a53b5af39c
Added Convex_Euclidean_Space to Library.thy and Library/IsaMakefile
 himmelma parents: 
31276diff
changeset | 7 | theory Convex_Euclidean_Space | 
| 31276 | 8 | imports Topology_Euclidean_Space | 
| 9 | begin | |
| 10 | ||
| 11 | ||
| 12 | (* ------------------------------------------------------------------------- *) | |
| 13 | (* To be moved elsewhere *) | |
| 14 | (* ------------------------------------------------------------------------- *) | |
| 15 | ||
| 16 | declare vector_add_ldistrib[simp] vector_ssub_ldistrib[simp] vector_smult_assoc[simp] vector_smult_rneg[simp] | |
| 17 | declare vector_sadd_rdistrib[simp] vector_sub_rdistrib[simp] | |
| 18 | declare dot_ladd[simp] dot_radd[simp] dot_lsub[simp] dot_rsub[simp] | |
| 19 | declare dot_lmult[simp] dot_rmult[simp] dot_lneg[simp] dot_rneg[simp] | |
| 20 | declare UNIV_1[simp] | |
| 21 | ||
| 22 | term "(x::real^'n \<Rightarrow> real) 0" | |
| 23 | ||
| 24 | lemma dim1in[intro]:"Suc 0 \<in> {1::nat .. CARD(1)}" by auto
 | |
| 25 | ||
| 26 | lemmas vector_component_simps = vector_minus_component vector_smult_component vector_add_component vector_less_eq_def Cart_lambda_beta dest_vec1_def basis_component vector_uminus_component | |
| 27 | ||
| 28 | lemmas continuous_intros = continuous_add continuous_vmul continuous_cmul continuous_const continuous_sub continuous_at_id continuous_within_id | |
| 29 | ||
| 30 | lemmas continuous_on_intros = continuous_on_add continuous_on_const continuous_on_id continuous_on_compose continuous_on_cmul continuous_on_neg continuous_on_sub | |
| 31 | uniformly_continuous_on_add uniformly_continuous_on_const uniformly_continuous_on_id uniformly_continuous_on_compose uniformly_continuous_on_cmul uniformly_continuous_on_neg uniformly_continuous_on_sub | |
| 32 | ||
| 33 | lemma dest_vec1_simps[simp]: fixes a::"real^1" | |
| 34 | shows "a$1 = 0 \<longleftrightarrow> a = 0" (*"a \<le> 1 \<longleftrightarrow> dest_vec1 a \<le> 1" "0 \<le> a \<longleftrightarrow> 0 \<le> dest_vec1 a"*) | |
| 35 | "a \<le> b \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 b" "dest_vec1 (1::real^1) = 1" | |
| 36 | by(auto simp add:vector_component_simps all_1 Cart_eq) | |
| 37 | ||
| 38 | lemma nequals0I:"x\<in>A \<Longrightarrow> A \<noteq> {}" by auto
 | |
| 39 | ||
| 40 | lemma norm_not_0:"(x::real^'n::finite)\<noteq>0 \<Longrightarrow> norm x \<noteq> 0" by auto | |
| 41 | ||
| 42 | lemma vector_unminus_smult[simp]: "(-1::real) *s x = -x" unfolding pth_3[symmetric] by simp | |
| 43 | ||
| 44 | lemma setsum_delta_notmem: assumes "x\<notin>s" | |
| 45 | shows "setsum (\<lambda>y. if (y = x) then P x else Q y) s = setsum Q s" | |
| 46 | "setsum (\<lambda>y. if (x = y) then P x else Q y) s = setsum Q s" | |
| 47 | "setsum (\<lambda>y. if (y = x) then P y else Q y) s = setsum Q s" | |
| 48 | "setsum (\<lambda>y. if (x = y) then P y else Q y) s = setsum Q s" | |
| 49 | apply(rule_tac [!] setsum_cong2) using assms by auto | |
| 50 | ||
| 51 | lemma setsum_diff1'':assumes "finite A" "a \<in> A" | |
| 52 |   shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)" unfolding setsum_diff1'[OF assms] by auto
 | |
| 53 | ||
| 54 | lemma setsum_delta'': fixes s::"(real^'n) set" assumes "finite s" | |
| 55 | shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *s x) = (if y\<in>s then (f y) *s y else 0)" | |
| 56 | proof- | |
| 57 | have *:"\<And>x y. (if y = x then f x else (0::real)) *s x = (if x=y then (f x) *s x else 0)" by auto | |
| 58 | show ?thesis unfolding * using setsum_delta[OF assms, of y "\<lambda>x. f x *s x"] by auto | |
| 59 | qed | |
| 60 | ||
| 61 | lemma not_disjointI:"x\<in>A \<Longrightarrow> x\<in>B \<Longrightarrow> A \<inter> B \<noteq> {}" by blast
 | |
| 62 | ||
| 63 | lemma if_smult:"(if P then x else (y::real)) *s v = (if P then x *s v else y *s v)" by auto | |
| 64 | ||
| 65 | lemma ex_bij_betw_nat_finite_1: | |
| 66 | assumes "finite M" | |
| 67 |   shows "\<exists>h. bij_betw h {1 .. card M} M"
 | |
| 68 | proof- | |
| 69 |   obtain h where h:"bij_betw h {0..<card M} M" using ex_bij_betw_nat_finite[OF assms] by auto
 | |
| 70 | let ?h = "h \<circ> (\<lambda>i. i - 1)" | |
| 71 |   have *:"(\<lambda>i. i - 1) ` {1..card M} = {0..<card M}" apply auto  unfolding image_iff apply(rule_tac x="Suc x" in bexI) by auto
 | |
| 72 |   hence "?h ` {1..card M} = h ` {0..<card M}" unfolding image_compose by auto 
 | |
| 73 |   hence "?h ` {1..card M} = M" unfolding image_compose using h unfolding * unfolding bij_betw_def by auto
 | |
| 74 | moreover | |
| 75 |   have "inj_on (\<lambda>i. i - Suc 0) {Suc 0..card M}" unfolding inj_on_def by auto
 | |
| 76 |   hence "inj_on ?h {1..card M}" apply(rule_tac comp_inj_on) unfolding * using h[unfolded bij_betw_def] by auto
 | |
| 77 | ultimately show ?thesis apply(rule_tac x="h \<circ> (\<lambda>i. i - 1)" in exI) unfolding o_def and bij_betw_def by auto | |
| 78 | qed | |
| 79 | ||
| 80 | lemma finite_subset_image: | |
| 81 | assumes "B \<subseteq> f ` A" "finite B" | |
| 82 | shows "\<exists>C\<subseteq>A. finite C \<and> B = f ` C" | |
| 83 | proof- from assms(1) have "\<forall>x\<in>B. \<exists>y\<in>A. x = f y" by auto | |
| 84 | then obtain c where "\<forall>x\<in>B. c x \<in> A \<and> x = f (c x)" | |
| 85 | using bchoice[of B "\<lambda>x y. y\<in>A \<and> x = f y"] by auto | |
| 86 | thus ?thesis apply(rule_tac x="c ` B" in exI) using assms(2) by auto qed | |
| 87 | ||
| 88 | lemma inj_on_image_eq_iff: assumes "inj_on f (A \<union> B)" | |
| 89 | shows "f ` A = f ` B \<longleftrightarrow> A = B" | |
| 90 | using assms by(blast dest: inj_onD) | |
| 91 | ||
| 92 | ||
| 93 | lemma mem_interval_1: fixes x :: "real^1" shows | |
| 94 |  "(x \<in> {a .. b} \<longleftrightarrow> dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b)"
 | |
| 95 |  "(x \<in> {a<..<b} \<longleftrightarrow> dest_vec1 a < dest_vec1 x \<and> dest_vec1 x < dest_vec1 b)"
 | |
| 96 | by(simp_all add: Cart_eq vector_less_def vector_less_eq_def dest_vec1_def all_1) | |
| 97 | ||
| 98 | lemma image_smult_interval:"(\<lambda>x. m *s (x::real^'n::finite)) ` {a..b} =
 | |
| 99 |   (if {a..b} = {} then {} else if 0 \<le> m then {m *s a..m *s b} else {m *s b..m *s a})"
 | |
| 100 | using image_affinity_interval[of m 0 a b] by auto | |
| 101 | ||
| 102 | lemma dest_vec1_inverval: | |
| 103 |   "dest_vec1 ` {a .. b} = {dest_vec1 a .. dest_vec1 b}"
 | |
| 104 |   "dest_vec1 ` {a<.. b} = {dest_vec1 a<.. dest_vec1 b}"
 | |
| 105 |   "dest_vec1 ` {a ..<b} = {dest_vec1 a ..<dest_vec1 b}"
 | |
| 106 |   "dest_vec1 ` {a<..<b} = {dest_vec1 a<..<dest_vec1 b}"
 | |
| 107 | apply(rule_tac [!] equalityI) | |
| 108 | unfolding subset_eq Ball_def Bex_def mem_interval_1 image_iff | |
| 109 | apply(rule_tac [!] allI)apply(rule_tac [!] impI) | |
| 110 | apply(rule_tac[2] x="vec1 x" in exI)apply(rule_tac[4] x="vec1 x" in exI) | |
| 111 | apply(rule_tac[6] x="vec1 x" in exI)apply(rule_tac[8] x="vec1 x" in exI) | |
| 112 | by (auto simp add: vector_less_def vector_less_eq_def all_1 dest_vec1_def | |
| 113 | vec1_dest_vec1[unfolded dest_vec1_def One_nat_def]) | |
| 114 | ||
| 115 | lemma dest_vec1_setsum: assumes "finite S" | |
| 116 | shows " dest_vec1 (setsum f S) = setsum (\<lambda>x. dest_vec1 (f x)) S" | |
| 117 | using dest_vec1_sum[OF assms] by auto | |
| 118 | ||
| 119 | lemma dist_triangle_eq:"dist x z = dist x y + dist y z \<longleftrightarrow> norm (x - y) *s (y - z) = norm (y - z) *s (x - y)" | |
| 120 | proof- have *:"x - y + (y - z) = x - z" by auto | |
| 31289 | 121 | show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded *] | 
| 31276 | 122 | by(auto simp add:norm_minus_commute) qed | 
| 123 | ||
| 124 | lemma norm_eqI:"x = y \<Longrightarrow> norm x = norm y" by auto | |
| 125 | lemma norm_minus_eqI:"(x::real^'n::finite) = - y \<Longrightarrow> norm x = norm y" by auto | |
| 126 | ||
| 127 | lemma Min_grI: assumes "finite A" "A \<noteq> {}" "\<forall>a\<in>A. x < a" shows "x < Min A"
 | |
| 128 | unfolding Min_gr_iff[OF assms(1,2)] using assms(3) by auto | |
| 129 | ||
| 130 | lemma dimindex_ge_1:"CARD(_::finite) \<ge> 1" | |
| 131 | using one_le_card_finite by auto | |
| 132 | ||
| 133 | lemma real_dimindex_ge_1:"real (CARD('n::finite)) \<ge> 1" 
 | |
| 134 | by(metis dimindex_ge_1 linorder_not_less real_eq_of_nat real_le_trans real_of_nat_1 real_of_nat_le_iff) | |
| 135 | ||
| 136 | lemma real_dimindex_gt_0:"real (CARD('n::finite)) > 0" apply(rule less_le_trans[OF _ real_dimindex_ge_1]) by auto
 | |
| 137 | ||
| 138 | subsection {* Affine set and affine hull.*}
 | |
| 139 | ||
| 140 | definition "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v::real. u + v = 1 \<longrightarrow> (u *s x + v *s y) \<in> s)" | |
| 141 | ||
| 142 | lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *s x + u *s y \<in> s)" | |
| 143 | proof- have *:"\<And>u v ::real. u + v = 1 \<longleftrightarrow> v = 1 - u" by auto | |
| 144 |   { fix x y assume "x\<in>s" "y\<in>s"
 | |
| 145 | hence "(\<forall>u v::real. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> s) \<longleftrightarrow> (\<forall>u::real. (1 - u) *s x + u *s y \<in> s)" apply auto | |
| 146 | apply(erule_tac[!] x="1 - u" in allE) unfolding * by auto } | |
| 147 | thus ?thesis unfolding affine_def by auto qed | |
| 148 | ||
| 149 | lemma affine_empty[intro]: "affine {}"
 | |
| 150 | unfolding affine_def by auto | |
| 151 | ||
| 152 | lemma affine_sing[intro]: "affine {x}"
 | |
| 153 | unfolding affine_alt by (auto simp add: vector_sadd_rdistrib[THEN sym]) | |
| 154 | ||
| 155 | lemma affine_UNIV[intro]: "affine UNIV" | |
| 156 | unfolding affine_def by auto | |
| 157 | ||
| 158 | lemma affine_Inter: "(\<forall>s\<in>f. affine s) \<Longrightarrow> affine (\<Inter> f)" | |
| 159 | unfolding affine_def by auto | |
| 160 | ||
| 161 | lemma affine_Int: "affine s \<Longrightarrow> affine t \<Longrightarrow> affine (s \<inter> t)" | |
| 162 | unfolding affine_def by auto | |
| 163 | ||
| 164 | lemma affine_affine_hull: "affine(affine hull s)" | |
| 165 |   unfolding hull_def using affine_Inter[of "{t \<in> affine. s \<subseteq> t}"]
 | |
| 166 | unfolding mem_def by auto | |
| 167 | ||
| 168 | lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s" | |
| 169 | proof- | |
| 170 |   { fix f assume "f \<subseteq> affine"
 | |
| 171 | hence "affine (\<Inter>f)" using affine_Inter[of f] unfolding subset_eq mem_def by auto } | |
| 172 | thus ?thesis using hull_eq[unfolded mem_def, of affine s] by auto | |
| 173 | qed | |
| 174 | ||
| 175 | lemma setsum_restrict_set'': assumes "finite A" | |
| 176 |   shows "setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
 | |
| 177 | unfolding mem_def[of _ P, symmetric] unfolding setsum_restrict_set'[OF assms] .. | |
| 178 | ||
| 179 | subsection {* Some explicit formulations (from Lars Schewe). *}
 | |
| 180 | ||
| 181 | lemma affine: fixes V::"(real^'n) set" | |
| 182 |   shows "affine V \<longleftrightarrow> (\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (setsum (\<lambda>x. (u x) *s x)) s \<in> V)"
 | |
| 183 | unfolding affine_def apply rule apply(rule, rule, rule) apply(erule conjE)+ | |
| 184 | defer apply(rule, rule, rule, rule, rule) proof- | |
| 185 | fix x y u v assume as:"x \<in> V" "y \<in> V" "u + v = (1::real)" | |
| 186 |     "\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *s x) \<in> V"
 | |
| 187 | thus "u *s x + v *s y \<in> V" apply(cases "x=y") | |
| 188 |     using as(4)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>w. if w = x then u else v"]] and as(1-3) 
 | |
| 189 | by(auto simp add: vector_sadd_rdistrib[THEN sym]) | |
| 190 | next | |
| 191 | fix s u assume as:"\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> V" | |
| 192 |     "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = (1::real)"
 | |
| 193 | def n \<equiv> "card s" | |
| 194 | have "card s = 0 \<or> card s = 1 \<or> card s = 2 \<or> card s > 2" by auto | |
| 195 | thus "(\<Sum>x\<in>s. u x *s x) \<in> V" proof(auto simp only: disjE) | |
| 196 | assume "card s = 2" hence "card s = Suc (Suc 0)" by auto | |
| 197 |     then obtain a b where "s = {a, b}" unfolding card_Suc_eq by auto
 | |
| 198 | thus ?thesis using as(1)[THEN bspec[where x=a], THEN bspec[where x=b]] using as(4,5) | |
| 199 | by(auto simp add: setsum_clauses(2)) | |
| 200 | next assume "card s > 2" thus ?thesis using as and n_def proof(induct n arbitrary: u s) | |
| 201 | case (Suc n) fix s::"(real^'n) set" and u::"real^'n\<Rightarrow> real" | |
| 202 | assume IA:"\<And>u s. \<lbrakk>2 < card s; \<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> V; finite s; | |
| 203 |                s \<noteq> {}; s \<subseteq> V; setsum u s = 1; n \<equiv> card s \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>s. u x *s x) \<in> V" and
 | |
| 204 | as:"Suc n \<equiv> card s" "2 < card s" "\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> V" | |
| 205 |            "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = 1"
 | |
| 206 | have "\<exists>x\<in>s. u x \<noteq> 1" proof(rule_tac ccontr) | |
| 207 | assume " \<not> (\<exists>x\<in>s. u x \<noteq> 1)" hence "setsum u s = real_of_nat (card s)" unfolding card_eq_setsum by auto | |
| 208 | thus False using as(7) and `card s > 2` by (metis Numeral1_eq1_nat less_0_number_of less_int_code(15) | |
| 209 | less_nat_number_of not_less_iff_gr_or_eq of_nat_1 of_nat_eq_iff pos2 rel_simps(4)) qed | |
| 210 | then obtain x where x:"x\<in>s" "u x \<noteq> 1" by auto | |
| 211 | ||
| 212 |       have c:"card (s - {x}) = card s - 1" apply(rule card_Diff_singleton) using `x\<in>s` as(4) by auto
 | |
| 213 |       have *:"s = insert x (s - {x})" "finite (s - {x})" using `x\<in>s` and as(4) by auto
 | |
| 214 |       have **:"setsum u (s - {x}) = 1 - u x"
 | |
| 215 | using setsum_clauses(2)[OF *(2), of u x, unfolded *(1)[THEN sym] as(7)] by auto | |
| 216 |       have ***:"inverse (1 - u x) * setsum u (s - {x}) = 1" unfolding ** using `u x \<noteq> 1` by auto
 | |
| 217 |       have "(\<Sum>xa\<in>s - {x}. (inverse (1 - u x) * u xa) *s xa) \<in> V" proof(cases "card (s - {x}) > 2")
 | |
| 218 | 	case True hence "s - {x} \<noteq> {}" "card (s - {x}) = n" unfolding c and as(1)[symmetric] proof(rule_tac ccontr) 
 | |
| 219 | 	  assume "\<not> s - {x} \<noteq> {}" hence "card (s - {x}) = 0" unfolding card_0_eq[OF *(2)] by simp 
 | |
| 220 | thus False using True by auto qed auto | |
| 221 | 	thus ?thesis apply(rule_tac IA[of "s - {x}" "\<lambda>y. (inverse (1 - u x) * u y)"])
 | |
| 222 | unfolding setsum_right_distrib[THEN sym] using as and *** and True by auto | |
| 223 |       next case False hence "card (s - {x}) = Suc (Suc 0)" using as(2) and c by auto
 | |
| 224 | 	then obtain a b where "(s - {x}) = {a, b}" "a\<noteq>b" unfolding card_Suc_eq by auto
 | |
| 225 | thus ?thesis using as(3)[THEN bspec[where x=a], THEN bspec[where x=b]] | |
| 226 | using *** *(2) and `s \<subseteq> V` unfolding setsum_right_distrib by(auto simp add: setsum_clauses(2)) qed | |
| 227 | thus "(\<Sum>x\<in>s. u x *s x) \<in> V" unfolding vector_smult_assoc[THEN sym] and setsum_cmul | |
| 228 | apply(subst *) unfolding setsum_clauses(2)[OF *(2)] | |
| 229 | 	 using as(3)[THEN bspec[where x=x], THEN bspec[where x="(inverse (1 - u x)) *s (\<Sum>xa\<in>s - {x}. u xa *s xa)"], 
 | |
| 230 | THEN spec[where x="u x"], THEN spec[where x="1 - u x"]] and rev_subsetD[OF `x\<in>s` `s\<subseteq>V`] and `u x \<noteq> 1` by auto | |
| 231 | qed auto | |
| 232 |   next assume "card s = 1" then obtain a where "s={a}" by(auto simp add: card_Suc_eq)
 | |
| 233 | thus ?thesis using as(4,5) by simp | |
| 234 |   qed(insert `s\<noteq>{}` `finite s`, auto)
 | |
| 235 | qed | |
| 236 | ||
| 237 | lemma affine_hull_explicit: | |
| 238 |   "affine hull p = {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> setsum (\<lambda>v. (u v) *s v) s = y}"
 | |
| 239 | apply(rule hull_unique) apply(subst subset_eq) prefer 3 apply rule unfolding mem_Collect_eq and mem_def[of _ affine] | |
| 240 | apply (erule exE)+ apply(erule conjE)+ prefer 2 apply rule proof- | |
| 241 |   fix x assume "x\<in>p" thus "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x"
 | |
| 242 |     apply(rule_tac x="{x}" in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
 | |
| 243 | next | |
| 244 |   fix t x s u assume as:"p \<subseteq> t" "affine t" "finite s" "s \<noteq> {}" "s \<subseteq> p" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x" 
 | |
| 245 | thus "x \<in> t" using as(2)[unfolded affine, THEN spec[where x=s], THEN spec[where x=u]] by auto | |
| 246 | next | |
| 247 |   show "affine {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y}" unfolding affine_def
 | |
| 248 | apply(rule,rule,rule,rule,rule) unfolding mem_Collect_eq proof- | |
| 249 | fix u v ::real assume uv:"u + v = 1" | |
| 250 |     fix x assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x"
 | |
| 251 |     then obtain sx ux where x:"finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "setsum ux sx = 1" "(\<Sum>v\<in>sx. ux v *s v) = x" by auto
 | |
| 252 |     fix y assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y"
 | |
| 253 |     then obtain sy uy where y:"finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "setsum uy sy = 1" "(\<Sum>v\<in>sy. uy v *s v) = y" by auto
 | |
| 254 | have xy:"finite (sx \<union> sy)" using x(1) y(1) by auto | |
| 255 | have **:"(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" by auto | |
| 256 |     show "\<exists>s ua. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum ua s = 1 \<and> (\<Sum>v\<in>s. ua v *s v) = u *s x + v *s y"
 | |
| 257 | apply(rule_tac x="sx \<union> sy" in exI) | |
| 258 | apply(rule_tac x="\<lambda>a. (if a\<in>sx then u * ux a else 0) + (if a\<in>sy then v * uy a else 0)" in exI) | |
| 259 | unfolding vector_sadd_rdistrib setsum_addf if_smult vector_smult_lzero ** setsum_restrict_set[OF xy, THEN sym] | |
| 260 | unfolding vector_smult_assoc[THEN sym] setsum_cmul and setsum_right_distrib[THEN sym] | |
| 261 | unfolding x y using x(1-3) y(1-3) uv by simp qed qed | |
| 262 | ||
| 263 | lemma affine_hull_finite: | |
| 264 | assumes "finite s" | |
| 265 |   shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *s v) s = y}"
 | |
| 266 | unfolding affine_hull_explicit and expand_set_eq and mem_Collect_eq apply (rule,rule) | |
| 267 | apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof- | |
| 268 | fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x" | |
| 269 |   thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = x"
 | |
| 270 | apply(rule_tac x=s in exI, rule_tac x=u in exI) using assms by auto | |
| 271 | next | |
| 272 | fix x t u assume "t \<subseteq> s" hence *:"s \<inter> t = t" by auto | |
| 273 |   assume "finite t" "\<not> (\<forall>x. (x \<in> t) = (x \<in> {}))" "setsum u t = 1" "(\<Sum>v\<in>t. u v *s v) = x"
 | |
| 274 | thus "\<exists>u. setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x" apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI) | |
| 275 | unfolding if_smult vector_smult_lzero and setsum_restrict_set[OF assms, THEN sym] and * by auto qed | |
| 276 | ||
| 277 | subsection {* Stepping theorems and hence small special cases. *}
 | |
| 278 | ||
| 279 | lemma affine_hull_empty[simp]: "affine hull {} = {}"
 | |
| 280 | apply(rule hull_unique) unfolding mem_def by auto | |
| 281 | ||
| 282 | lemma affine_hull_finite_step: | |
| 283 |   shows "(\<exists>u::real^'n=>real. setsum u {} = w \<and> setsum (\<lambda>x. u x *s x) {} = y) \<longleftrightarrow> w = 0 \<and> y = 0" (is ?th1)
 | |
| 284 | "finite s \<Longrightarrow> (\<exists>u. setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *s x) (insert a s) = y) \<longleftrightarrow> | |
| 285 | (\<exists>v u. setsum u s = w - v \<and> setsum (\<lambda>x. u x *s x) s = y - v *s a)" (is "?as \<Longrightarrow> (?lhs = ?rhs)") | |
| 286 | proof- | |
| 287 | show ?th1 by simp | |
| 288 | assume ?as | |
| 289 |   { assume ?lhs
 | |
| 290 | then obtain u where u:"setsum u (insert a s) = w \<and> (\<Sum>x\<in>insert a s. u x *s x) = y" by auto | |
| 291 | have ?rhs proof(cases "a\<in>s") | |
| 292 | case True hence *:"insert a s = s" by auto | |
| 293 | show ?thesis using u[unfolded *] apply(rule_tac x=0 in exI) by auto | |
| 294 | next | |
| 295 | case False thus ?thesis apply(rule_tac x="u a" in exI) using u and `?as` by auto | |
| 296 | qed } moreover | |
| 297 |   { assume ?rhs
 | |
| 298 | then obtain v u where vu:"setsum u s = w - v" "(\<Sum>x\<in>s. u x *s x) = y - v *s a" by auto | |
| 299 | have *:"\<And>x M. (if x = a then v else M) *s x = (if x = a then v *s x else M *s x)" by auto | |
| 300 | have ?lhs proof(cases "a\<in>s") | |
| 301 | case True thus ?thesis | |
| 302 | apply(rule_tac x="\<lambda>x. (if x=a then v else 0) + u x" in exI) | |
| 303 | unfolding setsum_clauses(2)[OF `?as`] apply simp | |
| 304 | unfolding vector_sadd_rdistrib and setsum_addf | |
| 305 | unfolding vu and * and pth_4(1) | |
| 306 | by (auto simp add: setsum_delta[OF `?as`]) | |
| 307 | next | |
| 308 | case False | |
| 309 | hence **:"\<And>x. x \<in> s \<Longrightarrow> u x = (if x = a then v else u x)" | |
| 310 | "\<And>x. x \<in> s \<Longrightarrow> u x *s x = (if x = a then v *s x else u x *s x)" by auto | |
| 311 | from False show ?thesis | |
| 312 | apply(rule_tac x="\<lambda>x. if x=a then v else u x" in exI) | |
| 313 | unfolding setsum_clauses(2)[OF `?as`] and * using vu | |
| 314 | using setsum_cong2[of s "\<lambda>x. u x *s x" "\<lambda>x. if x = a then v *s x else u x *s x", OF **(2)] | |
| 315 | using setsum_cong2[of s u "\<lambda>x. if x = a then v else u x", OF **(1)] by auto | |
| 316 | qed } | |
| 317 | ultimately show "?lhs = ?rhs" by blast | |
| 318 | qed | |
| 319 | ||
| 320 | lemma affine_hull_2: "affine hull {a,b::real^'n} = {u *s a + v *s b| u v. (u + v = 1)}" (is "?lhs = ?rhs")
 | |
| 321 | proof- | |
| 322 | have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" | |
| 323 | "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real^'n)" by auto | |
| 324 |   have "?lhs = {y. \<exists>u. setsum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *s v) = y}"
 | |
| 325 |     using affine_hull_finite[of "{a,b}"] by auto
 | |
| 326 |   also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *s b = y - v *s a}"
 | |
| 327 |     by(simp add: affine_hull_finite_step(2)[of "{b}" a]) 
 | |
| 328 | also have "\<dots> = ?rhs" unfolding * by auto | |
| 329 | finally show ?thesis by auto | |
| 330 | qed | |
| 331 | ||
| 332 | lemma affine_hull_3: "affine hull {a,b,c::real^'n} = { u *s a + v *s b + w *s c| u v w. u + v + w = 1}" (is "?lhs = ?rhs")
 | |
| 333 | proof- | |
| 334 | have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" | |
| 335 | "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real^'n)" by auto | |
| 336 | show ?thesis apply(simp add: affine_hull_finite affine_hull_finite_step) | |
| 337 | unfolding * apply auto | |
| 338 | apply(rule_tac x=v in exI) apply(rule_tac x=va in exI) apply auto | |
| 339 | apply(rule_tac x=u in exI) by(auto intro!: exI) | |
| 340 | qed | |
| 341 | ||
| 342 | subsection {* Some relations between affine hull and subspaces. *}
 | |
| 343 | ||
| 344 | lemma affine_hull_insert_subset_span: | |
| 345 |   "affine hull (insert a s) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> s}}"
 | |
| 346 | unfolding subset_eq Ball_def unfolding affine_hull_explicit span_explicit mem_Collect_eq | |
| 347 | apply(rule,rule) apply(erule exE)+ apply(erule conjE)+ proof- | |
| 348 |   fix x t u assume as:"finite t" "t \<noteq> {}" "t \<subseteq> insert a s" "setsum u t = 1" "(\<Sum>v\<in>t. u v *s v) = x"
 | |
| 349 |   have "(\<lambda>x. x - a) ` (t - {a}) \<subseteq> {x - a |x. x \<in> s}" using as(3) by auto
 | |
| 350 |   thus "\<exists>v. x = a + v \<and> (\<exists>S u. finite S \<and> S \<subseteq> {x - a |x. x \<in> s} \<and> (\<Sum>v\<in>S. u v *s v) = v)"
 | |
| 351 |     apply(rule_tac x="x - a" in exI) apply rule defer apply(rule_tac x="(\<lambda>x. x - a) ` (t - {a})" in exI)
 | |
| 352 | apply(rule_tac x="\<lambda>x. u (x + a)" in exI) using as(1) | |
| 353 | apply(simp add: setsum_reindex[unfolded inj_on_def] setsum_subtractf setsum_diff1 setsum_vmul[THEN sym]) | |
| 354 | unfolding as by simp_all qed | |
| 355 | ||
| 356 | lemma affine_hull_insert_span: | |
| 357 | assumes "a \<notin> s" | |
| 358 | shows "affine hull (insert a s) = | |
| 359 |             {a + v | v . v \<in> span {x - a | x.  x \<in> s}}"
 | |
| 360 | apply(rule, rule affine_hull_insert_subset_span) unfolding subset_eq Ball_def | |
| 361 | unfolding affine_hull_explicit and mem_Collect_eq proof(rule,rule,erule exE,erule conjE) | |
| 362 |   fix y v assume "y = a + v" "v \<in> span {x - a |x. x \<in> s}"
 | |
| 363 |   then obtain t u where obt:"finite t" "t \<subseteq> {x - a |x. x \<in> s}" "a + (\<Sum>v\<in>t. u v *s v) = y" unfolding span_explicit by auto
 | |
| 364 | def f \<equiv> "(\<lambda>x. x + a) ` t" | |
| 365 | have f:"finite f" "f \<subseteq> s" "(\<Sum>v\<in>f. u (v - a) *s (v - a)) = y - a" unfolding f_def using obt | |
| 366 | by(auto simp add: setsum_reindex[unfolded inj_on_def]) | |
| 367 |   have *:"f \<inter> {a} = {}" "f \<inter> - {a} = f" using f(2) assms by auto
 | |
| 368 |   show "\<exists>sa u. finite sa \<and> sa \<noteq> {} \<and> sa \<subseteq> insert a s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = y"
 | |
| 369 | apply(rule_tac x="insert a f" in exI) | |
| 370 | apply(rule_tac x="\<lambda>x. if x=a then 1 - setsum (\<lambda>x. u (x - a)) f else u (x - a)" in exI) | |
| 371 | using assms and f unfolding setsum_clauses(2)[OF f(1)] and if_smult | |
| 372 |     unfolding setsum_cases[OF f(1), of "{a}", unfolded singleton_iff] and *
 | |
| 373 | by (auto simp add: setsum_subtractf setsum_vmul field_simps) qed | |
| 374 | ||
| 375 | lemma affine_hull_span: | |
| 376 | assumes "a \<in> s" | |
| 377 |   shows "affine hull s = {a + v | v. v \<in> span {x - a | x. x \<in> s - {a}}}"
 | |
| 378 |   using affine_hull_insert_span[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto
 | |
| 379 | ||
| 380 | subsection {* Convexity. *}
 | |
| 381 | ||
| 382 | definition "convex (s::(real^'n) set) \<longleftrightarrow> | |
| 383 | (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. (u + v = 1) \<longrightarrow> (u *s x + v *s y) \<in> s)" | |
| 384 | ||
| 385 | lemma convex_alt: "convex s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> ((1 - u) *s x + u *s y) \<in> s)" | |
| 386 | proof- have *:"\<And>u v::real. u + v = 1 \<longleftrightarrow> u = 1 - v" by auto | |
| 387 | show ?thesis unfolding convex_def apply auto | |
| 388 | apply(erule_tac x=x in ballE) apply(erule_tac x=y in ballE) apply(erule_tac x="1 - u" in allE) | |
| 389 | by (auto simp add: *) qed | |
| 390 | ||
| 391 | lemma mem_convex: | |
| 392 | assumes "convex s" "a \<in> s" "b \<in> s" "0 \<le> u" "u \<le> 1" | |
| 393 | shows "((1 - u) *s a + u *s b) \<in> s" | |
| 394 | using assms unfolding convex_alt by auto | |
| 395 | ||
| 396 | lemma convex_empty[intro]: "convex {}"
 | |
| 397 | unfolding convex_def by simp | |
| 398 | ||
| 399 | lemma convex_singleton[intro]: "convex {a}"
 | |
| 400 | unfolding convex_def by (auto simp add:vector_sadd_rdistrib[THEN sym]) | |
| 401 | ||
| 402 | lemma convex_UNIV[intro]: "convex UNIV" | |
| 403 | unfolding convex_def by auto | |
| 404 | ||
| 405 | lemma convex_Inter: "(\<forall>s\<in>f. convex s) ==> convex(\<Inter> f)" | |
| 406 | unfolding convex_def by auto | |
| 407 | ||
| 408 | lemma convex_Int: "convex s \<Longrightarrow> convex t \<Longrightarrow> convex (s \<inter> t)" | |
| 409 | unfolding convex_def by auto | |
| 410 | ||
| 411 | lemma convex_halfspace_le: "convex {x. a \<bullet> x \<le> b}"
 | |
| 412 | unfolding convex_def apply auto | |
| 413 | unfolding dot_radd dot_rmult by (metis real_convex_bound_le) | |
| 414 | ||
| 415 | lemma convex_halfspace_ge: "convex {x. a \<bullet> x \<ge> b}"
 | |
| 416 | proof- have *:"{x. a \<bullet> x \<ge> b} = {x. -a \<bullet> x \<le> -b}" by auto
 | |
| 417 | show ?thesis apply(unfold *) using convex_halfspace_le[of "-a" "-b"] by auto qed | |
| 418 | ||
| 419 | lemma convex_hyperplane: "convex {x. a \<bullet> x = b}"
 | |
| 420 | proof- | |
| 421 |   have *:"{x. a \<bullet> x = b} = {x. a \<bullet> x \<le> b} \<inter> {x. a \<bullet> x \<ge> b}" by auto
 | |
| 422 | show ?thesis unfolding * apply(rule convex_Int) | |
| 423 | using convex_halfspace_le convex_halfspace_ge by auto | |
| 424 | qed | |
| 425 | ||
| 426 | lemma convex_halfspace_lt: "convex {x. a \<bullet> x < b}"
 | |
| 427 | unfolding convex_def by(auto simp add: real_convex_bound_lt dot_radd dot_rmult) | |
| 428 | ||
| 429 | lemma convex_halfspace_gt: "convex {x. a \<bullet> x > b}"
 | |
| 430 | using convex_halfspace_lt[of "-a" "-b"] by(auto simp add: dot_lneg neg_less_iff_less) | |
| 431 | ||
| 432 | lemma convex_positive_orthant: "convex {x::real^'n. (\<forall>i. 0 \<le> x$i)}"
 | |
| 433 | unfolding convex_def apply auto apply(erule_tac x=i in allE)+ | |
| 434 | apply(rule add_nonneg_nonneg) by(auto simp add: mult_nonneg_nonneg) | |
| 435 | ||
| 436 | subsection {* Explicit expressions for convexity in terms of arbitrary sums. *}
 | |
| 437 | ||
| 438 | lemma convex: "convex s \<longleftrightarrow> | |
| 439 |   (\<forall>(k::nat) u x. (\<forall>i. 1\<le>i \<and> i\<le>k \<longrightarrow> 0 \<le> u i \<and> x i \<in>s) \<and> (setsum u {1..k} = 1)
 | |
| 440 |            \<longrightarrow> setsum (\<lambda>i. u i *s x i) {1..k} \<in> s)"
 | |
| 441 | unfolding convex_def apply rule apply(rule allI)+ defer apply(rule ballI)+ apply(rule allI)+ proof(rule,rule,rule,rule) | |
| 442 |   fix x y u v assume as:"\<forall>(k::nat) u x. (\<forall>i. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *s x i) \<in> s"
 | |
| 443 | "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)" | |
| 444 | show "u *s x + v *s y \<in> s" using as(1)[THEN spec[where x=2], THEN spec[where x="\<lambda>n. if n=1 then u else v"], THEN spec[where x="\<lambda>n. if n=1 then x else y"]] and as(2-) | |
| 445 | by (auto simp add: setsum_head_Suc) | |
| 446 | next | |
| 447 | fix k u x assume as:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> s" | |
| 448 |   show "(\<forall>i::nat. 1 \<le> i \<and> i \<le> k \<longrightarrow> 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow> (\<Sum>i = 1..k. u i *s x i) \<in> s" apply(rule,erule conjE) proof(induct k arbitrary: u)
 | |
| 449 | case (Suc k) show ?case proof(cases "u (Suc k) = 1") | |
| 450 | case True hence "(\<Sum>i = Suc 0..k. u i *s x i) = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof- | |
| 451 |       fix i assume i:"i \<in> {Suc 0..k}" "u i *s x i \<noteq> 0"
 | |
| 452 | hence ui:"u i \<noteq> 0" by auto | |
