| author | haftmann | 
| Mon, 30 Aug 2010 09:35:30 +0200 | |
| changeset 38865 | 43c934dd4bc3 | 
| parent 37887 | 2ae085b07f2f | 
| child 41413 | 64cd30d6b0b8 | 
| permissions | -rw-r--r-- | 
| 
31795
 
be3e1cc5005c
standard naming conventions for session and theories;
 
wenzelm 
parents: 
29252 
diff
changeset
 | 
1  | 
(* Title: HOL/Hahn_Banach/Vector_Space.thy  | 
| 7917 | 2  | 
Author: Gertrud Bauer, TU Munich  | 
3  | 
*)  | 
|
4  | 
||
| 9035 | 5  | 
header {* Vector spaces *}
 | 
| 7917 | 6  | 
|
| 
31795
 
be3e1cc5005c
standard naming conventions for session and theories;
 
wenzelm 
parents: 
29252 
diff
changeset
 | 
7  | 
theory Vector_Space  | 
| 27612 | 8  | 
imports Real Bounds Zorn  | 
9  | 
begin  | 
|
| 7917 | 10  | 
|
| 9035 | 11  | 
subsection {* Signature *}
 | 
| 7917 | 12  | 
|
| 10687 | 13  | 
text {*
 | 
14  | 
  For the definition of real vector spaces a type @{typ 'a} of the
 | 
|
15  | 
  sort @{text "{plus, minus, zero}"} is considered, on which a real
 | 
|
16  | 
  scalar multiplication @{text \<cdot>} is declared.
 | 
|
17  | 
*}  | 
|
| 7917 | 18  | 
|
19  | 
consts  | 
|
| 10687 | 20  | 
  prod  :: "real \<Rightarrow> 'a::{plus, minus, zero} \<Rightarrow> 'a"     (infixr "'(*')" 70)
 | 
| 7917 | 21  | 
|
| 21210 | 22  | 
notation (xsymbols)  | 
| 19736 | 23  | 
prod (infixr "\<cdot>" 70)  | 
| 21210 | 24  | 
notation (HTML output)  | 
| 19736 | 25  | 
prod (infixr "\<cdot>" 70)  | 
| 7917 | 26  | 
|
27  | 
||
| 9035 | 28  | 
subsection {* Vector space laws *}
 | 
| 7917 | 29  | 
|
| 10687 | 30  | 
text {*
 | 
31  | 
  A \emph{vector space} is a non-empty set @{text V} of elements from
 | 
|
32  | 
  @{typ 'a} with the following vector space laws: The set @{text V} is
 | 
|
33  | 
closed under addition and scalar multiplication, addition is  | 
|
34  | 
  associative and commutative; @{text "- x"} is the inverse of @{text
 | 
|
35  | 
  x} w.~r.~t.~addition and @{text 0} is the neutral element of
 | 
|
36  | 
addition. Addition and multiplication are distributive; scalar  | 
|
| 
12018
 
ec054019c910
Numerals and simprocs for types real and hypreal.  The abstract
 
paulson 
parents: 
11704 
diff
changeset
 | 
37  | 
  multiplication is associative and the real number @{text "1"} is
 | 
| 10687 | 38  | 
the neutral element of scalar multiplication.  | 
| 9035 | 39  | 
*}  | 
| 7917 | 40  | 
|
| 29234 | 41  | 
locale var_V = fixes V  | 
42  | 
||
43  | 
locale vectorspace = var_V +  | 
|
| 13515 | 44  | 
  assumes non_empty [iff, intro?]: "V \<noteq> {}"
 | 
45  | 
and add_closed [iff]: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + y \<in> V"  | 
|
46  | 
and mult_closed [iff]: "x \<in> V \<Longrightarrow> a \<cdot> x \<in> V"  | 
|
47  | 
and add_assoc: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x + y) + z = x + (y + z)"  | 
