| author | wenzelm | 
| Mon, 30 Mar 2009 15:16:58 +0200 | |
| changeset 30786 | 461f7b5f16a2 | 
| parent 30722 | 623d4831c8cf | 
| child 30806 | 342c73345237 | 
| permissions | -rw-r--r-- | 
| 28685 | 1 | (* Title: HOL/Orderings.thy | 
| 15524 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 4 | ||
| 25614 | 5 | header {* Abstract orderings *}
 | 
| 15524 | 6 | |
| 7 | theory Orderings | |
| 26796 
c554b77061e5
- Now imports Code_Setup, rather than Set and Fun, since the theorems
 berghofe parents: 
26496diff
changeset | 8 | imports Code_Setup | 
| 28516 | 9 | uses "~~/src/Provers/order.ML" | 
| 15524 | 10 | begin | 
| 11 | ||
| 27682 | 12 | subsection {* Quasi orders *}
 | 
| 15524 | 13 | |
| 27682 | 14 | class preorder = ord + | 
| 15 | assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" | |
| 25062 | 16 | and order_refl [iff]: "x \<le> x" | 
| 17 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 21248 | 18 | begin | 
| 19 | ||
| 15524 | 20 | text {* Reflexivity. *}
 | 
| 21 | ||
| 25062 | 22 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 15524 | 23 |     -- {* This form is useful with the classical reasoner. *}
 | 
| 23212 | 24 | by (erule ssubst) (rule order_refl) | 
| 15524 | 25 | |
| 25062 | 26 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 27682 | 27 | by (simp add: less_le_not_le) | 
| 28 | ||
| 29 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | |
| 30 | unfolding less_le_not_le by blast | |
| 31 | ||
| 32 | ||
| 33 | text {* Asymmetry. *}
 | |
| 34 | ||
| 35 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | |
| 36 | by (simp add: less_le_not_le) | |
| 37 | ||
| 38 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | |
| 39 | by (drule less_not_sym, erule contrapos_np) simp | |
| 40 | ||
| 41 | ||
| 42 | text {* Transitivity. *}
 | |
| 43 | ||
| 44 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 45 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 46 | ||
| 47 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 48 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 49 | ||
| 50 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | |
| 51 | by (auto simp add: less_le_not_le intro: order_trans) | |
| 52 | ||
| 53 | ||
| 54 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 55 | ||
| 56 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | |
| 57 | by (blast elim: less_asym) | |
| 58 | ||
| 59 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | |
| 60 | by (blast elim: less_asym) | |
| 61 | ||
| 62 | ||
| 63 | text {* Transitivity rules for calculational reasoning *}
 | |
| 64 | ||
| 65 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | |
| 66 | by (rule less_asym) | |
| 67 | ||
| 68 | ||
| 69 | text {* Dual order *}
 | |
| 70 | ||
| 71 | lemma dual_preorder: | |
| 72 | "preorder (op \<ge>) (op >)" | |
| 28823 | 73 | proof qed (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 74 | |
| 75 | end | |
| 76 | ||
| 77 | ||
| 78 | subsection {* Partial orders *}
 | |
| 79 | ||
| 80 | class order = preorder + | |
| 81 | assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | |
| 82 | begin | |
| 83 | ||
| 84 | text {* Reflexivity. *}
 | |
| 85 | ||
| 86 | lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | |
| 87 | by (auto simp add: less_le_not_le intro: antisym) | |
| 15524 | 88 | |
| 25062 | 89 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 15524 | 90 |     -- {* NOT suitable for iff, since it can cause PROOF FAILED. *}
 | 
| 23212 | 91 | by (simp add: less_le) blast | 
| 15524 | 92 | |
| 25062 | 93 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 23212 | 94 | unfolding less_le by blast | 
| 15524 | 95 | |
| 21329 | 96 | |
| 97 | text {* Useful for simplification, but too risky to include by default. *}
 | |
| 98 | ||
| 25062 | 99 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 100 | by auto | 
| 21329 | 101 | |
| 25062 | 102 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 103 | by auto | 
| 21329 | 104 | |
| 105 | ||
| 106 | text {* Transitivity rules for calculational reasoning *}
 | |
| 107 | ||
| 25062 | 108 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 23212 | 109 | by (simp add: less_le) | 
| 21329 | 110 | |
| 25062 | 111 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 23212 | 112 | by (simp add: less_le) | 
| 21329 | 113 | |
| 15524 | 114 | |
| 115 | text {* Asymmetry. *}
 | |
| 116 | ||
| 25062 | 117 | lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 23212 | 118 | by (blast intro: antisym) | 
| 15524 | 119 | |
| 25062 | 120 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 121 | by (blast intro: antisym) | 
| 15524 | 122 | |
| 25062 | 123 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 23212 | 124 | by (erule contrapos_pn, erule subst, rule less_irrefl) | 
| 21248 | 125 | |
| 21083 | 126 | |
| 27107 | 127 | text {* Least value operator *}
 | 
| 128 | ||
| 27299 | 129 | definition (in ord) | 
| 27107 | 130 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
 | 
| 131 | "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" | |
| 132 | ||
| 133 | lemma Least_equality: | |
| 134 | assumes "P x" | |
| 135 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 136 | shows "Least P = x" | |
| 137 | unfolding Least_def by (rule the_equality) | |
| 138 | (blast intro: assms antisym)+ | |
| 139 | ||
| 140 | lemma LeastI2_order: | |
| 141 | assumes "P x" | |
| 142 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 143 | and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" | |
| 144 | shows "Q (Least P)" | |
| 145 | unfolding Least_def by (rule theI2) | |
| 146 | (blast intro: assms antisym)+ | |