| 453 |       hence "setsum (\<lambda>k. if k=i then u i else 0) {1 .. k} \<le> setsum u {1 .. k}" apply(rule_tac setsum_mono) using Suc(2) by auto
 | |
| 454 |       hence "setsum u {1 .. k} \<ge> u i" using i(1) by(auto simp add: setsum_delta) 
 | |
| 455 |       hence "setsum u {1 .. k} > 0"  using ui apply(rule_tac less_le_trans[of _ "u i"]) using Suc(2)[THEN spec[where x=i]] and i(1) by auto
 | |
| 456 | thus False using Suc(3) unfolding setsum_cl_ivl_Suc and True by simp qed | |
| 457 | thus ?thesis unfolding setsum_cl_ivl_Suc using True and Suc(2) by auto | |
| 458 | next | |
| 459 |     have *:"setsum u {1..k} = 1 - u (Suc k)" using Suc(3)[unfolded setsum_cl_ivl_Suc] by auto
 | |
| 460 |     have **:"u (Suc k) \<le> 1" apply(rule ccontr) unfolding not_le using Suc(3) using setsum_nonneg[of "{1..k}" u] using Suc(2) by auto
 | |
| 461 | have ***:"\<And>i k. (u i / (1 - u (Suc k))) *s x i = (inverse (1 - u (Suc k))) *s (u i *s x i)" unfolding real_divide_def by auto | |
| 462 | case False hence nn:"1 - u (Suc k) \<noteq> 0" by auto | |
| 463 | have "(\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *s x i) \<in> s" apply(rule Suc(1)) unfolding setsum_divide_distrib[THEN sym] and * | |
| 464 | apply(rule_tac allI) apply(rule,rule) apply(rule divide_nonneg_pos) using nn Suc(2) ** by auto | |
| 465 | hence "(1 - u (Suc k)) *s (\<Sum>i = 1..k. (u i / (1 - u (Suc k))) *s x i) + u (Suc k) *s x (Suc k) \<in> s" | |
| 466 | apply(rule as[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using Suc(2)[THEN spec[where x="Suc k"]] and ** by auto | |
| 467 | thus ?thesis unfolding setsum_cl_ivl_Suc and *** and setsum_cmul using nn by auto qed qed auto qed | |
| 468 | ||
| 469 | ||
| 470 | lemma convex_explicit: "convex (s::(real^'n) set) \<longleftrightarrow> | |
| 471 | (\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> setsum (\<lambda>x. u x *s x) t \<in> s)" | |
| 472 | unfolding convex_def apply(rule,rule,rule) apply(subst imp_conjL,rule) defer apply(rule,rule,rule,rule,rule,rule,rule) proof- | |
| 473 | fix x y u v assume as:"\<forall>t u. finite t \<and> t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *s x) \<in> s" "x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)" | |
| 474 | show "u *s x + v *s y \<in> s" proof(cases "x=y") | |
| 475 | case True show ?thesis unfolding True and vector_sadd_rdistrib[THEN sym] using as(3,6) by auto next | |
| 476 |     case False thus ?thesis using as(1)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>z. if z=x then u else v"]] and as(2-) by auto qed
 | |
| 477 | next | |
| 478 | fix t u assume asm:"\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> u *s x + v *s y \<in> s" "finite (t::(real^'n) set)" | |
| 479 | (*"finite t" "t \<subseteq> s" "\<forall>x\<in>t. (0::real) \<le> u x" "setsum u t = 1"*) | |
| 480 | from this(2) have "\<forall>u. t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *s x) \<in> s" apply(induct_tac t rule:finite_induct) | |
| 481 | prefer 3 apply (rule,rule) apply(erule conjE)+ proof- | |
| 482 | fix x f u assume ind:"\<forall>u. f \<subseteq> s \<and> (\<forall>x\<in>f. 0 \<le> u x) \<and> setsum u f = 1 \<longrightarrow> (\<Sum>x\<in>f. u x *s x) \<in> s" | |
| 483 | assume as:"finite f" "x \<notin> f" "insert x f \<subseteq> s" "\<forall>x\<in>insert x f. 0 \<le> u x" "setsum u (insert x f) = (1::real)" | |
| 484 | show "(\<Sum>x\<in>insert x f. u x *s x) \<in> s" proof(cases "u x = 1") | |
| 485 | case True hence "setsum (\<lambda>x. u x *s x) f = 0" apply(rule_tac setsum_0') apply(rule ccontr) unfolding ball_simps apply(erule bexE) proof- | |
| 486 | fix y assume y:"y \<in> f" "u y *s y \<noteq> 0" | |
| 487 | hence uy:"u y \<noteq> 0" by auto | |
| 488 | hence "setsum (\<lambda>k. if k=y then u y else 0) f \<le> setsum u f" apply(rule_tac setsum_mono) using as(4) by auto | |
| 489 | hence "setsum u f \<ge> u y" using y(1) and as(1) by(auto simp add: setsum_delta) | |
| 490 | hence "setsum u f > 0" using uy apply(rule_tac less_le_trans[of _ "u y"]) using as(4) and y(1) by auto | |
| 491 | thus False using as(2,5) unfolding setsum_clauses(2)[OF as(1)] and True by auto qed | |
| 492 | thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2,3) unfolding True by auto | |
| 493 | next | |
| 494 | have *:"setsum u f = setsum u (insert x f) - u x" using as(2) unfolding setsum_clauses(2)[OF as(1)] by auto | |
| 495 | have **:"u x \<le> 1" apply(rule ccontr) unfolding not_le using as(5)[unfolded setsum_clauses(2)[OF as(1)]] and as(2) | |
| 496 | using setsum_nonneg[of f u] and as(4) by auto | |
| 497 | case False hence "inverse (1 - u x) *s (\<Sum>x\<in>f. u x *s x) \<in> s" unfolding setsum_cmul[THEN sym] and vector_smult_assoc | |
| 498 | apply(rule_tac ind[THEN spec, THEN mp]) apply rule defer apply rule apply rule apply(rule mult_nonneg_nonneg) | |
| 499 | unfolding setsum_right_distrib[THEN sym] and * using as and ** by auto | |
| 500 | hence "u x *s x + (1 - u x) *s ((inverse (1 - u x)) *s setsum (\<lambda>x. u x *s x) f) \<in>s" | |
| 501 | apply(rule_tac asm(1)[THEN bspec, THEN bspec, THEN spec, THEN mp, THEN spec, THEN mp, THEN mp]) using as and ** False by auto | |
| 502 | thus ?thesis unfolding setsum_clauses(2)[OF as(1)] using as(2) and False by auto qed | |
| 503 | qed auto thus "t \<subseteq> s \<and> (\<forall>x\<in>t. 0 \<le> u x) \<and> setsum u t = 1 \<longrightarrow> (\<Sum>x\<in>t. u x *s x) \<in> s" by auto | |
| 504 | qed | |
| 505 | ||
| 506 | lemma convex_finite: assumes "finite s" | |
| 507 | shows "convex s \<longleftrightarrow> (\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 | |
| 508 | \<longrightarrow> setsum (\<lambda>x. u x *s x) s \<in> s)" | |
| 509 | unfolding convex_explicit apply(rule, rule, rule) defer apply(rule,rule,rule)apply(erule conjE)+ proof- | |
| 510 | fix t u assume as:"\<forall>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *s x) \<in> s" " finite t" "t \<subseteq> s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = (1::real)" | |
| 511 | have *:"s \<inter> t = t" using as(3) by auto | |
| 512 | show "(\<Sum>x\<in>t. u x *s x) \<in> s" using as(1)[THEN spec[where x="\<lambda>x. if x\<in>t then u x else 0"]] | |
| 513 | unfolding if_smult and setsum_cases[OF assms] and * using as(2-) by auto | |
| 514 | qed (erule_tac x=s in allE, erule_tac x=u in allE, auto) | |
| 515 | ||
| 516 | subsection {* Cones. *}
 | |
| 517 | ||
| 518 | definition "cone (s::(real^'n) set) \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *s x) \<in> s)" | |
| 519 | ||
| 520 | lemma cone_empty[intro, simp]: "cone {}"
 | |
| 521 | unfolding cone_def by auto | |
| 522 | ||
| 523 | lemma cone_univ[intro, simp]: "cone UNIV" | |
| 524 | unfolding cone_def by auto | |
| 525 | ||
| 526 | lemma cone_Inter[intro]: "(\<forall>s\<in>f. cone s) \<Longrightarrow> cone(\<Inter> f)" | |
| 527 | unfolding cone_def by auto | |
| 528 | ||
| 529 | subsection {* Conic hull. *}
 | |
| 530 | ||
| 531 | lemma cone_cone_hull: "cone (cone hull s)" | |
| 532 |   unfolding hull_def using cone_Inter[of "{t \<in> conic. s \<subseteq> t}"] 
 | |
| 533 | by (auto simp add: mem_def) | |
| 534 | ||
| 535 | lemma cone_hull_eq: "(cone hull s = s) \<longleftrightarrow> cone s" | |
| 536 | apply(rule hull_eq[unfolded mem_def]) | |
| 537 | using cone_Inter unfolding subset_eq by (auto simp add: mem_def) | |
| 538 | ||
| 539 | subsection {* Affine dependence and consequential theorems (from Lars Schewe). *}
 | |
| 540 | ||
| 541 | definition "affine_dependent (s::(real^'n) set) \<longleftrightarrow> (\<exists>x\<in>s. x \<in> (affine hull (s - {x})))"
 | |
| 542 | ||
| 543 | lemma affine_dependent_explicit: | |
| 544 | "affine_dependent p \<longleftrightarrow> | |
| 545 | (\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> | |
| 546 | (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *s v) s = 0)" | |
| 547 | unfolding affine_dependent_def affine_hull_explicit mem_Collect_eq apply(rule) | |
| 548 | apply(erule bexE,erule exE,erule exE) apply(erule conjE)+ defer apply(erule exE,erule exE) apply(erule conjE)+ apply(erule bexE) | |
| 549 | proof- | |
| 550 |   fix x s u assume as:"x \<in> p" "finite s" "s \<noteq> {}" "s \<subseteq> p - {x}" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x"
 | |
| 551 | have "x\<notin>s" using as(1,4) by auto | |
| 552 | show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> (\<Sum>v\<in>s. u v *s v) = 0" | |
| 553 | apply(rule_tac x="insert x s" in exI, rule_tac x="\<lambda>v. if v = x then - 1 else u v" in exI) | |
| 554 | unfolding if_smult and setsum_clauses(2)[OF as(2)] and setsum_delta_notmem[OF `x\<notin>s`] and as using as by auto | |
| 555 | next | |
| 556 | fix s u v assume as:"finite s" "s \<subseteq> p" "setsum u s = 0" "(\<Sum>v\<in>s. u v *s v) = 0" "v \<in> s" "u v \<noteq> 0" | |
| 557 |   have "s \<noteq> {v}" using as(3,6) by auto
 | |
| 558 |   thus "\<exists>x\<in>p. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p - {x} \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x" 
 | |
| 559 |     apply(rule_tac x=v in bexI, rule_tac x="s - {v}" in exI, rule_tac x="\<lambda>x. - (1 / u v) * u x" in exI)
 | |
| 560 | unfolding vector_smult_assoc[THEN sym] and setsum_cmul unfolding setsum_right_distrib[THEN sym] and setsum_diff1''[OF as(1,5)] using as by auto | |
| 561 | qed | |
| 562 | ||
| 563 | lemma affine_dependent_explicit_finite: | |
| 564 | assumes "finite (s::(real^'n) set)" | |
| 565 | shows "affine_dependent s \<longleftrightarrow> (\<exists>u. setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *s v) s = 0)" | |
| 566 | (is "?lhs = ?rhs") | |
| 567 | proof | |
| 568 | have *:"\<And>vt u v. (if vt then u v else 0) *s v = (if vt then (u v) *s v else (0::real^'n))" by auto | |
| 569 | assume ?lhs | |
| 570 | then obtain t u v where "finite t" "t \<subseteq> s" "setsum u t = 0" "v\<in>t" "u v \<noteq> 0" "(\<Sum>v\<in>t. u v *s v) = 0" | |
| 571 | unfolding affine_dependent_explicit by auto | |
| 572 | thus ?rhs apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI) | |
| 573 | apply auto unfolding * and setsum_restrict_set[OF assms, THEN sym] | |
| 574 | unfolding Int_absorb2[OF `t\<subseteq>s`, unfolded Int_commute] by auto | |
| 575 | next | |
| 576 | assume ?rhs | |
| 577 | then obtain u v where "setsum u s = 0" "v\<in>s" "u v \<noteq> 0" "(\<Sum>v\<in>s. u v *s v) = 0" by auto | |
| 578 | thus ?lhs unfolding affine_dependent_explicit using assms by auto | |
| 579 | qed | |
| 580 | ||
| 581 | subsection {* A general lemma. *}
 | |
| 582 | ||
| 583 | lemma convex_connected: | |
| 584 | assumes "convex s" shows "connected s" | |
| 585 | proof- | |
| 586 |   { fix e1 e2 assume as:"open e1" "open e2" "e1 \<inter> e2 \<inter> s = {}" "s \<subseteq> e1 \<union> e2" 
 | |
| 587 |     assume "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | |
| 588 | then obtain x1 x2 where x1:"x1\<in>e1" "x1\<in>s" and x2:"x2\<in>e2" "x2\<in>s" by auto | |
| 589 | hence n:"norm (x1 - x2) > 0" unfolding zero_less_norm_iff using as(3) by auto | |
| 590 | ||
| 591 |     { fix x e::real assume as:"0 \<le> x" "x \<le> 1" "0 < e"
 | |
| 592 |       { fix y have *:"(1 - x) *s x1 + x *s x2 - ((1 - y) *s x1 + y *s x2) = (y - x) *s x1 - (y - x) *s x2"
 | |
| 593 | by(simp add: ring_simps vector_sadd_rdistrib vector_sub_rdistrib) | |
| 594 | assume "\<bar>y - x\<bar> < e / norm (x1 - x2)" | |
| 595 | hence "norm ((1 - x) *s x1 + x *s x2 - ((1 - y) *s x1 + y *s x2)) < e" | |
| 596 | unfolding * and vector_ssub_ldistrib[THEN sym] and norm_mul | |
| 597 | unfolding less_divide_eq using n by auto } | |
| 598 | hence "\<exists>d>0. \<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> norm ((1 - x) *s x1 + x *s x2 - ((1 - y) *s x1 + y *s x2)) < e" | |
| 599 | apply(rule_tac x="e / norm (x1 - x2)" in exI) using as | |
| 600 | apply auto unfolding zero_less_divide_iff using n by simp } note * = this | |
| 601 | ||
| 602 | have "\<exists>x\<ge>0. x \<le> 1 \<and> (1 - x) *s x1 + x *s x2 \<notin> e1 \<and> (1 - x) *s x1 + x *s x2 \<notin> e2" | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 603 | apply(rule connected_real_lemma) apply (simp add: `x1\<in>e1` `x2\<in>e2` dist_commute)+ | 
| 31289 | 604 | using * apply(simp add: dist_norm) | 
| 31276 | 605 | using as(1,2)[unfolded open_def] apply simp | 
| 606 | using as(1,2)[unfolded open_def] apply simp | |
| 607 | using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] using x1 x2 | |
| 608 | using as(3) by auto | |
| 609 | then obtain x where "x\<ge>0" "x\<le>1" "(1 - x) *s x1 + x *s x2 \<notin> e1" "(1 - x) *s x1 + x *s x2 \<notin> e2" by auto | |
| 610 | hence False using as(4) | |
| 611 | using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] | |
| 612 | using x1(2) x2(2) by auto } | |
| 613 | thus ?thesis unfolding connected_def by auto | |
| 614 | qed | |
| 615 | ||
| 616 | subsection {* One rather trivial consequence. *}
 | |
| 617 | ||
| 31345 
80667d5bee32
generalize topological notions to class metric_space; add class perfect_space
 huffman parents: 
31289diff
changeset | 618 | lemma connected_UNIV: "connected (UNIV :: (real ^ _) set)" | 
| 31276 | 619 | by(simp add: convex_connected convex_UNIV) | 
| 620 | ||
| 621 | subsection {* Convex functions into the reals. *}
 | |
| 622 | ||
| 623 | definition "convex_on s (f::real^'n \<Rightarrow> real) = | |
| 624 | (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u\<ge>0. \<forall>v\<ge>0. u + v = 1 \<longrightarrow> f (u *s x + v *s y) \<le> u * f x + v * f y)" | |
| 625 | ||
| 626 | lemma convex_on_subset: "convex_on t f \<Longrightarrow> s \<subseteq> t \<Longrightarrow> convex_on s f" | |
| 627 | unfolding convex_on_def by auto | |
| 628 | ||
| 629 | lemma convex_add: | |
| 630 | assumes "convex_on s f" "convex_on s g" | |
| 631 | shows "convex_on s (\<lambda>x. f x + g x)" | |
| 632 | proof- | |
| 633 |   { fix x y assume "x\<in>s" "y\<in>s" moreover
 | |
| 634 | fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 635 | ultimately have "f (u *s x + v *s y) + g (u *s x + v *s y) \<le> (u * f x + v * f y) + (u * g x + v * g y)" | |
| 636 | using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]] | |
| 637 | using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]] | |
| 638 | apply - apply(rule add_mono) by auto | |
| 639 | hence "f (u *s x + v *s y) + g (u *s x + v *s y) \<le> u * (f x + g x) + v * (f y + g y)" by (simp add: ring_simps) } | |
| 640 | thus ?thesis unfolding convex_on_def by auto | |
| 641 | qed | |
| 642 | ||
| 643 | lemma convex_cmul: | |
| 644 | assumes "0 \<le> (c::real)" "convex_on s f" | |
| 645 | shows "convex_on s (\<lambda>x. c * f x)" | |
| 646 | proof- | |
| 647 | have *:"\<And>u c fx v fy ::real. u * (c * fx) + v * (c * fy) = c * (u * fx + v * fy)" by (simp add: ring_simps) | |
| 648 | show ?thesis using assms(2) and mult_mono1[OF _ assms(1)] unfolding convex_on_def and * by auto | |
| 649 | qed | |
| 650 | ||
| 651 | lemma convex_lower: | |
| 652 | assumes "convex_on s f" "x\<in>s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 653 | shows "f (u *s x + v *s y) \<le> max (f x) (f y)" | |
| 654 | proof- | |
| 655 | let ?m = "max (f x) (f y)" | |
| 656 | have "u * f x + v * f y \<le> u * max (f x) (f y) + v * max (f x) (f y)" apply(rule add_mono) | |
| 657 | using assms(4,5) by(auto simp add: mult_mono1) | |
| 658 | also have "\<dots> = max (f x) (f y)" using assms(6) unfolding distrib[THEN sym] by auto | |
| 659 | finally show ?thesis using assms(1)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x=u]] | |
| 660 | using assms(2-6) by auto | |
| 661 | qed | |
| 662 | ||
| 663 | lemma convex_local_global_minimum: | |
| 664 | assumes "0<e" "convex_on s f" "ball x e \<subseteq> s" "\<forall>y\<in>ball x e. f x \<le> f y" | |
| 665 | shows "\<forall>y\<in>s. f x \<le> f y" | |
| 666 | proof(rule ccontr) | |
| 667 | have "x\<in>s" using assms(1,3) by auto | |
| 668 | assume "\<not> (\<forall>y\<in>s. f x \<le> f y)" | |
| 669 | then obtain y where "y\<in>s" and y:"f x > f y" by auto | |
| 670 | hence xy:"0 < dist x y" by (auto simp add: dist_nz[THEN sym]) | |
| 671 | ||
| 672 | then obtain u where "0 < u" "u \<le> 1" and u:"u < e / dist x y" | |
| 673 | using real_lbound_gt_zero[of 1 "e / dist x y"] using xy `e>0` and divide_pos_pos[of e "dist x y"] by auto | |
| 674 | hence "f ((1-u) *s x + u *s y) \<le> (1-u) * f x + u * f y" using `x\<in>s` `y\<in>s` | |
| 675 | using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x="1-u"]] by auto | |
| 676 | moreover | |
| 677 | have *:"x - ((1 - u) *s x + u *s y) = u *s (x - y)" by (simp add: vector_ssub_ldistrib vector_sub_rdistrib) | |
| 31289 | 678 | have "(1 - u) *s x + u *s y \<in> ball x e" unfolding mem_ball dist_norm unfolding * and norm_mul and abs_of_pos[OF `0<u`] unfolding dist_norm[THEN sym] | 
| 31276 | 679 | using u unfolding pos_less_divide_eq[OF xy] by auto | 
| 680 | hence "f x \<le> f ((1 - u) *s x + u *s y)" using assms(4) by auto | |
| 681 | ultimately show False using mult_strict_left_mono[OF y `u>0`] unfolding left_diff_distrib by auto | |
| 682 | qed | |
| 683 | ||
| 684 | lemma convex_distance: "convex_on s (\<lambda>x. dist a x)" | |
| 31289 | 685 | proof(auto simp add: convex_on_def dist_norm) | 
| 31276 | 686 | fix x y assume "x\<in>s" "y\<in>s" | 
| 687 | fix u v ::real assume "0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 688 | have "a = u *s a + v *s a" unfolding vector_sadd_rdistrib[THEN sym] and `u+v=1` by simp | |
| 689 | hence *:"a - (u *s x + v *s y) = (u *s (a - x)) + (v *s (a - y))" by auto | |
| 690 | show "norm (a - (u *s x + v *s y)) \<le> u * norm (a - x) + v * norm (a - y)" | |
| 691 | unfolding * using norm_triangle_ineq[of "u *s (a - x)" "v *s (a - y)"] unfolding norm_mul | |
| 692 | using `0 \<le> u` `0 \<le> v` by auto | |
| 693 | qed | |
| 694 | ||
| 695 | subsection {* Arithmetic operations on sets preserve convexity. *}
 | |
| 696 | ||
| 697 | lemma convex_scaling: "convex s \<Longrightarrow> convex ((\<lambda>x. c *s x) ` s)" | |
| 698 | unfolding convex_def and image_iff apply auto | |
| 699 | apply (rule_tac x="u *s x+v *s y" in bexI) by (auto simp add: field_simps) | |
| 700 | ||
| 701 | lemma convex_negations: "convex s \<Longrightarrow> convex ((\<lambda>x. -x)` s)" | |
| 702 | unfolding convex_def and image_iff apply auto | |
| 703 | apply (rule_tac x="u *s x+v *s y" in bexI) by auto | |
| 704 | ||
| 705 | lemma convex_sums: | |
| 706 | assumes "convex s" "convex t" | |
| 707 |   shows "convex {x + y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 708 | proof(auto simp add: convex_def image_iff) | |
| 709 | fix xa xb ya yb assume xy:"xa\<in>s" "xb\<in>s" "ya\<in>t" "yb\<in>t" | |
| 710 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 711 | show "\<exists>x y. u *s xa + u *s ya + (v *s xb + v *s yb) = x + y \<and> x \<in> s \<and> y \<in> t" | |
| 712 | apply(rule_tac x="u *s xa + v *s xb" in exI) apply(rule_tac x="u *s ya + v *s yb" in exI) | |
| 713 | using assms(1)[unfolded convex_def, THEN bspec[where x=xa], THEN bspec[where x=xb]] | |
| 714 | using assms(2)[unfolded convex_def, THEN bspec[where x=ya], THEN bspec[where x=yb]] | |
| 715 | using uv xy by auto | |
| 716 | qed | |
| 717 | ||
| 718 | lemma convex_differences: | |
| 719 | assumes "convex s" "convex t" | |
| 720 |   shows "convex {x - y| x y. x \<in> s \<and> y \<in> t}"
 | |
| 721 | proof- | |
| 722 |   have "{x - y| x y. x \<in> s \<and> y \<in> t} = {x + y |x y. x \<in> s \<and> y \<in> uminus ` t}" unfolding image_iff apply auto
 | |
| 723 | apply(rule_tac x=xa in exI) apply(rule_tac x="-y" in exI) apply simp | |
| 724 | apply(rule_tac x=xa in exI) apply(rule_tac x=xb in exI) by simp | |
| 725 | thus ?thesis using convex_sums[OF assms(1) convex_negations[OF assms(2)]] by auto | |
| 726 | qed | |
| 727 | ||
| 728 | lemma convex_translation: assumes "convex s" shows "convex ((\<lambda>x. a + x) ` s)" | |
| 729 | proof- have "{a + y |y. y \<in> s} = (\<lambda>x. a + x) ` s" by auto
 | |
| 730 | thus ?thesis using convex_sums[OF convex_singleton[of a] assms] by auto qed | |
| 731 | ||
| 732 | lemma convex_affinity: assumes "convex (s::(real^'n) set)" shows "convex ((\<lambda>x. a + c *s x) ` s)" | |
| 733 | proof- have "(\<lambda>x. a + c *s x) ` s = op + a ` op *s c ` s" by auto | |
| 734 | thus ?thesis using convex_translation[OF convex_scaling[OF assms], of a c] by auto qed | |
| 735 | ||
| 736 | lemma convex_linear_image: assumes c:"convex s" and l:"linear f" shows "convex(f ` s)" | |
| 737 | proof(auto simp add: convex_def) | |
| 738 | fix x y assume xy:"x \<in> s" "y \<in> s" | |
| 739 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 740 | show "u *s f x + v *s f y \<in> f ` s" unfolding image_iff | |
| 741 | apply(rule_tac x="u *s x + v *s y" in bexI) | |
| 742 | unfolding linear_add[OF l] linear_cmul[OF l] | |
| 743 | using c[unfolded convex_def] xy uv by auto | |
| 744 | qed | |
| 745 | ||
| 746 | subsection {* Balls, being convex, are connected. *}
 | |
| 747 | ||
| 748 | lemma convex_ball: "convex (ball x e)" | |
| 749 | proof(auto simp add: convex_def) | |
| 750 | fix y z assume yz:"dist x y < e" "dist x z < e" | |
| 751 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 752 | have "dist x (u *s y + v *s z) \<le> u * dist x y + v * dist x z" using uv yz | |
| 753 | using convex_distance[of "ball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto | |
| 754 | thus "dist x (u *s y + v *s z) < e" using real_convex_bound_lt[OF yz uv] by auto | |
| 755 | qed | |
| 756 | ||
| 757 | lemma convex_cball: "convex(cball x e)" | |
| 758 | proof(auto simp add: convex_def Ball_def mem_cball) | |
| 759 | fix y z assume yz:"dist x y \<le> e" "dist x z \<le> e" | |
| 760 | fix u v ::real assume uv:" 0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 761 | have "dist x (u *s y + v *s z) \<le> u * dist x y + v * dist x z" using uv yz | |
| 762 | using convex_distance[of "cball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto | |
| 763 | thus "dist x (u *s y + v *s z) \<le> e" using real_convex_bound_le[OF yz uv] by auto | |
| 764 | qed | |
| 765 | ||
| 31345 
80667d5bee32
generalize topological notions to class metric_space; add class perfect_space
 huffman parents: 
31289diff
changeset | 766 | lemma connected_ball: "connected(ball (x::real^_) e)" (* FIXME: generalize *) | 
| 31276 | 767 | using convex_connected convex_ball by auto | 
| 768 | ||
| 31345 
80667d5bee32
generalize topological notions to class metric_space; add class perfect_space
 huffman parents: 
31289diff
changeset | 769 | lemma connected_cball: "connected(cball (x::real^_) e)" (* FIXME: generalize *) | 
| 31276 | 770 | using convex_connected convex_cball by auto | 
| 771 | ||
| 772 | subsection {* Convex hull. *}
 | |
| 773 | ||
| 774 | lemma convex_convex_hull: "convex(convex hull s)" | |
| 775 |   unfolding hull_def using convex_Inter[of "{t\<in>convex. s\<subseteq>t}"]
 | |
| 776 | unfolding mem_def by auto | |
| 777 | ||
| 778 | lemma convex_hull_eq: "(convex hull s = s) \<longleftrightarrow> convex s" apply(rule hull_eq[unfolded mem_def]) | |
| 779 | using convex_Inter[unfolded Ball_def mem_def] by auto | |
| 780 | ||
| 781 | lemma bounded_convex_hull: assumes "bounded s" shows "bounded(convex hull s)" | |
| 782 | proof- from assms obtain B where B:"\<forall>x\<in>s. norm x \<le> B" unfolding bounded_def by auto | |
| 783 | show ?thesis apply(rule bounded_subset[OF bounded_cball, of _ 0 B]) | |
| 784 | unfolding subset_hull[unfolded mem_def, of convex, OF convex_cball] | |
| 31289 | 785 | unfolding subset_eq mem_cball dist_norm using B by auto qed | 
| 31276 | 786 | |
| 787 | lemma finite_imp_bounded_convex_hull: | |
| 788 | "finite s \<Longrightarrow> bounded(convex hull s)" | |
| 789 | using bounded_convex_hull finite_imp_bounded by auto | |
| 790 | ||
| 791 | subsection {* Stepping theorems for convex hulls of finite sets. *}
 | |
| 792 | ||
| 793 | lemma convex_hull_empty[simp]: "convex hull {} = {}"
 | |
| 794 | apply(rule hull_unique) unfolding mem_def by auto | |
| 795 | ||
| 796 | lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
 | |
| 797 | apply(rule hull_unique) unfolding mem_def by auto | |
| 798 | ||
| 799 | lemma convex_hull_insert: | |
| 800 |   assumes "s \<noteq> {}"
 | |
| 801 |   shows "convex hull (insert a s) = {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and>
 | |
| 802 | b \<in> (convex hull s) \<and> (x = u *s a + v *s b)}" (is "?xyz = ?hull") | |
| 803 | apply(rule,rule hull_minimal,rule) unfolding mem_def[of _ convex] and insert_iff prefer 3 apply rule proof- | |
| 804 | fix x assume x:"x = a \<or> x \<in> s" | |
| 805 | thus "x\<in>?hull" apply rule unfolding mem_Collect_eq apply(rule_tac x=1 in exI) defer | |
| 806 | apply(rule_tac x=0 in exI) using assms hull_subset[of s convex] by auto | |
| 807 | next | |
| 808 | fix x assume "x\<in>?hull" | |
| 809 | then obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "x = u *s a + v *s b" by auto | |
| 810 | have "a\<in>convex hull insert a s" "b\<in>convex hull insert a s" | |
| 811 |     using hull_mono[of s "insert a s" convex] hull_mono[of "{a}" "insert a s" convex] and obt(4) by auto
 | |
| 812 | thus "x\<in> convex hull insert a s" unfolding obt(5) using convex_convex_hull[of "insert a s", unfolded convex_def] | |
| 813 | apply(erule_tac x=a in ballE) apply(erule_tac x=b in ballE) apply(erule_tac x=u in allE) using obt by auto | |
| 814 | next | |
| 815 | show "convex ?hull" unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof- | |
| 816 | fix x y u v assume as:"(0::real) \<le> u" "0 \<le> v" "u + v = 1" "x\<in>?hull" "y\<in>?hull" | |
| 817 | from as(4) obtain u1 v1 b1 where obt1:"u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull s" "x = u1 *s a + v1 *s b1" by auto | |
| 818 | from as(5) obtain u2 v2 b2 where obt2:"u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull s" "y = u2 *s a + v2 *s b2" by auto | |
| 819 | have *:"\<And>x s1 s2. x - s1 *s x - s2 *s x = ((1::real) - (s1 + s2)) *s x" by auto | |
| 820 | have "\<exists>b \<in> convex hull s. u *s x + v *s y = (u * u1) *s a + (v * u2) *s a + (b - (u * u1) *s b - (v * u2) *s b)" | |
| 821 | proof(cases "u * v1 + v * v2 = 0") | |
| 822 | have *:"\<And>x s1 s2. x - s1 *s x - s2 *s x = ((1::real) - (s1 + s2)) *s x" by auto | |
| 823 | case True hence **:"u * v1 = 0" "v * v2 = 0" apply- apply(rule_tac [!] ccontr) | |
| 824 | using mult_nonneg_nonneg[OF `u\<ge>0` `v1\<ge>0`] mult_nonneg_nonneg[OF `v\<ge>0` `v2\<ge>0`] by auto | |
| 825 | hence "u * u1 + v * u2 = 1" using as(3) obt1(3) obt2(3) by auto | |
| 826 | thus ?thesis unfolding obt1(5) obt2(5) * using assms hull_subset[of s convex] by(auto simp add: **) | |
| 827 | next | |
| 828 | have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) | |
| 829 | also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) | |
| 830 | also have "\<dots> = u * v1 + v * v2" by simp finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto | |
| 831 | case False have "0 \<le> u * v1 + v * v2" "0 \<le> u * v1" "0 \<le> u * v1 + v * v2" "0 \<le> v * v2" apply - | |
| 832 | apply(rule add_nonneg_nonneg) prefer 4 apply(rule add_nonneg_nonneg) apply(rule_tac [!] mult_nonneg_nonneg) | |
| 833 | using as(1,2) obt1(1,2) obt2(1,2) by auto | |
| 834 | thus ?thesis unfolding obt1(5) obt2(5) unfolding * and ** using False | |
| 835 | apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *s b1 + ((v * v2) / (u * v1 + v * v2)) *s b2" in bexI) defer | |
| 836 | apply(rule convex_convex_hull[of s, unfolded convex_def, rule_format]) using obt1(4) obt2(4) | |
| 837 | unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff by auto | |
| 838 | qed note * = this | |
| 839 | have u1:"u1 \<le> 1" apply(rule ccontr) unfolding obt1(3)[THEN sym] and not_le using obt1(2) by auto | |
| 840 | have u2:"u2 \<le> 1" apply(rule ccontr) unfolding obt2(3)[THEN sym] and not_le using obt2(2) by auto | |
| 841 | have "u1 * u + u2 * v \<le> (max u1 u2) * u + (max u1 u2) * v" apply(rule add_mono) | |
| 842 | apply(rule_tac [!] mult_right_mono) using as(1,2) obt1(1,2) obt2(1,2) by auto | |
| 843 | also have "\<dots> \<le> 1" unfolding mult.add_right[THEN sym] and as(3) using u1 u2 by auto | |
| 844 | finally | |
| 845 | show "u *s x + v *s y \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x="u * u1 + v * u2" in exI) | |
| 846 | apply(rule conjI) defer apply(rule_tac x="1 - u * u1 - v * u2" in exI) unfolding Bex_def | |
| 847 | using as(1,2) obt1(1,2) obt2(1,2) * by(auto intro!: mult_nonneg_nonneg add_nonneg_nonneg simp add:field_simps) | |
| 848 | qed | |
| 849 | qed | |
| 850 | ||
| 851 | ||
| 852 | subsection {* Explicit expression for convex hull. *}
 | |
| 853 | ||
| 854 | lemma convex_hull_indexed: | |
| 855 |   "convex hull s = {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> s) \<and>
 | |
| 856 |                             (setsum u {1..k} = 1) \<and>
 | |
| 857 |                             (setsum (\<lambda>i. u i *s x i) {1..k} = y)}" (is "?xyz = ?hull")
 | |
| 858 | apply(rule hull_unique) unfolding mem_def[of _ convex] apply(rule) defer | |
| 859 | apply(subst convex_def) apply(rule,rule,rule,rule,rule,rule,rule) | |
| 860 | proof- | |
| 861 | fix x assume "x\<in>s" | |
| 862 | thus "x \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x=1 in exI, rule_tac x="\<lambda>x. 1" in exI) by auto | |
| 863 | next | |
| 864 | fix t assume as:"s \<subseteq> t" "convex t" | |
| 865 | show "?hull \<subseteq> t" apply(rule) unfolding mem_Collect_eq apply(erule exE | erule conjE)+ proof- | |
| 866 |     fix x k u y assume assm:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *s y i) = x"
 | |
| 867 | show "x\<in>t" unfolding assm(3)[THEN sym] apply(rule as(2)[unfolded convex, rule_format]) | |
| 868 | using assm(1,2) as(1) by auto qed | |
| 869 | next | |
| 870 | fix x y u v assume uv:"0\<le>u" "0\<le>v" "u+v=(1::real)" and xy:"x\<in>?hull" "y\<in>?hull" | |
| 871 |   from xy obtain k1 u1 x1 where x:"\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> s" "setsum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *s x1 i) = x" by auto
 | |
| 872 |   from xy obtain k2 u2 x2 where y:"\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> s" "setsum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *s x2 i) = y" by auto
 | |
| 873 | have *:"\<And>P x1 x2 s1 s2 i.(if P i then s1 else s2) *s (if P i then x1 else x2) = (if P i then s1 *s x1 else s2 *s x2)" | |
| 874 |     "{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}"
 | |
| 875 | prefer 3 apply(rule,rule) unfolding image_iff apply(rule_tac x="x - k1" in bexI) by(auto simp add: not_le) | |
| 876 |   have inj:"inj_on (\<lambda>i. i + k1) {1..k2}" unfolding inj_on_def by auto  
 | |