|
48  | 
and add_commute: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + y = y + x"  | 
|
49  | 
and diff_self [simp]: "x \<in> V \<Longrightarrow> x - x = 0"  | 
|
50  | 
and add_zero_left [simp]: "x \<in> V \<Longrightarrow> 0 + x = x"  | 
|
51  | 
and add_mult_distrib1: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> a \<cdot> (x + y) = a \<cdot> x + a \<cdot> y"  | 
|
52  | 
and add_mult_distrib2: "x \<in> V \<Longrightarrow> (a + b) \<cdot> x = a \<cdot> x + b \<cdot> x"  | 
|
53  | 
and mult_assoc: "x \<in> V \<Longrightarrow> (a * b) \<cdot> x = a \<cdot> (b \<cdot> x)"  | 
|
54  | 
and mult_1 [simp]: "x \<in> V \<Longrightarrow> 1 \<cdot> x = x"  | 
|
55  | 
and negate_eq1: "x \<in> V \<Longrightarrow> - x = (- 1) \<cdot> x"  | 
|
56  | 
and diff_eq1: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x - y = x + - y"  | 
|
| 7917 | 57  | 
|
| 13515 | 58  | 
lemma (in vectorspace) negate_eq2: "x \<in> V \<Longrightarrow> (- 1) \<cdot> x = - x"  | 
59  | 
by (rule negate_eq1 [symmetric])  | 
|
| 
9013
 
9dd0274f76af
Updated files to remove 0r and 1r from theorems in descendant theories
 
fleuriot 
parents: 
8703 
diff
changeset
 | 
60  | 
|
| 13515 | 61  | 
lemma (in vectorspace) negate_eq2a: "x \<in> V \<Longrightarrow> -1 \<cdot> x = - x"  | 
62  | 
by (simp add: negate_eq1)  | 
|
| 7917 | 63  | 
|
| 13515 | 64  | 
lemma (in vectorspace) diff_eq2: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + - y = x - y"  | 
65  | 
by (rule diff_eq1 [symmetric])  | 
|
| 7917 | 66  | 
|
| 13515 | 67  | 
lemma (in vectorspace) diff_closed [iff]: "x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x - y \<in> V"  | 
| 9035 | 68  | 
by (simp add: diff_eq1 negate_eq1)  | 
| 7917 | 69  | 
|
| 13515 | 70  | 
lemma (in vectorspace) neg_closed [iff]: "x \<in> V \<Longrightarrow> - x \<in> V"  | 
| 9035 | 71  | 
by (simp add: negate_eq1)  | 
| 7917 | 72  | 
|
| 13515 | 73  | 
lemma (in vectorspace) add_left_commute:  | 
74  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> x + (y + z) = y + (x + z)"  | 
|
| 9035 | 75  | 
proof -  | 
| 13515 | 76  | 
assume xyz: "x \<in> V" "y \<in> V" "z \<in> V"  | 
| 27612 | 77  | 
then have "x + (y + z) = (x + y) + z"  | 
| 13515 | 78  | 
by (simp only: add_assoc)  | 
| 27612 | 79  | 
also from xyz have "\<dots> = (y + x) + z" by (simp only: add_commute)  | 
80  | 
also from xyz have "\<dots> = y + (x + z)" by (simp only: add_assoc)  | 
|
| 9035 | 81  | 
finally show ?thesis .  | 
82  | 
qed  | 
|
| 7917 | 83  | 
|
| 13515 | 84  | 
theorems (in vectorspace) add_ac =  | 
85  | 
add_assoc add_commute add_left_commute  | 
|
| 7917 | 86  | 
|
87  | 
||
| 7978 | 88  | 
text {* The existence of the zero element of a vector space
 | 
| 13515 | 89  | 
follows from the non-emptiness of carrier set. *}  | 
