| author | wenzelm | 
| Sat, 13 Aug 2011 13:48:26 +0200 | |
| changeset 44181 | bbce0417236d | 
| parent 35416 | d8d7d1b785af | 
| child 46912 | e0cd5c4df8e6 | 
| permissions | -rw-r--r-- | 
| 5597 | 1  | 
(* Title: HOL/UNITY/Comp.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30952 
diff
changeset
 | 
3  | 
Author: Sidi Ehmety  | 
| 5597 | 4  | 
|
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30952 
diff
changeset
 | 
5  | 
Composition.  | 
| 
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30952 
diff
changeset
 | 
6  | 
|
| 11190 | 7  | 
From Chandy and Sanders, "Reasoning About Program Composition",  | 
8  | 
Technical Report 2000-003, University of Florida, 2000.  | 
|
| 5597 | 9  | 
*)  | 
10  | 
||
| 13798 | 11  | 
header{*Composition: Basic Primitives*}
 | 
12  | 
||
| 
30952
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
13  | 
theory Comp  | 
| 
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
14  | 
imports Union  | 
| 
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
15  | 
begin  | 
| 5597 | 16  | 
|
| 
30952
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
17  | 
instantiation program :: (type) ord  | 
| 
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
18  | 
begin  | 
| 5597 | 19  | 
|
| 
30952
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
20  | 
definition  | 
| 
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
21  | 
component_def: "F \<le> H <-> (\<exists>G. F\<squnion>G = H)"  | 
| 
5612
 
e981ca6f7332
Finished proofs to end of section 5.1 of Chandy and Sanders
 
paulson 
parents: 
5597 
diff
changeset
 | 
22  | 
|
| 
30952
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
23  | 
definition  | 
| 
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
24  | 
strict_component_def: "F < (H::'a program) <-> (F \<le> H & F \<noteq> H)"  | 
| 
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
25  | 
|
| 
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
26  | 
instance ..  | 
| 
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
27  | 
|
| 
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
28  | 
end  | 
| 11190 | 29  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
30  | 
definition component_of :: "'a program =>'a program=> bool" (infixl "component'_of" 50) where  | 
| 13819 | 31  | 
"F component_of H == \<exists>G. F ok G & F\<squnion>G = H"  | 
| 11190 | 32  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
33  | 
definition strict_component_of :: "'a program\<Rightarrow>'a program=> bool" (infixl "strict'_component'_of" 50) where  | 
| 13805 | 34  | 
"F strict_component_of H == F component_of H & F\<noteq>H"  | 
| 13819 | 35  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
36  | 
definition preserves :: "('a=>'b) => 'a program set" where
 | 
| 13805 | 37  | 
    "preserves v == \<Inter>z. stable {s. v s = z}"
 | 
| 
8055
 
bb15396278fb
abolition of localTo: instead "guarantees" has local vars as extra argument
 
paulson 
parents: 
7399 
diff
changeset
 | 
38  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
39  | 
definition localize :: "('a=>'b) => 'a program => 'a program" where
 | 
| 11190 | 40  | 
"localize v F == mk_program(Init F, Acts F,  | 
| 
32960
 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 
wenzelm 
parents: 
30952 
diff
changeset
 | 
41  | 
AllowedActs F \<inter> (\<Union>G \<in> preserves v. Acts G))"  | 
| 11190 | 42  | 
|
| 
35416
 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 
haftmann 