| 877 | show "u *s x + v *s y \<in> ?hull" apply(rule) | |
| 878 |     apply(rule_tac x="k1 + k2" in exI, rule_tac x="\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)" in exI)
 | |
| 879 |     apply(rule_tac x="\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)" in exI) apply(rule,rule) defer apply(rule)
 | |
| 880 | unfolding * and setsum_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] and setsum_reindex[OF inj] and o_def | |
| 881 | unfolding vector_smult_assoc[THEN sym] setsum_cmul setsum_right_distrib[THEN sym] proof- | |
| 882 |     fix i assume i:"i \<in> {1..k1+k2}"
 | |
| 883 |     show "0 \<le> (if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)) \<and> (if i \<in> {1..k1} then x1 i else x2 (i - k1)) \<in> s"
 | |
| 884 |     proof(cases "i\<in>{1..k1}")
 | |
| 885 | case True thus ?thesis using mult_nonneg_nonneg[of u "u1 i"] and uv(1) x(1)[THEN bspec[where x=i]] by auto | |
| 886 | next def j \<equiv> "i - k1" | |
| 887 |       case False with i have "j \<in> {1..k2}" unfolding j_def by auto
 | |
| 888 | thus ?thesis unfolding j_def[symmetric] using False | |
| 889 | using mult_nonneg_nonneg[of v "u2 j"] and uv(2) y(1)[THEN bspec[where x=j]] by auto qed | |
| 890 | qed(auto simp add: not_le x(2,3) y(2,3) uv(3)) | |
| 891 | qed | |
| 892 | ||
| 893 | lemma convex_hull_finite: | |
| 894 | assumes "finite (s::(real^'n)set)" | |
| 895 |   shows "convex hull s = {y. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and>
 | |
| 896 | setsum u s = 1 \<and> setsum (\<lambda>x. u x *s x) s = y}" (is "?HULL = ?set") | |
| 897 | proof(rule hull_unique, auto simp add: mem_def[of _ convex] convex_def[of ?set]) | |
| 898 | fix x assume "x\<in>s" thus " \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>x\<in>s. u x *s x) = x" | |
| 899 | apply(rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) apply auto | |
| 900 | unfolding setsum_delta'[OF assms] and setsum_delta''[OF assms] by auto | |
| 901 | next | |
| 902 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 903 | fix ux assume ux:"\<forall>x\<in>s. 0 \<le> ux x" "setsum ux s = (1::real)" | |
| 904 | fix uy assume uy:"\<forall>x\<in>s. 0 \<le> uy x" "setsum uy s = (1::real)" | |
| 905 |   { fix x assume "x\<in>s"
 | |
| 906 | hence "0 \<le> u * ux x + v * uy x" using ux(1)[THEN bspec[where x=x]] uy(1)[THEN bspec[where x=x]] and uv(1,2) | |
| 907 | by (auto, metis add_nonneg_nonneg mult_nonneg_nonneg uv(1) uv(2)) } | |
| 908 | moreover have "(\<Sum>x\<in>s. u * ux x + v * uy x) = 1" | |
| 909 | unfolding setsum_addf and setsum_right_distrib[THEN sym] and ux(2) uy(2) using uv(3) by auto | |
| 910 | moreover have "(\<Sum>x\<in>s. (u * ux x + v * uy x) *s x) = u *s (\<Sum>x\<in>s. ux x *s x) + v *s (\<Sum>x\<in>s. uy x *s x)" | |
| 911 | unfolding vector_sadd_rdistrib and setsum_addf and vector_smult_assoc[THEN sym] and setsum_cmul by auto | |
| 912 | ultimately show "\<exists>uc. (\<forall>x\<in>s. 0 \<le> uc x) \<and> setsum uc s = 1 \<and> (\<Sum>x\<in>s. uc x *s x) = u *s (\<Sum>x\<in>s. ux x *s x) + v *s (\<Sum>x\<in>s. uy x *s x)" | |
| 913 | apply(rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI) by auto | |
| 914 | next | |
| 915 | fix t assume t:"s \<subseteq> t" "convex t" | |
| 916 | fix u assume u:"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = (1::real)" | |
| 917 | thus "(\<Sum>x\<in>s. u x *s x) \<in> t" using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]] | |
| 918 | using assms and t(1) by auto | |
| 919 | qed | |
| 920 | ||
| 921 | subsection {* Another formulation from Lars Schewe. *}
 | |
| 922 | ||
| 923 | lemma convex_hull_explicit: | |
| 924 |   "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and>
 | |
| 925 | (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *s v) s = y}" (is "?lhs = ?rhs") | |
| 926 | proof- | |
| 927 |   { fix x assume "x\<in>?lhs"
 | |
| 928 |     then obtain k u y where obt:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *s y i) = x"
 | |
| 929 | unfolding convex_hull_indexed by auto | |
| 930 | ||
| 931 |     have fin:"finite {1..k}" by auto
 | |
| 932 |     have fin':"\<And>v. finite {i \<in> {1..k}. y i = v}" by auto
 | |
| 933 |     { fix j assume "j\<in>{1..k}"
 | |
| 934 |       hence "y j \<in> p" "0 \<le> setsum u {i. Suc 0 \<le> i \<and> i \<le> k \<and> y i = y j}"
 | |
| 935 | using obt(1)[THEN bspec[where x=j]] and obt(2) apply simp | |
| 936 | apply(rule setsum_nonneg) using obt(1) by auto } | |
| 937 | moreover | |
| 938 |     have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v}) = 1"  
 | |
| 939 | unfolding setsum_image_gen[OF fin, THEN sym] using obt(2) by auto | |
| 940 |     moreover have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v} *s v) = x"
 | |
| 941 | using setsum_image_gen[OF fin, of "\<lambda>i. u i *s y i" y, THEN sym] | |
| 942 | unfolding setsum_vmul[OF fin'] using obt(3) by auto | |
| 943 | ultimately have "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = x" | |
| 944 |       apply(rule_tac x="y ` {1..k}" in exI)
 | |
| 945 |       apply(rule_tac x="\<lambda>v. setsum u {i\<in>{1..k}. y i = v}" in exI) by auto
 | |
| 946 | hence "x\<in>?rhs" by auto } | |
| 947 | moreover | |
| 948 |   { fix y assume "y\<in>?rhs"
 | |
| 949 | then obtain s u where obt:"finite s" "s \<subseteq> p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = y" by auto | |
| 950 | ||
| 951 |     obtain f where f:"inj_on f {1..card s}" "f ` {1..card s} = s" using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
 | |
| 952 | ||
| 953 |     { fix i::nat assume "i\<in>{1..card s}"
 | |
| 954 | hence "f i \<in> s" apply(subst f(2)[THEN sym]) by auto | |
| 955 | hence "0 \<le> u (f i)" "f i \<in> p" using obt(2,3) by auto } | |
| 956 |     moreover have *:"finite {1..card s}" by auto
 | |
| 957 |     { fix y assume "y\<in>s"
 | |
| 958 |       then obtain i where "i\<in>{1..card s}" "f i = y" using f using image_iff[of y f "{1..card s}"] by auto
 | |
| 959 |       hence "{x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = {i}" apply auto using f(1)[unfolded inj_on_def] apply(erule_tac x=x in ballE) by auto
 | |
| 960 |       hence "card {x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = 1" by auto
 | |
| 961 |       hence "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x)) = u y" "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *s f x) = u y *s y" by auto   }
 | |
| 962 | ||
| 963 | hence "(\<Sum>x = 1..card s. u (f x)) = 1" "(\<Sum>i = 1..card s. u (f i) *s f i) = y" | |
| 964 | unfolding setsum_image_gen[OF *(1), of "\<lambda>x. u (f x) *s f x" f] and setsum_image_gen[OF *(1), of "\<lambda>x. u (f x)" f] | |
| 965 |       unfolding f using setsum_cong2[of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *s f x)" "\<lambda>v. u v *s v"]
 | |
| 966 |       using setsum_cong2 [of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x))" u] unfolding obt(4,5) by auto
 | |
| 967 | ||
| 968 |     ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *s x i) = y"
 | |
| 969 | apply(rule_tac x="card s" in exI) apply(rule_tac x="u \<circ> f" in exI) apply(rule_tac x=f in exI) by fastsimp | |
| 970 | hence "y \<in> ?lhs" unfolding convex_hull_indexed by auto } | |
| 971 | ultimately show ?thesis unfolding expand_set_eq by blast | |
| 972 | qed | |
| 973 | ||
| 974 | subsection {* A stepping theorem for that expansion. *}
 | |
| 975 | ||
| 976 | lemma convex_hull_finite_step: | |
| 977 | assumes "finite (s::(real^'n) set)" | |
| 978 | shows "(\<exists>u. (\<forall>x\<in>insert a s. 0 \<le> u x) \<and> setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *s x) (insert a s) = y) | |
| 979 | \<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = w - v \<and> setsum (\<lambda>x. u x *s x) s = y - v *s a)" (is "?lhs = ?rhs") | |
| 980 | proof(rule, case_tac[!] "a\<in>s") | |
| 981 | assume "a\<in>s" hence *:"insert a s = s" by auto | |
| 982 | assume ?lhs thus ?rhs unfolding * apply(rule_tac x=0 in exI) by auto | |
| 983 | next | |
| 984 | assume ?lhs then obtain u where u:"\<forall>x\<in>insert a s. 0 \<le> u x" "setsum u (insert a s) = w" "(\<Sum>x\<in>insert a s. u x *s x) = y" by auto | |
| 985 | assume "a\<notin>s" thus ?rhs apply(rule_tac x="u a" in exI) using u(1)[THEN bspec[where x=a]] apply simp | |
| 986 | apply(rule_tac x=u in exI) using u[unfolded setsum_clauses(2)[OF assms]] and `a\<notin>s` by auto | |
| 987 | next | |
| 988 | assume "a\<in>s" hence *:"insert a s = s" by auto | |
| 989 | have fin:"finite (insert a s)" using assms by auto | |
| 990 | assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *s x) = y - v *s a" by auto | |
| 991 | show ?lhs apply(rule_tac x="\<lambda>x. (if a = x then v else 0) + u x" in exI) unfolding vector_sadd_rdistrib and setsum_addf and setsum_delta''[OF fin] and setsum_delta'[OF fin] | |
| 992 | unfolding setsum_clauses(2)[OF assms] using uv and uv(2)[THEN bspec[where x=a]] and `a\<in>s` by auto | |
| 993 | next | |
| 994 | assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *s x) = y - v *s a" by auto | |
| 995 | moreover assume "a\<notin>s" moreover have "(\<Sum>x\<in>s. if a = x then v else u x) = setsum u s" "(\<Sum>x\<in>s. (if a = x then v else u x) *s x) = (\<Sum>x\<in>s. u x *s x)" | |
| 996 | apply(rule_tac setsum_cong2) defer apply(rule_tac setsum_cong2) using `a\<notin>s` by auto | |
| 997 | ultimately show ?lhs apply(rule_tac x="\<lambda>x. if a = x then v else u x" in exI) unfolding setsum_clauses(2)[OF assms] by auto | |
| 998 | qed | |
| 999 | ||
| 1000 | subsection {* Hence some special cases. *}
 | |
| 1001 | ||
| 1002 | lemma convex_hull_2: | |
| 1003 |   "convex hull {a,b} = {u *s a + v *s b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}"
 | |
| 1004 | proof- have *:"\<And>u. (\<forall>x\<in>{a, b}. 0 \<le> u x) \<longleftrightarrow> 0 \<le> u a \<and> 0 \<le> u b" by auto have **:"finite {b}" by auto
 | |
| 1005 | show ?thesis apply(simp add: convex_hull_finite) unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc] | |
| 1006 | apply auto apply(rule_tac x=v in exI) apply(rule_tac x="1 - v" in exI) apply simp | |
| 1007 | apply(rule_tac x=u in exI) apply simp apply(rule_tac x="\<lambda>x. v" in exI) by simp qed | |
| 1008 | ||
| 1009 | lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *s (b - a) | u.  0 \<le> u \<and> u \<le> 1}"
 | |
| 1010 | unfolding convex_hull_2 unfolding Collect_def | |
| 1011 | proof(rule ext) have *:"\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y" by auto | |
| 1012 | fix x show "(\<exists>v u. x = v *s a + u *s b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) = (\<exists>u. x = a + u *s (b - a) \<and> 0 \<le> u \<and> u \<le> 1)" | |
| 1013 | unfolding * apply auto apply(rule_tac[!] x=u in exI) by auto qed | |
| 1014 | ||
| 1015 | lemma convex_hull_3: | |
| 1016 |   "convex hull {a::real^'n,b,c} = { u *s a + v *s b + w *s c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}"
 | |
| 1017 | proof- | |
| 1018 |   have fin:"finite {a,b,c}" "finite {b,c}" "finite {c}" by auto
 | |
| 1019 | have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" | |
| 1020 | "\<And>x y z ::real^'n. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by (auto simp add: ring_simps) | |
| 1021 | show ?thesis unfolding convex_hull_finite[OF fin(1)] and Collect_def and convex_hull_finite_step[OF fin(2)] and * | |
| 1022 | unfolding convex_hull_finite_step[OF fin(3)] apply(rule ext) apply simp apply auto | |
| 1023 | apply(rule_tac x=va in exI) apply (rule_tac x="u c" in exI) apply simp | |
| 1024 | apply(rule_tac x="1 - v - w" in exI) apply simp apply(rule_tac x=v in exI) apply simp apply(rule_tac x="\<lambda>x. w" in exI) by simp qed | |
| 1025 | ||
| 1026 | lemma convex_hull_3_alt: | |
| 1027 |   "convex hull {a,b,c} = {a + u *s (b - a) + v *s (c - a) | u v.  0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}"
 | |
| 1028 | proof- have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by auto | |
| 1029 | show ?thesis unfolding convex_hull_3 apply (auto simp add: *) apply(rule_tac x=v in exI) apply(rule_tac x=w in exI) apply simp | |
| 1030 | apply(rule_tac x=u in exI) apply(rule_tac x=v in exI) by simp qed | |
| 1031 | ||
| 1032 | subsection {* Relations among closure notions and corresponding hulls. *}
 | |
| 1033 | ||
| 1034 | lemma subspace_imp_affine: "subspace s \<Longrightarrow> affine s" | |
| 1035 | unfolding subspace_def affine_def by auto | |
| 1036 | ||
| 1037 | lemma affine_imp_convex: "affine s \<Longrightarrow> convex s" | |
| 1038 | unfolding affine_def convex_def by auto | |
| 1039 | ||
| 1040 | lemma subspace_imp_convex: "subspace s \<Longrightarrow> convex s" | |
| 1041 | using subspace_imp_affine affine_imp_convex by auto | |
| 1042 | ||
| 1043 | lemma affine_hull_subset_span: "(affine hull s) \<subseteq> (span s)" | |
| 1044 | unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def | |
| 1045 | using subspace_imp_affine by auto | |
| 1046 | ||
| 1047 | lemma convex_hull_subset_span: "(convex hull s) \<subseteq> (span s)" | |
| 1048 | unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def | |
| 1049 | using subspace_imp_convex by auto | |
| 1050 | ||
| 1051 | lemma convex_hull_subset_affine_hull: "(convex hull s) \<subseteq> (affine hull s)" | |
| 1052 | unfolding span_def apply(rule hull_antimono) unfolding subset_eq Ball_def mem_def | |
| 1053 | using affine_imp_convex by auto | |
| 1054 | ||
| 1055 | lemma affine_dependent_imp_dependent: "affine_dependent s \<Longrightarrow> dependent s" | |
| 1056 | unfolding affine_dependent_def dependent_def | |
| 1057 | using affine_hull_subset_span by auto | |
| 1058 | ||
| 1059 | lemma dependent_imp_affine_dependent: | |
| 1060 |   assumes "dependent {x - a| x . x \<in> s}" "a \<notin> s"
 | |
| 1061 | shows "affine_dependent (insert a s)" | |
| 1062 | proof- | |
| 1063 | from assms(1)[unfolded dependent_explicit] obtain S u v | |
| 1064 |     where obt:"finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v  \<noteq> 0" "(\<Sum>v\<in>S. u v *s v) = 0" by auto
 | |
| 1065 | def t \<equiv> "(\<lambda>x. x + a) ` S" | |
| 1066 | ||
| 1067 | have inj:"inj_on (\<lambda>x. x + a) S" unfolding inj_on_def by auto | |
| 1068 | have "0\<notin>S" using obt(2) assms(2) unfolding subset_eq by auto | |
| 1069 | have fin:"finite t" and "t\<subseteq>s" unfolding t_def using obt(1,2) by auto | |
| 1070 | ||
| 1071 | hence "finite (insert a t)" and "insert a t \<subseteq> insert a s" by auto | |
| 1072 | moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x)) = (\<Sum>x\<in>t. Q x)" | |
| 1073 | apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto | |
| 1074 | have "(\<Sum>x\<in>insert a t. if x = a then - (\<Sum>x\<in>t. u (x - a)) else u (x - a)) = 0" | |
| 1075 | unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` apply auto unfolding * by auto | |
| 1076 | moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0" | |
| 1077 | apply(rule_tac x="v + a" in bexI) using obt(3,4) and `0\<notin>S` unfolding t_def by auto | |
| 1078 | moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *s x) = (\<Sum>x\<in>t. Q x *s x)" | |
| 1079 | apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto | |
| 1080 | have "(\<Sum>x\<in>t. u (x - a)) *s a = (\<Sum>v\<in>t. u (v - a) *s v)" | |
| 1081 | unfolding setsum_vmul[OF fin(1)] unfolding t_def and setsum_reindex[OF inj] and o_def | |
| 1082 | using obt(5) by (auto simp add: setsum_addf) | |
| 1083 | hence "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *s v) = 0" | |
| 1084 | unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` by (auto simp add: * vector_smult_lneg) | |
| 1085 | ultimately show ?thesis unfolding affine_dependent_explicit | |
| 1086 | apply(rule_tac x="insert a t" in exI) by auto | |
| 1087 | qed | |
| 1088 | ||
| 1089 | lemma convex_cone: | |
| 1090 | "convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *s x) \<in> s)" (is "?lhs = ?rhs") | |
| 1091 | proof- | |
| 1092 |   { fix x y assume "x\<in>s" "y\<in>s" and ?lhs
 | |
| 1093 | hence "2 *s x \<in>s" "2 *s y \<in> s" unfolding cone_def by auto | |
| 1094 | hence "x + y \<in> s" using `?lhs`[unfolded convex_def, THEN conjunct1] | |
| 1095 | apply(erule_tac x="2*s x" in ballE) apply(erule_tac x="2*s y" in ballE) | |
| 1096 | apply(erule_tac x="1/2" in allE) apply simp apply(erule_tac x="1/2" in allE) by auto } | |
| 1097 | thus ?thesis unfolding convex_def cone_def by blast | |
| 1098 | qed | |
| 1099 | ||
| 1100 | lemma affine_dependent_biggerset: fixes s::"(real^'n::finite) set" | |
| 1101 |   assumes "finite s" "card s \<ge> CARD('n) + 2"
 | |
| 1102 | shows "affine_dependent s" | |
| 1103 | proof- | |
| 1104 |   have "s\<noteq>{}" using assms by auto then obtain a where "a\<in>s" by auto
 | |
| 1105 |   have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
 | |
| 1106 |   have "card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
 | |
| 1107 | apply(rule card_image) unfolding inj_on_def by auto | |
| 1108 |   also have "\<dots> > CARD('n)" using assms(2)
 | |
| 1109 | unfolding card_Diff_singleton[OF assms(1) `a\<in>s`] by auto | |
| 1110 | finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym]) | |
| 1111 | apply(rule dependent_imp_affine_dependent) | |
| 1112 | apply(rule dependent_biggerset) by auto qed | |
| 1113 | ||
| 1114 | lemma affine_dependent_biggerset_general: | |
| 1115 | assumes "finite (s::(real^'n::finite) set)" "card s \<ge> dim s + 2" | |
| 1116 | shows "affine_dependent s" | |
| 1117 | proof- | |
| 1118 |   from assms(2) have "s \<noteq> {}" by auto
 | |
| 1119 | then obtain a where "a\<in>s" by auto | |
| 1120 |   have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
 | |
| 1121 |   have **:"card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
 | |
| 1122 | apply(rule card_image) unfolding inj_on_def by auto | |
| 1123 |   have "dim {x - a |x. x \<in> s - {a}} \<le> dim s"
 | |
| 1124 | apply(rule subset_le_dim) unfolding subset_eq | |
| 1125 | using `a\<in>s` by (auto simp add:span_superset span_sub) | |
| 1126 | also have "\<dots> < dim s + 1" by auto | |
| 1127 |   also have "\<dots> \<le> card (s - {a})" using assms
 | |
| 1128 | using card_Diff_singleton[OF assms(1) `a\<in>s`] by auto | |
| 1129 | finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym]) | |
| 1130 | apply(rule dependent_imp_affine_dependent) apply(rule dependent_biggerset_general) unfolding ** by auto qed | |
| 1131 | ||
| 1132 | subsection {* Caratheodory's theorem. *}
 | |
| 1133 | ||
| 1134 | lemma convex_hull_caratheodory: fixes p::"(real^'n::finite) set" | |
| 1135 |   shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and>
 | |
| 1136 | (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *s v) s = y}" | |
| 1137 | unfolding convex_hull_explicit expand_set_eq mem_Collect_eq | |
| 1138 | proof(rule,rule) | |
| 1139 | fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y" | |
| 1140 | assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y" | |
| 1141 | then obtain N where "?P N" by auto | |
| 1142 | hence "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n" apply(rule_tac ex_least_nat_le) by auto | |
| 1143 | then obtain n where "?P n" and smallest:"\<forall>k<n. \<not> ?P k" by blast | |
| 1144 | then obtain s u where obt:"finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = y" by auto | |
| 1145 | ||
| 1146 |   have "card s \<le> CARD('n) + 1" proof(rule ccontr, simp only: not_le)
 | |
| 1147 |     assume "CARD('n) + 1 < card s"
 | |
| 1148 | hence "affine_dependent s" using affine_dependent_biggerset[OF obt(1)] by auto | |
| 1149 | then obtain w v where wv:"setsum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *s v) = 0" | |
| 1150 | using affine_dependent_explicit_finite[OF obt(1)] by auto | |
| 1151 |     def i \<equiv> "(\<lambda>v. (u v) / (- w v)) ` {v\<in>s. w v < 0}"  def t \<equiv> "Min i"
 | |
| 1152 | have "\<exists>x\<in>s. w x < 0" proof(rule ccontr, simp add: not_less) | |
| 1153 | assume as:"\<forall>x\<in>s. 0 \<le> w x" | |
| 1154 |       hence "setsum w (s - {v}) \<ge> 0" apply(rule_tac setsum_nonneg) by auto
 | |
| 1155 | hence "setsum w s > 0" unfolding setsum_diff1'[OF obt(1) `v\<in>s`] | |
| 1156 | using as[THEN bspec[where x=v]] and `v\<in>s` using `w v \<noteq> 0` by auto | |
| 1157 | thus False using wv(1) by auto | |
| 1158 |     qed hence "i\<noteq>{}" unfolding i_def by auto
 | |
| 1159 | ||
| 1160 | hence "t \<ge> 0" using Min_ge_iff[of i 0 ] and obt(1) unfolding t_def i_def | |
| 1161 | using obt(4)[unfolded le_less] apply auto unfolding divide_le_0_iff by auto | |
| 1162 | have t:"\<forall>v\<in>s. u v + t * w v \<ge> 0" proof | |
| 1163 | fix v assume "v\<in>s" hence v:"0\<le>u v" using obt(4)[THEN bspec[where x=v]] by auto | |
| 1164 | show"0 \<le> u v + t * w v" proof(cases "w v < 0") | |
| 1165 | case False thus ?thesis apply(rule_tac add_nonneg_nonneg) | |
| 1166 | using v apply simp apply(rule mult_nonneg_nonneg) using `t\<ge>0` by auto next | |
| 1167 | case True hence "t \<le> u v / (- w v)" using `v\<in>s` | |
| 1168 | unfolding t_def i_def apply(rule_tac Min_le) using obt(1) by auto | |
| 1169 | thus ?thesis unfolding real_0_le_add_iff | |
| 1170 | using pos_le_divide_eq[OF True[unfolded neg_0_less_iff_less[THEN sym]]] by auto | |
| 1171 | qed qed | |
| 1172 | ||
| 1173 | obtain a where "a\<in>s" and "t = (\<lambda>v. (u v) / (- w v)) a" and "w a < 0" | |
| 1174 |       using Min_in[OF _ `i\<noteq>{}`] and obt(1) unfolding i_def t_def by auto
 | |
| 1175 | hence a:"a\<in>s" "u a + t * w a = 0" by auto | |
| 1176 |     have *:"\<And>f. setsum f (s - {a}) = setsum f s - ((f a)::'a::ring)" unfolding setsum_diff1'[OF obt(1) `a\<in>s`] by auto 
 | |
| 1177 | have "(\<Sum>v\<in>s. u v + t * w v) = 1" | |
| 1178 | unfolding setsum_addf wv(1) setsum_right_distrib[THEN sym] obt(5) by auto | |
| 1179 | moreover have "(\<Sum>v\<in>s. u v *s v + (t * w v) *s v) - (u a *s a + (t * w a) *s a) = y" | |
| 1180 | unfolding setsum_addf obt(6) vector_smult_assoc[THEN sym] setsum_cmul wv(4) | |
| 1181 | by (metis diff_0_right a(2) pth_5 pth_8 pth_d vector_mul_eq_0) | |
| 1182 |     ultimately have "?P (n - 1)" apply(rule_tac x="(s - {a})" in exI)
 | |
| 1183 | apply(rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a by (auto simp add: *) | |
| 1184 | thus False using smallest[THEN spec[where x="n - 1"]] by auto qed | |
| 1185 |   thus "\<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1
 | |
| 1186 | \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *s v) = y" using obt by auto | |
| 1187 | qed auto | |
| 1188 | ||
| 1189 | lemma caratheodory: | |
| 1190 |  "convex hull p = {x::real^'n::finite. \<exists>s. finite s \<and> s \<subseteq> p \<and>
 | |
| 1191 |       card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s}"
 | |
| 1192 | unfolding expand_set_eq apply(rule, rule) unfolding mem_Collect_eq proof- | |
| 1193 | fix x assume "x \<in> convex hull p" | |
| 1194 |   then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1"
 | |
| 1195 | "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *s v) = x"unfolding convex_hull_caratheodory by auto | |
| 1196 |   thus "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
 | |
| 1197 | apply(rule_tac x=s in exI) using hull_subset[of s convex] | |
| 1198 | using convex_convex_hull[unfolded convex_explicit, of s, THEN spec[where x=s], THEN spec[where x=u]] by auto | |
| 1199 | next | |
| 1200 |   fix x assume "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> CARD('n) + 1 \<and> x \<in> convex hull s"
 | |
| 1201 |   then obtain s where "finite s" "s \<subseteq> p" "card s \<le> CARD('n) + 1" "x \<in> convex hull s" by auto
 | |
| 1202 | thus "x \<in> convex hull p" using hull_mono[OF `s\<subseteq>p`] by auto | |
| 1203 | qed | |
| 1204 | ||
| 1205 | subsection {* Openness and compactness are preserved by convex hull operation. *}
 | |
| 1206 | ||
| 1207 | lemma open_convex_hull: | |
| 1208 | assumes "open s" | |
| 1209 | shows "open(convex hull s)" | |
| 1210 | unfolding open_contains_cball convex_hull_explicit unfolding mem_Collect_eq ball_simps(10) | |
| 1211 | proof(rule, rule) fix a | |
| 1212 | assume "\<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = a" | |
| 1213 | then obtain t u where obt:"finite t" "t\<subseteq>s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" "(\<Sum>v\<in>t. u v *s v) = a" by auto | |
| 1214 | ||
| 1215 | from assms[unfolded open_contains_cball] obtain b where b:"\<forall>x\<in>s. 0 < b x \<and> cball x (b x) \<subseteq> s" | |
| 1216 | using bchoice[of s "\<lambda>x e. e>0 \<and> cball x e \<subseteq> s"] by auto | |
| 1217 |   have "b ` t\<noteq>{}" unfolding i_def using obt by auto  def i \<equiv> "b ` t"
 | |
| 1218 | ||
| 1219 |   show "\<exists>e>0. cball a e \<subseteq> {y. \<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = y}"
 | |
| 1220 | apply(rule_tac x="Min i" in exI) unfolding subset_eq apply rule defer apply rule unfolding mem_Collect_eq | |
| 1221 | proof- | |
| 1222 |     show "0 < Min i" unfolding i_def and Min_gr_iff[OF finite_imageI[OF obt(1)] `b \` t\<noteq>{}`]
 | |
| 1223 | using b apply simp apply rule apply(erule_tac x=x in ballE) using `t\<subseteq>s` by auto | |
| 1224 | next fix y assume "y \<in> cball a (Min i)" | |
| 31289 | 1225 | hence y:"norm (a - y) \<le> Min i" unfolding dist_norm[THEN sym] by auto | 
| 31276 | 1226 |     { fix x assume "x\<in>t"
 | 
| 1227 | hence "Min i \<le> b x" unfolding i_def apply(rule_tac Min_le) using obt(1) by auto | |
| 31289 | 1228 | hence "x + (y - a) \<in> cball x (b x)" using y unfolding mem_cball dist_norm by auto | 
| 31276 | 1229 | moreover from `x\<in>t` have "x\<in>s" using obt(2) by auto | 
| 1230 | ultimately have "x + (y - a) \<in> s" using y and b[THEN bspec[where x=x]] unfolding subset_eq by auto } | |
| 1231 | moreover | |
| 1232 | have *:"inj_on (\<lambda>v. v + (y - a)) t" unfolding inj_on_def by auto | |
| 1233 | have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a))) = 1" | |
| 1234 | unfolding setsum_reindex[OF *] o_def using obt(4) by auto | |
| 1235 | moreover have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a)) *s v) = y" | |
| 1236 | unfolding setsum_reindex[OF *] o_def using obt(4,5) | |
| 1237 | by (simp add: setsum_addf setsum_subtractf setsum_vmul[OF obt(1), THEN sym]) | |
| 1238 | ultimately show "\<exists>sa u. finite sa \<and> (\<forall>x\<in>sa. x \<in> s) \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *s v) = y" | |
| 1239 | apply(rule_tac x="(\<lambda>v. v + (y - a)) ` t" in exI) apply(rule_tac x="\<lambda>v. u (v - (y - a))" in exI) | |
| 1240 | using obt(1, 3) by auto | |
| 1241 | qed | |
| 1242 | qed | |
| 1243 | ||
| 1244 | ||
| 1245 | lemma compact_convex_combinations: | |
| 1246 | assumes "compact s" "compact t" | |
| 1247 |   shows "compact { (1 - u) *s x + u *s y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t}"
 | |
| 1248 | proof- | |
| 1249 |   let ?X = "{ pastecart u w | u w. u \<in> {vec1 0 .. vec1 1} \<and> w \<in> { pastecart x y |x y. x \<in> s \<and> y \<in> t} }"
 | |
| 1250 | let ?h = "(\<lambda>z. (1 - dest_vec1(fstcart z)) *s fstcart(sndcart z) + dest_vec1(fstcart z) *s sndcart(sndcart z))" | |
| 1251 |   have *:"{ (1 - u) *s x + u *s y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X"
 | |
| 1252 | apply(rule set_ext) unfolding image_iff mem_Collect_eq unfolding mem_interval_1 vec1_dest_vec1 | |
| 1253 | apply rule apply auto apply(rule_tac x="pastecart (vec1 u) (pastecart xa y)" in exI) apply simp | |
| 1254 | apply(rule_tac x="vec1 u" in exI) apply(rule_tac x="pastecart xa y" in exI) by auto | |
| 1255 |   { fix u::"real^1" fix x y assume as:"0 \<le> dest_vec1 u" "dest_vec1 u \<le> 1" "x \<in> s" "y \<in> t"
 | |
| 1256 | hence "continuous (at (pastecart u (pastecart x y))) | |
| 1257 | (\<lambda>z. fstcart (sndcart z) - dest_vec1 (fstcart z) *s fstcart (sndcart z) + | |
| 1258 | dest_vec1 (fstcart z) *s sndcart (sndcart z))" | |
| 1259 | apply (auto intro!: continuous_add continuous_sub continuous_mul simp add: o_def vec1_dest_vec1) | |
| 1260 | using linear_continuous_at linear_fstcart linear_sndcart linear_sndcart | |
| 1261 | using linear_compose[unfolded o_def] by auto } | |
| 1262 |   hence "continuous_on {pastecart u w |u w. u \<in> {vec1 0..vec1 1} \<and> w \<in> {pastecart x y |x y. x \<in> s \<and> y \<in> t}}
 | |
| 1263 | (\<lambda>z. (1 - dest_vec1 (fstcart z)) *s fstcart (sndcart z) + dest_vec1 (fstcart z) *s sndcart (sndcart z))" | |
| 1264 | apply(rule_tac continuous_at_imp_continuous_on) unfolding mem_Collect_eq | |
| 1265 | unfolding mem_interval_1 vec1_dest_vec1 by auto | |
| 1266 | thus ?thesis unfolding * apply(rule compact_continuous_image) | |
| 1267 | defer apply(rule compact_pastecart) defer apply(rule compact_pastecart) | |
| 1268 | using compact_interval assms by auto | |
| 1269 | qed | |
| 1270 | ||
| 1271 | lemma compact_convex_hull: fixes s::"(real^'n::finite) set" | |
| 1272 | assumes "compact s" shows "compact(convex hull s)" | |
| 1273 | proof(cases "s={}")
 | |
| 1274 | case True thus ?thesis using compact_empty by simp | |
| 1275 | next | |
| 1276 | case False then obtain w where "w\<in>s" by auto | |
| 1277 | show ?thesis unfolding caratheodory[of s] | |
| 1278 |   proof(induct "CARD('n) + 1")
 | |
| 1279 |     have *:"{x.\<exists>sa. finite sa \<and> sa \<subseteq> s \<and> card sa \<le> 0 \<and> x \<in> convex hull sa} = {}" 
 | |
| 1280 | using compact_empty by (auto simp add: convex_hull_empty) | |
| 1281 | case 0 thus ?case unfolding * by simp | |
| 1282 | next | |
| 1283 | case (Suc n) | |
| 1284 | show ?case proof(cases "n=0") | |
| 1285 |       case True have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} = s"
 | |
| 1286 | unfolding expand_set_eq and mem_Collect_eq proof(rule, rule) | |
| 1287 | fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1288 | then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto | |
| 1289 | show "x\<in>s" proof(cases "card t = 0") | |
| 1290 | case True thus ?thesis using t(4) unfolding card_0_eq[OF t(1)] by(simp add: convex_hull_empty) | |
| 1291 | next | |
| 1292 | case False hence "card t = Suc 0" using t(3) `n=0` by auto | |
| 1293 | 	  then obtain a where "t = {a}" unfolding card_Suc_eq by auto
 | |
| 1294 | thus ?thesis using t(2,4) by (simp add: convex_hull_singleton) | |
| 1295 | qed | |
| 1296 | next | |
| 1297 | fix x assume "x\<in>s" | |
| 1298 | thus "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1299 | 	  apply(rule_tac x="{x}" in exI) unfolding convex_hull_singleton by auto 
 | |
| 1300 | qed thus ?thesis using assms by simp | |
| 1301 | next | |
| 1302 |       case False have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} =
 | |
| 1303 | 	{ (1 - u) *s x + u *s y | x y u. 