| 7917 | 90  | 
|
| 13515 | 91  | 
lemma (in vectorspace) zero [iff]: "0 \<in> V"  | 
| 10687 | 92  | 
proof -  | 
| 13515 | 93  | 
from non_empty obtain x where x: "x \<in> V" by blast  | 
94  | 
then have "0 = x - x" by (rule diff_self [symmetric])  | 
|
| 27612 | 95  | 
also from x x have "\<dots> \<in> V" by (rule diff_closed)  | 
| 11472 | 96  | 
finally show ?thesis .  | 
| 9035 | 97  | 
qed  | 
| 7917 | 98  | 
|
| 13515 | 99  | 
lemma (in vectorspace) add_zero_right [simp]:  | 
100  | 
"x \<in> V \<Longrightarrow> x + 0 = x"  | 
|
| 9035 | 101  | 
proof -  | 
| 13515 | 102  | 
assume x: "x \<in> V"  | 
103  | 
from this and zero have "x + 0 = 0 + x" by (rule add_commute)  | 
|
| 27612 | 104  | 
also from x have "\<dots> = x" by (rule add_zero_left)  | 
| 9035 | 105  | 
finally show ?thesis .  | 
106  | 
qed  | 
|
| 7917 | 107  | 
|
| 13515 | 108  | 
lemma (in vectorspace) mult_assoc2:  | 
109  | 
"x \<in> V \<Longrightarrow> a \<cdot> b \<cdot> x = (a * b) \<cdot> x"  | 
|
110  | 
by (simp only: mult_assoc)  | 
|
| 7917 | 111  | 
|
| 13515 | 112  | 
lemma (in vectorspace) diff_mult_distrib1:  | 
113  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> a \<cdot> (x - y) = a \<cdot> x - a \<cdot> y"  | 
|
114  | 
by (simp add: diff_eq1 negate_eq1 add_mult_distrib1 mult_assoc2)  | 
|
| 7917 | 115  | 
|
| 13515 | 116  | 
lemma (in vectorspace) diff_mult_distrib2:  | 
117  | 
"x \<in> V \<Longrightarrow> (a - b) \<cdot> x = a \<cdot> x - (b \<cdot> x)"  | 
|
| 9035 | 118  | 
proof -  | 
| 13515 | 119  | 
assume x: "x \<in> V"  | 
| 10687 | 120  | 
have " (a - b) \<cdot> x = (a + - b) \<cdot> x"  | 
| 37887 | 121  | 
by (simp add: diff_minus)  | 
| 27612 | 122  | 
also from x have "\<dots> = a \<cdot> x + (- b) \<cdot> x"  | 
| 13515 | 123  | 
by (rule add_mult_distrib2)  | 
| 27612 | 124  | 
also from x have "\<dots> = a \<cdot> x + - (b \<cdot> x)"  | 
| 13515 | 125  | 
by (simp add: negate_eq1 mult_assoc2)  | 
| 27612 | 126  | 
also from x have "\<dots> = a \<cdot> x - (b \<cdot> x)"  | 
| 13515 | 127  | 
by (simp add: diff_eq1)  | 
| 9035 | 128  | 
finally show ?thesis .  | 
129  | 
qed  | 
|
| 7917 | 130  | 
|
| 13515 | 131  | 
lemmas (in vectorspace) distrib =  | 
132  | 
add_mult_distrib1 add_mult_distrib2  | 
|
133  | 
diff_mult_distrib1 diff_mult_distrib2  | 
|
134  | 
||
| 10687 | 135  | 
|
136  | 
text {* \medskip Further derived laws: *}
 | 
|
| 7917 | 137  | 
|
| 13515 | 138  | 
lemma (in vectorspace) mult_zero_left [simp]:  | 
139  | 
"x \<in> V \<Longrightarrow> 0 \<cdot> x = 0"  | 
|
| 9035 | 140  | 
proof -  | 
| 13515 | 141  | 
assume x: "x \<in> V"  | 
142  | 
have "0 \<cdot> x = (1 - 1) \<cdot> x" by simp  | 
|
| 27612 | 143  | 
also have "\<dots> = (1 + - 1) \<cdot> x" by simp  | 
144  | 
also from x have "\<dots> = 1 \<cdot> x + (- 1) \<cdot> x"  | 
