--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/UNITY/Comp.ML Thu Oct 01 18:28:47 1998 +0200
@@ -0,0 +1,109 @@
+(* Title: HOL/UNITY/Comp.thy
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1998 University of Cambridge
+
+Composition
+
+From Chandy and Sanders, "Reasoning About Program Composition"
+*)
+
+Addsimps [Join_SKIP, Join_absorb];
+
+(*split_all_tac causes a big blow-up*)
+claset_ref() := claset() delSWrapper "split_all_tac";
+
+Delsimps [split_paired_All];
+
+
+(*** component ***)
+
+Goalw [component_def] "component F F";
+by (blast_tac (claset() addIs [Join_SKIP]) 1);
+qed "component_refl";
+
+AddIffs [component_refl];
+
+Goalw [component_def] "[| component F G; component G H |] ==> component F H";
+by (blast_tac (claset() addIs [Join_assoc RS sym]) 1);
+qed "component_trans";
+
+Goalw [component_def,Join_def] "component F G ==> Acts F <= Acts G";
+auto();
+qed "componet_Acts";
+
+Goalw [component_def,Join_def] "component F G ==> Init G <= Init F";
+auto();
+qed "componet_Init";
+
+Goal "[| component F G; component G F |] ==> F=G";
+by (asm_simp_tac (simpset() addsimps [program_equalityI, equalityI,
+ componet_Acts, componet_Init]) 1);
+qed "component_anti_sym";
+
+
+(*** existential properties ***)
+
+Goalw [ex_prop_def]
+ "[| ex_prop X; finite GG |] ==> GG Int X ~= {} --> (JN G:GG. G) : X";
+by (etac finite_induct 1);
+by (auto_tac (claset(), simpset() addsimps [Int_insert_left]));
+qed_spec_mp "ex1";
+
+Goalw [ex_prop_def]
+ "ALL GG. finite GG & GG Int X ~= {} --> (JN G:GG. G) : X \
+\ ==> ex_prop X";
+by (Clarify_tac 1);
+by (dres_inst_tac [("x", "{F,G}")] spec 1);
+auto();
+qed "ex2";
+
+(*Chandy & Sanders take this as a definition*)
+Goal "ex_prop X = (ALL GG. finite GG & GG Int X ~= {} --> (JN G:GG. G) : X)";
+by (blast_tac (claset() addIs [ex1,ex2]) 1);
+qed "ex_prop_finite";
+
+(*Their "equivalent definition" given at the end of section 3*)
+Goal "ex_prop X = (ALL G. G:X = (ALL H. component G H --> H: X))";
+auto();
+bws [ex_prop_def, component_def];
+by (Blast_tac 1);
+by Safe_tac;
+by (stac Join_commute 2);
+by (ALLGOALS Blast_tac);
+qed "ex_prop_equiv";
+
+
+(*** universal properties ***)
+
+Goalw [uv_prop_def]
+ "[| uv_prop X; finite GG |] ==> GG <= X --> (JN G:GG. G) : X";
+by (etac finite_induct 1);
+by (auto_tac (claset(), simpset() addsimps [Int_insert_left]));
+qed_spec_mp "uv1";
+
+Goalw [uv_prop_def]
+ "ALL GG. finite GG & GG <= X --> (JN G:GG. G) : X ==> uv_prop X";
+br conjI 1;
+by (Clarify_tac 2);
+by (dres_inst_tac [("x", "{F,G}")] spec 2);
+by (dres_inst_tac [("x", "{}")] spec 1);
+auto();
+qed "uv2";
+
+(*Chandy & Sanders take this as a definition*)
+Goal "uv_prop X = (ALL GG. finite GG & GG <= X --> (JN G:GG. G) : X)";
+by (blast_tac (claset() addIs [uv1,uv2]) 1);
+qed "uv_prop_finite";
+
+
+(*** guarantees ***)
+
+Goalw [guarantees_def] "X <= Y ==> X guarantees Y = UNIV";
+by (Blast_tac 1);
+qed "subset_imp_guarantees";
+
+Goalw [guarantees_def] "ex_prop Y = (Y = UNIV guarantees Y)";
+ex_prop_equiv
+by (Blast_tac 1);
+qed "subset_imp_guarantees";
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/UNITY/Comp.thy Thu Oct 01 18:28:47 1998 +0200
@@ -0,0 +1,39 @@
+(* Title: HOL/UNITY/Comp.thy
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1998 University of Cambridge
+
+Composition
+
+From Chandy and Sanders, "Reasoning About Program Composition"
+*)
+
+Comp = Union +
+
+constdefs
+
+ (*Existential and Universal properties. I formalize the two-program
+ case, proving equivalence with Chandy and Sanders's n-ary definitions*)
+
+ ex_prop :: 'a program set => bool
+ "ex_prop X == ALL F G. F:X | G: X --> (Join F G) : X"
+
+ strict_ex_prop :: 'a program set => bool
+ "strict_ex_prop X == ALL F G. (F:X | G: X) = (Join F G : X)"
+
+ uv_prop :: 'a program set => bool
+ "uv_prop X == SKIP: X & (ALL F G. F:X & G: X --> (Join F G) : X)"
+
+ strict_uv_prop :: 'a program set => bool
+ "strict_uv_prop X == SKIP: X & (ALL F G. (F:X & G: X) = (Join F G : X))"
+
+ compatible :: ['a program, 'a program] => bool
+ "compatible F G == Init F Int Init G ~= {}"
+
+ component :: ['a program, 'a program] => bool
+ "component F H == EX G. Join F G = H"
+
+ guarantees :: ['a program set, 'a program set] => 'a program set (infixl 65)
+ "X guarantees Y == {F. ALL H. component F H --> H:X --> H:Y}"
+
+end