 | |
| 1304 | 	0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> {x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> x \<in> convex hull t}}"
 | |
| 1305 | unfolding expand_set_eq and mem_Collect_eq proof(rule,rule) | |
| 1306 | fix x assume "\<exists>u v c. x = (1 - c) *s u + c *s v \<and> | |
| 1307 | 0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)" | |
| 1308 | then obtain u v c t where obt:"x = (1 - c) *s u + c *s v" | |
| 1309 | "0 \<le> c \<and> c \<le> 1" "u \<in> s" "finite t" "t \<subseteq> s" "card t \<le> n" "v \<in> convex hull t" by auto | |
| 1310 | moreover have "(1 - c) *s u + c *s v \<in> convex hull insert u t" | |
| 1311 | apply(rule mem_convex) using obt(2) and convex_convex_hull and hull_subset[of "insert u t" convex] | |
| 1312 | using obt(7) and hull_mono[of t "insert u t"] by auto | |
| 1313 | ultimately show "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1314 | apply(rule_tac x="insert u t" in exI) by (auto simp add: card_insert_if) | |
| 1315 | next | |
| 1316 | fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1317 | then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto | |
| 1318 | let ?P = "\<exists>u v c. x = (1 - c) *s u + c *s v \<and> | |
| 1319 | 0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)" | |
| 1320 | show ?P proof(cases "card t = Suc n") | |
| 1321 | case False hence "card t \<le> n" using t(3) by auto | |
| 1322 | thus ?P apply(rule_tac x=w in exI, rule_tac x=x in exI, rule_tac x=1 in exI) using `w\<in>s` and t | |
| 1323 | by(auto intro!: exI[where x=t]) | |
| 1324 | next | |
| 1325 | case True then obtain a u where au:"t = insert a u" "a\<notin>u" apply(drule_tac card_eq_SucD) by auto | |
| 1326 | 	  show ?P proof(cases "u={}")
 | |
| 1327 | case True hence "x=a" using t(4)[unfolded au] by auto | |
| 1328 | show ?P unfolding `x=a` apply(rule_tac x=a in exI, rule_tac x=a in exI, rule_tac x=1 in exI) | |
| 1329 | 	      using t and `n\<noteq>0` unfolding au by(auto intro!: exI[where x="{a}"] simp add: convex_hull_singleton)
 | |
| 1330 | next | |
| 1331 | case False obtain ux vx b where obt:"ux\<ge>0" "vx\<ge>0" "ux + vx = 1" "b \<in> convex hull u" "x = ux *s a + vx *s b" | |
| 1332 | using t(4)[unfolded au convex_hull_insert[OF False]] by auto | |
| 1333 | have *:"1 - vx = ux" using obt(3) by auto | |
| 1334 | show ?P apply(rule_tac x=a in exI, rule_tac x=b in exI, rule_tac x=vx in exI) | |
| 1335 | using obt and t(1-3) unfolding au and * using card_insert_disjoint[OF _ au(2)] | |
| 1336 | by(auto intro!: exI[where x=u]) | |
| 1337 | qed | |
| 1338 | qed | |
| 1339 | qed | |
| 1340 | thus ?thesis using compact_convex_combinations[OF assms Suc] by simp | |
| 1341 | qed | |
| 1342 | qed | |
| 1343 | qed | |
| 1344 | ||
| 1345 | lemma finite_imp_compact_convex_hull: | |
| 1346 | "finite s \<Longrightarrow> compact(convex hull s)" | |
| 1347 | apply(drule finite_imp_compact, drule compact_convex_hull) by assumption | |
| 1348 | ||
| 1349 | subsection {* Extremal points of a simplex are some vertices. *}
 | |
| 1350 | ||
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 1351 | lemma dist_increases_online: | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 1352 | fixes a b d :: "real ^ 'n::finite" | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 1353 | assumes "d \<noteq> 0" | 
| 31276 | 1354 | shows "dist a (b + d) > dist a b \<or> dist a (b - d) > dist a b" | 
| 1355 | proof(cases "a \<bullet> d - b \<bullet> d > 0") | |
| 1356 | case True hence "0 < d \<bullet> d + (a \<bullet> d * 2 - b \<bullet> d * 2)" | |
| 1357 | apply(rule_tac add_pos_pos) using assms by auto | |
| 31289 | 1358 | thus ?thesis apply(rule_tac disjI2) unfolding dist_norm and real_vector_norm_def and real_sqrt_less_iff | 
| 31276 | 1359 | by(simp add: dot_rsub dot_radd dot_lsub dot_ladd dot_sym field_simps) | 
| 1360 | next | |
| 1361 | case False hence "0 < d \<bullet> d + (b \<bullet> d * 2 - a \<bullet> d * 2)" | |
| 1362 | apply(rule_tac add_pos_nonneg) using assms by auto | |
| 31289 | 1363 | thus ?thesis apply(rule_tac disjI1) unfolding dist_norm and real_vector_norm_def and real_sqrt_less_iff | 
| 31276 | 1364 | by(simp add: dot_rsub dot_radd dot_lsub dot_ladd dot_sym field_simps) | 
| 1365 | qed | |
| 1366 | ||
| 1367 | lemma norm_increases_online: | |
| 1368 | "(d::real^'n::finite) \<noteq> 0 \<Longrightarrow> norm(a + d) > norm a \<or> norm(a - d) > norm a" | |
| 31289 | 1369 | using dist_increases_online[of d a 0] unfolding dist_norm by auto | 
| 31276 | 1370 | |
| 1371 | lemma simplex_furthest_lt: | |
| 1372 | fixes s::"(real^'n::finite) set" assumes "finite s" | |
| 1373 | shows "\<forall>x \<in> (convex hull s). x \<notin> s \<longrightarrow> (\<exists>y\<in>(convex hull s). norm(x - a) < norm(y - a))" | |
| 1374 | proof(induct_tac rule: finite_induct[of s]) | |
| 1375 | fix x s assume as:"finite s" "x\<notin>s" "\<forall>x\<in>convex hull s. x \<notin> s \<longrightarrow> (\<exists>y\<in>convex hull s. norm (x - a) < norm (y - a))" | |
| 1376 | show "\<forall>xa\<in>convex hull insert x s. xa \<notin> insert x s \<longrightarrow> (\<exists>y\<in>convex hull insert x s. norm (xa - a) < norm (y - a))" | |
| 1377 |   proof(rule,rule,cases "s = {}")
 | |
| 1378 | case False fix y assume y:"y \<in> convex hull insert x s" "y \<notin> insert x s" | |
| 1379 | obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "y = u *s x + v *s b" | |
| 1380 | using y(1)[unfolded convex_hull_insert[OF False]] by auto | |
| 1381 | show "\<exists>z\<in>convex hull insert x s. norm (y - a) < norm (z - a)" | |
| 1382 | proof(cases "y\<in>convex hull s") | |
| 1383 | case True then obtain z where "z\<in>convex hull s" "norm (y - a) < norm (z - a)" | |
| 1384 | using as(3)[THEN bspec[where x=y]] and y(2) by auto | |
| 1385 | thus ?thesis apply(rule_tac x=z in bexI) unfolding convex_hull_insert[OF False] by auto | |
| 1386 | next | |
| 1387 | case False show ?thesis using obt(3) proof(cases "u=0", case_tac[!] "v=0") | |
| 1388 | assume "u=0" "v\<noteq>0" hence "y = b" using obt by auto | |
| 1389 | thus ?thesis using False and obt(4) by auto | |
| 1390 | next | |
| 1391 | assume "u\<noteq>0" "v=0" hence "y = x" using obt by auto | |
| 1392 | thus ?thesis using y(2) by auto | |
| 1393 | next | |
| 1394 | assume "u\<noteq>0" "v\<noteq>0" | |
| 1395 | then obtain w where w:"w>0" "w<u" "w<v" using real_lbound_gt_zero[of u v] and obt(1,2) by auto | |
| 1396 | have "x\<noteq>b" proof(rule ccontr) | |
| 1397 | assume "\<not> x\<noteq>b" hence "y=b" unfolding obt(5) | |
| 1398 | using obt(3) by(auto simp add: vector_sadd_rdistrib[THEN sym]) | |
| 1399 | thus False using obt(4) and False by simp qed | |
| 1400 | hence *:"w *s (x - b) \<noteq> 0" using w(1) by auto | |
| 1401 | show ?thesis using dist_increases_online[OF *, of a y] | |
| 1402 | proof(erule_tac disjE) | |
| 1403 | assume "dist a y < dist a (y + w *s (x - b))" | |
| 1404 | hence "norm (y - a) < norm ((u + w) *s x + (v - w) *s b - a)" | |
| 31289 | 1405 | unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: ring_simps) | 
| 31276 | 1406 | moreover have "(u + w) *s x + (v - w) *s b \<in> convex hull insert x s" | 
| 1407 | 	    unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
 | |
| 1408 | apply(rule_tac x="u + w" in exI) apply rule defer | |
| 1409 | apply(rule_tac x="v - w" in exI) using `u\<ge>0` and w and obt(3,4) by auto | |
| 1410 | ultimately show ?thesis by auto | |
| 1411 | next | |
| 1412 | assume "dist a y < dist a (y - w *s (x - b))" | |
| 1413 | hence "norm (y - a) < norm ((u - w) *s x + (v + w) *s b - a)" | |
| 31289 | 1414 | unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: ring_simps) | 
| 31276 | 1415 | moreover have "(u - w) *s x + (v + w) *s b \<in> convex hull insert x s" | 
| 1416 | 	    unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
 | |
| 1417 | apply(rule_tac x="u - w" in exI) apply rule defer | |
| 1418 | apply(rule_tac x="v + w" in exI) using `u\<ge>0` and w and obt(3,4) by auto | |
| 1419 | ultimately show ?thesis by auto | |
| 1420 | qed | |
| 1421 | qed auto | |
| 1422 | qed | |
| 1423 | qed auto | |
| 1424 | qed (auto simp add: assms) | |
| 1425 | ||
| 1426 | lemma simplex_furthest_le: | |
| 1427 |   assumes "finite s" "s \<noteq> {}"
 | |
| 1428 | shows "\<exists>y\<in>s. \<forall>x\<in>(convex hull s). norm(x - a) \<le> norm(y - a)" | |
| 1429 | proof- | |
| 1430 |   have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
 | |
| 1431 | then obtain x where x:"x\<in>convex hull s" "\<forall>y\<in>convex hull s. norm (y - a) \<le> norm (x - a)" | |
| 1432 | using distance_attains_sup[OF finite_imp_compact_convex_hull[OF assms(1)], of a] | |
| 31289 | 1433 | unfolding dist_commute[of a] unfolding dist_norm by auto | 
| 31276 | 1434 | thus ?thesis proof(cases "x\<in>s") | 
| 1435 | case False then obtain y where "y\<in>convex hull s" "norm (x - a) < norm (y - a)" | |
| 1436 | using simplex_furthest_lt[OF assms(1), THEN bspec[where x=x]] and x(1) by auto | |
| 1437 | thus ?thesis using x(2)[THEN bspec[where x=y]] by auto | |
| 1438 | qed auto | |
| 1439 | qed | |
| 1440 | ||
| 1441 | lemma simplex_furthest_le_exists: | |
| 1442 | "finite s \<Longrightarrow> (\<forall>x\<in>(convex hull s). \<exists>y\<in>s. norm(x - a) \<le> norm(y - a))" | |
| 1443 |   using simplex_furthest_le[of s] by (cases "s={}")auto
 | |
| 1444 | ||
| 1445 | lemma simplex_extremal_le: | |
| 1446 |   assumes "finite s" "s \<noteq> {}"
 | |
| 1447 | shows "\<exists>u\<in>s. \<exists>v\<in>s. \<forall>x\<in>convex hull s. \<forall>y \<in> convex hull s. norm(x - y) \<le> norm(u - v)" | |
| 1448 | proof- | |
| 1449 |   have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
 | |
| 1450 | then obtain u v where obt:"u\<in>convex hull s" "v\<in>convex hull s" | |
| 1451 | "\<forall>x\<in>convex hull s. \<forall>y\<in>convex hull s. norm (x - y) \<le> norm (u - v)" | |
| 1452 | using compact_sup_maxdistance[OF finite_imp_compact_convex_hull[OF assms(1)]] by auto | |
| 1453 | thus ?thesis proof(cases "u\<notin>s \<or> v\<notin>s", erule_tac disjE) | |
| 1454 | assume "u\<notin>s" then obtain y where "y\<in>convex hull s" "norm (u - v) < norm (y - v)" | |
| 1455 | using simplex_furthest_lt[OF assms(1), THEN bspec[where x=u]] and obt(1) by auto | |
| 1456 | thus ?thesis using obt(3)[THEN bspec[where x=y], THEN bspec[where x=v]] and obt(2) by auto | |
| 1457 | next | |
| 1458 | assume "v\<notin>s" then obtain y where "y\<in>convex hull s" "norm (v - u) < norm (y - u)" | |
| 1459 | using simplex_furthest_lt[OF assms(1), THEN bspec[where x=v]] and obt(2) by auto | |
| 1460 | thus ?thesis using obt(3)[THEN bspec[where x=u], THEN bspec[where x=y]] and obt(1) | |
| 1461 | by (auto simp add: norm_minus_commute) | |
| 1462 | qed auto | |
| 1463 | qed | |
| 1464 | ||
| 1465 | lemma simplex_extremal_le_exists: | |
| 1466 | "finite s \<Longrightarrow> x \<in> convex hull s \<Longrightarrow> y \<in> convex hull s | |
| 1467 | \<Longrightarrow> (\<exists>u\<in>s. \<exists>v\<in>s. norm(x - y) \<le> norm(u - v))" | |
| 1468 |   using convex_hull_empty simplex_extremal_le[of s] by(cases "s={}")auto
 | |
| 1469 | ||
| 1470 | subsection {* Closest point of a convex set is unique, with a continuous projection. *}
 | |
| 1471 | ||
| 31289 | 1472 | definition | 
| 1473 | closest_point :: "(real ^ 'n::finite) set \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 'n" where | |
| 31276 | 1474 | "closest_point s a = (SOME x. x \<in> s \<and> (\<forall>y\<in>s. dist a x \<le> dist a y))" | 
| 1475 | ||
| 1476 | lemma closest_point_exists: | |
| 1477 |   assumes "closed s" "s \<noteq> {}"
 | |
| 1478 | shows "closest_point s a \<in> s" "\<forall>y\<in>s. dist a (closest_point s a) \<le> dist a y" | |
| 1479 | unfolding closest_point_def apply(rule_tac[!] someI2_ex) | |
| 1480 | using distance_attains_inf[OF assms(1,2), of a] by auto | |
| 1481 | ||
| 1482 | lemma closest_point_in_set: | |
| 1483 |   "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s a) \<in> s"
 | |
| 1484 | by(meson closest_point_exists) | |
| 1485 | ||
| 1486 | lemma closest_point_le: | |
| 1487 | "closed s \<Longrightarrow> x \<in> s \<Longrightarrow> dist a (closest_point s a) \<le> dist a x" | |
| 1488 | using closest_point_exists[of s] by auto | |
| 1489 | ||
| 1490 | lemma closest_point_self: | |
| 1491 | assumes "x \<in> s" shows "closest_point s x = x" | |
| 1492 | unfolding closest_point_def apply(rule some1_equality, rule ex1I[of _ x]) | |
| 1493 | using assms by auto | |
| 1494 | ||
| 1495 | lemma closest_point_refl: | |
| 1496 |  "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s x = x \<longleftrightarrow> x \<in> s)"
 | |
| 1497 | using closest_point_in_set[of s x] closest_point_self[of x s] by auto | |
| 1498 | ||
| 1499 | lemma closer_points_lemma: fixes y::"real^'n::finite" | |
| 1500 | assumes "y \<bullet> z > 0" | |
| 1501 | shows "\<exists>u>0. \<forall>v>0. v \<le> u \<longrightarrow> norm(v *s z - y) < norm y" | |
| 1502 | proof- have z:"z \<bullet> z > 0" unfolding dot_pos_lt using assms by auto | |
| 1503 | thus ?thesis using assms apply(rule_tac x="(y \<bullet> z) / (z \<bullet> z)" in exI) apply(rule) defer proof(rule+) | |
| 1504 | fix v assume "0<v" "v \<le> y \<bullet> z / (z \<bullet> z)" | |
| 1505 | thus "norm (v *s z - y) < norm y" unfolding norm_lt using z and assms | |
| 1506 | by (simp add: field_simps dot_sym mult_strict_left_mono[OF _ `0<v`]) | |
| 1507 | qed(rule divide_pos_pos, auto) qed | |
| 1508 | ||
| 1509 | lemma closer_point_lemma: | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 1510 | fixes x y z :: "real ^ 'n::finite" | 
| 31276 | 1511 | assumes "(y - x) \<bullet> (z - x) > 0" | 
| 1512 | shows "\<exists>u>0. u \<le> 1 \<and> dist (x + u *s (z - x)) y < dist x y" | |
| 1513 | proof- obtain u where "u>0" and u:"\<forall>v>0. v \<le> u \<longrightarrow> norm (v *s (z - x) - (y - x)) < norm (y - x)" | |
| 1514 | using closer_points_lemma[OF assms] by auto | |
| 1515 | show ?thesis apply(rule_tac x="min u 1" in exI) using u[THEN spec[where x="min u 1"]] and `u>0` | |
| 31289 | 1516 | unfolding dist_norm by(auto simp add: norm_minus_commute field_simps) qed | 
| 31276 | 1517 | |
| 1518 | lemma any_closest_point_dot: | |
| 1519 | assumes "convex s" "closed s" "x \<in> s" "y \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z" | |
| 1520 | shows "(a - x) \<bullet> (y - x) \<le> 0" | |
| 1521 | proof(rule ccontr) assume "\<not> (a - x) \<bullet> (y - x) \<le> 0" | |
| 1522 | then obtain u where u:"u>0" "u\<le>1" "dist (x + u *s (y - x)) a < dist x a" using closer_point_lemma[of a x y] by auto | |
| 1523 | let ?z = "(1 - u) *s x + u *s y" have "?z \<in> s" using mem_convex[OF assms(1,3,4), of u] using u by auto | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 1524 | thus False using assms(5)[THEN bspec[where x="?z"]] and u(3) by (auto simp add: dist_commute field_simps) qed | 
| 31276 | 1525 | |
| 1526 | lemma any_closest_point_unique: | |
| 1527 | assumes "convex s" "closed s" "x \<in> s" "y \<in> s" | |
| 1528 | "\<forall>z\<in>s. dist a x \<le> dist a z" "\<forall>z\<in>s. dist a y \<le> dist a z" | |
| 1529 | shows "x = y" using any_closest_point_dot[OF assms(1-4,5)] and any_closest_point_dot[OF assms(1-2,4,3,6)] | |
| 1530 | unfolding norm_pths(1) and norm_le_square by auto | |
| 1531 | ||
| 1532 | lemma closest_point_unique: | |
| 1533 | assumes "convex s" "closed s" "x \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z" | |
| 1534 | shows "x = closest_point s a" | |
| 1535 | using any_closest_point_unique[OF assms(1-3) _ assms(4), of "closest_point s a"] | |
| 1536 | using closest_point_exists[OF assms(2)] and assms(3) by auto | |
| 1537 | ||
| 1538 | lemma closest_point_dot: | |
| 1539 | assumes "convex s" "closed s" "x \<in> s" | |
| 1540 | shows "(a - closest_point s a) \<bullet> (x - closest_point s a) \<le> 0" | |
| 1541 | apply(rule any_closest_point_dot[OF assms(1,2) _ assms(3)]) | |
| 1542 | using closest_point_exists[OF assms(2)] and assms(3) by auto | |
| 1543 | ||
| 1544 | lemma closest_point_lt: | |
| 1545 | assumes "convex s" "closed s" "x \<in> s" "x \<noteq> closest_point s a" | |
| 1546 | shows "dist a (closest_point s a) < dist a x" | |
| 1547 | apply(rule ccontr) apply(rule_tac notE[OF assms(4)]) | |
| 1548 | apply(rule closest_point_unique[OF assms(1-3), of a]) | |
| 1549 | using closest_point_le[OF assms(2), of _ a] by fastsimp | |
| 1550 | ||
| 1551 | lemma closest_point_lipschitz: | |
| 1552 |   assumes "convex s" "closed s" "s \<noteq> {}"
 | |
| 1553 | shows "dist (closest_point s x) (closest_point s y) \<le> dist x y" | |
| 1554 | proof- | |
| 1555 | have "(x - closest_point s x) \<bullet> (closest_point s y - closest_point s x) \<le> 0" | |
| 1556 | "(y - closest_point s y) \<bullet> (closest_point s x - closest_point s y) \<le> 0" | |
| 1557 | apply(rule_tac[!] any_closest_point_dot[OF assms(1-2)]) | |
| 1558 | using closest_point_exists[OF assms(2-3)] by auto | |
| 31289 | 1559 | thus ?thesis unfolding dist_norm and norm_le | 
| 31276 | 1560 | using dot_pos_le[of "(x - closest_point s x) - (y - closest_point s y)"] | 
| 1561 | by (auto simp add: dot_sym dot_ladd dot_radd) qed | |
| 1562 | ||
| 1563 | lemma continuous_at_closest_point: | |
| 1564 |   assumes "convex s" "closed s" "s \<noteq> {}"
 | |
| 1565 | shows "continuous (at x) (closest_point s)" | |
| 1566 | unfolding continuous_at_eps_delta | |
| 1567 | using le_less_trans[OF closest_point_lipschitz[OF assms]] by auto | |
| 1568 | ||
| 1569 | lemma continuous_on_closest_point: | |
| 1570 |   assumes "convex s" "closed s" "s \<noteq> {}"
 | |
| 1571 | shows "continuous_on t (closest_point s)" | |
| 1572 | apply(rule continuous_at_imp_continuous_on) using continuous_at_closest_point[OF assms] by auto | |
| 1573 | ||
| 1574 | subsection {* Various point-to-set separating/supporting hyperplane theorems. *}
 | |
| 1575 | ||
| 1576 | lemma supporting_hyperplane_closed_point: | |
| 1577 |   assumes "convex s" "closed s" "s \<noteq> {}" "z \<notin> s"
 | |
| 1578 | shows "\<exists>a b. \<exists>y\<in>s. a \<bullet> z < b \<and> (a \<bullet> y = b) \<and> (\<forall>x\<in>s. a \<bullet> x \<ge> b)" | |
| 1579 | proof- | |
| 1580 | from distance_attains_inf[OF assms(2-3)] obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" by auto | |
| 1581 | show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="(y - z) \<bullet> y" in exI, rule_tac x=y in bexI) | |
| 1582 | apply rule defer apply rule defer apply(rule, rule ccontr) using `y\<in>s` proof- | |
| 1583 | show "(y - z) \<bullet> z < (y - z) \<bullet> y" apply(subst diff_less_iff(1)[THEN sym]) | |
| 1584 | unfolding dot_rsub[THEN sym] and dot_pos_lt using `y\<in>s` `z\<notin>s` by auto | |
| 1585 | next | |
| 1586 | fix x assume "x\<in>s" have *:"\<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> dist z y \<le> dist z ((1 - u) *s y + u *s x)" | |
| 1587 | using assms(1)[unfolded convex_alt] and y and `x\<in>s` and `y\<in>s` by auto | |
| 1588 | assume "\<not> (y - z) \<bullet> y \<le> (y - z) \<bullet> x" then obtain v where | |
| 1589 | "v>0" "v\<le>1" "dist (y + v *s (x - y)) z < dist y z" using closer_point_lemma[of z y x] by auto | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 1590 | thus False using *[THEN spec[where x=v]] by(auto simp add: dist_commute field_simps) | 
| 31276 | 1591 | qed auto | 
| 1592 | qed | |
| 1593 | ||
| 1594 | lemma separating_hyperplane_closed_point: | |
| 1595 | assumes "convex s" "closed s" "z \<notin> s" | |
| 1596 | shows "\<exists>a b. a \<bullet> z < b \<and> (\<forall>x\<in>s. a \<bullet> x > b)" | |
| 1597 | proof(cases "s={}")
 | |
| 1598 | case True thus ?thesis apply(rule_tac x="-z" in exI, rule_tac x=1 in exI) | |
| 1599 | using less_le_trans[OF _ dot_pos_le[of z]] by auto | |
| 1600 | next | |
| 1601 | case False obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" | |
| 1602 | using distance_attains_inf[OF assms(2) False] by auto | |
| 1603 | show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="(y - z) \<bullet> z + (norm(y - z))\<twosuperior> / 2" in exI) | |
| 1604 | apply rule defer apply rule proof- | |
| 1605 | fix x assume "x\<in>s" | |
| 1606 | have "\<not> 0 < (z - y) \<bullet> (x - y)" apply(rule_tac notI) proof(drule closer_point_lemma) | |
| 1607 | assume "\<exists>u>0. u \<le> 1 \<and> dist (y + u *s (x - y)) z < dist y z" | |
| 1608 | then obtain u where "u>0" "u\<le>1" "dist (y + u *s (x - y)) z < dist y z" by auto | |
| 1609 | thus False using y[THEN bspec[where x="y + u *s (x - y)"]] | |
| 1610 | using assms(1)[unfolded convex_alt, THEN bspec[where x=y]] | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 1611 | using `x\<in>s` `y\<in>s` by (auto simp add: dist_commute field_simps) qed | 
| 31276 | 1612 | moreover have "0 < norm (y - z) ^ 2" using `y\<in>s` `z\<notin>s` by auto | 
| 1613 | hence "0 < (y - z) \<bullet> (y - z)" unfolding norm_pow_2 by simp | |
| 1614 | ultimately show "(y - z) \<bullet> z + (norm (y - z))\<twosuperior> / 2 < (y - z) \<bullet> x" | |
| 1615 | unfolding norm_pow_2 and dlo_simps(3) by (auto simp add: field_simps dot_sym) | |
| 1616 | qed(insert `y\<in>s` `z\<notin>s`, auto) | |
| 1617 | qed | |
| 1618 | ||
| 1619 | lemma separating_hyperplane_closed_0: | |
| 1620 | assumes "convex (s::(real^'n::finite) set)" "closed s" "0 \<notin> s" | |
| 1621 | shows "\<exists>a b. a \<noteq> 0 \<and> 0 < b \<and> (\<forall>x\<in>s. a \<bullet> x > b)" | |
| 1622 |   proof(cases "s={}") guess a using UNIV_witness[where 'a='n] ..
 | |
| 1623 | case True have "norm ((basis a)::real^'n::finite) = 1" | |
| 1624 | using norm_basis and dimindex_ge_1 by auto | |
| 1625 | thus ?thesis apply(rule_tac x="basis a" in exI, rule_tac x=1 in exI) using True by auto | |
| 1626 | next case False thus ?thesis using False using separating_hyperplane_closed_point[OF assms] | |
| 1627 | apply - apply(erule exE)+ unfolding dot_rzero apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed | |
| 1628 | ||
| 1629 | subsection {* Now set-to-set for closed/compact sets. *}
 | |
| 1630 | ||
| 1631 | lemma separating_hyperplane_closed_compact: | |
| 1632 |   assumes "convex (s::(real^'n::finite) set)" "closed s" "convex t" "compact t" "t \<noteq> {}" "s \<inter> t = {}"
 | |
| 1633 | shows "\<exists>a b. (\<forall>x\<in>s. a \<bullet> x < b) \<and> (\<forall>x\<in>t. a \<bullet> x > b)" | |
| 1634 | proof(cases "s={}")
 | |
| 1635 | case True | |
| 1636 | obtain b where b:"b>0" "\<forall>x\<in>t. norm x \<le> b" using compact_imp_bounded[OF assms(4)] unfolding bounded_pos by auto | |
| 1637 | obtain z::"real^'n" where z:"norm z = b + 1" using vector_choose_size[of "b + 1"] and b(1) by auto | |
| 1638 | hence "z\<notin>t" using b(2)[THEN bspec[where x=z]] by auto | |
| 1639 | then obtain a b where ab:"a \<bullet> z < b" "\<forall>x\<in>t. b < a \<bullet> x" | |
| 1640 | using separating_hyperplane_closed_point[OF assms(3) compact_imp_closed[OF assms(4)], of z] by auto | |
| 1641 | thus ?thesis using True by auto | |
| 1642 | next | |
| 1643 | case False then obtain y where "y\<in>s" by auto | |
| 1644 |   obtain a b where "0 < b" "\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. b < a \<bullet> x"
 | |
| 1645 | using separating_hyperplane_closed_point[OF convex_differences[OF assms(1,3)], of 0] | |
| 1646 | using closed_compact_differences[OF assms(2,4)] using assms(6) by(auto, blast) | |
| 1647 | hence ab:"\<forall>x\<in>s. \<forall>y\<in>t. b + a \<bullet> y < a \<bullet> x" apply- apply(rule,rule) apply(erule_tac x="x - y" in ballE) by auto | |
| 1648 | def k \<equiv> "rsup ((\<lambda>x. a \<bullet> x) ` t)" | |
| 1649 | show ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-(k + b / 2)" in exI) | |
| 1650 | apply(rule,rule) defer apply(rule) unfolding dot_lneg and neg_less_iff_less proof- | |
| 1651 | from ab have "((\<lambda>x. a \<bullet> x) ` t) *<= (a \<bullet> y - b)" | |
| 1652 | apply(erule_tac x=y in ballE) apply(rule setleI) using `y\<in>s` by auto | |
| 1653 | hence k:"isLub UNIV ((\<lambda>x. a \<bullet> x) ` t) k" unfolding k_def apply(rule_tac rsup) using assms(5) by auto | |
| 1654 | fix x assume "x\<in>t" thus "a \<bullet> x < (k + b / 2)" using `0<b` and isLubD2[OF k, of "a \<bullet> x"] by auto | |
| 1655 | next | |
| 1656 | fix x assume "x\<in>s" | |
| 1657 | hence "k \<le> a \<bullet> x - b" unfolding k_def apply(rule_tac rsup_le) using assms(5) | |
| 1658 | unfolding setle_def | |
| 1659 | using ab[THEN bspec[where x=x]] by auto | |
| 1660 | thus "k + b / 2 < a \<bullet> x" using `0 < b` by auto | |
| 1661 | qed | |
| 1662 | qed | |
| 1663 | ||
| 1664 | lemma separating_hyperplane_compact_closed: | |
| 1665 |   assumes "convex s" "compact s" "s \<noteq> {}" "convex t" "closed t" "s \<inter> t = {}"
 | |
| 1666 | shows "\<exists>a b. (\<forall>x\<in>s. a \<bullet> x < b) \<and> (\<forall>x\<in>t. a \<bullet> x > b)" | |
| 1667 | proof- obtain a b where "(\<forall>x\<in>t. a \<bullet> x < b) \<and> (\<forall>x\<in>s. b < a \<bullet> x)" | |
| 1668 | using separating_hyperplane_closed_compact[OF assms(4-5,1-2,3)] and assms(6) by auto | |
| 1669 | thus ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-b" in exI) by auto qed | |
| 1670 | ||
| 1671 | subsection {* General case without assuming closure and getting non-strict separation. *}
 | |
| 1672 | ||
| 1673 | lemma separating_hyperplane_set_0: | |
| 1674 | assumes "convex s" "(0::real^'n::finite) \<notin> s" | |
| 1675 | shows "\<exists>a. a \<noteq> 0 \<and> (\<forall>x\<in>s. 0 \<le> a \<bullet> x)" | |
| 1676 | proof- let ?k = "\<lambda>c. {x::real^'n. 0 \<le> c \<bullet> x}"
 | |
| 1677 |   have "frontier (cball 0 1) \<inter> (\<Inter> (?k ` s)) \<noteq> {}"
 | |
| 1678 | apply(rule compact_imp_fip) apply(rule compact_frontier[OF compact_cball]) | |
| 1679 | defer apply(rule,rule,erule conjE) proof- | |
| 1680 | fix f assume as:"f \<subseteq> ?k ` s" "finite f" | |
| 1681 | obtain c where c:"f = ?k ` c" "c\<subseteq>s" "finite c" using finite_subset_image[OF as] by auto | |
| 1682 | then obtain a b where ab:"a \<noteq> 0" "0 < b" "\<forall>x\<in>convex hull c. b < a \<bullet> x" | |
| 1683 | using separating_hyperplane_closed_0[OF convex_convex_hull, of c] | |
| 1684 | using finite_imp_compact_convex_hull[OF c(3), THEN compact_imp_closed] and assms(2) | |
| 1685 | using subset_hull[unfolded mem_def, of convex, OF assms(1), THEN sym, of c] by auto | |
| 1686 | hence "\<exists>x. norm x = 1 \<and> (\<forall>y\<in>c. 0 \<le> y \<bullet> x)" apply(rule_tac x="inverse(norm a) *s a" in exI) | |
| 1687 | using hull_subset[of c convex] unfolding subset_eq and dot_rmult | |
| 1688 | apply- apply rule defer apply rule apply(rule mult_nonneg_nonneg) | |
| 1689 | by(auto simp add: dot_sym elim!: ballE) | |
| 31289 | 1690 |     thus "frontier (cball 0 1) \<inter> \<Inter>f \<noteq> {}" unfolding c(1) frontier_cball dist_norm by auto
 | 
| 31276 | 1691 | qed(insert closed_halfspace_ge, auto) | 
| 31289 | 1692 | then obtain x where "norm x = 1" "\<forall>y\<in>s. x\<in>?k y" unfolding frontier_cball dist_norm by auto | 
| 31276 | 1693 | thus ?thesis apply(rule_tac x=x in exI) by(auto simp add: dot_sym) qed | 
| 1694 | ||
| 1695 | lemma separating_hyperplane_sets: | |
| 1696 |   assumes "convex s" "convex (t::(real^'n::finite) set)" "s \<noteq> {}" "t \<noteq> {}" "s \<inter> t = {}"
 | |
| 1697 | shows "\<exists>a b. a \<noteq> 0 \<and> (\<forall>x\<in>s. a \<bullet> x \<le> b) \<and> (\<forall>x\<in>t. a \<bullet> x \<ge> b)" | |
| 1698 | proof- from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]] | |
| 1699 |   obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> a \<bullet> x"  using assms(3-5) by auto 
 | |
| 1700 | hence "\<forall>x\<in>t. \<forall>y\<in>s. a \<bullet> y \<le> a \<bullet> x" apply- apply(rule, rule) apply(erule_tac x="x - y" in ballE) by auto | |
| 1701 | thus ?thesis apply(rule_tac x=a in exI, rule_tac x="rsup ((\<lambda>x. a \<bullet> x) ` s)" in exI) using `a\<noteq>0` | |
| 1702 | apply(rule) apply(rule,rule) apply(rule rsup[THEN isLubD2]) prefer 4 apply(rule,rule rsup_le) unfolding setle_def | |
| 1703 | prefer 4 using assms(3-5) by blast+ qed | |
| 1704 | ||
| 1705 | subsection {* More convexity generalities. *}
 | |
| 1706 | ||
| 1707 | lemma convex_closure: assumes "convex s" shows "convex(closure s)" | |
| 1708 | unfolding convex_def Ball_def closure_sequential | |
| 1709 | apply(rule,rule,rule,rule,rule,rule,rule,rule,rule) apply(erule_tac exE)+ | |
| 1710 | apply(rule_tac x="\<lambda>n. u *s xb n + v *s xc n" in exI) apply(rule,rule) | |
| 1711 | apply(rule assms[unfolded convex_def, rule_format]) prefer 6 | |
| 1712 | apply(rule Lim_add) apply(rule_tac [1-2] Lim_cmul) by auto | |
| 1713 | ||
| 1714 | lemma convex_interior: assumes "convex s" shows "convex(interior s)" | |
| 1715 | unfolding convex_alt Ball_def mem_interior apply(rule,rule,rule,rule,rule,rule) apply(erule exE | erule conjE)+ proof- | |
| 1716 | fix x y u assume u:"0 \<le> u" "u \<le> (1::real)" | |
| 1717 | fix e d assume ed:"ball x e \<subseteq> s" "ball y d \<subseteq> s" "0<d" "0<e" | |
| 1718 | show "\<exists>e>0. ball ((1 - u) *s x + u *s y) e \<subseteq> s" apply(rule_tac x="min d e" in exI) | |
| 1719 | apply rule unfolding subset_eq defer apply rule proof- | |
| 1720 | fix z assume "z \<in> ball ((1 - u) *s x + u *s y) (min d e)" | |
| 1721 | hence "(1- u) *s (z - u *s (y - x)) + u *s (z + (1 - u) *s (y - x)) \<in> s" | |
| 1722 | apply(rule_tac assms[unfolded convex_alt, rule_format]) | |
| 31289 | 1723 | using ed(1,2) and u unfolding subset_eq mem_ball Ball_def dist_norm by(auto simp add: ring_simps) | 
| 31276 | 1724 | thus "z \<in> s" using u by (auto simp add: ring_simps) qed(insert u ed(3-4), auto) qed | 
| 1725 | ||
| 1726 | lemma convex_hull_eq_empty: "convex hull s = {} \<longleftrightarrow> s = {}"
 | |
| 1727 | using hull_subset[of s convex] convex_hull_empty by auto | |
| 1728 | ||
| 1729 | subsection {* Moving and scaling convex hulls. *}
 | |
| 1730 | ||
| 1731 | lemma convex_hull_translation_lemma: | |
| 1732 | "convex hull ((\<lambda>x. a + x) ` s) \<subseteq> (\<lambda>x. a + x) ` (convex hull s)" | |
| 1733 | apply(rule hull_minimal, rule image_mono, rule hull_subset) unfolding mem_def | |
| 1734 | using convex_translation[OF convex_convex_hull, of a s] by assumption | |
| 1735 | ||
| 1736 | lemma convex_hull_bilemma: fixes neg | |
| 1737 | assumes "(\<forall>s a. (convex hull (up a s)) \<subseteq> up a (convex hull s))" | |
| 1738 | shows "(\<forall>s. up a (up (neg a) s) = s) \<and> (\<forall>s. up (neg a) (up a s) = s) \<and> (\<forall>s t a. s \<subseteq> t \<longrightarrow> up a s \<subseteq> up a t) | |
| 1739 | \<Longrightarrow> \<forall>s. (convex hull (up a s)) = up a (convex hull s)" | |
| 1740 | using assms by(metis subset_antisym) | |
| 1741 | ||
| 1742 | lemma convex_hull_translation: | |
| 1743 | "convex hull ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (convex hull s)" | |
| 1744 | apply(rule convex_hull_bilemma[rule_format, of _ _ "\<lambda>a. -a"], rule convex_hull_translation_lemma) unfolding image_image by auto | |
| 1745 | ||
| 1746 | lemma convex_hull_scaling_lemma: | |
| 1747 | "(convex hull ((\<lambda>x. c *s x) ` s)) \<subseteq> (\<lambda>x. c *s x) ` (convex hull s)" | |
| 1748 | apply(rule hull_minimal, rule image_mono, rule hull_subset) | |
| 1749 | unfolding mem_def by(rule convex_scaling, rule convex_convex_hull) | |
| 1750 | ||
| 1751 | lemma convex_hull_scaling: | |
| 1752 | "convex hull ((\<lambda>x. c *s x) ` s) = (\<lambda>x. c *s x) ` (convex hull s)" | |
| 1753 | apply(cases "c=0") defer apply(rule convex_hull_bilemma[rule_format, of _ _ inverse]) apply(rule convex_hull_scaling_lemma) | |
| 1754 | unfolding image_image vector_smult_assoc by(auto simp add:image_constant_conv convex_hull_eq_empty) | |
| 1755 | ||
| 1756 | lemma convex_hull_affinity: | |
| 1757 | "convex hull ((\<lambda>x. a + c *s x) ` s) = (\<lambda>x. a + c *s x) ` (convex hull s)" | |
| 1758 | unfolding image_image[THEN sym] convex_hull_scaling convex_hull_translation .. | |
| 1759 | ||
| 1760 | subsection {* Convex set as intersection of halfspaces. *}
 | |
| 1761 | ||
| 1762 | lemma convex_halfspace_intersection: | |
| 1763 | assumes "closed s" "convex s" | |
| 1764 |   shows "s = \<Inter> {h. s \<subseteq> h \<and> (\<exists>a b. h = {x. a \<bullet> x \<le> b})}"
 | |
| 1765 | apply(rule set_ext, rule) unfolding Inter_iff Ball_def mem_Collect_eq apply(rule,rule,erule conjE) proof- | |
| 1766 |   fix x  assume "\<forall>xa. s \<subseteq> xa \<and> (\<exists>a b. xa = {x. a \<bullet> x \<le> b}) \<longrightarrow> x \<in> xa"
 | |
| 1767 |   hence "\<forall>a b. s \<subseteq> {x. a \<bullet> x \<le> b} \<longrightarrow> x \<in> {x. a \<bullet> x \<le> b}" by blast
 | |
| 1768 | thus "x\<in>s" apply(rule_tac ccontr) apply(drule separating_hyperplane_closed_point[OF assms(2,1)]) | |
| 1769 | apply(erule exE)+ apply(erule_tac x="-a" in allE, erule_tac x="-b" in allE) by auto | |
| 1770 | qed auto | |
| 1771 | ||
| 1772 | subsection {* Radon's theorem (from Lars Schewe). *}
 | |
| 1773 | ||
| 1774 | lemma radon_ex_lemma: | |
| 1775 | assumes "finite c" "affine_dependent c" | |
| 1776 | shows "\<exists>u. setsum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *s v) c = 0" | |
| 1777 | proof- from assms(2)[unfolded affine_dependent_explicit] guess s .. then guess u .. | |
| 1778 | thus ?thesis apply(rule_tac x="\<lambda>v. if v\<in>s then u v else 0" in exI) unfolding if_smult vector_smult_lzero | |
| 1779 | and setsum_restrict_set[OF assms(1), THEN sym] by(auto simp add: Int_absorb1) qed | |
| 1780 | ||
| 1781 | lemma radon_s_lemma: | |
| 1782 | assumes "finite s" "setsum f s = (0::real)" | |
| 1783 |   shows "setsum f {x\<in>s. 0 < f x} = - setsum f {x\<in>s. f x < 0}"
 | |
| 1784 | proof- have *:"\<And>x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x" by auto | |
| 1785 | show ?thesis unfolding real_add_eq_0_iff[THEN sym] and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and * | |