|
| 13515 | 145  | 
by (rule add_mult_distrib2)  | 
| 27612 | 146  | 
also from x have "\<dots> = x + (- 1) \<cdot> x" by simp  | 
147  | 
also from x have "\<dots> = x + - x" by (simp add: negate_eq2a)  | 
|
148  | 
also from x have "\<dots> = x - x" by (simp add: diff_eq2)  | 
|
149  | 
also from x have "\<dots> = 0" by simp  | 
|
| 9035 | 150  | 
finally show ?thesis .  | 
151  | 
qed  | 
|
| 7917 | 152  | 
|
| 13515 | 153  | 
lemma (in vectorspace) mult_zero_right [simp]:  | 
154  | 
"a \<cdot> 0 = (0::'a)"  | 
|
| 9035 | 155  | 
proof -  | 
| 13515 | 156  | 
have "a \<cdot> 0 = a \<cdot> (0 - (0::'a))" by simp  | 
| 27612 | 157  | 
also have "\<dots> = a \<cdot> 0 - a \<cdot> 0"  | 
| 13515 | 158  | 
by (rule diff_mult_distrib1) simp_all  | 
| 27612 | 159  | 
also have "\<dots> = 0" by simp  | 
| 9035 | 160  | 
finally show ?thesis .  | 
161  | 
qed  | 
|
| 7917 | 162  | 
|
| 13515 | 163  | 
lemma (in vectorspace) minus_mult_cancel [simp]:  | 
164  | 
"x \<in> V \<Longrightarrow> (- a) \<cdot> - x = a \<cdot> x"  | 
|
165  | 
by (simp add: negate_eq1 mult_assoc2)  | 
|
| 7917 | 166  | 
|
| 13515 | 167  | 
lemma (in vectorspace) add_minus_left_eq_diff:  | 
168  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> - x + y = y - x"  | 
|
| 10687 | 169  | 
proof -  | 
| 13515 | 170  | 
assume xy: "x \<in> V" "y \<in> V"  | 
| 27612 | 171  | 
then have "- x + y = y + - x" by (simp add: add_commute)  | 
172  | 
also from xy have "\<dots> = y - x" by (simp add: diff_eq1)  | 
|
| 9035 | 173  | 
finally show ?thesis .  | 
174  | 
qed  | 
|
| 7917 | 175  | 
|
| 13515 | 176  | 
lemma (in vectorspace) add_minus [simp]:  | 
177  | 
"x \<in> V \<Longrightarrow> x + - x = 0"  | 
|
178  | 
by (simp add: diff_eq2)  | 
|
| 7917 | 179  | 
|
| 13515 | 180  | 
lemma (in vectorspace) add_minus_left [simp]:  | 
181  | 
"x \<in> V \<Longrightarrow> - x + x = 0"  | 
|
182  | 
by (simp add: diff_eq2 add_commute)  | 
|
| 7917 | 183  | 
|
| 13515 | 184  | 
lemma (in vectorspace) minus_minus [simp]:  | 
185  | 
"x \<in> V \<Longrightarrow> - (- x) = x"  | 
|
186  | 
by (simp add: negate_eq1 mult_assoc2)  | 
|
187  | 
||
188  | 
lemma (in vectorspace) minus_zero [simp]:  | 
|
189  | 
"- (0::'a) = 0"  | 
|
| 9035 | 190  | 
by (simp add: negate_eq1)  | 
| 7917 | 191  | 
|
| 13515 | 192  | 
lemma (in vectorspace) minus_zero_iff [simp]:  | 
193  | 
"x \<in> V \<Longrightarrow> (- x = 0) = (x = 0)"  | 
|
194  | 
proof  | 
|
195  | 
assume x: "x \<in> V"  | 
|
196  | 
  {
 | 
|
197  | 
from x have "x = - (- x)" by (simp add: minus_minus)  | 
|
198  | 
also assume "- x = 0"  | 
|
| 27612 | 199  | 
also have "- \<dots> = 0" by (rule minus_zero)  | 
| 13515 | 200  | 
finally show "x = 0" .  | 
201  | 
next  | 
|
202  | 
assume "x = 0"  | 
|
203  | 
