| author | wenzelm | 
| Wed, 20 Jan 2016 19:19:33 +0100 | |
| changeset 62214 | 451bd09b8277 | 
| parent 54864 | a064732223ad | 
| child 67406 | 23307fd33906 | 
| permissions | -rw-r--r-- | 
| 43158 | 1  | 
(* Author: Tobias Nipkow *)  | 
2  | 
||
3  | 
theory Sec_Typing imports Sec_Type_Expr  | 
|
4  | 
begin  | 
|
5  | 
||
6  | 
subsection "Syntax Directed Typing"  | 
|
7  | 
||
8  | 
inductive sec_type :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile> _)" [0,0] 50) where
 | 
|
9  | 
Skip:  | 
|
10  | 
"l \<turnstile> SKIP" |  | 
|
11  | 
Assign:  | 
|
| 50342 | 12  | 
"\<lbrakk> sec x \<ge> sec a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile> x ::= a" |  | 
| 47818 | 13  | 
Seq:  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
14  | 
"\<lbrakk> l \<turnstile> c\<^sub>1; l \<turnstile> c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> c\<^sub>1;;c\<^sub>2" |  | 
| 43158 | 15  | 
If:  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
16  | 
"\<lbrakk> max (sec b) l \<turnstile> c\<^sub>1; max (sec b) l \<turnstile> c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2" |  | 
| 43158 | 17  | 
While:  | 
| 50342 | 18  | 
"max (sec b) l \<turnstile> c \<Longrightarrow> l \<turnstile> WHILE b DO c"  | 
| 43158 | 19  | 
|
20  | 
code_pred (expected_modes: i => i => bool) sec_type .  | 
|
21  | 
||
22  | 
value "0 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP"  | 
|
23  | 
value "1 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x'' ::= N 0 ELSE SKIP"  | 
|
24  | 
value "2 \<turnstile> IF Less (V ''x1'') (V ''x'') THEN ''x1'' ::= N 0 ELSE SKIP"  | 
|
25  | 
||
26  | 
inductive_cases [elim!]:  | 
|
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
27  | 
"l \<turnstile> x ::= a" "l \<turnstile> c\<^sub>1;;c\<^sub>2" "l \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2" "l \<turnstile> WHILE b DO c"  | 
| 43158 | 28  | 
|
29  | 
||
30  | 
text{* An important property: anti-monotonicity. *}
 | 
|
31  | 
||
32  | 
lemma anti_mono: "\<lbrakk> l \<turnstile> c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile> c"  | 
|
| 45015 | 33  | 
apply(induction arbitrary: l' rule: sec_type.induct)  | 
| 43158 | 34  | 
apply (metis sec_type.intros(1))  | 
35  | 
apply (metis le_trans sec_type.intros(2))  | 
|
36  | 
apply (metis sec_type.intros(3))  | 
|
37  | 
apply (metis If le_refl sup_mono sup_nat_def)  | 
|
38  | 
apply (metis While le_refl sup_mono sup_nat_def)  | 
|
39  | 
done  | 
|
40  | 
||
41  | 
lemma confinement: "\<lbrakk> (c,s) \<Rightarrow> t; l \<turnstile> c \<rbrakk> \<Longrightarrow> s = t (< l)"  | 
|
| 45015 | 42  | 
proof(induction rule: big_step_induct)  | 
| 43158 | 43  | 
case Skip thus ?case by simp  | 
44  | 
next  | 
|
45  | 
case Assign thus ?case by auto  | 
|
46  | 
next  | 
|
| 47818 | 47  | 
case Seq thus ?case by auto  | 
| 43158 | 48  | 
next  | 
49  | 
case (IfTrue b s c1)  | 
|
| 50342 | 50  | 
hence "max (sec b) l \<turnstile> c1" by auto  | 
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