| 1786 | using assms(2) by assumption qed | |
| 1787 | ||
| 1788 | lemma radon_v_lemma: | |
| 1789 | assumes "finite s" "setsum f s = 0" "\<forall>x. g x = (0::real) \<longrightarrow> f x = (0::real^'n)" | |
| 1790 |   shows "(setsum f {x\<in>s. 0 < g x}) = - setsum f {x\<in>s. g x < 0}"
 | |
| 1791 | proof- | |
| 1792 | have *:"\<And>x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x" using assms(3) by auto | |
| 1793 | show ?thesis unfolding eq_neg_iff_add_eq_0 and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and * | |
| 1794 | using assms(2) by assumption qed | |
| 1795 | ||
| 1796 | lemma radon_partition: | |
| 1797 | assumes "finite c" "affine_dependent c" | |
| 1798 |   shows "\<exists>m p. m \<inter> p = {} \<and> m \<union> p = c \<and> (convex hull m) \<inter> (convex hull p) \<noteq> {}" proof-
 | |
| 1799 | obtain u v where uv:"setsum u c = 0" "v\<in>c" "u v \<noteq> 0" "(\<Sum>v\<in>c. u v *s v) = 0" using radon_ex_lemma[OF assms] by auto | |
| 1800 |   have fin:"finite {x \<in> c. 0 < u x}" "finite {x \<in> c. 0 > u x}" using assms(1) by auto
 | |
| 1801 |   def z \<equiv> "(inverse (setsum u {x\<in>c. u x > 0})) *s setsum (\<lambda>x. u x *s x) {x\<in>c. u x > 0}"
 | |
| 1802 |   have "setsum u {x \<in> c. 0 < u x} \<noteq> 0" proof(cases "u v \<ge> 0")
 | |
| 1803 | case False hence "u v < 0" by auto | |
| 1804 |     thus ?thesis proof(cases "\<exists>w\<in>{x \<in> c. 0 < u x}. u w > 0") 
 | |
| 1805 | case True thus ?thesis using setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] by auto | |
| 1806 | next | |
| 1807 | case False hence "setsum u c \<le> setsum (\<lambda>x. if x=v then u v else 0) c" apply(rule_tac setsum_mono) by auto | |
| 1808 | thus ?thesis unfolding setsum_delta[OF assms(1)] using uv(2) and `u v < 0` and uv(1) by auto qed | |
| 1809 | qed (insert setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto) | |
| 1810 | ||
| 1811 |   hence *:"setsum u {x\<in>c. u x > 0} > 0" unfolding real_less_def apply(rule_tac conjI, rule_tac setsum_nonneg) by auto
 | |
| 1812 |   moreover have "setsum u ({x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}) = setsum u c"
 | |
| 1813 |     "(\<Sum>x\<in>{x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}. u x *s x) = (\<Sum>x\<in>c. u x *s x)"
 | |
| 1814 | using assms(1) apply(rule_tac[!] setsum_mono_zero_left) by auto | |
| 1815 |   hence "setsum u {x \<in> c. 0 < u x} = - setsum u {x \<in> c. 0 > u x}"
 | |
| 1816 |    "(\<Sum>x\<in>{x \<in> c. 0 < u x}. u x *s x) = - (\<Sum>x\<in>{x \<in> c. 0 > u x}. u x *s x)" 
 | |
| 1817 | unfolding eq_neg_iff_add_eq_0 using uv(1,4) by (auto simp add: setsum_Un_zero[OF fin, THEN sym]) | |
| 1818 |   moreover have "\<forall>x\<in>{v \<in> c. u v < 0}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * - u x" 
 | |
| 1819 | apply (rule) apply (rule mult_nonneg_nonneg) using * by auto | |
| 1820 | ||
| 1821 |   ultimately have "z \<in> convex hull {v \<in> c. u v \<le> 0}" unfolding convex_hull_explicit mem_Collect_eq
 | |
| 1822 |     apply(rule_tac x="{v \<in> c. u v < 0}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * - u y" in exI)
 | |
| 1823 | using assms(1) unfolding vector_smult_assoc[THEN sym] setsum_cmul and z_def | |
| 1824 | by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym]) | |
| 1825 |   moreover have "\<forall>x\<in>{v \<in> c. 0 < u v}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * u x" 
 | |
| 1826 | apply (rule) apply (rule mult_nonneg_nonneg) using * by auto | |
| 1827 |   hence "z \<in> convex hull {v \<in> c. u v > 0}" unfolding convex_hull_explicit mem_Collect_eq
 | |
| 1828 |     apply(rule_tac x="{v \<in> c. 0 < u v}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * u y" in exI)
 | |
| 1829 | using assms(1) unfolding vector_smult_assoc[THEN sym] setsum_cmul and z_def using * | |
| 1830 | by(auto simp add: setsum_negf vector_smult_lneg mult_right.setsum[THEN sym]) | |
| 1831 |   ultimately show ?thesis apply(rule_tac x="{v\<in>c. u v \<le> 0}" in exI, rule_tac x="{v\<in>c. u v > 0}" in exI) by auto
 | |
| 1832 | qed | |
| 1833 | ||
| 1834 | lemma radon: assumes "affine_dependent c" | |
| 1835 |   obtains m p where "m\<subseteq>c" "p\<subseteq>c" "m \<inter> p = {}" "(convex hull m) \<inter> (convex hull p) \<noteq> {}"
 | |
| 1836 | proof- from assms[unfolded affine_dependent_explicit] guess s .. then guess u .. | |
| 1837 | hence *:"finite s" "affine_dependent s" and s:"s \<subseteq> c" unfolding affine_dependent_explicit by auto | |
| 1838 | from radon_partition[OF *] guess m .. then guess p .. | |
| 1839 | thus ?thesis apply(rule_tac that[of p m]) using s by auto qed | |
| 1840 | ||
| 1841 | subsection {* Helly's theorem. *}
 | |
| 1842 | ||
| 1843 | lemma helly_induct: fixes f::"(real^'n::finite) set set" | |
| 1844 |   assumes "f hassize n" "n \<ge> CARD('n) + 1"
 | |
| 1845 |   "\<forall>s\<in>f. convex s" "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
 | |
| 1846 |   shows "\<Inter> f \<noteq> {}"
 | |
| 1847 | using assms unfolding hassize_def apply(erule_tac conjE) proof(induct n arbitrary: f) | |
| 1848 | case (Suc n) | |
| 1849 | show "\<Inter> f \<noteq> {}" apply(cases "n = CARD('n)") apply(rule Suc(4)[rule_format])
 | |
| 1850 | unfolding card_Diff_singleton_if[OF Suc(5)] and Suc(6) proof- | |
| 1851 |   assume ng:"n \<noteq> CARD('n)" hence "\<exists>X. \<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" apply(rule_tac bchoice) unfolding ex_in_conv
 | |
| 1852 | apply(rule, rule Suc(1)[rule_format]) unfolding card_Diff_singleton_if[OF Suc(5)] and Suc(6) | |
| 1853 | defer apply(rule Suc(3)[rule_format]) defer apply(rule Suc(4)[rule_format]) using Suc(2,5) by auto | |
| 1854 |   then obtain X where X:"\<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" by auto
 | |
| 1855 | show ?thesis proof(cases "inj_on X f") | |
| 1856 | case False then obtain s t where st:"s\<noteq>t" "s\<in>f" "t\<in>f" "X s = X t" unfolding inj_on_def by auto | |
| 1857 |     hence *:"\<Inter> f = \<Inter> (f - {s}) \<inter> \<Inter> (f - {t})" by auto
 | |
| 1858 | show ?thesis unfolding * unfolding ex_in_conv[THEN sym] apply(rule_tac x="X s" in exI) | |
| 1859 | apply(rule, rule X[rule_format]) using X st by auto | |
| 1860 |   next case True then obtain m p where mp:"m \<inter> p = {}" "m \<union> p = X ` f" "convex hull m \<inter> convex hull p \<noteq> {}"
 | |
| 1861 | using radon_partition[of "X ` f"] and affine_dependent_biggerset[of "X ` f"] | |
| 1862 | unfolding card_image[OF True] and Suc(6) using Suc(2,5) and ng by auto | |
| 1863 | have "m \<subseteq> X ` f" "p \<subseteq> X ` f" using mp(2) by auto | |
| 1864 | then obtain g h where gh:"m = X ` g" "p = X ` h" "g \<subseteq> f" "h \<subseteq> f" unfolding subset_image_iff by auto | |
| 1865 | hence "f \<union> (g \<union> h) = f" by auto | |
| 1866 | hence f:"f = g \<union> h" using inj_on_image_eq_iff[of X f "g \<union> h"] and True | |
| 1867 | unfolding mp(2)[unfolded image_Un[THEN sym] gh] by auto | |
| 1868 |     have *:"g \<inter> h = {}" using mp(1) unfolding gh using inj_on_image_Int[OF True gh(3,4)] by auto
 | |
| 1869 | have "convex hull (X ` h) \<subseteq> \<Inter> g" "convex hull (X ` g) \<subseteq> \<Inter> h" | |
| 1870 | apply(rule_tac [!] hull_minimal) using Suc(3) gh(3-4) unfolding mem_def unfolding subset_eq | |
| 1871 | apply(rule_tac [2] convex_Inter, rule_tac [4] convex_Inter) apply rule prefer 3 apply rule proof- | |
| 1872 | fix x assume "x\<in>X ` g" then guess y unfolding image_iff .. | |
| 1873 | thus "x\<in>\<Inter>h" using X[THEN bspec[where x=y]] using * f by auto next | |
| 1874 | fix x assume "x\<in>X ` h" then guess y unfolding image_iff .. | |
| 1875 | thus "x\<in>\<Inter>g" using X[THEN bspec[where x=y]] using * f by auto | |
| 1876 | qed(auto) | |
| 1877 | thus ?thesis unfolding f using mp(3)[unfolded gh] by blast qed | |
| 1878 | qed(insert dimindex_ge_1, auto) qed(auto) | |
| 1879 | ||
| 1880 | lemma helly: fixes f::"(real^'n::finite) set set" | |
| 1881 |   assumes "finite f" "card f \<ge> CARD('n) + 1" "\<forall>s\<in>f. convex s"
 | |
| 1882 |           "\<forall>t\<subseteq>f. card t = CARD('n) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
 | |
| 1883 |   shows "\<Inter> f \<noteq>{}"
 | |
| 1884 | apply(rule helly_induct) unfolding hassize_def using assms by auto | |
| 1885 | ||
| 1886 | subsection {* Convex hull is "preserved" by a linear function. *}
 | |
| 1887 | ||
| 1888 | lemma convex_hull_linear_image: | |
| 1889 | assumes "linear f" | |
| 1890 | shows "f ` (convex hull s) = convex hull (f ` s)" | |
| 1891 | apply rule unfolding subset_eq ball_simps apply(rule_tac[!] hull_induct, rule hull_inc) prefer 3 | |
| 1892 | apply(erule imageE)apply(rule_tac x=xa in image_eqI) apply assumption | |
| 1893 | apply(rule hull_subset[unfolded subset_eq, rule_format]) apply assumption | |
| 1894 | proof- show "convex {x. f x \<in> convex hull f ` s}" 
 | |
| 1895 | unfolding convex_def by(auto simp add: linear_cmul[OF assms] linear_add[OF assms] | |
| 1896 | convex_convex_hull[unfolded convex_def, rule_format]) next | |
| 1897 |   show "convex {x. x \<in> f ` (convex hull s)}" using  convex_convex_hull[unfolded convex_def, of s] 
 | |
| 1898 | unfolding convex_def by (auto simp add: linear_cmul[OF assms, THEN sym] linear_add[OF assms, THEN sym]) | |
| 1899 | qed auto | |
| 1900 | ||
| 1901 | lemma in_convex_hull_linear_image: | |
| 1902 | assumes "linear f" "x \<in> convex hull s" shows "(f x) \<in> convex hull (f ` s)" | |
| 1903 | using convex_hull_linear_image[OF assms(1)] assms(2) by auto | |
| 1904 | ||
| 1905 | subsection {* Homeomorphism of all convex compact sets with nonempty interior. *}
 | |
| 1906 | ||
| 1907 | lemma compact_frontier_line_lemma: | |
| 1908 | assumes "compact s" "0 \<in> s" "x \<noteq> 0" | |
| 1909 | obtains u where "0 \<le> u" "(u *s x) \<in> frontier s" "\<forall>v>u. (v *s x) \<notin> s" | |
| 1910 | proof- | |
| 1911 | obtain b where b:"b>0" "\<forall>x\<in>s. norm x \<le> b" using compact_imp_bounded[OF assms(1), unfolded bounded_pos] by auto | |
| 1912 |   let ?A = "{y. \<exists>u. 0 \<le> u \<and> u \<le> b / norm(x) \<and> (y = u *s x)}"
 | |
| 1913 |   have A:"?A = (\<lambda>u. dest_vec1 u *s x) ` {0 .. vec1 (b / norm x)}"
 | |
| 1914 | unfolding image_image[of "\<lambda>u. u *s x" "\<lambda>x. dest_vec1 x", THEN sym] | |
| 1915 | unfolding dest_vec1_inverval vec1_dest_vec1 by auto | |
| 1916 | have "compact ?A" unfolding A apply(rule compact_continuous_image, rule continuous_at_imp_continuous_on) | |
| 1917 | apply(rule, rule continuous_vmul) unfolding o_def vec1_dest_vec1 apply(rule continuous_at_id) by(rule compact_interval) | |
| 1918 |   moreover have "{y. \<exists>u\<ge>0. u \<le> b / norm x \<and> y = u *s x} \<inter> s \<noteq> {}" apply(rule not_disjointI[OF _ assms(2)])
 | |
| 1919 | unfolding mem_Collect_eq using `b>0` assms(3) by(auto intro!: divide_nonneg_pos) | |
| 1920 | ultimately obtain u y where obt: "u\<ge>0" "u \<le> b / norm x" "y = u *s x" | |
| 1921 | "y\<in>?A" "y\<in>s" "\<forall>z\<in>?A \<inter> s. dist 0 z \<le> dist 0 y" using distance_attains_sup[OF compact_inter[OF _ assms(1), of ?A], of 0] by auto | |
| 1922 | ||
| 1923 | have "norm x > 0" using assms(3)[unfolded zero_less_norm_iff[THEN sym]] by auto | |
| 1924 |   { fix v assume as:"v > u" "v *s x \<in> s"
 | |
| 1925 | hence "v \<le> b / norm x" using b(2)[rule_format, OF as(2)] | |
| 1926 | using `u\<ge>0` unfolding pos_le_divide_eq[OF `norm x > 0`] and norm_mul by auto | |
| 1927 | hence "norm (v *s x) \<le> norm y" apply(rule_tac obt(6)[rule_format, unfolded dist_0_norm]) apply(rule IntI) defer | |
| 1928 | apply(rule as(2)) unfolding mem_Collect_eq apply(rule_tac x=v in exI) | |
| 1929 | using as(1) `u\<ge>0` by(auto simp add:field_simps) | |
| 1930 | hence False unfolding obt(3) unfolding norm_mul using `u\<ge>0` `norm x > 0` `v>u` by(auto simp add:field_simps) | |
| 1931 | } note u_max = this | |
| 1932 | ||
| 1933 | have "u *s x \<in> frontier s" unfolding frontier_straddle apply(rule,rule,rule) apply(rule_tac x="u *s x" in bexI) unfolding obt(3)[THEN sym] | |
| 1934 | prefer 3 apply(rule_tac x="(u + (e / 2) / norm x) *s x" in exI) apply(rule, rule) proof- | |
| 1935 | fix e assume "0 < e" and as:"(u + e / 2 / norm x) *s x \<in> s" | |
| 1936 | hence "u + e / 2 / norm x > u" using`norm x > 0` by(auto simp del:zero_less_norm_iff intro!: divide_pos_pos) | |
| 1937 | thus False using u_max[OF _ as] by auto | |
| 31289 | 1938 | qed(insert `y\<in>s`, auto simp add: dist_norm obt(3)) | 
| 31276 | 1939 | thus ?thesis apply(rule_tac that[of u]) apply(rule obt(1), assumption) | 
| 1940 | apply(rule,rule,rule ccontr) apply(rule u_max) by auto qed | |
| 1941 | ||
| 1942 | lemma starlike_compact_projective: | |
| 1943 | assumes "compact s" "cball (0::real^'n::finite) 1 \<subseteq> s " | |
| 1944 | "\<forall>x\<in>s. \<forall>u. 0 \<le> u \<and> u < 1 \<longrightarrow> (u *s x) \<in> (s - frontier s )" | |
| 1945 | shows "s homeomorphic (cball (0::real^'n::finite) 1)" | |
| 1946 | proof- | |
| 1947 | have fs:"frontier s \<subseteq> s" apply(rule frontier_subset_closed) using compact_imp_closed[OF assms(1)] by simp | |
| 1948 | def pi \<equiv> "\<lambda>x::real^'n. inverse (norm x) *s x" | |
| 1949 | have "0 \<notin> frontier s" unfolding frontier_straddle apply(rule ccontr) unfolding not_not apply(erule_tac x=1 in allE) | |
| 1950 | using assms(2)[unfolded subset_eq Ball_def mem_cball] by auto | |
| 1951 | have injpi:"\<And>x y. pi x = pi y \<and> norm x = norm y \<longleftrightarrow> x = y" unfolding pi_def by auto | |
| 1952 | ||
| 1953 |   have contpi:"continuous_on (UNIV - {0}) pi" apply(rule continuous_at_imp_continuous_on)
 | |
| 1954 | apply rule unfolding pi_def apply(rule continuous_mul) unfolding o_def | |
| 1955 | apply(rule continuous_at_inv[unfolded o_def]) unfolding continuous_at_vec1_range[unfolded o_def] | |
| 1956 | apply(rule,rule) apply(rule_tac x=e in exI) apply(rule,assumption,rule,rule) | |
| 1957 | proof- fix e x y assume "0 < e" "norm (y - x::real^'n) < e" | |
| 1958 | thus "\<bar>norm y - norm x\<bar> < e" using norm_triangle_ineq3[of y x] by auto | |
| 1959 | qed(auto intro!:continuous_at_id) | |
| 1960 |   def sphere \<equiv> "{x::real^'n. norm x = 1}"
 | |
| 1961 | have pi:"\<And>x. x \<noteq> 0 \<Longrightarrow> pi x \<in> sphere" "\<And>x u. u>0 \<Longrightarrow> pi (u *s x) = pi x" unfolding pi_def sphere_def by auto | |
| 1962 | ||
| 1963 | have "0\<in>s" using assms(2) and centre_in_cball[of 0 1] by auto | |
| 1964 | have front_smul:"\<forall>x\<in>frontier s. \<forall>u\<ge>0. u *s x \<in> s \<longleftrightarrow> u \<le> 1" proof(rule,rule,rule) | |
| 1965 | fix x u assume x:"x\<in>frontier s" and "(0::real)\<le>u" | |
| 1966 | hence "x\<noteq>0" using `0\<notin>frontier s` by auto | |
| 1967 | obtain v where v:"0 \<le> v" "v *s x \<in> frontier s" "\<forall>w>v. w *s x \<notin> s" | |
| 1968 | using compact_frontier_line_lemma[OF assms(1) `0\<in>s` `x\<noteq>0`] by auto | |
| 1969 | have "v=1" apply(rule ccontr) unfolding neq_iff apply(erule disjE) proof- | |
| 1970 | assume "v<1" thus False using v(3)[THEN spec[where x=1]] using x and fs by auto next | |
| 1971 | assume "v>1" thus False using assms(3)[THEN bspec[where x="v *s x"], THEN spec[where x="inverse v"]] | |
| 1972 | using v and x and fs unfolding inverse_less_1_iff by auto qed | |
| 1973 | show "u *s x \<in> s \<longleftrightarrow> u \<le> 1" apply rule using v(3)[unfolded `v=1`, THEN spec[where x=u]] proof- | |
| 1974 | assume "u\<le>1" thus "u *s x \<in> s" apply(cases "u=1") | |
| 1975 | using assms(3)[THEN bspec[where x=x], THEN spec[where x=u]] using `0\<le>u` and x and fs by auto qed auto qed | |
| 1976 | ||
| 1977 | have "\<exists>surf. homeomorphism (frontier s) sphere pi surf" | |
| 1978 | apply(rule homeomorphism_compact) apply(rule compact_frontier[OF assms(1)]) | |
| 1979 | apply(rule continuous_on_subset[OF contpi]) defer apply(rule set_ext,rule) | |
| 1980 | unfolding inj_on_def prefer 3 apply(rule,rule,rule) | |
| 1981 | proof- fix x assume "x\<in>pi ` frontier s" then obtain y where "y\<in>frontier s" "x = pi y" by auto | |
| 1982 | thus "x \<in> sphere" using pi(1)[of y] and `0 \<notin> frontier s` by auto | |
| 1983 | next fix x assume "x\<in>sphere" hence "norm x = 1" "x\<noteq>0" unfolding sphere_def by auto | |
| 1984 | then obtain u where "0 \<le> u" "u *s x \<in> frontier s" "\<forall>v>u. v *s x \<notin> s" | |
| 1985 | using compact_frontier_line_lemma[OF assms(1) `0\<in>s`, of x] by auto | |
| 1986 | thus "x \<in> pi ` frontier s" unfolding image_iff le_less pi_def apply(rule_tac x="u *s x" in bexI) using `norm x = 1` `0\<notin>frontier s` by auto | |
| 1987 | next fix x y assume as:"x \<in> frontier s" "y \<in> frontier s" "pi x = pi y" | |
| 1988 | hence xys:"x\<in>s" "y\<in>s" using fs by auto | |
| 1989 | from as(1,2) have nor:"norm x \<noteq> 0" "norm y \<noteq> 0" using `0\<notin>frontier s` by auto | |
| 1990 | from nor have x:"x = norm x *s ((inverse (norm y)) *s y)" unfolding as(3)[unfolded pi_def, THEN sym] by auto | |
| 1991 | from nor have y:"y = norm y *s ((inverse (norm x)) *s x)" unfolding as(3)[unfolded pi_def] by auto | |
| 1992 | have "0 \<le> norm y * inverse (norm x)" "0 \<le> norm x * inverse (norm y)" | |
| 1993 | unfolding divide_inverse[THEN sym] apply(rule_tac[!] divide_nonneg_pos) using nor by auto | |
| 1994 | hence "norm x = norm y" apply(rule_tac ccontr) unfolding neq_iff | |
| 1995 | using x y and front_smul[THEN bspec, OF as(1), THEN spec[where x="norm y * (inverse (norm x))"]] | |
| 1996 | using front_smul[THEN bspec, OF as(2), THEN spec[where x="norm x * (inverse (norm y))"]] | |
| 1997 | using xys nor by(auto simp add:field_simps divide_le_eq_1 divide_inverse[THEN sym]) | |
| 1998 | thus "x = y" apply(subst injpi[THEN sym]) using as(3) by auto | |
| 1999 | qed(insert `0 \<notin> frontier s`, auto) | |
| 2000 | then obtain surf where surf:"\<forall>x\<in>frontier s. surf (pi x) = x" "pi ` frontier s = sphere" "continuous_on (frontier s) pi" | |
| 2001 | "\<forall>y\<in>sphere. pi (surf y) = y" "surf ` sphere = frontier s" "continuous_on sphere surf" unfolding homeomorphism_def by auto | |
| 2002 | ||
| 2003 |   have cont_surfpi:"continuous_on (UNIV -  {0}) (surf \<circ> pi)" apply(rule continuous_on_compose, rule contpi)
 | |
| 2004 | apply(rule continuous_on_subset[of sphere], rule surf(6)) using pi(1) by auto | |
| 2005 | ||
| 2006 |   { fix x assume as:"x \<in> cball (0::real^'n) 1"
 | |
| 2007 | have "norm x *s surf (pi x) \<in> s" proof(cases "x=0 \<or> norm x = 1") | |
| 31289 | 2008 | case False hence "pi x \<in> sphere" "norm x < 1" using pi(1)[of x] as by(auto simp add: dist_norm) | 
| 31276 | 2009 | thus ?thesis apply(rule_tac assms(3)[rule_format, THEN DiffD1]) | 
| 2010 | apply(rule_tac fs[unfolded subset_eq, rule_format]) | |
| 2011 | unfolding surf(5)[THEN sym] by auto | |
| 2012 | next case True thus ?thesis apply rule defer unfolding pi_def apply(rule fs[unfolded subset_eq, rule_format]) | |
| 2013 | unfolding surf(5)[unfolded sphere_def, THEN sym] using `0\<in>s` by auto qed } note hom = this | |
| 2014 | ||
| 2015 |   { fix x assume "x\<in>s"
 | |
| 2016 | hence "x \<in> (\<lambda>x. norm x *s surf (pi x)) ` cball 0 1" proof(cases "x=0") | |
| 2017 | case True show ?thesis unfolding image_iff True apply(rule_tac x=0 in bexI) by auto | |
| 2018 | next let ?a = "inverse (norm (surf (pi x)))" | |
| 2019 | case False hence invn:"inverse (norm x) \<noteq> 0" by auto | |
| 2020 | from False have pix:"pi x\<in>sphere" using pi(1) by auto | |
| 2021 | hence "pi (surf (pi x)) = pi x" apply(rule_tac surf(4)[rule_format]) by assumption | |
| 2022 | hence **:"norm x *s (?a *s surf (pi x)) = x" apply(rule_tac vector_mul_lcancel_imp[OF invn]) unfolding pi_def by auto | |
| 2023 | hence *:"?a * norm x > 0" and"?a > 0" "?a \<noteq> 0" using surf(5) `0\<notin>frontier s` apply - | |
| 2024 | apply(rule_tac mult_pos_pos) using False[unfolded zero_less_norm_iff[THEN sym]] by auto | |
| 2025 | have "norm (surf (pi x)) \<noteq> 0" using ** False by auto | |
| 2026 | hence "norm x = norm ((?a * norm x) *s surf (pi x))" | |
| 2027 | unfolding norm_mul abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] by auto | |
| 2028 | moreover have "pi x = pi ((inverse (norm (surf (pi x))) * norm x) *s surf (pi x))" | |
| 2029 | unfolding pi(2)[OF *] surf(4)[rule_format, OF pix] .. | |
| 2030 | moreover have "surf (pi x) \<in> frontier s" using surf(5) pix by auto | |
| 31289 | 2031 | hence "dist 0 (inverse (norm (surf (pi x))) *s x) \<le> 1" unfolding dist_norm | 
| 31276 | 2032 | using ** and * using front_smul[THEN bspec[where x="surf (pi x)"], THEN spec[where x="norm x * ?a"]] | 
| 2033 | using False `x\<in>s` by(auto simp add:field_simps) | |
| 2034 | ultimately show ?thesis unfolding image_iff apply(rule_tac x="inverse (norm (surf(pi x))) *s x" in bexI) | |
| 2035 | apply(subst injpi[THEN sym]) unfolding norm_mul abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] | |
| 2036 | unfolding pi(2)[OF `?a > 0`] by auto | |
| 2037 | qed } note hom2 = this | |
| 2038 | ||
| 2039 | show ?thesis apply(subst homeomorphic_sym) apply(rule homeomorphic_compact[where f="\<lambda>x. norm x *s surf (pi x)"]) | |
| 2040 | apply(rule compact_cball) defer apply(rule set_ext, rule, erule imageE, drule hom) | |
| 2041 | prefer 4 apply(rule continuous_at_imp_continuous_on, rule) apply(rule_tac [3] hom2) proof- | |
| 2042 | fix x::"real^'n" assume as:"x \<in> cball 0 1" | |
| 2043 | thus "continuous (at x) (\<lambda>x. norm x *s surf (pi x))" proof(cases "x=0") | |
| 31289 | 2044 | case False thus ?thesis apply(rule_tac continuous_mul, rule_tac continuous_at_vec1_norm) | 
| 31276 | 2045 | using cont_surfpi unfolding continuous_on_eq_continuous_at[OF open_delete[OF open_UNIV]] o_def by auto | 
| 2046 | next guess a using UNIV_witness[where 'a = 'n] .. | |
| 2047 | obtain B where B:"\<forall>x\<in>s. norm x \<le> B" using compact_imp_bounded[OF assms(1)] unfolding bounded_def by auto | |
| 2048 | hence "B > 0" using assms(2) unfolding subset_eq apply(erule_tac x="basis a" in ballE) defer apply(erule_tac x="basis a" in ballE) | |
| 31289 | 2049 | unfolding Ball_def mem_cball dist_norm by (auto simp add: norm_basis[unfolded One_nat_def]) | 
| 31276 | 2050 | case True show ?thesis unfolding True continuous_at Lim_at apply(rule,rule) apply(rule_tac x="e / B" in exI) | 
| 2051 | apply(rule) apply(rule divide_pos_pos) prefer 3 apply(rule,rule,erule conjE) | |
| 31289 | 2052 | unfolding norm_0 vector_smult_lzero dist_norm diff_0_right norm_mul abs_norm_cancel proof- | 
| 31276 | 2053 | fix e and x::"real^'n" assume as:"norm x < e / B" "0 < norm x" "0<e" | 
| 2054 | hence "surf (pi x) \<in> frontier s" using pi(1)[of x] unfolding surf(5)[THEN sym] by auto | |
| 2055 | hence "norm (surf (pi x)) \<le> B" using B fs by auto | |
| 2056 | hence "norm x * norm (surf (pi x)) \<le> norm x * B" using as(2) by auto | |
| 2057 | also have "\<dots> < e / B * B" apply(rule mult_strict_right_mono) using as(1) `B>0` by auto | |
| 2058 | also have "\<dots> = e" using `B>0` by auto | |
| 2059 | finally show "norm x * norm (surf (pi x)) < e" by assumption | |
| 2060 | qed(insert `B>0`, auto) qed | |
| 2061 |   next { fix x assume as:"surf (pi x) = 0"
 | |
| 2062 | have "x = 0" proof(rule ccontr) | |
| 2063 | assume "x\<noteq>0" hence "pi x \<in> sphere" using pi(1) by auto | |
| 2064 | hence "surf (pi x) \<in> frontier s" using surf(5) by auto | |
| 2065 | thus False using `0\<notin>frontier s` unfolding as by simp qed | |
| 2066 | } note surf_0 = this | |
| 2067 | show "inj_on (\<lambda>x. norm x *s surf (pi x)) (cball 0 1)" unfolding inj_on_def proof(rule,rule,rule) | |
| 2068 | fix x y assume as:"x \<in> cball 0 1" "y \<in> cball 0 1" "norm x *s surf (pi x) = norm y *s surf (pi y)" | |
| 2069 | thus "x=y" proof(cases "x=0 \<or> y=0") | |
| 2070 | case True thus ?thesis using as by(auto elim: surf_0) next | |
| 2071 | case False | |
| 2072 | hence "pi (surf (pi x)) = pi (surf (pi y))" using as(3) | |
| 2073 | using pi(2)[of "norm x" "surf (pi x)"] pi(2)[of "norm y" "surf (pi y)"] by auto | |
| 2074 | moreover have "pi x \<in> sphere" "pi y \<in> sphere" using pi(1) False by auto | |
| 2075 | ultimately have *:"pi x = pi y" using surf(4)[THEN bspec[where x="pi x"]] surf(4)[THEN bspec[where x="pi y"]] by auto | |
| 2076 | moreover have "norm x = norm y" using as(3)[unfolded *] using False by(auto dest:surf_0) | |
| 2077 | ultimately show ?thesis using injpi by auto qed qed | |
| 2078 | qed auto qed | |
| 2079 | ||
| 2080 | lemma homeomorphic_convex_compact_lemma: fixes s::"(real^'n::finite) set" | |
| 2081 | assumes "convex s" "compact s" "cball 0 1 \<subseteq> s" | |
| 2082 | shows "s homeomorphic (cball (0::real^'n) 1)" | |
| 2083 | apply(rule starlike_compact_projective[OF assms(2-3)]) proof(rule,rule,rule,erule conjE) | |
| 2084 | fix x u assume as:"x \<in> s" "0 \<le> u" "u < (1::real)" | |
| 2085 | hence "u *s x \<in> interior s" unfolding interior_def mem_Collect_eq | |
| 2086 | apply(rule_tac x="ball (u *s x) (1 - u)" in exI) apply(rule, rule open_ball) | |
| 2087 | unfolding centre_in_ball apply rule defer apply(rule) unfolding mem_ball proof- | |
| 2088 | fix y assume "dist (u *s x) y < 1 - u" | |
| 2089 | hence "inverse (1 - u) *s (y - u *s x) \<in> s" | |
| 31289 | 2090 | using assms(3) apply(erule_tac subsetD) unfolding mem_cball dist_commute dist_norm | 
| 31276 | 2091 | unfolding group_add_class.diff_0 group_add_class.diff_0_right norm_minus_cancel norm_mul | 
| 2092 | apply (rule mult_left_le_imp_le[of "1 - u"]) | |
| 2093 | unfolding class_semiring.mul_a using `u<1` by auto | |
| 2094 | thus "y \<in> s" using assms(1)[unfolded convex_def, rule_format, of "inverse(1 - u) *s (y - u *s x)" x "1 - u" u] | |
| 2095 | using as unfolding vector_smult_assoc by auto qed auto | |
| 2096 | thus "u *s x \<in> s - frontier s" using frontier_def and interior_subset by auto qed | |
| 2097 | ||
| 2098 | lemma homeomorphic_convex_compact_cball: fixes e::real and s::"(real^'n::finite) set" | |
| 2099 |   assumes "convex s" "compact s" "interior s \<noteq> {}" "0 < e"
 | |
| 2100 | shows "s homeomorphic (cball (b::real^'n::finite) e)" | |
| 2101 | proof- obtain a where "a\<in>interior s" using assms(3) by auto | |
| 2102 | then obtain d where "d>0" and d:"cball a d \<subseteq> s" unfolding mem_interior_cball by auto | |
| 2103 | let ?d = "inverse d" and ?n = "0::real^'n" | |
| 2104 | have "cball ?n 1 \<subseteq> (\<lambda>x. inverse d *s (x - a)) ` s" | |
| 2105 | apply(rule, rule_tac x="d *s x + a" in image_eqI) defer | |
| 31289 | 2106 | apply(rule d[unfolded subset_eq, rule_format]) using `d>0` unfolding mem_cball dist_norm | 
| 31276 | 2107 | by(auto simp add: mult_right_le_one_le) | 
| 2108 | hence "(\<lambda>x. inverse d *s (x - a)) ` s homeomorphic cball ?n 1" | |
| 2109 | using homeomorphic_convex_compact_lemma[of "(\<lambda>x. ?d *s -a + ?d *s x) ` s", OF convex_affinity compact_affinity] | |
| 2110 | using assms(1,2) by(auto simp add: uminus_add_conv_diff) | |
| 2111 | thus ?thesis apply(rule_tac homeomorphic_trans[OF _ homeomorphic_balls(2)[of 1 _ ?n]]) | |
| 2112 | apply(rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" s "?d *s -a"]]) | |
| 2113 | using `d>0` `e>0` by(auto simp add: uminus_add_conv_diff) qed | |
| 2114 | ||
| 2115 | lemma homeomorphic_convex_compact: fixes s::"(real^'n::finite) set" and t::"(real^'n) set" | |
| 2116 |   assumes "convex s" "compact s" "interior s \<noteq> {}"
 | |
| 2117 |           "convex t" "compact t" "interior t \<noteq> {}"
 | |
| 2118 | shows "s homeomorphic t" | |
| 2119 | using assms by(meson zero_less_one homeomorphic_trans homeomorphic_convex_compact_cball homeomorphic_sym) | |
| 2120 | ||
| 2121 | subsection {* Epigraphs of convex functions. *}
 | |
| 2122 | ||
| 2123 | definition "epigraph s (f::real^'n \<Rightarrow> real) = {xy. fstcart xy \<in> s \<and> f(fstcart xy) \<le> dest_vec1 (sndcart xy)}"
 | |
| 2124 | ||
| 2125 | lemma mem_epigraph: "(pastecart x (vec1 y)) \<in> epigraph s f \<longleftrightarrow> x \<in> s \<and> f x \<le> y" unfolding epigraph_def by auto | |
| 2126 | ||
| 2127 | lemma convex_epigraph: | |
| 2128 | "convex(epigraph s f) \<longleftrightarrow> convex_on s f \<and> convex s" | |
| 2129 | unfolding convex_def convex_on_def unfolding Ball_def forall_pastecart epigraph_def | |
| 2130 | unfolding mem_Collect_eq fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul fstcart_add fstcart_cmul | |
| 2131 | unfolding Ball_def[symmetric] unfolding dest_vec1_add dest_vec1_cmul | |
| 2132 | apply(subst forall_dest_vec1[THEN sym])+ by(meson real_le_refl real_le_trans add_mono mult_left_mono) | |
| 2133 | ||
| 2134 | lemma convex_epigraphI: assumes "convex_on s f" "convex s" | |
| 2135 | shows "convex(epigraph s f)" using assms unfolding convex_epigraph by auto | |
| 2136 | ||
| 2137 | lemma convex_epigraph_convex: "convex s \<Longrightarrow> (convex_on s f \<longleftrightarrow> convex(epigraph s f))" | |
| 2138 | using convex_epigraph by auto | |
| 2139 | ||
| 2140 | subsection {* Use this to derive general bound property of convex function. *}
 | |
| 2141 | ||
| 2142 | lemma forall_of_pastecart: | |
| 2143 | "(\<forall>p. P (\<lambda>x. fstcart (p x)) (\<lambda>x. sndcart (p x))) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson | |
| 2144 | apply(erule_tac x="\<lambda>a. pastecart (x a) (y a)" in allE) unfolding o_def by auto | |
| 2145 | ||
| 2146 | lemma forall_of_pastecart': | |
| 2147 | "(\<forall>p. P (fstcart p) (sndcart p)) \<longleftrightarrow> (\<forall>x y. P x y)" apply meson | |
| 2148 | apply(erule_tac x="pastecart x y" in allE) unfolding o_def by auto | |
| 2149 | ||
| 2150 | lemma forall_of_dest_vec1: "(\<forall>v. P (\<lambda>x. dest_vec1 (v x))) \<longleftrightarrow> (\<forall>x. P x)" | |
| 2151 | apply rule apply rule apply(erule_tac x="(vec1 \<circ> x)" in allE) unfolding o_def vec1_dest_vec1 by auto | |
| 2152 | ||
| 2153 | lemma forall_of_dest_vec1': "(\<forall>v. P (dest_vec1 v)) \<longleftrightarrow> (\<forall>x. P x)" | |
| 2154 | apply rule apply rule apply(erule_tac x="(vec1 x)" in allE) defer apply rule | |
| 2155 | apply(erule_tac x="dest_vec1 v" in allE) unfolding o_def vec1_dest_vec1 by auto | |
| 2156 | ||
| 2157 | lemma convex_on: | |
| 2158 | assumes "convex s" | |
| 2159 |   shows "convex_on s f \<longleftrightarrow> (\<forall>k u x. (\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow>
 | |
| 2160 |    f (setsum (\<lambda>i. u i *s x i) {1..k} ) \<le> setsum (\<lambda>i. u i * f(x i)) {1..k} ) "
 | |
| 2161 | unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq | |
| 2162 | unfolding sndcart_setsum[OF finite_atLeastAtMost] fstcart_setsum[OF finite_atLeastAtMost] dest_vec1_setsum[OF finite_atLeastAtMost] | |
| 2163 | unfolding fstcart_pastecart sndcart_pastecart sndcart_add sndcart_cmul fstcart_add fstcart_cmul | |
| 2164 | unfolding dest_vec1_add dest_vec1_cmul apply(subst forall_of_pastecart)+ apply(subst forall_of_dest_vec1)+ apply rule | |
| 2165 | using assms[unfolded convex] apply simp apply(rule,rule,rule) | |
| 2166 | apply(erule_tac x=k in allE, erule_tac x=u in allE, erule_tac x=x in allE) apply rule apply rule apply rule defer | |
| 2167 | apply(rule_tac j="\<Sum>i = 1..k. u i * f (x i)" in real_le_trans) | |
| 2168 | defer apply(rule setsum_mono) apply(erule conjE)+ apply(erule_tac x=i in allE)apply(rule mult_left_mono) | |
| 2169 | using assms[unfolded convex] by auto | |
| 2170 | ||
| 2171 | subsection {* Convexity of general and special intervals. *}
 | |
| 2172 | ||
| 31281 | 2173 | lemma is_interval_convex: assumes "is_interval s" shows "convex s" | 
| 31276 | 2174 | unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof- | 
| 2175 | fix x y u v assume as:"x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)" | |
| 2176 | hence *:"u = 1 - v" "1 - v \<ge> 0" and **:"v = 1 - u" "1 - u \<ge> 0" by auto | |
| 2177 |   { fix a b assume "\<not> b \<le> u * a + v * b"
 | |
| 2178 | hence "u * a < (1 - v) * b" unfolding not_le using as(4) by(auto simp add: field_simps) | |
| 2179 | hence "a < b" unfolding * using as(4) *(2) apply(rule_tac mult_left_less_imp_less[of "1 - v"]) by(auto simp add: field_simps) | |
| 2180 | hence "a \<le> u * a + v * b" unfolding * using as(4) by (auto simp add: field_simps intro!:mult_right_mono) | |
| 2181 | } moreover | |
| 2182 |   { fix a b assume "\<not> u * a + v * b \<le> a"
 | |
| 2183 | hence "v * b > (1 - u) * a" unfolding not_le using as(4) by(auto simp add: field_simps) | |
| 2184 | hence "a < b" unfolding * using as(4) apply(rule_tac mult_left_less_imp_less) by(auto simp add: ring_simps) | |
| 2185 | hence "u * a + v * b \<le> b" unfolding ** using **(2) as(3) by(auto simp add: field_simps intro!:mult_right_mono) } | |
| 31281 | 2186 | ultimately show "u *s x + v *s y \<in> s" apply- apply(rule assms[unfolded is_interval_def, rule_format, OF as(1,2)]) | 
| 31276 | 2187 | using as(3-) dimindex_ge_1 apply- by(auto simp add: vector_component) qed | 
| 2188 | ||
| 31345 
80667d5bee32
generalize topological notions to class metric_space; add class perfect_space
 huffman parents: 
31289diff
changeset | 2189 | lemma is_interval_connected: | 
| 
80667d5bee32
generalize topological notions to class metric_space; add class perfect_space
 huffman parents: 
31289diff
changeset | 2190 | fixes s :: "(real ^ _) set" | 
| 
80667d5bee32
generalize topological notions to class metric_space; add class perfect_space
 huffman parents: 
31289diff
changeset | 2191 | shows "is_interval s \<Longrightarrow> connected s" | 
| 31276 | 2192 | using is_interval_convex convex_connected by auto | 
| 2193 | ||
| 2194 | lemma convex_interval: "convex {a .. b}" "convex {a<..<b::real^'n::finite}"
 | |
| 31281 | 2195 | apply(rule_tac[!] is_interval_convex) using is_interval_interval by auto | 
| 31276 | 2196 | |
| 31360 
fef52c5c1462
Enclosed parts of subsection in @{text ...} to make LaTeX happy.