parents: 
32960 
diff
changeset
 | 
43  | 
definition funPair :: "['a => 'b, 'a => 'c, 'a] => 'b * 'c" where  | 
| 11190 | 44  | 
"funPair f g == %x. (f x, g x)"  | 
| 13792 | 45  | 
|
46  | 
||
| 13798 | 47  | 
subsection{*The component relation*}
 | 
| 13819 | 48  | 
lemma componentI: "H \<le> F | H \<le> G ==> H \<le> (F\<squnion>G)"  | 
| 13792 | 49  | 
apply (unfold component_def, auto)  | 
| 13819 | 50  | 
apply (rule_tac x = "G\<squnion>Ga" in exI)  | 
51  | 
apply (rule_tac [2] x = "G\<squnion>F" in exI)  | 
|
| 13792 | 52  | 
apply (auto simp add: Join_ac)  | 
53  | 
done  | 
|
54  | 
||
| 13819 | 55  | 
lemma component_eq_subset:  | 
56  | 
"(F \<le> G) =  | 
|
| 13805 | 57  | 
(Init G \<subseteq> Init F & Acts F \<subseteq> Acts G & AllowedActs G \<subseteq> AllowedActs F)"  | 
| 13792 | 58  | 
apply (unfold component_def)  | 
59  | 
apply (force intro!: exI program_equalityI)  | 
|
60  | 
done  | 
|
61  | 
||
| 13805 | 62  | 
lemma component_SKIP [iff]: "SKIP \<le> F"  | 
| 13792 | 63  | 
apply (unfold component_def)  | 
64  | 
apply (force intro: Join_SKIP_left)  | 
|
65  | 
done  | 
|
66  | 
||
| 13805 | 67  | 
lemma component_refl [iff]: "F \<le> (F :: 'a program)"  | 
| 13792 | 68  | 
apply (unfold component_def)  | 
69  | 
apply (blast intro: Join_SKIP_right)  | 
|
70  | 
done  | 
|
71  | 
||
| 13805 | 72  | 
lemma SKIP_minimal: "F \<le> SKIP ==> F = SKIP"  | 
| 13792 | 73  | 
by (auto intro!: program_equalityI simp add: component_eq_subset)  | 
74  | 
||
| 13819 | 75  | 
lemma component_Join1: "F \<le> (F\<squnion>G)"  | 
| 13792 | 76  | 
by (unfold component_def, blast)  | 
77  | 
||
| 13819 | 78  | 
lemma component_Join2: "G \<le> (F\<squnion>G)"  | 
| 13792 | 79  | 
apply (unfold component_def)  | 
| 13798 | 80  | 
apply (simp add: Join_commute, blast)  | 
| 13792 | 81  | 
done  | 
82  | 
||
| 13819 | 83  | 
lemma Join_absorb1: "F \<le> G ==> F\<squnion>G = G"  | 
| 13792 | 84  | 
by (auto simp add: component_def Join_left_absorb)  | 
85  | 
||
| 13819 | 86  | 
lemma Join_absorb2: "G \<le> F ==> F\<squnion>G = F"  | 
| 13792 | 87  | 
by (auto simp add: Join_ac component_def)  | 
88  | 
||
| 13805 | 89  | 
lemma JN_component_iff: "((JOIN I F) \<le> H) = (\<forall>i \<in> I. F i \<le> H)"  | 
| 13798 | 90  | 
by (simp add: component_eq_subset, blast)  | 
| 13792 | 91  | 
|
| 13805 | 92  | 
lemma component_JN: "i \<in> I ==> (F i) \<le> (\<Squnion>i \<in> I. (F i))"  | 
| 13792 | 93  | 
apply (unfold component_def)  | 
94  | 
apply (blast intro: JN_absorb)  | 
|
95  | 
done  | 
|
96  | 
||
| 13805 | 97  | 
lemma component_trans: "[| F \<le> G; G \<le> H |] ==> F \<le> (H :: 'a program)"  | 
| 13792 | 98  | 
apply (unfold component_def)  | 
99  | 
apply (blast intro: Join_assoc [symmetric])  | 
|
100  | 
done  | 
|
101  | 
||
| 13805 | 102  | 
lemma component_antisym: "[| F \<le> G; G \<le> F |] ==> F = (G :: 'a program)"  | 
| 13792 | 103  | 
apply (simp (no_asm_use) add: component_eq_subset)  | 
104  | 
apply (blast intro!: program_equalityI)  | 
|
105  | 
done  | 
|
106  | 
||
| 13819 | 107  | 
lemma Join_component_iff: "((F\<squnion>G) \<le> H) = (F \<le> H & G \<le> H)"  | 
| 13798 | 108  | 
by (simp add: component_eq_subset, blast)  | 
| 13792 | 109  | 
|
| 13805 | 110  | 
lemma component_constrains: "[| F \<le> G; G \<in> A co B |] ==> F \<in> A co B"  | 
| 13792 | 111  | 
by (auto simp add: constrains_def component_eq_subset)  | 
112  | 
||
| 13874 | 113  | 
lemma component_stable: "[| F \<le> G; G \<in> stable A |] ==> F \<in> stable A"  | 