then show "- x = 0" by simp  | 
|
204  | 
}  | 
|
| 9035 | 205  | 
qed  | 
| 7917 | 206  | 
|
| 13515 | 207  | 
lemma (in vectorspace) add_minus_cancel [simp]:  | 
208  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + (- x + y) = y"  | 
|
209  | 
by (simp add: add_assoc [symmetric] del: add_commute)  | 
|
| 7917 | 210  | 
|
| 13515 | 211  | 
lemma (in vectorspace) minus_add_cancel [simp]:  | 
212  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> - x + (x + y) = y"  | 
|
213  | 
by (simp add: add_assoc [symmetric] del: add_commute)  | 
|
| 7917 | 214  | 
|
| 13515 | 215  | 
lemma (in vectorspace) minus_add_distrib [simp]:  | 
216  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> - (x + y) = - x + - y"  | 
|
217  | 
by (simp add: negate_eq1 add_mult_distrib1)  | 
|
| 7917 | 218  | 
|
| 13515 | 219  | 
lemma (in vectorspace) diff_zero [simp]:  | 
220  | 
"x \<in> V \<Longrightarrow> x - 0 = x"  | 
|
221  | 
by (simp add: diff_eq1)  | 
|
222  | 
||
223  | 
lemma (in vectorspace) diff_zero_right [simp]:  | 
|
224  | 
"x \<in> V \<Longrightarrow> 0 - x = - x"  | 
|
| 10687 | 225  | 
by (simp add: diff_eq1)  | 
| 7917 | 226  | 
|
| 13515 | 227  | 
lemma (in vectorspace) add_left_cancel:  | 
228  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x + y = x + z) = (y = z)"  | 
|
| 9035 | 229  | 
proof  | 
| 13515 | 230  | 
assume x: "x \<in> V" and y: "y \<in> V" and z: "z \<in> V"  | 
231  | 
  {
 | 
|
232  | 
from y have "y = 0 + y" by simp  | 
|
| 27612 | 233  | 
also from x y have "\<dots> = (- x + x) + y" by simp  | 
234  | 
also from x y have "\<dots> = - x + (x + y)"  | 
|
| 13515 | 235  | 
by (simp add: add_assoc neg_closed)  | 
236  | 
also assume "x + y = x + z"  | 
|
237  | 
also from x z have "- x + (x + z) = - x + x + z"  | 
|
238  | 
by (simp add: add_assoc [symmetric] neg_closed)  | 
|
| 27612 | 239  | 
also from x z have "\<dots> = z" by simp  | 
| 13515 | 240  | 
finally show "y = z" .  | 
241  | 
next  | 
|
242  | 
assume "y = z"  | 
|
243  | 
then show "x + y = x + z" by (simp only:)  | 
|
244  | 
}  | 
|
245  | 
qed  | 
|
| 7917 | 246  | 
|
| 13515 | 247  | 
lemma (in vectorspace) add_right_cancel:  | 
248  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (y + x = z + x) = (y = z)"  | 
|
249  | 
by (simp only: add_commute add_left_cancel)  | 
|
| 7917 | 250  | 
|
| 13515 | 251  | 
lemma (in vectorspace) add_assoc_cong:  | 
252  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x' \<in> V \<Longrightarrow> y' \<in> V \<Longrightarrow> z \<in> V  | 
|
253  | 
\<Longrightarrow> x + y = x' + y' \<Longrightarrow> x + (y + z) = x' + (y' + z)"  | 
|
254  | 
by (simp only: add_assoc [symmetric])  | 
|
| 7917 | 255  | 
|
| 13515 | 256  | 
lemma (in vectorspace) mult_left_commute:  | 
257  | 
"x \<in> V \<Longrightarrow> a \<cdot> b \<cdot> x = b \<cdot> a \<cdot> x"  | 