 berghofe parents: 
31289diff
changeset | 2197 | subsection {* On @{text "real^1"}, @{text "is_interval"}, @{text "convex"} and @{text "connected"} are all equivalent. *}
 | 
| 31276 | 2198 | |
| 2199 | lemma is_interval_1: | |
| 31281 | 2200 | "is_interval s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall> x. dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b \<longrightarrow> x \<in> s)" | 
| 2201 | unfolding is_interval_def dest_vec1_def forall_1 by auto | |
| 2202 | ||
| 2203 | lemma is_interval_connected_1: "is_interval s \<longleftrightarrow> connected (s::(real^1) set)" | |
| 31276 | 2204 | apply(rule, rule is_interval_connected, assumption) unfolding is_interval_1 | 
| 2205 | apply(rule,rule,rule,rule,erule conjE,rule ccontr) proof- | |
| 2206 | fix a b x assume as:"connected s" "a \<in> s" "b \<in> s" "dest_vec1 a \<le> dest_vec1 x" "dest_vec1 x \<le> dest_vec1 b" "x\<notin>s" | |
| 2207 | hence *:"dest_vec1 a < dest_vec1 x" "dest_vec1 x < dest_vec1 b" apply(rule_tac [!] ccontr) unfolding not_less by auto | |
| 2208 |   let ?halfl = "{z. basis 1 \<bullet> z < dest_vec1 x} " and ?halfr = "{z. basis 1 \<bullet> z > dest_vec1 x} "
 | |
| 2209 |   { fix y assume "y \<in> s" have "y \<in> ?halfr \<union> ?halfl" apply(rule ccontr)
 | |
| 2210 | using as(6) `y\<in>s` by (auto simp add: basis_component field_simps dest_vec1_eq[unfolded dest_vec1_def One_nat_def] dest_vec1_def) } | |
| 2211 | moreover have "a\<in>?halfl" "b\<in>?halfr" using * by (auto simp add: basis_component field_simps dest_vec1_def) | |
| 2212 |   hence "?halfl \<inter> s \<noteq> {}" "?halfr \<inter> s \<noteq> {}"  using as(2-3) by auto
 | |
| 2213 | ultimately show False apply(rule_tac notE[OF as(1)[unfolded connected_def]]) | |
| 2214 | apply(rule_tac x="?halfl" in exI, rule_tac x="?halfr" in exI) | |
| 2215 | apply(rule, rule open_halfspace_lt, rule, rule open_halfspace_gt) apply(rule, rule, rule ccontr) | |
| 2216 | by(auto simp add: basis_component field_simps) qed | |
| 2217 | ||
| 2218 | lemma is_interval_convex_1: | |
| 31281 | 2219 | "is_interval s \<longleftrightarrow> convex (s::(real^1) set)" | 
| 31276 | 2220 | using is_interval_convex convex_connected is_interval_connected_1 by auto | 
| 2221 | ||
| 2222 | lemma convex_connected_1: | |
| 2223 | "connected s \<longleftrightarrow> convex (s::(real^1) set)" | |
| 2224 | using is_interval_convex convex_connected is_interval_connected_1 by auto | |
| 2225 | ||
| 2226 | subsection {* Another intermediate value theorem formulation. *}
 | |
| 2227 | ||
| 2228 | lemma ivt_increasing_component_on_1: fixes f::"real^1 \<Rightarrow> real^'n::finite" | |
| 2229 |   assumes "dest_vec1 a \<le> dest_vec1 b" "continuous_on {a .. b} f" "(f a)$k \<le> y" "y \<le> (f b)$k"
 | |
| 2230 |   shows "\<exists>x\<in>{a..b}. (f x)$k = y"
 | |
| 2231 | proof- have "f a \<in> f ` {a..b}" "f b \<in> f ` {a..b}" apply(rule_tac[!] imageI) 
 | |
| 2232 | using assms(1) by(auto simp add: vector_less_eq_def dest_vec1_def) | |
| 2233 |   thus ?thesis using connected_ivt_component[of "f ` {a..b}" "f a" "f b" k y]
 | |
| 2234 | using connected_continuous_image[OF assms(2) convex_connected[OF convex_interval(1)]] | |
| 2235 | using assms by(auto intro!: imageI) qed | |
| 2236 | ||
| 2237 | lemma ivt_increasing_component_1: fixes f::"real^1 \<Rightarrow> real^'n::finite" | |
| 2238 | assumes "dest_vec1 a \<le> dest_vec1 b" | |
| 2239 |   "\<forall>x\<in>{a .. b}. continuous (at x) f" "f a$k \<le> y" "y \<le> f b$k"
 | |
| 2240 |   shows "\<exists>x\<in>{a..b}. (f x)$k = y"
 | |
| 2241 | apply(rule ivt_increasing_component_on_1) using assms using continuous_at_imp_continuous_on by auto | |
| 2242 | ||
| 2243 | lemma ivt_decreasing_component_on_1: fixes f::"real^1 \<Rightarrow> real^'n::finite" | |
| 2244 |   assumes "dest_vec1 a \<le> dest_vec1 b" "continuous_on {a .. b} f" "(f b)$k \<le> y" "y \<le> (f a)$k"
 | |
| 2245 |   shows "\<exists>x\<in>{a..b}. (f x)$k = y"
 | |
| 2246 | apply(subst neg_equal_iff_equal[THEN sym]) unfolding vector_uminus_component[THEN sym] | |
| 2247 | apply(rule ivt_increasing_component_on_1) using assms using continuous_on_neg | |
| 2248 | by(auto simp add:vector_uminus_component) | |
| 2249 | ||
| 2250 | lemma ivt_decreasing_component_1: fixes f::"real^1 \<Rightarrow> real^'n::finite" | |
| 2251 |   assumes "dest_vec1 a \<le> dest_vec1 b" "\<forall>x\<in>{a .. b}. continuous (at x) f" "f b$k \<le> y" "y \<le> f a$k"
 | |
| 2252 |   shows "\<exists>x\<in>{a..b}. (f x)$k = y"
 | |
| 2253 | apply(rule ivt_decreasing_component_on_1) using assms using continuous_at_imp_continuous_on by auto | |
| 2254 | ||
| 2255 | subsection {* A bound within a convex hull, and so an interval. *}
 | |
| 2256 | ||
| 2257 | lemma convex_on_convex_hull_bound: | |
| 2258 | assumes "convex_on (convex hull s) f" "\<forall>x\<in>s. f x \<le> b" | |
| 2259 | shows "\<forall>x\<in> convex hull s. f x \<le> b" proof | |
| 2260 | fix x assume "x\<in>convex hull s" | |
| 2261 |   then obtain k u v where obt:"\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *s v i) = x"
 | |
| 2262 | unfolding convex_hull_indexed mem_Collect_eq by auto | |
| 2263 |   have "(\<Sum>i = 1..k. u i * f (v i)) \<le> b" using setsum_mono[of "{1..k}" "\<lambda>i. u i * f (v i)" "\<lambda>i. u i * b"]
 | |
| 2264 | unfolding setsum_left_distrib[THEN sym] obt(2) mult_1 apply(drule_tac meta_mp) apply(rule mult_left_mono) | |
| 2265 | using assms(2) obt(1) by auto | |
| 2266 | thus "f x \<le> b" using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v] | |
| 2267 | unfolding obt(2-3) using obt(1) and hull_subset[unfolded subset_eq, rule_format, of _ s] by auto qed | |
| 2268 | ||
| 2269 | lemma unit_interval_convex_hull: | |
| 2270 |   "{0::real^'n::finite .. 1} = convex hull {x. \<forall>i. (x$i = 0) \<or> (x$i = 1)}" (is "?int = convex hull ?points")
 | |
| 2271 | proof- have 01:"{0,1} \<subseteq> convex hull ?points" apply rule apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) by auto
 | |
| 2272 |   { fix n x assume "x\<in>{0::real^'n .. 1}" "n \<le> CARD('n)" "card {i. x$i \<noteq> 0} \<le> n" 
 | |
| 2273 | hence "x\<in>convex hull ?points" proof(induct n arbitrary: x) | |
| 2274 | case 0 hence "x = 0" apply(subst Cart_eq) apply rule by auto | |
| 2275 | thus "x\<in>convex hull ?points" using 01 by auto | |
| 2276 | next | |
| 2277 |     case (Suc n) show "x\<in>convex hull ?points" proof(cases "{i. x$i \<noteq> 0} = {}")
 | |
| 2278 | case True hence "x = 0" unfolding Cart_eq by auto | |
| 2279 | thus "x\<in>convex hull ?points" using 01 by auto | |
| 2280 | next | |
| 2281 |       case False def xi \<equiv> "Min ((\<lambda>i. x$i) ` {i. x$i \<noteq> 0})"
 | |
| 2282 |       have "xi \<in> (\<lambda>i. x$i) ` {i. x$i \<noteq> 0}" unfolding xi_def apply(rule Min_in) using False by auto
 | |
| 2283 | then obtain i where i':"x$i = xi" "x$i \<noteq> 0" by auto | |
| 2284 | have i:"\<And>j. x$j > 0 \<Longrightarrow> x$i \<le> x$j" | |
| 2285 | unfolding i'(1) xi_def apply(rule_tac Min_le) unfolding image_iff | |
| 2286 | defer apply(rule_tac x=j in bexI) using i' by auto | |
| 2287 | have i01:"x$i \<le> 1" "x$i > 0" using Suc(2)[unfolded mem_interval,rule_format,of i] using i'(2) `x$i \<noteq> 0` | |
| 2288 | by(auto simp add: Cart_lambda_beta) | |
| 2289 | show ?thesis proof(cases "x$i=1") | |
| 2290 | 	case True have "\<forall>j\<in>{i. x$i \<noteq> 0}. x$j = 1" apply(rule, rule ccontr) unfolding mem_Collect_eq proof-
 | |
| 2291 | fix j assume "x $ j \<noteq> 0" "x $ j \<noteq> 1" | |
| 2292 | 	  hence j:"x$j \<in> {0<..<1}" using Suc(2) by(auto simp add: vector_less_eq_def elim!:allE[where x=j])
 | |
| 2293 | 	  hence "x$j \<in> op $ x ` {i. x $ i \<noteq> 0}" by auto 
 | |
| 2294 | hence "x$j \<ge> x$i" unfolding i'(1) xi_def apply(rule_tac Min_le) by auto | |
| 2295 | thus False using True Suc(2) j by(auto simp add: vector_less_eq_def elim!:ballE[where x=j]) qed | |
| 2296 | thus "x\<in>convex hull ?points" apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) | |
| 2297 | by(auto simp add: Cart_lambda_beta) | |
| 2298 | next let ?y = "\<lambda>j. if x$j = 0 then 0 else (x$j - x$i) / (1 - x$i)" | |
| 2299 | case False hence *:"x = x$i *s (\<chi> j. if x$j = 0 then 0 else 1) + (1 - x$i) *s (\<chi> j. ?y j)" unfolding Cart_eq | |
| 2300 | by(auto simp add: Cart_lambda_beta vector_add_component vector_smult_component vector_minus_component field_simps) | |
| 2301 | 	{ fix j have "x$j \<noteq> 0 \<Longrightarrow> 0 \<le> (x $ j - x $ i) / (1 - x $ i)" "(x $ j - x $ i) / (1 - x $ i) \<le> 1"
 | |
| 2302 | apply(rule_tac divide_nonneg_pos) using i(1)[of j] using False i01 | |
| 2303 | using Suc(2)[unfolded mem_interval, rule_format, of j] by(auto simp add:field_simps Cart_lambda_beta) | |
| 2304 | hence "0 \<le> ?y j \<and> ?y j \<le> 1" by auto } | |
| 2305 | 	moreover have "i\<in>{j. x$j \<noteq> 0} - {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0}" using i01 by(auto simp add: Cart_lambda_beta)
 | |
| 2306 | 	hence "{j. x$j \<noteq> 0} \<noteq> {j. ((\<chi> j. ?y j)::real^'n::finite) $ j \<noteq> 0}" by auto
 | |
| 2307 | 	hence **:"{j. ((\<chi> j. ?y j)::real^'n::finite) $ j \<noteq> 0} \<subset> {j. x$j \<noteq> 0}" apply - apply rule by(auto simp add: Cart_lambda_beta)  
 | |
| 2308 | 	have "card {j. ((\<chi> j. ?y j)::real^'n) $ j \<noteq> 0} \<le> n" using less_le_trans[OF psubset_card_mono[OF _ **] Suc(4)] by auto
 | |
| 2309 | ultimately show ?thesis apply(subst *) apply(rule convex_convex_hull[unfolded convex_def, rule_format]) | |
| 2310 | apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) defer apply(rule Suc(1)) | |
| 2311 | unfolding mem_interval using i01 Suc(3) by (auto simp add: Cart_lambda_beta) | |
| 2312 | qed qed qed } note * = this | |
| 2313 | show ?thesis apply rule defer apply(rule hull_minimal) unfolding subset_eq prefer 3 apply rule | |
| 2314 |     apply(rule_tac n2="CARD('n)" in *) prefer 3 apply(rule card_mono) using 01 and convex_interval(1) prefer 5 apply - apply rule
 | |
| 2315 | unfolding mem_interval apply rule unfolding mem_Collect_eq apply(erule_tac x=i in allE) | |
| 2316 | by(auto simp add: vector_less_eq_def mem_def[of _ convex]) qed | |
| 2317 | ||
| 2318 | subsection {* And this is a finite set of vertices. *}
 | |
| 2319 | ||
| 2320 | lemma unit_cube_convex_hull: obtains s where "finite s" "{0 .. 1::real^'n::finite} = convex hull s"
 | |
| 2321 |   apply(rule that[of "{x::real^'n::finite. \<forall>i. x$i=0 \<or> x$i=1}"])
 | |
| 2322 | apply(rule finite_subset[of _ "(\<lambda>s. (\<chi> i. if i\<in>s then 1::real else 0)::real^'n::finite) ` UNIV"]) | |
| 2323 | prefer 3 apply(rule unit_interval_convex_hull) apply rule unfolding mem_Collect_eq proof- | |
| 2324 | fix x::"real^'n" assume as:"\<forall>i. x $ i = 0 \<or> x $ i = 1" | |
| 2325 |   show "x \<in> (\<lambda>s. \<chi> i. if i \<in> s then 1 else 0) ` UNIV" apply(rule image_eqI[where x="{i. x$i = 1}"])
 | |
| 2326 | unfolding Cart_eq using as by(auto simp add:Cart_lambda_beta) qed auto | |
| 2327 | ||
| 2328 | subsection {* Hence any cube (could do any nonempty interval). *}
 | |
| 2329 | ||
| 2330 | lemma cube_convex_hull: | |
| 2331 |   assumes "0 < d" obtains s::"(real^'n::finite) set" where "finite s" "{x - (\<chi> i. d) .. x + (\<chi> i. d)} = convex hull s" proof-
 | |
| 2332 | let ?d = "(\<chi> i. d)::real^'n" | |
| 2333 |   have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *s y) ` {0 .. 1}" apply(rule set_ext, rule)
 | |
| 2334 | unfolding image_iff defer apply(erule bexE) proof- | |
| 2335 |     fix y assume as:"y\<in>{x - ?d .. x + ?d}"
 | |
| 2336 |     { fix i::'n have "x $ i \<le> d + y $ i" "y $ i \<le> d + x $ i" using as[unfolded mem_interval, THEN spec[where x=i]]
 | |
| 2337 | by(auto simp add: vector_component) | |
| 2338 | hence "1 \<ge> inverse d * (x $ i - y $ i)" "1 \<ge> inverse d * (y $ i - x $ i)" | |
| 2339 | apply(rule_tac[!] mult_left_le_imp_le[OF _ assms]) unfolding mult_assoc[THEN sym] | |
| 2340 | using assms by(auto simp add: field_simps right_inverse) | |
| 2341 | hence "inverse d * (x $ i * 2) \<le> 2 + inverse d * (y $ i * 2)" | |
| 2342 | "inverse d * (y $ i * 2) \<le> 2 + inverse d * (x $ i * 2)" by(auto simp add:field_simps) } | |
| 2343 |     hence "inverse (2 * d) *s (y - (x - ?d)) \<in> {0..1}" unfolding mem_interval using assms
 | |
| 2344 | by(auto simp add: Cart_eq vector_component_simps field_simps) | |
| 2345 |     thus "\<exists>z\<in>{0..1}. y = x - ?d + (2 * d) *s z" apply- apply(rule_tac x="inverse (2 * d) *s (y - (x - ?d))" in bexI) 
 | |
| 2346 | using assms by(auto simp add: Cart_eq vector_less_eq_def Cart_lambda_beta) | |
| 2347 | next | |
| 2348 |     fix y z assume as:"z\<in>{0..1}" "y = x - ?d + (2*d) *s z" 
 | |
| 2349 | have "\<And>i. 0 \<le> d * z $ i \<and> d * z $ i \<le> d" using assms as(1)[unfolded mem_interval] apply(erule_tac x=i in allE) | |
| 2350 | apply rule apply(rule mult_nonneg_nonneg) prefer 3 apply(rule mult_right_le_one_le) | |
| 2351 | using assms by(auto simp add: vector_component_simps Cart_eq) | |
| 2352 |     thus "y \<in> {x - ?d..x + ?d}" unfolding as(2) mem_interval apply- apply rule using as(1)[unfolded mem_interval]
 | |
| 2353 | apply(erule_tac x=i in allE) using assms by(auto simp add: vector_component_simps Cart_eq) qed | |
| 2354 |   obtain s where "finite s" "{0..1::real^'n} = convex hull s" using unit_cube_convex_hull by auto
 | |
| 2355 | thus ?thesis apply(rule_tac that[of "(\<lambda>y. x - ?d + (2 * d) *s y)` s"]) unfolding * and convex_hull_affinity by auto qed | |
| 2356 | ||
| 2357 | subsection {* Bounded convex function on open set is continuous. *}
 | |
| 2358 | ||
| 2359 | lemma convex_on_bounded_continuous: | |
| 2360 | assumes "open s" "convex_on s f" "\<forall>x\<in>s. abs(f x) \<le> b" | |
| 2361 | shows "continuous_on s (vec1 o f)" | |
| 2362 | apply(rule continuous_at_imp_continuous_on) unfolding continuous_at_vec1_range proof(rule,rule,rule) | |
| 2363 | fix x e assume "x\<in>s" "(0::real) < e" | |
| 2364 | def B \<equiv> "abs b + 1" | |
| 2365 | have B:"0 < B" "\<And>x. x\<in>s \<Longrightarrow> abs (f x) \<le> B" | |
| 2366 | unfolding B_def defer apply(drule assms(3)[rule_format]) by auto | |
| 2367 | obtain k where "k>0"and k:"cball x k \<subseteq> s" using assms(1)[unfolded open_contains_cball, THEN bspec[where x=x]] using `x\<in>s` by auto | |
| 2368 | show "\<exists>d>0. \<forall>x'. norm (x' - x) < d \<longrightarrow> \<bar>f x' - f x\<bar> < e" | |
| 2369 | apply(rule_tac x="min (k / 2) (e / (2 * B) * k)" in exI) apply rule defer proof(rule,rule) | |
| 2370 | fix y assume as:"norm (y - x) < min (k / 2) (e / (2 * B) * k)" | |
| 2371 | show "\<bar>f y - f x\<bar> < e" proof(cases "y=x") | |
| 2372 | case False def t \<equiv> "k / norm (y - x)" | |
| 2373 | have "2 < t" "0<t" unfolding t_def using as False and `k>0` by(auto simp add:field_simps) | |
| 31289 | 2374 | have "y\<in>s" apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm | 
| 31276 | 2375 | apply(rule order_trans[of _ "2 * norm (x - y)"]) using as by(auto simp add: field_simps norm_minus_commute) | 
| 2376 |       { def w \<equiv> "x + t *s (y - x)"
 | |
| 31289 | 2377 | have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm | 
| 31276 | 2378 | unfolding t_def using `k>0` by(auto simp add: norm_mul simp del: vector_ssub_ldistrib) | 
| 2379 | have "(1 / t) *s x + - x + ((t - 1) / t) *s x = (1 / t - 1 + (t - 1) / t) *s x" by auto | |
| 2380 | also have "\<dots> = 0" using `t>0` by(auto simp add:field_simps simp del:vector_sadd_rdistrib) | |
| 2381 | finally have w:"(1 / t) *s w + ((t - 1) / t) *s x = y" unfolding w_def using False and `t>0` by auto | |
| 2382 | have "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) | |
| 2383 | hence "(f w - f x) / t < e" | |
| 2384 | using B(2)[OF `w\<in>s`] and B(2)[OF `x\<in>s`] using `t>0` by(auto simp add:field_simps) | |
| 2385 | hence th1:"f y - f x < e" apply- apply(rule le_less_trans) defer apply assumption | |
| 2386 | using assms(2)[unfolded convex_on_def,rule_format,of w x "1/t" "(t - 1)/t", unfolded w] | |
| 2387 | using `0<t` `2<t` and `x\<in>s` `w\<in>s` by(auto simp add:field_simps) } | |
| 2388 | moreover | |
| 2389 |       { def w \<equiv> "x - t *s (y - x)"
 | |
| 31289 | 2390 | have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm | 
| 31276 | 2391 | unfolding t_def using `k>0` by(auto simp add: norm_mul simp del: vector_ssub_ldistrib) | 
| 2392 | have "(1 / (1 + t)) *s x + (t / (1 + t)) *s x = (1 / (1 + t) + t / (1 + t)) *s x" by auto | |
| 2393 | also have "\<dots>=x" using `t>0` by (auto simp add:field_simps simp del:vector_sadd_rdistrib) | |
| 2394 | finally have w:"(1 / (1+t)) *s w + (t / (1 + t)) *s y = x" unfolding w_def using False and `t>0` by auto | |
| 2395 | have "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) | |
| 2396 | hence *:"(f w - f y) / t < e" using B(2)[OF `w\<in>s`] and B(2)[OF `y\<in>s`] using `t>0` by(auto simp add:field_simps) | |
| 2397 | have "f x \<le> 1 / (1 + t) * f w + (t / (1 + t)) * f y" | |
| 2398 | using assms(2)[unfolded convex_on_def,rule_format,of w y "1/(1+t)" "t / (1+t)",unfolded w] | |
| 2399 | using `0<t` `2<t` and `y\<in>s` `w\<in>s` by (auto simp add:field_simps) | |
| 2400 | also have "\<dots> = (f w + t * f y) / (1 + t)" using `t>0` unfolding real_divide_def by (auto simp add:field_simps) | |
| 2401 | also have "\<dots> < e + f y" using `t>0` * `e>0` by(auto simp add:field_simps) | |
| 2402 | finally have "f x - f y < e" by auto } | |
| 2403 | ultimately show ?thesis by auto | |
| 2404 | qed(insert `0<e`, auto) | |
| 2405 | qed(insert `0<e` `0<k` `0<B`, auto simp add:field_simps intro!:mult_pos_pos) qed | |
| 2406 | ||
| 2407 | subsection {* Upper bound on a ball implies upper and lower bounds. *}
 | |
| 2408 | ||
| 2409 | lemma convex_bounds_lemma: | |
| 2410 | assumes "convex_on (cball x e) f" "\<forall>y \<in> cball x e. f y \<le> b" | |
| 2411 | shows "\<forall>y \<in> cball x e. abs(f y) \<le> b + 2 * abs(f x)" | |
| 2412 | apply(rule) proof(cases "0 \<le> e") case True | |
| 2413 | fix y assume y:"y\<in>cball x e" def z \<equiv> "2 *s x - y" | |
| 2414 | have *:"x - (2 *s x - y) = y - x" by vector | |
| 31289 | 2415 | have z:"z\<in>cball x e" using y unfolding z_def mem_cball dist_norm * by(auto simp add: norm_minus_commute) | 
| 31276 | 2416 | have "(1 / 2) *s y + (1 / 2) *s z = x" unfolding z_def by auto | 
| 2417 | thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using assms(1)[unfolded convex_on_def,rule_format, OF y z, of "1/2" "1/2"] | |
| 2418 | using assms(2)[rule_format,OF y] assms(2)[rule_format,OF z] by(auto simp add:field_simps) | |
| 2419 | next case False fix y assume "y\<in>cball x e" | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 2420 | hence "dist x y < 0" using False unfolding mem_cball not_le by (auto simp del: dist_not_less_zero) | 
| 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 2421 | thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using zero_le_dist[of x y] by auto qed | 
| 31276 | 2422 | |
| 2423 | subsection {* Hence a convex function on an open set is continuous. *}
 | |
| 2424 | ||
| 2425 | lemma convex_on_continuous: | |
| 2426 | assumes "open (s::(real^'n::finite) set)" "convex_on s f" | |
| 2427 | shows "continuous_on s (vec1 \<circ> f)" | |
| 2428 | unfolding continuous_on_eq_continuous_at[OF assms(1)] proof | |
| 2429 | note dimge1 = dimindex_ge_1[where 'a='n] | |
| 2430 | fix x assume "x\<in>s" | |
| 2431 | then obtain e where e:"cball x e \<subseteq> s" "e>0" using assms(1) unfolding open_contains_cball by auto | |
| 2432 |   def d \<equiv> "e / real CARD('n)"
 | |
| 2433 | have "0 < d" unfolding d_def using `e>0` dimge1 by(rule_tac divide_pos_pos, auto) | |
| 2434 | let ?d = "(\<chi> i. d)::real^'n" | |
| 2435 |   obtain c where c:"finite c" "{x - ?d..x + ?d} = convex hull c" using cube_convex_hull[OF `d>0`, of x] by auto
 | |
| 2436 |   have "x\<in>{x - ?d..x + ?d}" using `d>0` unfolding mem_interval by(auto simp add:vector_component_simps)
 | |
| 2437 |   hence "c\<noteq>{}" apply(rule_tac ccontr) using c by(auto simp add:convex_hull_empty)
 | |
| 2438 | def k \<equiv> "Max (f ` c)" | |
| 2439 |   have "convex_on {x - ?d..x + ?d} f" apply(rule convex_on_subset[OF assms(2)])
 | |
| 2440 | apply(rule subset_trans[OF _ e(1)]) unfolding subset_eq mem_cball proof | |
| 2441 |     fix z assume z:"z\<in>{x - ?d..x + ?d}"
 | |
| 2442 | have e:"e = setsum (\<lambda>i. d) (UNIV::'n set)" unfolding setsum_constant d_def using dimge1 | |
| 2443 | by (metis card_enum field_simps d_def not_one_le_zero of_nat_le_iff real_eq_of_nat real_of_nat_1) | |
| 31289 | 2444 | show "dist x z \<le> e" unfolding dist_norm e apply(rule_tac order_trans[OF norm_le_l1], rule setsum_mono) | 
| 31276 | 2445 | using z[unfolded mem_interval] apply(erule_tac x=i in allE) by(auto simp add:field_simps vector_component_simps) qed | 
| 2446 |   hence k:"\<forall>y\<in>{x - ?d..x + ?d}. f y \<le> k" unfolding c(2) apply(rule_tac convex_on_convex_hull_bound) apply assumption
 | |
| 2447 | unfolding k_def apply(rule, rule Max_ge) using c(1) by auto | |
| 2448 | have "d \<le> e" unfolding d_def apply(rule mult_imp_div_pos_le) using `e>0` dimge1 unfolding mult_le_cancel_left1 using real_dimindex_ge_1 by auto | |
| 2449 | hence dsube:"cball x d \<subseteq> cball x e" unfolding subset_eq Ball_def mem_cball by auto | |
| 2450 | have conv:"convex_on (cball x d) f" apply(rule convex_on_subset, rule convex_on_subset[OF assms(2)]) apply(rule e(1)) using dsube by auto | |
| 2451 | hence "\<forall>y\<in>cball x d. abs (f y) \<le> k + 2 * abs (f x)" apply(rule_tac convex_bounds_lemma) apply assumption proof | |
| 2452 | fix y assume y:"y\<in>cball x d" | |
| 2453 |     { fix i::'n have "x $ i - d \<le> y $ i"  "y $ i \<le> x $ i + d" 
 | |
| 31289 | 2454 | using order_trans[OF component_le_norm y[unfolded mem_cball dist_norm], of i] by(auto simp add: vector_component) } | 
| 2455 | thus "f y \<le> k" apply(rule_tac k[rule_format]) unfolding mem_cball mem_interval dist_norm | |
| 31276 | 2456 | by(auto simp add: vector_component_simps) qed | 
| 2457 | hence "continuous_on (ball x d) (vec1 \<circ> f)" apply(rule_tac convex_on_bounded_continuous) | |
| 2458 | apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball) by auto | |
| 2459 | thus "continuous (at x) (vec1 \<circ> f)" unfolding continuous_on_eq_continuous_at[OF open_ball] using `d>0` by auto qed | |
| 2460 | ||
| 2461 | subsection {* Line segments, starlike sets etc.                                         *)
 | |
| 2462 | (* Use the same overloading tricks as for intervals, so that *) | |
| 2463 | (* segment[a,b] is closed and segment(a,b) is open relative to affine hull. *} | |
| 2464 | ||
| 2465 | definition "midpoint a b = (inverse (2::real)) *s (a + b)" | |
| 2466 | ||
| 2467 | definition "open_segment a b = {(1 - u) *s a + u *s b | u::real.  0 < u \<and> u < 1}"
 | |
| 2468 | ||
| 2469 | definition "closed_segment a b = {(1 - u) *s a + u *s b | u::real. 0 \<le> u \<and> u \<le> 1}"
 | |
| 2470 | ||
| 2471 | definition "between = (\<lambda> (a,b). closed_segment a b)" | |
| 2472 | ||
| 2473 | lemmas segment = open_segment_def closed_segment_def | |
| 2474 | ||
| 2475 | definition "starlike s \<longleftrightarrow> (\<exists>a\<in>s. \<forall>x\<in>s. closed_segment a x \<subseteq> s)" | |
| 2476 | ||
| 2477 | lemma midpoint_refl: "midpoint x x = x" | |
| 2478 | unfolding midpoint_def unfolding vector_add_ldistrib unfolding vector_sadd_rdistrib[THEN sym] by auto | |
| 2479 | ||
| 2480 | lemma midpoint_sym: "midpoint a b = midpoint b a" unfolding midpoint_def by auto | |
| 2481 | ||
| 2482 | lemma dist_midpoint: | |
| 2483 | "dist a (midpoint a b) = (dist a b) / 2" (is ?t1) | |
| 2484 | "dist b (midpoint a b) = (dist a b) / 2" (is ?t2) | |
| 2485 | "dist (midpoint a b) a = (dist a b) / 2" (is ?t3) | |
| 2486 | "dist (midpoint a b) b = (dist a b) / 2" (is ?t4) | |
| 2487 | proof- | |
| 2488 | have *: "\<And>x y::real^'n::finite. 2 *s x = - y \<Longrightarrow> norm x = (norm y) / 2" unfolding equation_minus_iff by auto | |
| 2489 | have **:"\<And>x y::real^'n::finite. 2 *s x = y \<Longrightarrow> norm x = (norm y) / 2" by auto | |
| 31289 | 2490 | show ?t1 unfolding midpoint_def dist_norm apply (rule **) by(auto,vector) | 
| 2491 | show ?t2 unfolding midpoint_def dist_norm apply (rule *) by(auto,vector) | |
| 2492 | show ?t3 unfolding midpoint_def dist_norm apply (rule *) by(auto,vector) | |
| 2493 | show ?t4 unfolding midpoint_def dist_norm apply (rule **) by(auto,vector) qed | |
| 31276 | 2494 | |
| 2495 | lemma midpoint_eq_endpoint: | |
| 2496 | "midpoint a b = a \<longleftrightarrow> a = (b::real^'n::finite)" | |
| 2497 | "midpoint a b = b \<longleftrightarrow> a = b" | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 2498 | unfolding dist_eq_0_iff[where 'a="real^'n", THEN sym] dist_midpoint by auto | 
| 31276 | 2499 | |
| 2500 | lemma convex_contains_segment: | |
| 2501 | "convex s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. closed_segment a b \<subseteq> s)" | |
| 2502 | unfolding convex_alt closed_segment_def by auto | |
| 2503 | ||
| 2504 | lemma convex_imp_starlike: | |
| 2505 |   "convex s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> starlike s"
 | |
| 2506 | unfolding convex_contains_segment starlike_def by auto | |
| 2507 | ||
| 2508 | lemma segment_convex_hull: | |
| 2509 |  "closed_segment a b = convex hull {a,b}" proof-
 | |
| 2510 |   have *:"\<And>x. {x} \<noteq> {}" by auto
 | |
| 2511 | have **:"\<And>u v. u + v = 1 \<longleftrightarrow> u = 1 - (v::real)" by auto | |
| 2512 | show ?thesis unfolding segment convex_hull_insert[OF *] convex_hull_singleton apply(rule set_ext) | |
| 2513 | unfolding mem_Collect_eq apply(rule,erule exE) | |
| 2514 | apply(rule_tac x="1 - u" in exI) apply rule defer apply(rule_tac x=u in exI) defer | |
| 2515 | apply(erule exE, (erule conjE)?)+ apply(rule_tac x="1 - u" in exI) unfolding ** by auto qed | |
| 2516 | ||
| 2517 | lemma convex_segment: "convex (closed_segment a b)" | |
| 2518 | unfolding segment_convex_hull by(rule convex_convex_hull) | |
| 2519 | ||
| 2520 | lemma ends_in_segment: "a \<in> closed_segment a b" "b \<in> closed_segment a b" | |
| 2521 | unfolding segment_convex_hull apply(rule_tac[!] hull_subset[unfolded subset_eq, rule_format]) by auto | |
| 2522 | ||
| 2523 | lemma segment_furthest_le: | |
| 2524 | assumes "x \<in> closed_segment a b" shows "norm(y - x) \<le> norm(y - a) \<or> norm(y - x) \<le> norm(y - b)" proof- | |
| 2525 |   obtain z where "z\<in>{a, b}" "norm (x - y) \<le> norm (z - y)" using simplex_furthest_le[of "{a, b}" y]
 | |
| 2526 | using assms[unfolded segment_convex_hull] by auto | |
| 2527 | thus ?thesis by(auto simp add:norm_minus_commute) qed | |
| 2528 | ||
| 2529 | lemma segment_bound: | |
| 2530 | assumes "x \<in> closed_segment a b" | |
| 2531 | shows "norm(x - a) \<le> norm(b - a)" "norm(x - b) \<le> norm(b - a)" | |
| 2532 | using segment_furthest_le[OF assms, of a] | |
| 2533 | using segment_furthest_le[OF assms, of b] | |
| 2534 | by (auto simp add:norm_minus_commute) | |
| 2535 | ||
| 2536 | lemma segment_refl:"closed_segment a a = {a}" unfolding segment by auto
 | |
| 2537 | ||
| 2538 | lemma between_mem_segment: "between (a,b) x \<longleftrightarrow> x \<in> closed_segment a b" | |
| 2539 | unfolding between_def mem_def by auto | |
| 2540 | ||
| 2541 | lemma between:"between (a,b) (x::real^'n::finite) \<longleftrightarrow> dist a b = (dist a x) + (dist x b)" | |
| 2542 | proof(cases "a = b") | |
| 2543 | case True thus ?thesis unfolding between_def split_conv mem_def[of x, symmetric] | |
| 31285 
0a3f9ee4117c
generalize dist function to class real_normed_vector
 huffman parents: 
31279diff
changeset | 2544 | by(auto simp add:segment_refl dist_commute) next | 
| 31276 | 2545 | case False hence Fal:"norm (a - b) \<noteq> 0" and Fal2: "norm (a - b) > 0" by auto | 
| 2546 | have *:"\<And>u. a - ((1 - u) *s a + u *s b) = u *s (a - b)" by auto | |
| 2547 | show ?thesis unfolding between_def split_conv mem_def[of x, symmetric] closed_segment_def mem_Collect_eq | |
| 2548 | apply rule apply(erule exE, (erule conjE)+) apply(subst dist_triangle_eq) proof- | |