51  | 
hence "l \<turnstile> c1" by (metis max.cobounded2 anti_mono)  | 
| 45015 | 52  | 
thus ?case using IfTrue.IH by metis  | 
| 43158 | 53  | 
next  | 
54  | 
case (IfFalse b s c2)  | 
|
| 50342 | 55  | 
hence "max (sec b) l \<turnstile> c2" by auto  | 
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
56  | 
hence "l \<turnstile> c2" by (metis max.cobounded2 anti_mono)  | 
| 45015 | 57  | 
thus ?case using IfFalse.IH by metis  | 
| 43158 | 58  | 
next  | 
59  | 
case WhileFalse thus ?case by auto  | 
|
60  | 
next  | 
|
61  | 
case (WhileTrue b s1 c)  | 
|
| 50342 | 62  | 
hence "max (sec b) l \<turnstile> c" by auto  | 
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
63  | 
hence "l \<turnstile> c" by (metis max.cobounded2 anti_mono)  | 
| 43158 | 64  | 
thus ?case using WhileTrue by metis  | 
65  | 
qed  | 
|
66  | 
||
67  | 
||
68  | 
theorem noninterference:  | 
|
69  | 
"\<lbrakk> (c,s) \<Rightarrow> s'; (c,t) \<Rightarrow> t'; 0 \<turnstile> c; s = t (\<le> l) \<rbrakk>  | 
|
70  | 
\<Longrightarrow> s' = t' (\<le> l)"  | 
|
| 45015 | 71  | 
proof(induction arbitrary: t t' rule: big_step_induct)  | 
| 43158 | 72  | 
case Skip thus ?case by auto  | 
73  | 
next  | 
|
74  | 
case (Assign x a s)  | 
|
75  | 
have [simp]: "t' = t(x := aval a t)" using Assign by auto  | 
|
| 50342 | 76  | 
have "sec x >= sec a" using `0 \<turnstile> x ::= a` by auto  | 
| 43158 | 77  | 
show ?case  | 
78  | 
proof auto  | 
|
79  | 
assume "sec x \<le> l"  | 
|
| 50342 | 80  | 
with `sec x >= sec a` have "sec a \<le> l" by arith  | 
| 43158 | 81  | 
thus "aval a s = aval a t"  | 
82  | 
by (rule aval_eq_if_eq_le[OF `s = t (\<le> l)`])  | 
|
83  | 
next  | 
|
84  | 
fix y assume "y \<noteq> x" "sec y \<le> l"  | 
|
85  | 
thus "s y = t y" using `s = t (\<le> l)` by simp  | 
|
86  | 
qed  | 
|
87  | 
next  | 
|
| 47818 | 88  | 
case Seq thus ?case by blast  | 
| 43158 | 89  | 
next  | 
90  | 
case (IfTrue b s c1 s' c2)  | 
|
| 52382 | 91  | 
have "sec b \<turnstile> c1" "sec b \<turnstile> c2" using `0 \<turnstile> IF b THEN c1 ELSE c2` by auto  | 
| 43158 | 92  | 
show ?case  | 
93  | 
proof cases  | 
|
| 50342 | 94  | 
assume "sec b \<le> l"  | 
95  | 
hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto  | 
|
| 43158 | 96  | 
hence "bval b t" using `bval b s` by(simp add: bval_eq_if_eq_le)  | 
| 50342 | 97  | 
with IfTrue.IH IfTrue.prems(1,3) `sec b \<turnstile> c1` anti_mono  | 
| 43158 | 98  | 
show ?thesis by auto  | 
99  | 
next  | 
|
| 50342 | 100  | 
assume "\<not> sec b \<le> l"  | 
101  | 
have 1: "sec b \<turnstile> IF b THEN c1 ELSE c2"  | 
|
102  | 
by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c1` `sec b \<turnstile> c2`)  | 
|
| 52382 | 103  | 
from confinement[OF `(c1, s) \<Rightarrow> s'` `sec b \<turnstile> c1`] `\<not> sec b \<le> l`  | 
| 43158 | 104  | 
have "s = s' (\<le> l)" by auto  | 
105  | 
moreover  | 
|
| 52382 | 106  | 
from confinement[OF `(IF b THEN c1 ELSE c2, t) \<Rightarrow> t'` 1] `\<not> sec b \<le> l`  | 