114  | 
by (auto simp add: stable_def component_constrains)  | 
|
115  | 
||
| 13792 | 116  | 
(*Used in Guar.thy to show that programs are partially ordered*)  | 
| 
30952
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
117  | 
lemmas program_less_le = strict_component_def  | 
| 13792 | 118  | 
|
119  | 
||
| 13798 | 120  | 
subsection{*The preserves property*}
 | 
| 13792 | 121  | 
|
| 13805 | 122  | 
lemma preservesI: "(!!z. F \<in> stable {s. v s = z}) ==> F \<in> preserves v"
 | 
| 13792 | 123  | 
by (unfold preserves_def, blast)  | 
124  | 
||
| 13819 | 125  | 
lemma preserves_imp_eq:  | 
| 13805 | 126  | 
"[| F \<in> preserves v; act \<in> Acts F; (s,s') \<in> act |] ==> v s = v s'"  | 
| 13819 | 127  | 
by (unfold preserves_def stable_def constrains_def, force)  | 
| 13792 | 128  | 
|
| 13819 | 129  | 
lemma Join_preserves [iff]:  | 
130  | 
"(F\<squnion>G \<in> preserves v) = (F \<in> preserves v & G \<in> preserves v)"  | 
|
131  | 
by (unfold preserves_def, auto)  | 
|
| 13792 | 132  | 
|
133  | 
lemma JN_preserves [iff]:  | 
|
| 13805 | 134  | 
"(JOIN I F \<in> preserves v) = (\<forall>i \<in> I. F i \<in> preserves v)"  | 
| 13819 | 135  | 
by (simp add: JN_stable preserves_def, blast)  | 
| 13792 | 136  | 
|
| 13805 | 137  | 
lemma SKIP_preserves [iff]: "SKIP \<in> preserves v"  | 
| 13792 | 138  | 
by (auto simp add: preserves_def)  | 
139  | 
||
140  | 
lemma funPair_apply [simp]: "(funPair f g) x = (f x, g x)"  | 
|
141  | 
by (simp add: funPair_def)  | 
|
142  | 
||
| 13805 | 143  | 
lemma preserves_funPair: "preserves (funPair v w) = preserves v \<inter> preserves w"  | 
| 13792 | 144  | 
by (auto simp add: preserves_def stable_def constrains_def, blast)  | 
145  | 
||
| 13805 | 146  | 
(* (F \<in> preserves (funPair v w)) = (F \<in> preserves v \<inter> preserves w) *)  | 
| 13792 | 147  | 
declare preserves_funPair [THEN eqset_imp_iff, iff]  | 
148  | 
||
149  | 
||
150  | 
lemma funPair_o_distrib: "(funPair f g) o h = funPair (f o h) (g o h)"  | 
|
| 13798 | 151  | 
by (simp add: funPair_def o_def)  | 
| 13792 | 152  | 
|
153  | 
lemma fst_o_funPair [simp]: "fst o (funPair f g) = f"  | 
|
| 13798 | 154  | 
by (simp add: funPair_def o_def)  | 
| 13792 | 155  | 
|
156  | 
lemma snd_o_funPair [simp]: "snd o (funPair f g) = g"  | 
|
| 13798 | 157  | 
by (simp add: funPair_def o_def)  | 
| 13792 | 158  | 
|
| 13805 | 159  | 
lemma subset_preserves_o: "preserves v \<subseteq> preserves (w o v)"  | 
| 13792 | 160  | 
by (force simp add: preserves_def stable_def constrains_def)  | 
161  | 
||
| 13805 | 162  | 
lemma preserves_subset_stable: "preserves v \<subseteq> stable {s. P (v s)}"
 | 
| 13792 | 163  | 
apply (auto simp add: preserves_def stable_def constrains_def)  | 
164  | 
apply (rename_tac s' s)  | 
|
165  | 
apply (subgoal_tac "v s = v s'")  | 
|
166  | 
apply (force+)  | 
|
167  | 
done  | 
|
168  | 
||
| 13805 | 169  | 
lemma preserves_subset_increasing: "preserves v \<subseteq> increasing v"  | 
| 13792 | 170  | 
by (auto simp add: preserves_subset_stable [THEN subsetD] increasing_def)  | 
171  | 
||
| 13805 | 172  | 
lemma preserves_id_subset_stable: "preserves id \<subseteq> stable A"  | 
| 13792 | 173  | 
by (force simp add: preserves_def stable_def constrains_def)  | 
174  | 
||
175  | 
||
176  | 
(** For use with def_UNION_ok_iff **)  | 
|
177  | 
||
178  | 
lemma safety_prop_preserves [iff]: "safety_prop (preserves v)"  | 
|
179  | 