| 2549 | fix u assume as:"x = (1 - u) *s a + u *s b" "0 \<le> u" "u \<le> 1" | |
| 2550 | hence *:"a - x = u *s (a - b)" "x - b = (1 - u) *s (a - b)" | |
| 2551 | unfolding as(1) by(auto simp add:field_simps) | |
| 2552 | show "norm (a - x) *s (x - b) = norm (x - b) *s (a - x)" | |
| 2553 | unfolding norm_minus_commute[of x a] * norm_mul Cart_eq using as(2,3) | |
| 2554 | by(auto simp add: vector_component_simps field_simps) | |
| 2555 | next assume as:"dist a b = dist a x + dist x b" | |
| 31289 | 2556 | have "norm (a - x) / norm (a - b) \<le> 1" unfolding divide_le_eq_1_pos[OF Fal2] unfolding as[unfolded dist_norm] norm_ge_zero by auto | 
| 31276 | 2557 | thus "\<exists>u. x = (1 - u) *s a + u *s b \<and> 0 \<le> u \<and> u \<le> 1" apply(rule_tac x="dist a x / dist a b" in exI) | 
| 31289 | 2558 | unfolding dist_norm Cart_eq apply- apply rule defer apply(rule, rule divide_nonneg_pos) prefer 4 proof rule | 
| 31276 | 2559 | fix i::'n have "((1 - norm (a - x) / norm (a - b)) *s a + (norm (a - x) / norm (a - b)) *s b) $ i = | 
| 2560 | ((norm (a - b) - norm (a - x)) * (a $ i) + norm (a - x) * (b $ i)) / norm (a - b)" | |
| 2561 | using Fal by(auto simp add:vector_component_simps field_simps) | |
| 2562 | also have "\<dots> = x$i" apply(rule divide_eq_imp[OF Fal]) | |
| 31289 | 2563 | unfolding as[unfolded dist_norm] using as[unfolded dist_triangle_eq Cart_eq,rule_format, of i] | 
| 31276 | 2564 | by(auto simp add:field_simps vector_component_simps) | 
| 2565 | finally show "x $ i = ((1 - norm (a - x) / norm (a - b)) *s a + (norm (a - x) / norm (a - b)) *s b) $ i" by auto | |
| 2566 | qed(insert Fal2, auto) qed qed | |
| 2567 | ||
| 31279 | 2568 | lemma between_midpoint: fixes a::"real^'n::finite" shows | 
| 31276 | 2569 | "between (a,b) (midpoint a b)" (is ?t1) | 
| 2570 | "between (b,a) (midpoint a b)" (is ?t2) | |
| 2571 | proof- have *:"\<And>x y z. x = (1/2::real) *s z \<Longrightarrow> y = (1/2) *s z \<Longrightarrow> norm z = norm x + norm y" by auto | |
| 31289 | 2572 | show ?t1 ?t2 unfolding between midpoint_def dist_norm apply(rule_tac[!] *) | 
| 31276 | 2573 | by(auto simp add:field_simps Cart_eq vector_component_simps) qed | 
| 2574 | ||
| 2575 | lemma between_mem_convex_hull: | |
| 2576 |   "between (a,b) x \<longleftrightarrow> x \<in> convex hull {a,b}"
 | |
| 2577 | unfolding between_mem_segment segment_convex_hull .. | |
| 2578 | ||
| 2579 | subsection {* Shrinking towards the interior of a convex set. *}
 | |
| 2580 | ||
| 2581 | lemma mem_interior_convex_shrink: | |
| 2582 | assumes "convex s" "c \<in> interior s" "x \<in> s" "0 < e" "e \<le> 1" | |
| 2583 | shows "x - e *s (x - c) \<in> interior s" | |
| 2584 | proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto | |
| 2585 | show ?thesis unfolding mem_interior apply(rule_tac x="e*d" in exI) | |
| 2586 | apply(rule) defer unfolding subset_eq Ball_def mem_ball proof(rule,rule) | |
| 2587 | fix y assume as:"dist (x - e *s (x - c)) y < e * d" | |
| 2588 | have *:"y = (1 - (1 - e)) *s ((1 / e) *s y - ((1 - e) / e) *s x) + (1 - e) *s x" using `e>0` by auto | |
| 2589 | have "dist c ((1 / e) *s y - ((1 - e) / e) *s x) = abs(1/e) * norm (e *s c - y + (1 - e) *s x)" | |
| 31289 | 2590 | unfolding dist_norm unfolding norm_mul[THEN sym] apply(rule norm_eqI) using `e>0` | 
| 31276 | 2591 | by(auto simp add:vector_component_simps Cart_eq field_simps) | 
| 2592 | also have "\<dots> = abs(1/e) * norm (x - e *s (x - c) - y)" by(auto intro!:norm_eqI) | |
| 31289 | 2593 | also have "\<dots> < d" using as[unfolded dist_norm] and `e>0` | 
| 31276 | 2594 | by(auto simp add:pos_divide_less_eq[OF `e>0`] real_mult_commute) | 
| 2595 | finally show "y \<in> s" apply(subst *) apply(rule assms(1)[unfolded convex_alt,rule_format]) | |
| 2596 | apply(rule d[unfolded subset_eq,rule_format]) unfolding mem_ball using assms(3-5) by auto | |
| 2597 | qed(rule mult_pos_pos, insert `e>0` `d>0`, auto) qed | |
| 2598 | ||
| 2599 | lemma mem_interior_closure_convex_shrink: | |
| 2600 | assumes "convex s" "c \<in> interior s" "x \<in> closure s" "0 < e" "e \<le> 1" | |
| 2601 | shows "x - e *s (x - c) \<in> interior s" | |
| 2602 | proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto | |
| 2603 | have "\<exists>y\<in>s. norm (y - x) * (1 - e) < e * d" proof(cases "x\<in>s") | |
| 2604 | case True thus ?thesis using `e>0` `d>0` by(rule_tac bexI[where x=x], auto intro!: mult_pos_pos) next | |
| 2605 | case False hence x:"x islimpt s" using assms(3)[unfolded closure_def] by auto | |
| 2606 | show ?thesis proof(cases "e=1") | |
| 2607 | case True obtain y where "y\<in>s" "y \<noteq> x" "dist y x < 1" | |
| 2608 | using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto | |
| 2609 | thus ?thesis apply(rule_tac x=y in bexI) unfolding True using `d>0` by auto next | |
| 2610 | case False hence "0 < e * d / (1 - e)" and *:"1 - e > 0" | |
| 2611 | using `e\<le>1` `e>0` `d>0` by(auto intro!:mult_pos_pos divide_pos_pos) | |
| 2612 | then obtain y where "y\<in>s" "y \<noteq> x" "dist y x < e * d / (1 - e)" | |
| 2613 | using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto | |
| 31289 | 2614 | thus ?thesis apply(rule_tac x=y in bexI) unfolding dist_norm using pos_less_divide_eq[OF *] by auto qed qed | 
| 31276 | 2615 | then obtain y where "y\<in>s" and y:"norm (y - x) * (1 - e) < e * d" by auto | 
| 2616 | def z \<equiv> "c + ((1 - e) / e) *s (x - y)" | |
| 2617 | have *:"x - e *s (x - c) = y - e *s (y - z)" unfolding z_def using `e>0` by auto | |
| 2618 | have "z\<in>interior s" apply(rule subset_interior[OF d,unfolded subset_eq,rule_format]) | |
| 31289 | 2619 | unfolding interior_open[OF open_ball] mem_ball z_def dist_norm using y and assms(4,5) | 
| 31276 | 2620 | by(auto simp del:vector_ssub_ldistrib simp add:field_simps norm_minus_commute) | 
| 2621 | thus ?thesis unfolding * apply - apply(rule mem_interior_convex_shrink) | |
| 2622 | using assms(1,4-5) `y\<in>s` by auto qed | |
| 2623 | ||
| 2624 | subsection {* Some obvious but surprisingly hard simplex lemmas. *}
 | |
| 2625 | ||
| 2626 | lemma simplex: | |
| 2627 | assumes "finite s" "0 \<notin> s" | |
| 2628 |   shows "convex hull (insert 0 s) =  { y. (\<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s \<le> 1 \<and> setsum (\<lambda>x. u x *s x) s = y)}"
 | |
| 2629 | unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]] apply(rule set_ext, rule) unfolding mem_Collect_eq | |
| 2630 | apply(erule_tac[!] exE) apply(erule_tac[!] conjE)+ unfolding setsum_clauses(2)[OF assms(1)] | |
| 2631 | apply(rule_tac x=u in exI) defer apply(rule_tac x="\<lambda>x. if x = 0 then 1 - setsum u s else u x" in exI) using assms(2) | |
| 2632 | unfolding if_smult and setsum_delta_notmem[OF assms(2)] by auto | |
| 2633 | ||
| 2634 | lemma std_simplex: | |
| 2635 |   "convex hull (insert 0 { basis i | i. i\<in>UNIV}) =
 | |
| 2636 |         {x::real^'n::finite . (\<forall>i. 0 \<le> x$i) \<and> setsum (\<lambda>i. x$i) UNIV \<le> 1 }" (is "convex hull (insert 0 ?p) = ?s")
 | |
| 2637 | proof- let ?D = "UNIV::'n set" | |
| 2638 | have "0\<notin>?p" by(auto simp add: basis_nonzero) | |
| 2639 |   have "{(basis i)::real^'n |i. i \<in> ?D} = basis ` ?D" by auto
 | |
| 2640 | note sumbas = this setsum_reindex[OF basis_inj, unfolded o_def] | |
| 2641 | show ?thesis unfolding simplex[OF finite_stdbasis `0\<notin>?p`] apply(rule set_ext) unfolding mem_Collect_eq apply rule | |
| 2642 | apply(erule exE, (erule conjE)+) apply(erule_tac[2] conjE)+ proof- | |
| 2643 |     fix x::"real^'n" and u assume as: "\<forall>x\<in>{basis i |i. i \<in>?D}. 0 \<le> u x" "setsum u {basis i |i. i \<in> ?D} \<le> 1" "(\<Sum>x\<in>{basis i |i. i \<in>?D}. u x *s x) = x"
 | |
| 2644 | have *:"\<forall>i. u (basis i) = x$i" using as(3) unfolding sumbas and basis_expansion_unique by auto | |
| 2645 |     hence **:"setsum u {basis i |i. i \<in> ?D} = setsum (op $ x) ?D" unfolding sumbas by(rule_tac setsum_cong, auto)
 | |
| 2646 | show " (\<forall>i. 0 \<le> x $ i) \<and> setsum (op $ x) ?D \<le> 1" apply - proof(rule,rule) | |
| 2647 | fix i::'n show "0 \<le> x$i" unfolding *[rule_format,of i,THEN sym] apply(rule_tac as(1)[rule_format]) by auto | |
| 2648 | qed(insert as(2)[unfolded **], auto) | |
| 2649 | next fix x::"real^'n" assume as:"\<forall>i. 0 \<le> x $ i" "setsum (op $ x) ?D \<le> 1" | |
| 2650 |     show "\<exists>u. (\<forall>x\<in>{basis i |i. i \<in> ?D}. 0 \<le> u x) \<and> setsum u {basis i |i. i \<in> ?D} \<le> 1 \<and> (\<Sum>x\<in>{basis i |i. i \<in> ?D}. u x *s x) = x"
 | |
| 2651 | apply(rule_tac x="\<lambda>y. y \<bullet> x" in exI) apply(rule,rule) unfolding mem_Collect_eq apply(erule exE) using as(1) apply(erule_tac x=i in allE) | |
| 2652 | unfolding sumbas using as(2) and basis_expansion_unique by(auto simp add:dot_basis) qed qed | |
| 2653 | ||
| 2654 | lemma interior_std_simplex: | |
| 2655 |   "interior (convex hull (insert 0 { basis i| i. i\<in>UNIV})) =
 | |
| 2656 |   {x::real^'n::finite. (\<forall>i. 0 < x$i) \<and> setsum (\<lambda>i. x$i) UNIV < 1 }"
 | |
| 2657 | apply(rule set_ext) unfolding mem_interior std_simplex unfolding subset_eq mem_Collect_eq Ball_def mem_ball | |
| 2658 | unfolding Ball_def[symmetric] apply rule apply(erule exE, (erule conjE)+) defer apply(erule conjE) proof- | |
| 2659 | fix x::"real^'n" and e assume "0<e" and as:"\<forall>xa. dist x xa < e \<longrightarrow> (\<forall>x. 0 \<le> xa $ x) \<and> setsum (op $ xa) UNIV \<le> 1" | |
| 2660 | show "(\<forall>xa. 0 < x $ xa) \<and> setsum (op $ x) UNIV < 1" apply(rule,rule) proof- | |
| 2661 | fix i::'n show "0 < x $ i" using as[THEN spec[where x="x - (e / 2) *s basis i"]] and `e>0` | |
| 31289 | 2662 | unfolding dist_norm by(auto simp add: norm_basis vector_component_simps basis_component elim:allE[where x=i]) | 
| 31276 | 2663 | next guess a using UNIV_witness[where 'a='n] .. | 
| 2664 | have **:"dist x (x + (e / 2) *s basis a) < e" using `e>0` and norm_basis[of a] | |
| 31289 | 2665 | unfolding dist_norm by(auto simp add: vector_component_simps basis_component intro!: mult_strict_left_mono_comm) | 
| 31276 | 2666 | have "\<And>i. (x + (e / 2) *s basis a) $ i = x$i + (if i = a then e/2 else 0)" by(auto simp add:vector_component_simps) | 
| 2667 | hence *:"setsum (op $ (x + (e / 2) *s basis a)) UNIV = setsum (\<lambda>i. x$i + (if a = i then e/2 else 0)) UNIV" by(rule_tac setsum_cong, auto) | |
| 2668 | have "setsum (op $ x) UNIV < setsum (op $ (x + (e / 2) *s basis a)) UNIV" unfolding * setsum_addf | |
| 2669 | using `0<e` dimindex_ge_1 by(auto simp add: setsum_delta') | |
| 2670 | also have "\<dots> \<le> 1" using ** apply(drule_tac as[rule_format]) by auto | |
| 2671 | finally show "setsum (op $ x) UNIV < 1" by auto qed | |
| 2672 | next | |
| 2673 | fix x::"real^'n::finite" assume as:"\<forall>i. 0 < x $ i" "setsum (op $ x) UNIV < 1" | |
| 2674 | guess a using UNIV_witness[where 'a='b] .. | |
| 2675 |   let ?d = "(1 - setsum (op $ x) UNIV) / real (CARD('n))"
 | |
| 2676 | have "Min ((op $ x) ` UNIV) > 0" apply(rule Min_grI) using as(1) dimindex_ge_1 by auto | |
| 2677 | moreover have"?d > 0" apply(rule divide_pos_pos) using as(2) using dimindex_ge_1 by(auto simp add: Suc_le_eq) | |
| 2678 | ultimately show "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> (\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1" | |
| 2679 | apply(rule_tac x="min (Min ((op $ x) ` UNIV)) ?D" in exI) apply rule defer apply(rule,rule) proof- | |
| 2680 | fix y assume y:"dist x y < min (Min (op $ x ` UNIV)) ?d" | |
| 2681 | have "setsum (op $ y) UNIV \<le> setsum (\<lambda>i. x$i + ?d) UNIV" proof(rule setsum_mono) | |
| 2682 | fix i::'n have "abs (y$i - x$i) < ?d" apply(rule le_less_trans) using component_le_norm[of "y - x" i] | |
| 31289 | 2683 | using y[unfolded min_less_iff_conj dist_norm, THEN conjunct2] by(auto simp add:vector_component_simps norm_minus_commute) | 
| 31276 | 2684 | thus "y $ i \<le> x $ i + ?d" by auto qed | 
| 2685 | also have "\<dots> \<le> 1" unfolding setsum_addf setsum_constant card_enum real_eq_of_nat using dimindex_ge_1 by(auto simp add: Suc_le_eq) | |
| 2686 | finally show "(\<forall>i. 0 \<le> y $ i) \<and> setsum (op $ y) UNIV \<le> 1" apply- proof(rule,rule) | |
| 31289 | 2687 | fix i::'n have "norm (x - y) < x$i" using y[unfolded min_less_iff_conj dist_norm, THEN conjunct1] | 
| 31276 | 2688 | using Min_gr_iff[of "op $ x ` dimset x"] dimindex_ge_1 by auto | 
| 2689 | thus "0 \<le> y$i" using component_le_norm[of "x - y" i] and as(1)[rule_format, of i] by(auto simp add: vector_component_simps) | |
| 2690 | qed auto qed auto qed | |
| 2691 | ||
| 2692 | lemma interior_std_simplex_nonempty: obtains a::"real^'n::finite" where | |
| 2693 |   "a \<in> interior(convex hull (insert 0 {basis i | i . i \<in> UNIV}))" proof-
 | |
| 2694 |   let ?D = "UNIV::'n set" let ?a = "setsum (\<lambda>b. inverse (2 * real CARD('n)) *s b) {(basis i) | i. i \<in> ?D}"
 | |
| 2695 |   have *:"{basis i | i. i \<in> ?D} = basis ` ?D" by auto
 | |
| 2696 |   { fix i have "?a $ i = inverse (2 * real CARD('n))"
 | |
| 2697 | unfolding setsum_component vector_smult_component and * and setsum_reindex[OF basis_inj] and o_def | |
| 2698 |     apply(rule trans[of _ "setsum (\<lambda>j. if i = j then inverse (2 * real CARD('n)) else 0) ?D"]) apply(rule setsum_cong2)
 | |
| 2699 | unfolding setsum_delta'[OF finite_UNIV[where 'a='n]] and real_dimindex_ge_1[where 'n='n] by(auto simp add: basis_component[of i]) } | |
| 2700 | note ** = this | |
| 2701 | show ?thesis apply(rule that[of ?a]) unfolding interior_std_simplex mem_Collect_eq proof(rule,rule) | |
| 2702 | fix i::'n show "0 < ?a $ i" unfolding ** using dimindex_ge_1 by(auto simp add: Suc_le_eq) next | |
| 2703 |     have "setsum (op $ ?a) ?D = setsum (\<lambda>i. inverse (2 * real CARD('n))) ?D" by(rule setsum_cong2, rule **) 
 | |
| 2704 | also have "\<dots> < 1" unfolding setsum_constant card_enum real_eq_of_nat real_divide_def[THEN sym] by (auto simp add:field_simps) | |
| 2705 | finally show "setsum (op $ ?a) ?D < 1" by auto qed qed | |
| 2706 | ||
| 2707 | subsection {* Paths. *}
 | |
| 2708 | ||
| 2709 | definition "path (g::real^1 \<Rightarrow> real^'n::finite) \<longleftrightarrow> continuous_on {0 .. 1} g"
 | |
| 2710 | ||
| 2711 | definition "pathstart (g::real^1 \<Rightarrow> real^'n) = g 0" | |
| 2712 | ||
| 2713 | definition "pathfinish (g::real^1 \<Rightarrow> real^'n) = g 1" | |
| 2714 | ||
| 2715 | definition "path_image (g::real^1 \<Rightarrow> real^'n) = g ` {0 .. 1}"
 | |
| 2716 | ||
| 2717 | definition "reversepath (g::real^1 \<Rightarrow> real^'n) = (\<lambda>x. g(1 - x))" | |
| 2718 | ||
| 2719 | definition joinpaths:: "(real^1 \<Rightarrow> real^'n) \<Rightarrow> (real^1 \<Rightarrow> real^'n) \<Rightarrow> (real^1 \<Rightarrow> real^'n)" (infixr "+++" 75) | |
| 2720 | where "joinpaths g1 g2 = (\<lambda>x. if dest_vec1 x \<le> ((1 / 2)::real) then g1 (2 *s x) else g2(2 *s x - 1))" | |
| 2721 | definition "simple_path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow> | |
| 2722 |   (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0)"
 | |
| 2723 | ||
| 2724 | definition "injective_path (g::real^1 \<Rightarrow> real^'n) \<longleftrightarrow> | |
| 2725 |   (\<forall>x\<in>{0..1}. \<forall>y\<in>{0..1}. g x = g y \<longrightarrow> x = y)"
 | |
| 2726 | ||
| 2727 | subsection {* Some lemmas about these concepts. *}
 | |
| 2728 | ||
| 2729 | lemma injective_imp_simple_path: | |
| 2730 | "injective_path g \<Longrightarrow> simple_path g" | |
| 2731 | unfolding injective_path_def simple_path_def by auto | |
| 2732 | ||
| 2733 | lemma path_image_nonempty: "path_image g \<noteq> {}"
 | |
| 2734 | unfolding path_image_def image_is_empty interval_eq_empty by auto | |
| 2735 | ||
| 2736 | lemma pathstart_in_path_image[intro]: "(pathstart g) \<in> path_image g" | |
| 2737 | unfolding pathstart_def path_image_def apply(rule imageI) | |
| 2738 | unfolding mem_interval_1 vec_1[THEN sym] dest_vec1_vec by auto | |
| 2739 | ||
| 2740 | lemma pathfinish_in_path_image[intro]: "(pathfinish g) \<in> path_image g" | |
| 2741 | unfolding pathfinish_def path_image_def apply(rule imageI) | |
| 2742 | unfolding mem_interval_1 vec_1[THEN sym] dest_vec1_vec by auto | |
| 2743 | ||
| 2744 | lemma connected_path_image[intro]: "path g \<Longrightarrow> connected(path_image g)" | |
| 2745 | unfolding path_def path_image_def apply(rule connected_continuous_image, assumption) | |
| 2746 | by(rule convex_connected, rule convex_interval) | |
| 2747 | ||
| 2748 | lemma compact_path_image[intro]: "path g \<Longrightarrow> compact(path_image g)" | |
| 2749 | unfolding path_def path_image_def apply(rule compact_continuous_image, assumption) | |
| 2750 | by(rule compact_interval) | |
| 2751 | ||
| 2752 | lemma reversepath_reversepath[simp]: "reversepath(reversepath g) = g" | |
| 2753 | unfolding reversepath_def by auto | |
| 2754 | ||
| 2755 | lemma pathstart_reversepath[simp]: "pathstart(reversepath g) = pathfinish g" | |
| 2756 | unfolding pathstart_def reversepath_def pathfinish_def by auto | |
| 2757 | ||
| 2758 | lemma pathfinish_reversepath[simp]: "pathfinish(reversepath g) = pathstart g" | |
| 2759 | unfolding pathstart_def reversepath_def pathfinish_def by auto | |
| 2760 | ||
| 2761 | lemma pathstart_join[simp]: "pathstart(g1 +++ g2) = pathstart g1" | |
| 2762 | unfolding pathstart_def joinpaths_def pathfinish_def by auto | |
| 2763 | ||
| 2764 | lemma pathfinish_join[simp]:"pathfinish(g1 +++ g2) = pathfinish g2" proof- | |
| 2765 | have "2 *s 1 - 1 = (1::real^1)" unfolding Cart_eq by(auto simp add:vector_component_simps) | |
| 2766 | thus ?thesis unfolding pathstart_def joinpaths_def pathfinish_def | |
| 2767 | unfolding vec_1[THEN sym] dest_vec1_vec by auto qed | |
| 2768 | ||
| 2769 | lemma path_image_reversepath[simp]: "path_image(reversepath g) = path_image g" proof- | |
| 2770 | have *:"\<And>g. path_image(reversepath g) \<subseteq> path_image g" | |
| 2771 | unfolding path_image_def subset_eq reversepath_def Ball_def image_iff apply(rule,rule,erule bexE) | |
| 2772 | apply(rule_tac x="1 - xa" in bexI) by(auto simp add:vector_less_eq_def vector_component_simps elim!:ballE) | |
| 2773 | show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed | |
| 2774 | ||
| 2775 | lemma path_reversepath[simp]: "path(reversepath g) \<longleftrightarrow> path g" proof- | |
| 2776 | have *:"\<And>g. path g \<Longrightarrow> path(reversepath g)" unfolding path_def reversepath_def | |
| 2777 | apply(rule continuous_on_compose[unfolded o_def, of _ "\<lambda>x. 1 - x"]) | |
| 2778 | apply(rule continuous_on_sub, rule continuous_on_const, rule continuous_on_id) | |
| 2779 |     apply(rule continuous_on_subset[of "{0..1}"], assumption)
 | |
| 2780 | by (auto, auto simp add:vector_less_eq_def vector_component_simps elim!:ballE) | |
| 2781 | show ?thesis using *[of g] *[of "reversepath g"] unfolding reversepath_reversepath by auto qed | |
| 2782 | ||
| 2783 | lemmas reversepath_simps = path_reversepath path_image_reversepath pathstart_reversepath pathfinish_reversepath | |
| 2784 | ||
| 2785 | lemma path_join[simp]: assumes "pathfinish g1 = pathstart g2" shows "path (g1 +++ g2) \<longleftrightarrow> path g1 \<and> path g2" | |
| 2786 | unfolding path_def pathfinish_def pathstart_def apply rule defer apply(erule conjE) proof- | |
| 2787 |   assume as:"continuous_on {0..1} (g1 +++ g2)"
 | |
| 2788 | have *:"g1 = (\<lambda>x. g1 (2 *s x)) \<circ> (\<lambda>x. (1/2) *s x)" | |
| 2789 | "g2 = (\<lambda>x. g2 (2 *s x - 1)) \<circ> (\<lambda>x. (1/2) *s (x + 1))" unfolding o_def by auto | |
| 2790 |   have "op *s (1 / 2) ` {0::real^1..1} \<subseteq> {0..1}"  "(\<lambda>x. (1 / 2) *s (x + 1)) ` {(0::real^1)..1} \<subseteq> {0..1}"
 | |
| 2791 | unfolding image_smult_interval by (auto, auto simp add:vector_less_eq_def vector_component_simps elim!:ballE) | |
| 2792 |   thus "continuous_on {0..1} g1 \<and> continuous_on {0..1} g2" apply -apply rule
 | |
| 2793 | apply(subst *) defer apply(subst *) apply (rule_tac[!] continuous_on_compose) | |
| 2794 | apply (rule continuous_on_cmul, rule continuous_on_add, rule continuous_on_id, rule continuous_on_const) defer | |
| 2795 | apply (rule continuous_on_cmul, rule continuous_on_id) apply(rule_tac[!] continuous_on_eq[of _ "g1 +++ g2"]) defer prefer 3 | |
| 2796 |     apply(rule_tac[1-2] continuous_on_subset[of "{0 .. 1}"]) apply(rule as, assumption, rule as, assumption)
 | |
| 2797 | apply(rule) defer apply rule proof- | |
| 2798 |     fix x assume "x \<in> op *s (1 / 2) ` {0::real^1..1}"
 | |
| 2799 | hence "dest_vec1 x \<le> 1 / 2" unfolding image_iff by(auto simp add: vector_component_simps) | |
| 2800 | thus "(g1 +++ g2) x = g1 (2 *s x)" unfolding joinpaths_def by auto next | |
| 2801 |     fix x assume "x \<in> (\<lambda>x. (1 / 2) *s (x + 1)) ` {0::real^1..1}"
 | |
| 2802 | hence "dest_vec1 x \<ge> 1 / 2" unfolding image_iff by(auto simp add: vector_component_simps) | |
| 2803 | thus "(g1 +++ g2) x = g2 (2 *s x - 1)" proof(cases "dest_vec1 x = 1 / 2") | |
| 2804 | case True hence "x = (1/2) *s 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps) | |
| 2805 | thus ?thesis unfolding joinpaths_def using assms[unfolded pathstart_def pathfinish_def] by auto | |
| 2806 | qed (auto simp add:le_less joinpaths_def) qed | |
| 2807 | next assume as:"continuous_on {0..1} g1" "continuous_on {0..1} g2"
 | |
| 2808 |   have *:"{0 .. 1::real^1} = {0.. (1/2)*s 1} \<union> {(1/2) *s 1 .. 1}" by(auto simp add: vector_component_simps) 
 | |
| 2809 |   have **:"op *s 2 ` {0..(1 / 2) *s 1} = {0..1::real^1}" apply(rule set_ext, rule) unfolding image_iff 
 | |
| 2810 | defer apply(rule_tac x="(1/2)*s x" in bexI) by(auto simp add: vector_component_simps) | |
| 2811 |   have ***:"(\<lambda>x. 2 *s x - 1) ` {(1 / 2) *s 1..1} = {0..1::real^1}"
 | |
| 2812 | unfolding image_affinity_interval[of _ "- 1", unfolded diff_def[symmetric]] and interval_eq_empty_1 | |
| 2813 | by(auto simp add: vector_component_simps) | |
| 2814 | have ****:"\<And>x::real^1. x $ 1 * 2 = 1 \<longleftrightarrow> x = (1/2) *s 1" unfolding Cart_eq by(auto simp add: forall_1 vector_component_simps) | |
| 2815 |   show "continuous_on {0..1} (g1 +++ g2)" unfolding * apply(rule continuous_on_union) apply(rule closed_interval)+ proof-
 | |
| 2816 |     show "continuous_on {0..(1 / 2) *s 1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "\<lambda>x. g1 (2 *s x)"]) defer
 | |
| 2817 | unfolding o_def[THEN sym] apply(rule continuous_on_compose) apply(rule continuous_on_cmul, rule continuous_on_id) | |
| 2818 | unfolding ** apply(rule as(1)) unfolding joinpaths_def by(auto simp add: vector_component_simps) next | |
| 2819 |     show "continuous_on {(1/2)*s1..1} (g1 +++ g2)" apply(rule continuous_on_eq[of _ "g2 \<circ> (\<lambda>x. 2 *s x - 1)"]) defer
 | |
| 2820 | apply(rule continuous_on_compose) apply(rule continuous_on_sub, rule continuous_on_cmul, rule continuous_on_id, rule continuous_on_const) | |
| 2821 | unfolding *** o_def joinpaths_def apply(rule as(2)) using assms[unfolded pathstart_def pathfinish_def] | |
| 2822 | by(auto simp add: vector_component_simps ****) qed qed | |
| 2823 | ||
| 2824 | lemma path_image_join_subset: "path_image(g1 +++ g2) \<subseteq> (path_image g1 \<union> path_image g2)" proof | |
| 2825 | fix x assume "x \<in> path_image (g1 +++ g2)" | |
| 2826 |   then obtain y where y:"y\<in>{0..1}" "x = (if dest_vec1 y \<le> 1 / 2 then g1 (2 *s y) else g2 (2 *s y - 1))"
 | |
| 2827 | unfolding path_image_def image_iff joinpaths_def by auto | |
| 2828 | thus "x \<in> path_image g1 \<union> path_image g2" apply(cases "dest_vec1 y \<le> 1/2") | |
| 2829 | apply(rule_tac UnI1) defer apply(rule_tac UnI2) unfolding y(2) path_image_def using y(1) | |
| 2830 | by(auto intro!: imageI simp add: vector_component_simps) qed | |
| 2831 | ||
| 2832 | lemma subset_path_image_join: | |
| 2833 | assumes "path_image g1 \<subseteq> s" "path_image g2 \<subseteq> s" shows "path_image(g1 +++ g2) \<subseteq> s" | |
| 2834 | using path_image_join_subset[of g1 g2] and assms by auto | |
| 2835 | ||
| 2836 | lemma path_image_join: | |
| 2837 | assumes "path g1" "path g2" "pathfinish g1 = pathstart g2" | |
| 2838 | shows "path_image(g1 +++ g2) = (path_image g1) \<union> (path_image g2)" | |
| 2839 | apply(rule, rule path_image_join_subset, rule) unfolding Un_iff proof(erule disjE) | |
| 2840 | fix x assume "x \<in> path_image g1" | |
| 2841 |   then obtain y where y:"y\<in>{0..1}" "x = g1 y" unfolding path_image_def image_iff by auto
 | |
| 2842 | thus "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff | |
| 2843 | apply(rule_tac x="(1/2) *s y" in bexI) by(auto simp add: vector_component_simps) next | |
| 2844 | fix x assume "x \<in> path_image g2" | |
| 2845 |   then obtain y where y:"y\<in>{0..1}" "x = g2 y" unfolding path_image_def image_iff by auto
 | |
| 2846 | moreover have *:"y $ 1 = 0 \<Longrightarrow> y = 0" unfolding Cart_eq by auto | |
| 2847 | ultimately show "x \<in> path_image (g1 +++ g2)" unfolding joinpaths_def path_image_def image_iff | |
| 2848 | apply(rule_tac x="(1/2) *s (y + 1)" in bexI) using assms(3)[unfolded pathfinish_def pathstart_def] | |
| 2849 | by(auto simp add: vector_component_simps) qed | |
| 2850 | ||
| 2851 | lemma not_in_path_image_join: | |
| 2852 | assumes "x \<notin> path_image g1" "x \<notin> path_image g2" shows "x \<notin> path_image(g1 +++ g2)" | |
| 2853 | using assms and path_image_join_subset[of g1 g2] by auto | |
| 2854 | ||
| 2855 | lemma simple_path_reversepath: assumes "simple_path g" shows "simple_path (reversepath g)" | |
| 2856 | using assms unfolding simple_path_def reversepath_def apply- apply(rule ballI)+ | |
| 2857 | apply(erule_tac x="1-x" in ballE, erule_tac x="1-y" in ballE) | |
| 2858 | unfolding mem_interval_1 by(auto simp add:vector_component_simps) | |
| 2859 | ||
| 2860 | lemma simple_path_join_loop: | |
| 2861 | assumes "injective_path g1" "injective_path g2" "pathfinish g2 = pathstart g1" | |
| 2862 |   "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g1,pathstart g2}"
 | |
| 2863 | shows "simple_path(g1 +++ g2)" | |
| 2864 | unfolding simple_path_def proof((rule ballI)+, rule impI) let ?g = "g1 +++ g2" | |
| 2865 | note inj = assms(1,2)[unfolded injective_path_def, rule_format] | |
| 2866 |   fix x y::"real^1" assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "?g x = ?g y"
 | |
| 2867 | show "x = y \<or> x = 0 \<and> y = 1 \<or> x = 1 \<and> y = 0" proof(case_tac "x$1 \<le> 1/2",case_tac[!] "y$1 \<le> 1/2", unfold not_le) | |
| 2868 | assume as:"x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2" | |
| 2869 | hence "g1 (2 *s x) = g1 (2 *s y)" using xy(3) unfolding joinpaths_def dest_vec1_def by auto | |
| 2870 |     moreover have "2 *s x \<in> {0..1}" "2 *s y \<in> {0..1}" using xy(1,2) as
 | |
| 2871 | unfolding mem_interval_1 dest_vec1_def by(auto simp add:vector_component_simps) | |
| 2872 | ultimately show ?thesis using inj(1)[of "2*s x" "2*s y"] by auto | |
| 2873 | next assume as:"x $ 1 > 1 / 2" "y $ 1 > 1 / 2" | |
| 2874 | hence "g2 (2 *s x - 1) = g2 (2 *s y - 1)" using xy(3) unfolding joinpaths_def dest_vec1_def by auto | |
| 2875 |     moreover have "2 *s x - 1 \<in> {0..1}" "2 *s y - 1 \<in> {0..1}" using xy(1,2) as
 | |
| 2876 | unfolding mem_interval_1 dest_vec1_def by(auto simp add:vector_component_simps) | |
| 2877 | ultimately show ?thesis using inj(2)[of "2*s x - 1" "2*s y - 1"] by auto | |
| 2878 | next assume as:"x $ 1 \<le> 1 / 2" "y $ 1 > 1 / 2" | |
| 2879 | hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def | |
| 2880 | using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI) | |
| 2881 | moreover have "?g y \<noteq> pathstart g2" using as(2) unfolding pathstart_def joinpaths_def | |
| 2882 | using inj(2)[of "2 *s y - 1" 0] and xy(2)[unfolded mem_interval_1] | |
| 2883 | apply(rule_tac ccontr) by(auto simp add:vector_component_simps field_simps Cart_eq) | |
| 2884 | ultimately have *:"?g x = pathstart g1" using assms(4) unfolding xy(3) by auto | |
| 2885 | hence "x = 0" unfolding pathstart_def joinpaths_def using as(1) and xy(1)[unfolded mem_interval_1] | |
| 2886 | using inj(1)[of "2 *s x" 0] by(auto simp add:vector_component_simps) | |
