author | nipkow |
Mon, 07 Jul 2014 17:01:11 +0200 | |
changeset 57530 | 439f881c8744 |
parent 57450 | 2baecef3207f |
child 57569 | e20a999f7161 |
permissions | -rw-r--r-- |
57250 | 1 |
(* Author: Tobias Nipkow *) |
2 |
||
3 |
header {* Binary Tree *} |
|
4 |
||
5 |
theory Tree |
|
6 |
imports Main |
|
7 |
begin |
|
8 |
||
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
9 |
datatype_new 'a tree = Leaf | Node (left: "'a tree") (val: 'a) (right: "'a tree") |
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
10 |
where |
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
11 |
"left Leaf = Leaf" |
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
12 |
| "right Leaf = Leaf" |
57250 | 13 |
|
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
14 |
lemma neq_Leaf_iff: "(t \<noteq> Leaf) = (\<exists>l a r. t = Node l a r)" |
57450 | 15 |
by (cases t) auto |
57250 | 16 |
|
57530 | 17 |
lemma set_tree_Node2: "set_tree(Node l x r) = insert x (set_tree l \<union> set_tree r)" |
18 |
by auto |
|
19 |
||
57250 | 20 |
fun subtrees :: "'a tree \<Rightarrow> 'a tree set" where |
57450 | 21 |
"subtrees Leaf = {Leaf}" | |
22 |
"subtrees (Node l a r) = insert (Node l a r) (subtrees l \<union> subtrees r)" |
|
57250 | 23 |
|
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
24 |
lemma set_treeE: "a \<in> set_tree t \<Longrightarrow> \<exists>l r. Node l a r \<in> subtrees t" |
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
25 |
by (induction t)(auto) |
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
26 |
|
57450 | 27 |
lemma Node_notin_subtrees_if[simp]: "a \<notin> set_tree t \<Longrightarrow> Node l a r \<notin> subtrees t" |
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
28 |
by (induction t) auto |
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
29 |
|
57450 | 30 |
lemma in_set_tree_if: "Node l a r \<in> subtrees t \<Longrightarrow> a \<in> set_tree t" |
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
31 |
by (metis Node_notin_subtrees_if) |
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
32 |
|
57250 | 33 |
fun inorder :: "'a tree \<Rightarrow> 'a list" where |
57450 | 34 |
"inorder Leaf = []" | |
35 |
"inorder (Node l x r) = inorder l @ [x] @ inorder r" |
|
57250 | 36 |
|
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
37 |
lemma set_inorder[simp]: "set (inorder t) = set_tree t" |
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
38 |
by (induction t) auto |
57250 | 39 |
|
57449
f81da03b9ebd
Library/Tree: use datatype_new, bst is an inductive predicate
hoelzl
parents:
57250
diff
changeset
|
40 |
subsection {* Binary Search Tree predicate *} |
57250 | 41 |
|
57450 | 42 |
fun (in linorder) bst :: "'a tree \<Rightarrow> bool" where |
43 |
"bst Leaf \<longleftrightarrow> True" | |
|
44 |
"bst (Node l a r) \<longleftrightarrow> bst l \<and> bst r \<and> (\<forall>x\<in>set_tree l. x < a) \<and> (\<forall>x\<in>set_tree r. a < x)" |
|
57250 | 45 |
|
57450 | 46 |
lemma (in linorder) bst_imp_sorted: "bst t \<Longrightarrow> sorted (inorder t)" |
47 |
by (induction t) (auto simp: sorted_append sorted_Cons intro: less_imp_le less_trans) |
|
57250 | 48 |
|
49 |
end |