|
| 
36778
 
739a9379e29b
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
31795 
diff
changeset
 | 
258  | 
by (simp add: mult_commute mult_assoc2)  | 
| 7917 | 259  | 
|
| 13515 | 260  | 
lemma (in vectorspace) mult_zero_uniq:  | 
261  | 
"x \<in> V \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> a \<cdot> x = 0 \<Longrightarrow> a = 0"  | 
|
| 9035 | 262  | 
proof (rule classical)  | 
| 13515 | 263  | 
assume a: "a \<noteq> 0"  | 
264  | 
assume x: "x \<in> V" "x \<noteq> 0" and ax: "a \<cdot> x = 0"  | 
|
265  | 
from x a have "x = (inverse a * a) \<cdot> x" by simp  | 
|
| 27612 | 266  | 
also from `x \<in> V` have "\<dots> = inverse a \<cdot> (a \<cdot> x)" by (rule mult_assoc)  | 
267  | 
also from ax have "\<dots> = inverse a \<cdot> 0" by simp  | 
|
268  | 
also have "\<dots> = 0" by simp  | 
|
| 9374 | 269  | 
finally have "x = 0" .  | 
| 23378 | 270  | 
with `x \<noteq> 0` show "a = 0" by contradiction  | 
| 9035 | 271  | 
qed  | 
| 7917 | 272  | 
|
| 13515 | 273  | 
lemma (in vectorspace) mult_left_cancel:  | 
274  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> (a \<cdot> x = a \<cdot> y) = (x = y)"  | 
|
| 9035 | 275  | 
proof  | 
| 13515 | 276  | 
assume x: "x \<in> V" and y: "y \<in> V" and a: "a \<noteq> 0"  | 
277  | 
from x have "x = 1 \<cdot> x" by simp  | 
|
| 27612 | 278  | 
also from a have "\<dots> = (inverse a * a) \<cdot> x" by simp  | 
279  | 
also from x have "\<dots> = inverse a \<cdot> (a \<cdot> x)"  | 
|
| 13515 | 280  | 
by (simp only: mult_assoc)  | 
281  | 
also assume "a \<cdot> x = a \<cdot> y"  | 
|
| 27612 | 282  | 
also from a y have "inverse a \<cdot> \<dots> = y"  | 
| 13515 | 283  | 
by (simp add: mult_assoc2)  | 
284  | 
finally show "x = y" .  | 
|
285  | 
next  | 
|
286  | 
assume "x = y"  | 
|
287  | 
then show "a \<cdot> x = a \<cdot> y" by (simp only:)  | 
|
288  | 
qed  | 
|
| 7917 | 289  | 
|
| 13515 | 290  | 
lemma (in vectorspace) mult_right_cancel:  | 
291  | 
"x \<in> V \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> (a \<cdot> x = b \<cdot> x) = (a = b)"  | 
|
| 9035 | 292  | 
proof  | 
| 13515 | 293  | 
assume x: "x \<in> V" and neq: "x \<noteq> 0"  | 
294  | 
  {
 | 
|
295  | 
from x have "(a - b) \<cdot> x = a \<cdot> x - b \<cdot> x"  | 
|
296  | 
by (simp add: diff_mult_distrib2)  | 
|
297  | 
also assume "a \<cdot> x = b \<cdot> x"  | 
|
298  | 
with x have "a \<cdot> x - b \<cdot> x = 0" by simp  | 
|
299  | 
finally have "(a - b) \<cdot> x = 0" .  | 
|
300  | 
with x neq have "a - b = 0" by (rule mult_zero_uniq)  | 
|
| 27612 | 301  | 
then show "a = b" by simp  | 
| 13515 | 302  | 
next  | 
303  | 
assume "a = b"  | 
|
304  | 
then show "a \<cdot> x = b \<cdot> x" by (simp only:)  | 
|
305  | 
}  | 
|
306  | 
qed  | 
|
| 7917 | 307  | 