| 2887 | moreover have "y = 1" using * unfolding xy(3) assms(3)[THEN sym] | |
| 2888 | unfolding joinpaths_def pathfinish_def using as(2) and xy(2)[unfolded mem_interval_1] | |
| 2889 | using inj(2)[of "2 *s y - 1" 1] by (auto simp add:vector_component_simps Cart_eq) | |
| 2890 | ultimately show ?thesis by auto | |
| 2891 | next assume as:"x $ 1 > 1 / 2" "y $ 1 \<le> 1 / 2" | |
| 2892 | hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def | |
| 2893 | using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI) | |
| 2894 | moreover have "?g x \<noteq> pathstart g2" using as(1) unfolding pathstart_def joinpaths_def | |
| 2895 | using inj(2)[of "2 *s x - 1" 0] and xy(1)[unfolded mem_interval_1] | |
| 2896 | apply(rule_tac ccontr) by(auto simp add:vector_component_simps field_simps Cart_eq) | |
| 2897 | ultimately have *:"?g y = pathstart g1" using assms(4) unfolding xy(3) by auto | |
| 2898 | hence "y = 0" unfolding pathstart_def joinpaths_def using as(2) and xy(2)[unfolded mem_interval_1] | |
| 2899 | using inj(1)[of "2 *s y" 0] by(auto simp add:vector_component_simps) | |
| 2900 | moreover have "x = 1" using * unfolding xy(3)[THEN sym] assms(3)[THEN sym] | |
| 2901 | unfolding joinpaths_def pathfinish_def using as(1) and xy(1)[unfolded mem_interval_1] | |
| 2902 | using inj(2)[of "2 *s x - 1" 1] by(auto simp add:vector_component_simps Cart_eq) | |
| 2903 | ultimately show ?thesis by auto qed qed | |
| 2904 | ||
| 2905 | lemma injective_path_join: | |
| 2906 | assumes "injective_path g1" "injective_path g2" "pathfinish g1 = pathstart g2" | |
| 2907 |   "(path_image g1 \<inter> path_image g2) \<subseteq> {pathstart g2}"
 | |
| 2908 | shows "injective_path(g1 +++ g2)" | |
| 2909 | unfolding injective_path_def proof(rule,rule,rule) let ?g = "g1 +++ g2" | |
| 2910 | note inj = assms(1,2)[unfolded injective_path_def, rule_format] | |
| 2911 |   fix x y assume xy:"x \<in> {0..1}" "y \<in> {0..1}" "(g1 +++ g2) x = (g1 +++ g2) y"
 | |
| 2912 | show "x = y" proof(cases "x$1 \<le> 1/2", case_tac[!] "y$1 \<le> 1/2", unfold not_le) | |
| 2913 | assume "x $ 1 \<le> 1 / 2" "y $ 1 \<le> 1 / 2" thus ?thesis using inj(1)[of "2*s x" "2*s y"] and xy | |
| 2914 | unfolding mem_interval_1 joinpaths_def by(auto simp add:vector_component_simps) | |
| 2915 | next assume "x $ 1 > 1 / 2" "y $ 1 > 1 / 2" thus ?thesis using inj(2)[of "2*s x - 1" "2*s y - 1"] and xy | |
| 2916 | unfolding mem_interval_1 joinpaths_def by(auto simp add:vector_component_simps) | |
| 2917 | next assume as:"x $ 1 \<le> 1 / 2" "y $ 1 > 1 / 2" | |
| 2918 | hence "?g x \<in> path_image g1" "?g y \<in> path_image g2" unfolding path_image_def joinpaths_def | |
| 2919 | using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI) | |
| 2920 | hence "?g x = pathfinish g1" "?g y = pathstart g2" using assms(4) unfolding assms(3) xy(3) by auto | |
| 2921 | thus ?thesis using as and inj(1)[of "2 *s x" 1] inj(2)[of "2 *s y - 1" 0] and xy(1,2) | |
| 2922 | unfolding pathstart_def pathfinish_def joinpaths_def mem_interval_1 | |
| 2923 | by(auto simp add:vector_component_simps Cart_eq forall_1) | |
| 2924 | next assume as:"x $ 1 > 1 / 2" "y $ 1 \<le> 1 / 2" | |
| 2925 | hence "?g x \<in> path_image g2" "?g y \<in> path_image g1" unfolding path_image_def joinpaths_def | |
| 2926 | using xy(1,2)[unfolded mem_interval_1] by(auto simp add:vector_component_simps intro!: imageI) | |
| 2927 | hence "?g x = pathstart g2" "?g y = pathfinish g1" using assms(4) unfolding assms(3) xy(3) by auto | |
| 2928 | thus ?thesis using as and inj(2)[of "2 *s x - 1" 0] inj(1)[of "2 *s y" 1] and xy(1,2) | |
| 2929 | unfolding pathstart_def pathfinish_def joinpaths_def mem_interval_1 | |
| 2930 | by(auto simp add:vector_component_simps forall_1 Cart_eq) qed qed | |
| 2931 | ||
| 2932 | lemmas join_paths_simps = path_join path_image_join pathstart_join pathfinish_join | |
| 2933 | ||
| 2934 | subsection {* Reparametrizing a closed curve to start at some chosen point. *}
 | |
| 2935 | ||
| 2936 | definition "shiftpath a (f::real^1 \<Rightarrow> real^'n) = | |
| 2937 | (\<lambda>x. if dest_vec1 (a + x) \<le> 1 then f(a + x) else f(a + x - 1))" | |
| 2938 | ||
| 2939 | lemma pathstart_shiftpath: "a \<le> 1 \<Longrightarrow> pathstart(shiftpath a g) = g a" | |
| 2940 | unfolding pathstart_def shiftpath_def by auto | |
| 2941 | ||
| 2942 | (** move this **) | |
| 2943 | declare forall_1[simp] ex_1[simp] | |
| 2944 | ||
| 2945 | lemma pathfinish_shiftpath: assumes "0 \<le> a" "pathfinish g = pathstart g" | |
| 2946 | shows "pathfinish(shiftpath a g) = g a" | |
| 2947 | using assms unfolding pathstart_def pathfinish_def shiftpath_def | |
| 2948 | by(auto simp add: vector_component_simps) | |
| 2949 | ||
| 2950 | lemma endpoints_shiftpath: | |
| 2951 |   assumes "pathfinish g = pathstart g" "a \<in> {0 .. 1}" 
 | |
| 2952 | shows "pathfinish(shiftpath a g) = g a" "pathstart(shiftpath a g) = g a" | |
| 2953 | using assms by(auto intro!:pathfinish_shiftpath pathstart_shiftpath) | |
| 2954 | ||
| 2955 | lemma closed_shiftpath: | |
| 2956 |   assumes "pathfinish g = pathstart g" "a \<in> {0..1}"
 | |
| 2957 | shows "pathfinish(shiftpath a g) = pathstart(shiftpath a g)" | |
| 2958 | using endpoints_shiftpath[OF assms] by auto | |
| 2959 | ||
| 2960 | lemma path_shiftpath: | |
| 2961 |   assumes "path g" "pathfinish g = pathstart g" "a \<in> {0..1}"
 | |
| 2962 | shows "path(shiftpath a g)" proof- | |
| 2963 |   have *:"{0 .. 1} = {0 .. 1-a} \<union> {1-a .. 1}" using assms(3) by(auto simp add: vector_component_simps)
 | |
| 2964 | have **:"\<And>x. x + a = 1 \<Longrightarrow> g (x + a - 1) = g (x + a)" | |
| 2965 | using assms(2)[unfolded pathfinish_def pathstart_def] by auto | |
| 2966 | show ?thesis unfolding path_def shiftpath_def * apply(rule continuous_on_union) | |
| 2967 | apply(rule closed_interval)+ apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a + x)"]) prefer 3 | |
| 2968 | apply(rule continuous_on_eq[of _ "g \<circ> (\<lambda>x. a - 1 + x)"]) defer prefer 3 | |
| 2969 | apply(rule continuous_on_intros)+ prefer 2 apply(rule continuous_on_intros)+ | |
| 2970 | apply(rule_tac[1-2] continuous_on_subset[OF assms(1)[unfolded path_def]]) | |
| 2971 | using assms(3) and ** by(auto simp add:vector_component_simps field_simps Cart_eq) qed | |
| 2972 | ||
| 2973 | lemma shiftpath_shiftpath: assumes "pathfinish g = pathstart g" "a \<in> {0..1}" "x \<in> {0..1}" 
 | |
| 2974 | shows "shiftpath (1 - a) (shiftpath a g) x = g x" | |
| 2975 | using assms unfolding pathfinish_def pathstart_def shiftpath_def | |
| 2976 | by(auto simp add: vector_component_simps) | |
| 2977 | ||
| 2978 | lemma path_image_shiftpath: | |
| 2979 |   assumes "a \<in> {0..1}" "pathfinish g = pathstart g"
 | |
| 2980 | shows "path_image(shiftpath a g) = path_image g" proof- | |
| 2981 |   { fix x assume as:"g 1 = g 0" "x \<in> {0..1::real^1}" " \<forall>y\<in>{0..1} \<inter> {x. \<not> a $ 1 + x $ 1 \<le> 1}. g x \<noteq> g (a + y - 1)" 
 | |
| 2982 |     hence "\<exists>y\<in>{0..1} \<inter> {x. a $ 1 + x $ 1 \<le> 1}. g x = g (a + y)" proof(cases "a \<le> x")
 | |
| 2983 | case False thus ?thesis apply(rule_tac x="1 + x - a" in bexI) | |
| 2984 | using as(1,2) and as(3)[THEN bspec[where x="1 + x - a"]] and assms(1) | |
| 2985 | by(auto simp add:vector_component_simps field_simps atomize_not) next | |
| 2986 | case True thus ?thesis using as(1-2) and assms(1) apply(rule_tac x="x - a" in bexI) | |
| 2987 | by(auto simp add:vector_component_simps field_simps) qed } | |
| 2988 | thus ?thesis using assms unfolding shiftpath_def path_image_def pathfinish_def pathstart_def | |
| 2989 | by(auto simp add:vector_component_simps image_iff) qed | |
| 2990 | ||
| 2991 | subsection {* Special case of straight-line paths. *}
 | |
| 2992 | ||
| 31346 | 2993 | definition | 
| 2994 | linepath :: "real ^ 'n::finite \<Rightarrow> real ^ 'n \<Rightarrow> real ^ 1 \<Rightarrow> real ^ 'n" where | |
| 2995 | "linepath a b = (\<lambda>x. (1 - dest_vec1 x) *s a + dest_vec1 x *s b)" | |
| 31276 | 2996 | |
| 2997 | lemma pathstart_linepath[simp]: "pathstart(linepath a b) = a" | |
| 2998 | unfolding pathstart_def linepath_def by auto | |
| 2999 | ||
| 3000 | lemma pathfinish_linepath[simp]: "pathfinish(linepath a b) = b" | |
| 3001 | unfolding pathfinish_def linepath_def by auto | |
| 3002 | ||
| 3003 | lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)" | |
| 3004 | unfolding linepath_def by(auto simp add: vec1_dest_vec1 o_def intro!: continuous_intros) | |
| 3005 | ||
| 3006 | lemma continuous_on_linepath[intro]: "continuous_on s (linepath a b)" | |
| 3007 | using continuous_linepath_at by(auto intro!: continuous_at_imp_continuous_on) | |
| 3008 | ||
| 3009 | lemma path_linepath[intro]: "path(linepath a b)" | |
| 3010 | unfolding path_def by(rule continuous_on_linepath) | |
| 3011 | ||
| 3012 | lemma path_image_linepath[simp]: "path_image(linepath a b) = (closed_segment a b)" | |
| 3013 | unfolding path_image_def segment linepath_def apply (rule set_ext, rule) defer | |
| 3014 | unfolding mem_Collect_eq image_iff apply(erule exE) apply(rule_tac x="u *s 1" in bexI) | |
| 3015 | by(auto simp add:vector_component_simps) | |
| 3016 | ||
| 3017 | lemma reversepath_linepath[simp]: "reversepath(linepath a b) = linepath b a" | |
| 3018 | unfolding reversepath_def linepath_def by(rule ext, auto simp add:vector_component_simps) | |
| 3019 | ||
| 3020 | lemma injective_path_linepath: assumes "a \<noteq> b" shows "injective_path(linepath a b)" proof- | |
| 3021 |   { obtain i where i:"a$i \<noteq> b$i" using assms[unfolded Cart_eq] by auto
 | |
| 3022 | fix x y::"real^1" assume "x $ 1 *s b + y $ 1 *s a = x $ 1 *s a + y $ 1 *s b" | |
| 3023 | hence "x$1 * (b$i - a$i) = y$1 * (b$i - a$i)" unfolding Cart_eq by(auto simp add:field_simps vector_component_simps) | |
| 3024 | hence "x = y" unfolding mult_cancel_right Cart_eq using i(1) by(auto simp add:field_simps) } | |
| 3025 | thus ?thesis unfolding injective_path_def linepath_def by(auto simp add:vector_component_simps field_simps) qed | |
| 3026 | ||
| 3027 | lemma simple_path_linepath[intro]: "a \<noteq> b \<Longrightarrow> simple_path(linepath a b)" by(auto intro!: injective_imp_simple_path injective_path_linepath) | |
| 3028 | ||
| 3029 | subsection {* Bounding a point away from a path. *}
 | |
| 3030 | ||
| 3031 | lemma not_on_path_ball: assumes "path g" "z \<notin> path_image g" | |
| 3032 |   shows "\<exists>e>0. ball z e \<inter> (path_image g) = {}" proof-
 | |
| 3033 | obtain a where "a\<in>path_image g" "\<forall>y\<in>path_image g. dist z a \<le> dist z y" | |
| 3034 | using distance_attains_inf[OF _ path_image_nonempty, of g z] | |
| 3035 | using compact_path_image[THEN compact_imp_closed, OF assms(1)] by auto | |
| 3036 | thus ?thesis apply(rule_tac x="dist z a" in exI) using assms(2) by(auto intro!: dist_pos_lt) qed | |
| 3037 | ||
| 3038 | lemma not_on_path_cball: assumes "path g" "z \<notin> path_image g" | |
| 3039 |   shows "\<exists>e>0. cball z e \<inter> (path_image g) = {}" proof-
 | |
| 3040 |   obtain e where "ball z e \<inter> path_image g = {}" "e>0" using not_on_path_ball[OF assms] by auto
 | |
| 3041 | moreover have "cball z (e/2) \<subseteq> ball z e" using `e>0` by auto | |
| 3042 | ultimately show ?thesis apply(rule_tac x="e/2" in exI) by auto qed | |
| 3043 | ||
| 3044 | subsection {* Path component, considered as a "joinability" relation (from Tom Hales). *}
 | |
| 3045 | ||
| 3046 | definition "path_component s x y \<longleftrightarrow> (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)" | |
| 3047 | ||
| 3048 | lemmas path_defs = path_def pathstart_def pathfinish_def path_image_def path_component_def | |
| 3049 | ||
| 3050 | lemma path_component_mem: assumes "path_component s x y" shows "x \<in> s" "y \<in> s" | |
| 3051 | using assms unfolding path_defs by auto | |
| 3052 | ||
| 3053 | lemma path_component_refl: assumes "x \<in> s" shows "path_component s x x" | |
| 3054 | unfolding path_defs apply(rule_tac x="\<lambda>u. x" in exI) using assms | |
| 3055 | by(auto intro!:continuous_on_intros) | |
| 3056 | ||
| 3057 | lemma path_component_refl_eq: "path_component s x x \<longleftrightarrow> x \<in> s" | |
| 3058 | by(auto intro!: path_component_mem path_component_refl) | |
| 3059 | ||
| 3060 | lemma path_component_sym: "path_component s x y \<Longrightarrow> path_component s y x" | |
| 3061 | using assms unfolding path_component_def apply(erule exE) apply(rule_tac x="reversepath g" in exI) | |
| 3062 | by(auto simp add: reversepath_simps) | |
| 3063 | ||
| 3064 | lemma path_component_trans: assumes "path_component s x y" "path_component s y z" shows "path_component s x z" | |
| 3065 | using assms unfolding path_component_def apply- apply(erule exE)+ apply(rule_tac x="g +++ ga" in exI) by(auto simp add: path_image_join) | |
| 3066 | ||
| 3067 | lemma path_component_of_subset: "s \<subseteq> t \<Longrightarrow> path_component s x y \<Longrightarrow> path_component t x y" | |
| 3068 | unfolding path_component_def by auto | |
| 3069 | ||
| 3070 | subsection {* Can also consider it as a set, as the name suggests. *}
 | |
| 3071 | ||
| 3072 | lemma path_component_set: "path_component s x = { y. (\<exists>g. path g \<and> path_image g \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y )}"
 | |
| 3073 | apply(rule set_ext) unfolding mem_Collect_eq unfolding mem_def path_component_def by auto | |
| 3074 | ||
| 3075 | lemma mem_path_component_set:"x \<in> path_component s y \<longleftrightarrow> path_component s y x" unfolding mem_def by auto | |
| 3076 | ||
| 3077 | lemma path_component_subset: "(path_component s x) \<subseteq> s" | |
| 3078 | apply(rule, rule path_component_mem(2)) by(auto simp add:mem_def) | |
| 3079 | ||
| 3080 | lemma path_component_eq_empty: "path_component s x = {} \<longleftrightarrow> x \<notin> s"
 | |
| 3081 | apply rule apply(drule equals0D[of _ x]) defer apply(rule equals0I) unfolding mem_path_component_set | |
| 3082 | apply(drule path_component_mem(1)) using path_component_refl by auto | |
| 3083 | ||
| 3084 | subsection {* Path connectedness of a space. *}
 | |
| 3085 | ||
| 3086 | definition "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<exists>g. path g \<and> (path_image g) \<subseteq> s \<and> pathstart g = x \<and> pathfinish g = y)" | |
| 3087 | ||
| 3088 | lemma path_connected_component: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. path_component s x y)" | |
| 3089 | unfolding path_connected_def path_component_def by auto | |
| 3090 | ||
| 3091 | lemma path_connected_component_set: "path_connected s \<longleftrightarrow> (\<forall>x\<in>s. path_component s x = s)" | |
| 3092 | unfolding path_connected_component apply(rule, rule, rule, rule path_component_subset) | |
| 3093 | unfolding subset_eq mem_path_component_set Ball_def mem_def by auto | |
| 3094 | ||
| 3095 | subsection {* Some useful lemmas about path-connectedness. *}
 | |
| 3096 | ||
| 3097 | lemma convex_imp_path_connected: assumes "convex s" shows "path_connected s" | |
| 3098 | unfolding path_connected_def apply(rule,rule,rule_tac x="linepath x y" in exI) | |
| 3099 | unfolding path_image_linepath using assms[unfolded convex_contains_segment] by auto | |
| 3100 | ||
| 3101 | lemma path_connected_imp_connected: assumes "path_connected s" shows "connected s" | |
| 3102 | unfolding connected_def not_ex apply(rule,rule,rule ccontr) unfolding not_not apply(erule conjE)+ proof- | |
| 3103 |   fix e1 e2 assume as:"open e1" "open e2" "s \<subseteq> e1 \<union> e2" "e1 \<inter> e2 \<inter> s = {}" "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | |
| 3104 | then obtain x1 x2 where obt:"x1\<in>e1\<inter>s" "x2\<in>e2\<inter>s" by auto | |
| 3105 | then obtain g where g:"path g" "path_image g \<subseteq> s" "pathstart g = x1" "pathfinish g = x2" | |
| 3106 | using assms[unfolded path_connected_def,rule_format,of x1 x2] by auto | |
| 3107 |   have *:"connected {0..1::real^1}" by(auto intro!: convex_connected convex_interval)
 | |
| 3108 |   have "{0..1} \<subseteq> {x \<in> {0..1}. g x \<in> e1} \<union> {x \<in> {0..1}. g x \<in> e2}" using as(3) g(2)[unfolded path_defs] by blast
 | |
| 3109 |   moreover have "{x \<in> {0..1}. g x \<in> e1} \<inter> {x \<in> {0..1}. g x \<in> e2} = {}" using as(4) g(2)[unfolded path_defs] unfolding subset_eq by auto 
 | |
| 3110 |   moreover have "{x \<in> {0..1}. g x \<in> e1} \<noteq> {} \<and> {x \<in> {0..1}. g x \<in> e2} \<noteq> {}" using g(3,4)[unfolded path_defs] using obt by(auto intro!: exI)
 | |
| 3111 |   ultimately show False using *[unfolded connected_local not_ex,rule_format, of "{x\<in>{0..1}. g x \<in> e1}" "{x\<in>{0..1}. g x \<in> e2}"]
 | |
| 3112 | using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(1)] | |
| 3113 | using continuous_open_in_preimage[OF g(1)[unfolded path_def] as(2)] by auto qed | |
| 3114 | ||
| 3115 | lemma open_path_component: assumes "open s" shows "open(path_component s x)" | |
| 3116 | unfolding open_contains_ball proof | |
| 3117 | fix y assume as:"y \<in> path_component s x" | |
| 3118 | hence "y\<in>s" apply- apply(rule path_component_mem(2)) unfolding mem_def by auto | |
| 3119 | then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto | |
| 3120 | show "\<exists>e>0. ball y e \<subseteq> path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule) unfolding mem_ball mem_path_component_set proof- | |
| 3121 | fix z assume "dist y z < e" thus "path_component s x z" apply(rule_tac path_component_trans[of _ _ y]) defer | |
| 3122 | apply(rule path_component_of_subset[OF e(2)]) apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) using `e>0` | |
| 3123 | using as[unfolded mem_def] by auto qed qed | |
| 3124 | ||
| 3125 | lemma open_non_path_component: assumes "open s" shows "open(s - path_component s x)" unfolding open_contains_ball proof | |
| 3126 | fix y assume as:"y\<in>s - path_component s x" | |
| 3127 | then obtain e where e:"e>0" "ball y e \<subseteq> s" using assms[unfolded open_contains_ball] by auto | |
| 3128 | show "\<exists>e>0. ball y e \<subseteq> s - path_component s x" apply(rule_tac x=e in exI) apply(rule,rule `e>0`,rule,rule) defer proof(rule ccontr) | |
| 3129 | fix z assume "z\<in>ball y e" "\<not> z \<notin> path_component s x" | |
| 3130 | hence "y \<in> path_component s x" unfolding not_not mem_path_component_set using `e>0` | |
| 3131 | apply- apply(rule path_component_trans,assumption) apply(rule path_component_of_subset[OF e(2)]) | |
| 3132 | apply(rule convex_imp_path_connected[OF convex_ball, unfolded path_connected_component, rule_format]) by auto | |
| 3133 | thus False using as by auto qed(insert e(2), auto) qed | |
| 3134 | ||
| 3135 | lemma connected_open_path_connected: assumes "open s" "connected s" shows "path_connected s" | |
| 3136 | unfolding path_connected_component_set proof(rule,rule,rule path_component_subset, rule) | |
| 3137 | fix x y assume "x \<in> s" "y \<in> s" show "y \<in> path_component s x" proof(rule ccontr) | |
| 3138 | assume "y \<notin> path_component s x" moreover | |
| 3139 |     have "path_component s x \<inter> s \<noteq> {}" using `x\<in>s` path_component_eq_empty path_component_subset[of s x] by auto
 | |
| 3140 | ultimately show False using `y\<in>s` open_non_path_component[OF assms(1)] open_path_component[OF assms(1)] | |
| 3141 | using assms(2)[unfolded connected_def not_ex, rule_format, of"path_component s x" "s - path_component s x"] by auto | |
| 3142 | qed qed | |
| 3143 | ||
| 3144 | lemma path_connected_continuous_image: | |
| 3145 | assumes "continuous_on s f" "path_connected s" shows "path_connected (f ` s)" | |
| 3146 | unfolding path_connected_def proof(rule,rule) | |
| 3147 | fix x' y' assume "x' \<in> f ` s" "y' \<in> f ` s" | |
| 3148 | then obtain x y where xy:"x\<in>s" "y\<in>s" "x' = f x" "y' = f y" by auto | |
| 3149 | guess g using assms(2)[unfolded path_connected_def,rule_format,OF xy(1,2)] .. | |
| 3150 | thus "\<exists>g. path g \<and> path_image g \<subseteq> f ` s \<and> pathstart g = x' \<and> pathfinish g = y'" | |
| 3151 | unfolding xy apply(rule_tac x="f \<circ> g" in exI) unfolding path_defs | |
| 3152 |     using assms(1) by(auto intro!: continuous_on_compose continuous_on_subset[of _ _ "g ` {0..1}"]) qed
 | |
| 3153 | ||
| 3154 | lemma homeomorphic_path_connectedness: | |
| 3155 | "s homeomorphic t \<Longrightarrow> (path_connected s \<longleftrightarrow> path_connected t)" | |
| 3156 | unfolding homeomorphic_def homeomorphism_def apply(erule exE|erule conjE)+ apply rule | |
| 3157 | apply(drule_tac f=f in path_connected_continuous_image) prefer 3 | |
| 3158 | apply(drule_tac f=g in path_connected_continuous_image) by auto | |
| 3159 | ||
| 3160 | lemma path_connected_empty: "path_connected {}"
 | |
| 3161 | unfolding path_connected_def by auto | |
| 3162 | ||
| 3163 | lemma path_connected_singleton: "path_connected {a}"
 | |
| 3164 | unfolding path_connected_def apply(rule,rule) | |
| 3165 | apply(rule_tac x="linepath a a" in exI) by(auto simp add:segment) | |
| 3166 | ||
| 3167 | lemma path_connected_Un: assumes "path_connected s" "path_connected t" "s \<inter> t \<noteq> {}"
 | |
| 3168 | shows "path_connected (s \<union> t)" unfolding path_connected_component proof(rule,rule) | |
| 3169 | fix x y assume as:"x \<in> s \<union> t" "y \<in> s \<union> t" | |
| 3170 | from assms(3) obtain z where "z \<in> s \<inter> t" by auto | |
| 3171 | thus "path_component (s \<union> t) x y" using as using assms(1-2)[unfolded path_connected_component] apply- | |
| 3172 | apply(erule_tac[!] UnE)+ apply(rule_tac[2-3] path_component_trans[of _ _ z]) | |
| 3173 | by(auto simp add:path_component_of_subset [OF Un_upper1] path_component_of_subset[OF Un_upper2]) qed | |
| 3174 | ||
| 3175 | subsection {* sphere is path-connected. *}
 | |
| 3176 | ||
| 3177 | lemma path_connected_punctured_universe: | |
| 3178 |  assumes "2 \<le> CARD('n::finite)" shows "path_connected((UNIV::(real^'n::finite) set) - {a})" proof-
 | |
| 3179 |   obtain \<psi> where \<psi>:"bij_betw \<psi> {1..CARD('n)} (UNIV::'n set)" using ex_bij_betw_nat_finite_1[OF finite_UNIV] by auto
 | |
| 3180 |   let ?U = "UNIV::(real^'n) set" let ?u = "?U - {0}"
 | |
| 3181 | let ?basis = "\<lambda>k. basis (\<psi> k)" | |
| 3182 |   let ?A = "\<lambda>k. {x::real^'n. \<exists>i\<in>{1..k}. (basis (\<psi> i)) \<bullet> x \<noteq> 0}"
 | |
| 3183 |   have "\<forall>k\<in>{2..CARD('n)}. path_connected (?A k)" proof
 | |
| 3184 |     have *:"\<And>k. ?A (Suc k) = {x. ?basis (Suc k) \<bullet> x < 0} \<union> {x. ?basis (Suc k) \<bullet> x > 0} \<union> ?A k" apply(rule set_ext,rule) defer
 | |
| 3185 | apply(erule UnE)+ unfolding mem_Collect_eq apply(rule_tac[1-2] x="Suc k" in bexI) | |
| 3186 | by(auto elim!: ballE simp add: not_less le_Suc_eq) | |
| 3187 |     fix k assume "k \<in> {2..CARD('n)}" thus "path_connected (?A k)" proof(induct k)
 | |
| 3188 | case (Suc k) show ?case proof(cases "k = 1") | |
| 3189 | 	case False from Suc have d:"k \<in> {1..CARD('n)}" "Suc k \<in> {1..CARD('n)}" by auto
 | |
| 3190 | hence "\<psi> k \<noteq> \<psi> (Suc k)" using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=k]] by auto | |
| 3191 | 	hence **:"?basis k + ?basis (Suc k) \<in> {x. 0 < ?basis (Suc k) \<bullet> x} \<inter> (?A k)" 
 | |
| 3192 |           "?basis k - ?basis (Suc k) \<in> {x. 0 > ?basis (Suc k) \<bullet> x} \<inter> ({x. 0 < ?basis (Suc k) \<bullet> x} \<union> (?A k))" using d
 | |
| 3193 | by(auto simp add: dot_basis vector_component_simps intro!:bexI[where x=k]) | |
| 3194 | show ?thesis unfolding * Un_assoc apply(rule path_connected_Un) defer apply(rule path_connected_Un) | |
| 3195 | prefer 5 apply(rule_tac[1-2] convex_imp_path_connected, rule convex_halfspace_lt, rule convex_halfspace_gt) | |
| 3196 | apply(rule Suc(1)) apply(rule_tac[2-3] ccontr) using d ** False by auto | |
| 3197 |       next case True hence d:"1\<in>{1..CARD('n)}" "2\<in>{1..CARD('n)}" using Suc(2) by auto
 | |
| 3198 | have ***:"Suc 1 = 2" by auto | |
| 3199 | 	have **:"\<And>s t P Q. s \<union> t \<union> {x. P x \<or> Q x} = (s \<union> {x. P x}) \<union> (t \<union> {x. Q x})" by auto
 | |
| 3200 | have "\<psi> 2 \<noteq> \<psi> (Suc 0)" apply(rule ccontr) using \<psi>[unfolded bij_betw_def inj_on_def, THEN conjunct1, THEN bspec[where x=2]] using assms by auto | |
| 3201 | thus ?thesis unfolding * True unfolding ** neq_iff bex_disj_distrib apply - | |
| 3202 | apply(rule path_connected_Un, rule_tac[1-2] path_connected_Un) defer 3 apply(rule_tac[1-4] convex_imp_path_connected) | |
| 3203 | apply(rule_tac[5] x=" ?basis 1 + ?basis 2" in nequals0I) | |
| 3204 | apply(rule_tac[6] x="-?basis 1 + ?basis 2" in nequals0I) | |
| 3205 | apply(rule_tac[7] x="-?basis 1 - ?basis 2" in nequals0I) | |
| 3206 | using d unfolding *** by(auto intro!: convex_halfspace_gt convex_halfspace_lt, auto simp add:vector_component_simps dot_basis) | |
| 3207 | qed qed auto qed note lem = this | |
| 3208 | ||
| 3209 |   have ***:"\<And>x::real^'n. (\<exists>i\<in>{1..CARD('n)}. basis (\<psi> i) \<bullet> x \<noteq> 0) \<longleftrightarrow> (\<exists>i. basis i \<bullet> x \<noteq> 0)"
 | |
| 3210 | apply rule apply(erule bexE) apply(rule_tac x="\<psi> i" in exI) defer apply(erule exE) proof- | |
| 3211 | fix x::"real^'n" and i assume as:"basis i \<bullet> x \<noteq> 0" | |
| 3212 |     have "i\<in>\<psi> ` {1..CARD('n)}" using \<psi>[unfolded bij_betw_def, THEN conjunct2] by auto
 | |
| 3213 |     then obtain j where "j\<in>{1..CARD('n)}" "\<psi> j = i" by auto
 | |
| 3214 |     thus "\<exists>i\<in>{1..CARD('n)}. basis (\<psi> i) \<bullet> x \<noteq> 0" apply(rule_tac x=j in bexI) using as by auto qed auto
 | |
| 3215 |   have *:"?U - {a} = (\<lambda>x. x + a) ` {x. x \<noteq> 0}" apply(rule set_ext) unfolding image_iff 
 | |
| 3216 | apply rule apply(rule_tac x="x - a" in bexI) by auto | |
| 3217 | have **:"\<And>x::real^'n. x\<noteq>0 \<longleftrightarrow> (\<exists>i. basis i \<bullet> x \<noteq> 0)" unfolding Cart_eq by(auto simp add: dot_basis) | |
| 3218 | show ?thesis unfolding * apply(rule path_connected_continuous_image) apply(rule continuous_on_intros)+ | |
| 3219 |     unfolding ** apply(rule lem[THEN bspec[where x="CARD('n)"], unfolded ***]) using assms by auto qed
 | |
| 3220 | ||
| 3221 | lemma path_connected_sphere: assumes "2 \<le> CARD('n::finite)" shows "path_connected {x::real^'n::finite. norm(x - a) = r}" proof(cases "r\<le>0")
 | |
| 3222 | case True thus ?thesis proof(cases "r=0") | |
| 3223 |     case False hence "{x::real^'n. norm(x - a) = r} = {}" using True by auto
 | |
| 3224 | thus ?thesis using path_connected_empty by auto | |
| 3225 | qed(auto intro!:path_connected_singleton) next | |
| 3226 |   case False hence *:"{x::real^'n. norm(x - a) = r} = (\<lambda>x. a + r *s x) ` {x. norm x = 1}" unfolding not_le apply -apply(rule set_ext,rule)
 | |
| 3227 | unfolding image_iff apply(rule_tac x="(1/r) *s (x - a)" in bexI) unfolding mem_Collect_eq norm_mul by auto | |
| 3228 | have ***:"\<And>xa. (if xa = 0 then 0 else 1) \<noteq> 1 \<Longrightarrow> xa = 0" apply(rule ccontr) by auto | |
| 3229 |   have **:"{x::real^'n. norm x = 1} = (\<lambda>x. (1/norm x) *s x) ` (UNIV - {0})" apply(rule set_ext,rule)
 | |
| 3230 | unfolding image_iff apply(rule_tac x=x in bexI) unfolding mem_Collect_eq norm_mul by(auto intro!: ***) | |
| 3231 |   have "continuous_on (UNIV - {0}) (vec1 \<circ> (\<lambda>x::real^'n. 1 / norm x))" unfolding o_def continuous_on_eq_continuous_within
 | |
| 3232 | apply(rule, rule continuous_at_within_inv[unfolded o_def inverse_eq_divide]) apply(rule continuous_at_within) | |
| 31289 | 3233 | apply(rule continuous_at_vec1_norm[unfolded o_def]) by auto | 
| 31276 | 3234 | thus ?thesis unfolding * ** using path_connected_punctured_universe[OF assms] | 
| 3235 | by(auto intro!: path_connected_continuous_image continuous_on_intros continuous_on_mul) qed | |
| 3236 | ||
| 3237 | lemma connected_sphere: "2 \<le> CARD('n) \<Longrightarrow> connected {x::real^'n::finite. norm(x - a) = r}"
 | |
| 3238 | using path_connected_sphere path_connected_imp_connected by auto | |
| 3239 | ||
| 3240 | (** In continuous_at_vec1_norm : Use \<And> instead of \<forall>. **) | |
| 3241 | ||
| 31289 | 3242 | end |