by (auto intro: safety_prop_INTER1 simp add: preserves_def)  | 
|
180  | 
||
181  | 
||
| 24147 | 182  | 
(** Some lemmas used only in Client.thy **)  | 
| 13792 | 183  | 
|
184  | 
lemma stable_localTo_stable2:  | 
|
| 13819 | 185  | 
     "[| F \<in> stable {s. P (v s) (w s)};
 | 
186  | 
G \<in> preserves v; G \<in> preserves w |]  | 
|
187  | 
      ==> F\<squnion>G \<in> stable {s. P (v s) (w s)}"
 | 
|
| 
13812
 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 
paulson 
parents: 
13805 
diff
changeset
 | 
188  | 
apply simp  | 
| 13805 | 189  | 
apply (subgoal_tac "G \<in> preserves (funPair v w) ")  | 
| 13819 | 190  | 
prefer 2 apply simp  | 
191  | 
apply (drule_tac P1 = "split ?Q" in preserves_subset_stable [THEN subsetD],  | 
|
192  | 
auto)  | 
|
| 13792 | 193  | 
done  | 
194  | 
||
195  | 
lemma Increasing_preserves_Stable:  | 
|
| 13819 | 196  | 
     "[| F \<in> stable {s. v s \<le> w s};  G \<in> preserves v; F\<squnion>G \<in> Increasing w |]
 | 
197  | 
      ==> F\<squnion>G \<in> Stable {s. v s \<le> w s}"
 | 
|
| 13792 | 198  | 
apply (auto simp add: stable_def Stable_def Increasing_def Constrains_def all_conj_distrib)  | 
199  | 
apply (blast intro: constrains_weaken)  | 
|
200  | 
(*The G case remains*)  | 
|
201  | 
apply (auto simp add: preserves_def stable_def constrains_def)  | 
|
202  | 
(*We have a G-action, so delete assumptions about F-actions*)  | 
|
| 13805 | 203  | 
apply (erule_tac V = "\<forall>act \<in> Acts F. ?P act" in thin_rl)  | 
204  | 
apply (erule_tac V = "\<forall>z. \<forall>act \<in> Acts F. ?P z act" in thin_rl)  | 
|
| 13792 | 205  | 
apply (subgoal_tac "v x = v xa")  | 
| 13819 | 206  | 
apply auto  | 
| 13792 | 207  | 
apply (erule order_trans, blast)  | 
208  | 
done  | 
|
209  | 
||
210  | 
(** component_of **)  | 
|
211  | 
||
| 13805 | 212  | 
(* component_of is stronger than \<le> *)  | 
213  | 
lemma component_of_imp_component: "F component_of H ==> F \<le> H"  | 
|
| 13792 | 214  | 
by (unfold component_def component_of_def, blast)  | 
215  | 
||
216  | 
||
| 13805 | 217  | 
(* component_of satisfies many of the same properties as \<le> *)  | 
| 13792 | 218  | 
lemma component_of_refl [simp]: "F component_of F"  | 
219  | 
apply (unfold component_of_def)  | 
|
220  | 
apply (rule_tac x = SKIP in exI, auto)  | 
|
221  | 
done  | 
|
222  | 
||
223  | 
lemma component_of_SKIP [simp]: "SKIP component_of F"  | 
|
224  | 
by (unfold component_of_def, auto)  | 
|
225  | 
||
| 13819 | 226  | 
lemma component_of_trans:  | 
| 13792 | 227  | 
"[| F component_of G; G component_of H |] ==> F component_of H"  | 
228  | 
apply (unfold component_of_def)  | 
|
229  | 
apply (blast intro: Join_assoc [symmetric])  | 
|
230  | 
done  | 
|
231  | 
||
| 
30952
 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 
haftmann 
parents: 
24147 
diff
changeset
 | 
232  | 
lemmas strict_component_of_eq = strict_component_of_def  | 
| 13792 | 233  | 
|
234  | 
(** localize **)  | 
|
235  | 
lemma localize_Init_eq [simp]: "Init (localize v F) = Init F"  | 
|
| 13798 | 236  | 
by (simp add: localize_def)  | 
| 13792 | 237  | 
|
238  | 
lemma localize_Acts_eq [simp]: "Acts (localize v F) = Acts F"  | 
|
| 13798 | 239  | 
by (simp add: localize_def)  | 
| 13792 | 240  | 
|
| 13819 | 241  | 
lemma localize_AllowedActs_eq [simp]:  | 
242  | 
"AllowedActs (localize v F) = AllowedActs F \<inter> (\<Union>G \<in> preserves v. Acts G)"  | 
|
| 13798 | 243  | 
by (unfold localize_def, auto)  | 
| 13792 | 244  | 
|
| 5597 | 245  | 
end  |