|
| 13515 | 308  | 
lemma (in vectorspace) eq_diff_eq:  | 
309  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x = z - y) = (x + y = z)"  | 
|
310  | 
proof  | 
|
311  | 
assume x: "x \<in> V" and y: "y \<in> V" and z: "z \<in> V"  | 
|
312  | 
  {
 | 
|
313  | 
assume "x = z - y"  | 
|
| 27612 | 314  | 
then have "x + y = z - y + y" by simp  | 
315  | 
also from y z have "\<dots> = z + - y + y"  | 
|
| 13515 | 316  | 
by (simp add: diff_eq1)  | 
| 27612 | 317  | 
also have "\<dots> = z + (- y + y)"  | 
| 13515 | 318  | 
by (rule add_assoc) (simp_all add: y z)  | 
| 27612 | 319  | 
also from y z have "\<dots> = z + 0"  | 
| 13515 | 320  | 
by (simp only: add_minus_left)  | 
| 27612 | 321  | 
also from z have "\<dots> = z"  | 
| 13515 | 322  | 
by (simp only: add_zero_right)  | 
323  | 
finally show "x + y = z" .  | 
|
| 9035 | 324  | 
next  | 
| 13515 | 325  | 
assume "x + y = z"  | 
| 27612 | 326  | 
then have "z - y = (x + y) - y" by simp  | 
327  | 
also from x y have "\<dots> = x + y + - y"  | 
|
| 9035 | 328  | 
by (simp add: diff_eq1)  | 
| 27612 | 329  | 
also have "\<dots> = x + (y + - y)"  | 
| 13515 | 330  | 
by (rule add_assoc) (simp_all add: x y)  | 
| 27612 | 331  | 
also from x y have "\<dots> = x" by simp  | 
| 13515 | 332  | 
finally show "x = z - y" ..  | 
333  | 
}  | 
|
| 9035 | 334  | 
qed  | 
| 7917 | 335  | 
|
| 13515 | 336  | 
lemma (in vectorspace) add_minus_eq_minus:  | 
337  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x + y = 0 \<Longrightarrow> x = - y"  | 
|
| 9035 | 338  | 
proof -  | 
| 13515 | 339  | 
assume x: "x \<in> V" and y: "y \<in> V"  | 
340  | 
from x y have "x = (- y + y) + x" by simp  | 
|
| 27612 | 341  | 
also from x y have "\<dots> = - y + (x + y)" by (simp add: add_ac)  | 
| 9374 | 342  | 
also assume "x + y = 0"  | 
| 13515 | 343  | 
also from y have "- y + 0 = - y" by simp  | 
| 9035 | 344  | 
finally show "x = - y" .  | 
345  | 
qed  | 
|
| 7917 | 346  | 
|
| 13515 | 347  | 
lemma (in vectorspace) add_minus_eq:  | 
348  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> x - y = 0 \<Longrightarrow> x = y"  | 
|
| 9035 | 349  | 
proof -  | 
| 13515 | 350  | 
assume x: "x \<in> V" and y: "y \<in> V"  | 
| 9374 | 351  | 
assume "x - y = 0"  | 
| 13515 | 352  | 
with x y have eq: "x + - y = 0" by (simp add: diff_eq1)  | 
353  | 
with _ _ have "x = - (- y)"  | 
|
354  | 
by (rule add_minus_eq_minus) (simp_all add: x y)  | 
|
355  | 
with x y show "x = y" by simp  | 
|
| 9035 | 356  | 
qed  | 
| 7917 | 357  | 
|
| 13515 | 358  | 
lemma (in vectorspace) add_diff_swap:  | 
359  | 
"a \<in> V \<Longrightarrow> b \<in> V \<Longrightarrow> c \<in> V \<Longrightarrow> d \<in> V \<Longrightarrow> a + b = c + d  | 
|
360  | 
\<Longrightarrow> a - c = d - b"  | 
|
| 10687 | 361  | 
proof -  | 
| 13515 | 362  | 