| 43158 | 107  | 
have "t = t' (\<le> l)" by auto  | 
108  | 
ultimately show "s' = t' (\<le> l)" using `s = t (\<le> l)` by auto  | 
|
109  | 
qed  | 
|
110  | 
next  | 
|
111  | 
case (IfFalse b s c2 s' c1)  | 
|
| 52382 | 112  | 
have "sec b \<turnstile> c1" "sec b \<turnstile> c2" using `0 \<turnstile> IF b THEN c1 ELSE c2` by auto  | 
| 43158 | 113  | 
show ?case  | 
114  | 
proof cases  | 
|
| 50342 | 115  | 
assume "sec b \<le> l"  | 
116  | 
hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto  | 
|
| 43158 | 117  | 
hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le)  | 
| 50342 | 118  | 
with IfFalse.IH IfFalse.prems(1,3) `sec b \<turnstile> c2` anti_mono  | 
| 43158 | 119  | 
show ?thesis by auto  | 
120  | 
next  | 
|
| 50342 | 121  | 
assume "\<not> sec b \<le> l"  | 
122  | 
have 1: "sec b \<turnstile> IF b THEN c1 ELSE c2"  | 
|
123  | 
by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c1` `sec b \<turnstile> c2`)  | 
|
124  | 
from confinement[OF big_step.IfFalse[OF IfFalse(1,2)] 1] `\<not> sec b \<le> l`  | 
|
| 43158 | 125  | 
have "s = s' (\<le> l)" by auto  | 
126  | 
moreover  | 
|
| 52382 | 127  | 
from confinement[OF `(IF b THEN c1 ELSE c2, t) \<Rightarrow> t'` 1] `\<not> sec b \<le> l`  | 
| 43158 | 128  | 
have "t = t' (\<le> l)" by auto  | 
129  | 
ultimately show "s' = t' (\<le> l)" using `s = t (\<le> l)` by auto  | 
|
130  | 
qed  | 
|
131  | 
next  | 
|
132  | 
case (WhileFalse b s c)  | 
|
| 50342 | 133  | 
have "sec b \<turnstile> c" using WhileFalse.prems(2) by auto  | 
| 43158 | 134  | 
show ?case  | 
135  | 
proof cases  | 
|
| 50342 | 136  | 
assume "sec b \<le> l"  | 
137  | 
hence "s = t (\<le> sec b)" using `s = t (\<le> l)` by auto  | 
|
| 43158 | 138  | 
hence "\<not> bval b t" using `\<not> bval b s` by(simp add: bval_eq_if_eq_le)  | 
139  | 
with WhileFalse.prems(1,3) show ?thesis by auto  | 
|
140  | 
next  | 
|
| 50342 | 141  | 
assume "\<not> sec b \<le> l"  | 
142  | 
have 1: "sec b \<turnstile> WHILE b DO c"  | 
|
143  | 
by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c`)  | 
|
| 52382 | 144  | 
from confinement[OF `(WHILE b DO c, t) \<Rightarrow> t'` 1] `\<not> sec b \<le> l`  | 
| 43158 | 145  | 
have "t = t' (\<le> l)" by auto  | 
146  | 
thus "s = t' (\<le> l)" using `s = t (\<le> l)` by auto  | 
|
147  | 
qed  | 
|
148  | 
next  | 
|
149  | 
case (WhileTrue b s1 c s2 s3 t1 t3)  | 
|
150  | 
let ?w = "WHILE b DO c"  | 
|
| 52382 | 151  | 
have "sec b \<turnstile> c" using `0 \<turnstile> WHILE b DO c` by auto  | 
| 43158 | 152  | 
show ?case  | 
153  | 
proof cases  | 
|
| 50342 | 154  | 
assume "sec b \<le> l"  | 
155  | 
hence "s1 = t1 (\<le> sec b)" using `s1 = t1 (\<le> l)` by auto  | 
|
| 43158 | 156  | 
hence "bval b t1"  | 
157  | 
using `bval b s1` by(simp add: bval_eq_if_eq_le)  | 
|
158  | 
then obtain t2 where "(c,t1) \<Rightarrow> t2" "(?w,t2) \<Rightarrow> t3"  | 
|
159  | 
using `(?w,t1) \<Rightarrow> t3` by auto  | 
|
| 45015 | 160  | 
from WhileTrue.IH(2)[OF `(?w,t2) \<Rightarrow> t3` `0 \<turnstile> ?w`  | 