assume vs: "a \<in> V" "b \<in> V" "c \<in> V" "d \<in> V"  | 
| 9035 | 363  | 
and eq: "a + b = c + d"  | 
| 13515 | 364  | 
then have "- c + (a + b) = - c + (c + d)"  | 
365  | 
by (simp add: add_left_cancel)  | 
|
| 27612 | 366  | 
also have "\<dots> = d" using `c \<in> V` `d \<in> V` by (rule minus_add_cancel)  | 
| 9035 | 367  | 
finally have eq: "- c + (a + b) = d" .  | 
| 10687 | 368  | 
from vs have "a - c = (- c + (a + b)) + - b"  | 
| 13515 | 369  | 
by (simp add: add_ac diff_eq1)  | 
| 27612 | 370  | 
also from vs eq have "\<dots> = d + - b"  | 
| 13515 | 371  | 
by (simp add: add_right_cancel)  | 
| 27612 | 372  | 
also from vs have "\<dots> = d - b" by (simp add: diff_eq2)  | 
| 9035 | 373  | 
finally show "a - c = d - b" .  | 
374  | 
qed  | 
|
| 7917 | 375  | 
|
| 13515 | 376  | 
lemma (in vectorspace) vs_add_cancel_21:  | 
377  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> u \<in> V  | 
|
378  | 
\<Longrightarrow> (x + (y + z) = y + u) = (x + z = u)"  | 
|
379  | 
proof  | 
|
380  | 
assume vs: "x \<in> V" "y \<in> V" "z \<in> V" "u \<in> V"  | 
|
381  | 
  {
 | 
|
382  | 
from vs have "x + z = - y + y + (x + z)" by simp  | 
|
| 27612 | 383  | 
also have "\<dots> = - y + (y + (x + z))"  | 
| 13515 | 384  | 
by (rule add_assoc) (simp_all add: vs)  | 
385  | 
also from vs have "y + (x + z) = x + (y + z)"  | 
|
386  | 
by (simp add: add_ac)  | 
|
387  | 
also assume "x + (y + z) = y + u"  | 
|
388  | 
also from vs have "- y + (y + u) = u" by simp  | 
|
389  | 
finally show "x + z = u" .  | 
|
390  | 
next  | 
|
391  | 
assume "x + z = u"  | 
|
392  | 
with vs show "x + (y + z) = y + u"  | 
|
393  | 
by (simp only: add_left_commute [of x])  | 
|
394  | 
}  | 
|
| 9035 | 395  | 
qed  | 
| 7917 | 396  | 
|
| 13515 | 397  | 
lemma (in vectorspace) add_cancel_end:  | 
398  | 
"x \<in> V \<Longrightarrow> y \<in> V \<Longrightarrow> z \<in> V \<Longrightarrow> (x + (y + z) = y) = (x = - z)"  | 
|
399  | 
proof  | 
|
400  | 
assume vs: "x \<in> V" "y \<in> V" "z \<in> V"  | 
|
401  | 
  {
 | 
|
402  | 
assume "x + (y + z) = y"  | 
|
403  | 
with vs have "(x + z) + y = 0 + y"  | 
|
404  | 
by (simp add: add_ac)  | 
|
405  | 
with vs have "x + z = 0"  | 
|
406  | 
by (simp only: add_right_cancel add_closed zero)  | 
|
407  | 
with vs show "x = - z" by (simp add: add_minus_eq_minus)  | 
|
| 9035 | 408  | 
next  | 
| 13515 | 409  | 
assume eq: "x = - z"  | 
| 27612 | 410  | 
then have "x + (y + z) = - z + (y + z)" by simp  | 
411  | 
also have "\<dots> = y + (- z + z)"  | 
|
| 13515 | 412  | 
by (rule add_left_commute) (simp_all add: vs)  | 
| 27612 | 413  | 
also from vs have "\<dots> = y" by simp  | 
| 13515 | 414  | 
finally show "x + (y + z) = y" .  | 
415  | 
}  | 
|
| 9035 | 416  | 
qed  | 
| 7917 | 417  | 
|
| 10687 | 418  | 
end  |