| 50342 | 161  | 
WhileTrue.IH(1)[OF `(c,t1) \<Rightarrow> t2` anti_mono[OF `sec b \<turnstile> c`]  | 
| 43158 | 162  | 
`s1 = t1 (\<le> l)`]]  | 
163  | 
show ?thesis by simp  | 
|
164  | 
next  | 
|
| 50342 | 165  | 
assume "\<not> sec b \<le> l"  | 
166  | 
have 1: "sec b \<turnstile> ?w" by(rule sec_type.intros)(simp_all add: `sec b \<turnstile> c`)  | 
|
167  | 
from confinement[OF big_step.WhileTrue[OF WhileTrue.hyps] 1] `\<not> sec b \<le> l`  | 
|
| 43158 | 168  | 
have "s1 = s3 (\<le> l)" by auto  | 
169  | 
moreover  | 
|
| 52382 | 170  | 
from confinement[OF `(WHILE b DO c, t1) \<Rightarrow> t3` 1] `\<not> sec b \<le> l`  | 
| 43158 | 171  | 
have "t1 = t3 (\<le> l)" by auto  | 
172  | 
ultimately show "s3 = t3 (\<le> l)" using `s1 = t1 (\<le> l)` by auto  | 
|
173  | 
qed  | 
|
174  | 
qed  | 
|
175  | 
||
176  | 
||
177  | 
subsection "The Standard Typing System"  | 
|
178  | 
||
179  | 
text{* The predicate @{prop"l \<turnstile> c"} is nicely intuitive and executable. The
 | 
|
180  | 
standard formulation, however, is slightly different, replacing the maximum  | 
|
181  | 
computation by an antimonotonicity rule. We introduce the standard system now  | 
|
182  | 
and show the equivalence with our formulation. *}  | 
|
183  | 
||
184  | 
inductive sec_type' :: "nat \<Rightarrow> com \<Rightarrow> bool" ("(_/ \<turnstile>'' _)" [0,0] 50) where
 | 
|
185  | 
Skip':  | 
|
186  | 
"l \<turnstile>' SKIP" |  | 
|
187  | 
Assign':  | 
|
| 50342 | 188  | 
"\<lbrakk> sec x \<ge> sec a; sec x \<ge> l \<rbrakk> \<Longrightarrow> l \<turnstile>' x ::= a" |  | 
| 47818 | 189  | 
Seq':  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
190  | 
"\<lbrakk> l \<turnstile>' c\<^sub>1; l \<turnstile>' c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' c\<^sub>1;;c\<^sub>2" |  | 
| 43158 | 191  | 
If':  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
192  | 
"\<lbrakk> sec b \<le> l; l \<turnstile>' c\<^sub>1; l \<turnstile>' c\<^sub>2 \<rbrakk> \<Longrightarrow> l \<turnstile>' IF b THEN c\<^sub>1 ELSE c\<^sub>2" |  | 
| 43158 | 193  | 
While':  | 
| 50342 | 194  | 
"\<lbrakk> sec b \<le> l; l \<turnstile>' c \<rbrakk> \<Longrightarrow> l \<turnstile>' WHILE b DO c" |  | 
| 43158 | 195  | 
anti_mono':  | 
196  | 
"\<lbrakk> l \<turnstile>' c; l' \<le> l \<rbrakk> \<Longrightarrow> l' \<turnstile>' c"  | 
|
197  | 
||
198  | 
lemma sec_type_sec_type': "l \<turnstile> c \<Longrightarrow> l \<turnstile>' c"  | 
|
| 45015 | 199  | 
apply(induction rule: sec_type.induct)  | 
| 43158 | 200  | 
apply (metis Skip')  | 
201  | 
apply (metis Assign')  | 
|
| 47818 | 202  | 
apply (metis Seq')  | 
| 
54864
 
a064732223ad
abolished slightly odd global lattice interpretation for min/max
 
haftmann 
parents: 
54863 
diff
changeset
 | 
203  | 
apply (metis max.commute max.absorb_iff2 nat_le_linear If' anti_mono')  | 
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
204  | 
by (metis less_or_eq_imp_le max.absorb1 max.absorb2 nat_le_linear While' anti_mono')  | 
| 43158 | 205  | 
|
206  | 
||
207  | 
lemma sec_type'_sec_type: "l \<turnstile>' c \<Longrightarrow> l \<turnstile> c"  | 
|
| 45015 | 208  | 
apply(induction rule: sec_type'.induct)  | 
| 43158 | 209  | 
apply (metis Skip)  | 
210  | 
apply (metis Assign)  | 
|
| 47818 | 211  | 
apply (metis Seq)  | 
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
212  | 
apply (metis max.absorb2 If)  | 
| 
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
213  | 
apply (metis max.absorb2 While)  | 
| 43158 | 214  | 
by (metis anti_mono)  | 
215  | 
||
216  | 
subsection "A Bottom-Up Typing System"  | 
|
217  | 
||
218  | 
inductive sec_type2 :: "com \<Rightarrow> level \<Rightarrow> bool" ("(\<turnstile> _ : _)" [0,0] 50) where
 | 
|
219  | 
Skip2:  | 
|
220  | 
"\<turnstile> SKIP : l" |  | 
|
221  | 
Assign2:  | 
|
| 50342 | 222  | 
"sec x \<ge> sec a \<Longrightarrow> \<turnstile> x ::= a : sec x" |  | 
| 47818 | 223  | 
Seq2:  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
224  | 
"\<lbrakk> \<turnstile> c\<^sub>1 : l\<^sub>1; \<turnstile> c\<^sub>2 : l\<^sub>2 \<rbrakk> \<Longrightarrow> \<turnstile> c\<^sub>1;;c\<^sub>2 : min l\<^sub>1 l\<^sub>2 " |  | 
| 43158 | 225  | 
If2:  | 
| 
53015
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
226  | 
"\<lbrakk> sec b \<le> min l\<^sub>1 l\<^sub>2; \<turnstile> c\<^sub>1 : l\<^sub>1; \<turnstile> c\<^sub>2 : l\<^sub>2 \<rbrakk>  | 
| 
 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 
wenzelm 
parents: 
52382 
diff
changeset
 | 
227  | 
\<Longrightarrow> \<turnstile> IF b THEN c\<^sub>1 ELSE c\<^sub>2 : min l\<^sub>1 l\<^sub>2" |  | 
| 43158 | 228  | 
While2:  | 
| 50342 | 229  | 
"\<lbrakk> sec b \<le> l; \<turnstile> c : l \<rbrakk> \<Longrightarrow> \<turnstile> WHILE b DO c : l"  | 
| 43158 | 230  | 
|
231  | 
||
232  | 
lemma sec_type2_sec_type': "\<turnstile> c : l \<Longrightarrow> l \<turnstile>' c"  | 
|
| 45015 | 233  | 
apply(induction rule: sec_type2.induct)  | 
| 43158 | 234  | 
apply (metis Skip')  | 
235  | 
apply (metis Assign' eq_imp_le)  | 
|
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
236  | 
apply (metis Seq' anti_mono' min.cobounded1 min.cobounded2)  | 
| 
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
237  | 
apply (metis If' anti_mono' min.absorb2 min.absorb_iff1 nat_le_linear)  | 
| 43158 | 238  | 
by (metis While')  | 
239  | 
||
240  | 
lemma sec_type'_sec_type2: "l \<turnstile>' c \<Longrightarrow> \<exists> l' \<ge> l. \<turnstile> c : l'"  | 
|
| 45015 | 241  | 
apply(induction rule: sec_type'.induct)  | 
| 43158 | 242  | 
apply (metis Skip2 le_refl)  | 
243  | 
apply (metis Assign2)  | 
|
| 
54863
 
82acc20ded73
prefer more canonical names for lemmas on min/max
 
haftmann 
parents: 
53015 
diff
changeset
 | 
244  | 
apply (metis Seq2 min.boundedI)  | 
| 43158 | 245  | 
apply (metis If2 inf_greatest inf_nat_def le_trans)  | 
246  | 
apply (metis While2 le_trans)  | 
|
247  | 
by (metis le_trans)  | 
|
248  | 
||
249  | 
end  |