| 147 | ||
| 148 | ||
| 26014 | 149 | text {* Dual order *}
 | 
| 22916 | 150 | |
| 26014 | 151 | lemma dual_order: | 
| 25103 | 152 | "order (op \<ge>) (op >)" | 
| 27682 | 153 | by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym) | 
| 22916 | 154 | |
| 21248 | 155 | end | 
| 15524 | 156 | |
| 21329 | 157 | |
| 158 | subsection {* Linear (total) orders *}
 | |
| 159 | ||
| 22316 | 160 | class linorder = order + | 
| 25207 | 161 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 162 | begin | 
| 163 | ||
| 25062 | 164 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 165 | unfolding less_le using less_le linear by blast | 
| 21248 | 166 | |
| 25062 | 167 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 168 | by (simp add: le_less less_linear) | 
| 21248 | 169 | |
| 170 | lemma le_cases [case_names le ge]: | |
| 25062 | 171 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 172 | using linear by blast | 
| 21248 | 173 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 174 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 175 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 176 | using less_linear by blast | 
| 21248 | 177 | |
| 25062 | 178 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 23212 | 179 | apply (simp add: less_le) | 
| 180 | using linear apply (blast intro: antisym) | |
| 181 | done | |
| 182 | ||
| 183 | lemma not_less_iff_gr_or_eq: | |
| 25062 | 184 | "\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" | 
| 23212 | 185 | apply(simp add:not_less le_less) | 
| 186 | apply blast | |
| 187 | done | |
| 15524 | 188 | |
| 25062 | 189 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 23212 | 190 | apply (simp add: less_le) | 
| 191 | using linear apply (blast intro: antisym) | |
| 192 | done | |
| 15524 | 193 | |
| 25062 | 194 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 195 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 196 | |
| 25062 | 197 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 198 | by (simp add: neq_iff) blast | 
| 15524 | 199 | |
| 25062 | 200 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 23212 | 201 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 202 | |
| 25062 | 203 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 204 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 205 | |
| 25062 | 206 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 23212 | 207 | by (blast intro: antisym dest: not_less [THEN iffD1]) | 
| 15524 | 208 | |
| 25062 | 209 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 210 | unfolding not_less . | 
| 16796 | 211 | |
| 25062 | 212 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 23212 | 213 | unfolding not_less . | 
| 16796 | 214 | |
| 215 | (*FIXME inappropriate name (or delete altogether)*) | |
| 25062 | 216 | lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 217 | unfolding not_le . | 
| 21248 | 218 | |
| 22916 | 219 | |
| 26014 | 220 | text {* Dual order *}
 | 
| 22916 | 221 | |
| 26014 | 222 | lemma dual_linorder: | 
| 25103 | 223 | "linorder (op \<ge>) (op >)" | 
| 27682 | 224 | by (rule linorder.intro, rule dual_order) (unfold_locales, rule linear) | 
| 22916 | 225 | |
| 226 | ||
| 23881 | 227 | text {* min/max *}
 | 
| 228 | ||
| 27299 | 229 | definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | 
| 28516 | 230 | [code del]: "min a b = (if a \<le> b then a else b)" | 
| 23881 | 231 | |
| 27299 | 232 | definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | 
| 28516 | 233 | [code del]: "max a b = (if a \<le> b then b else a)" | 
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 234 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 235 | lemma min_le_iff_disj: | 
| 25062 | 236 | "min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z" | 
| 23212 | 237 | unfolding min_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 238 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 239 | lemma le_max_iff_disj: | 
| 25062 | 240 | "z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y" | 
| 23212 | 241 | unfolding max_def using linear by (auto intro: order_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 242 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 243 | lemma min_less_iff_disj: | 
| 25062 | 244 | "min x y < z \<longleftrightarrow> x < z \<or> y < z" | 
| 23212 | 245 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 246 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 247 | lemma less_max_iff_disj: | 
| 25062 | 248 | "z < max x y \<longleftrightarrow> z < x \<or> z < y" | 
| 23212 | 249 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 250 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 251 | lemma min_less_iff_conj [simp]: | 
| 25062 | 252 | "z < min x y \<longleftrightarrow> z < x \<and> z < y" | 
| 23212 | 253 | unfolding min_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 254 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 255 | lemma max_less_iff_conj [simp]: | 
| 25062 | 256 | "max x y < z \<longleftrightarrow> x < z \<and> y < z" | 
| 23212 | 257 | unfolding max_def le_less using less_linear by (auto intro: less_trans) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 258 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23948diff
changeset | 259 | lemma split_min [noatp]: | 
| 25062 | 260 | "P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)" | 
| 23212 | 261 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 262 | |
| 24286 
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
 paulson parents: 
23948diff
changeset | 263 | lemma split_max [noatp]: | 
| 25062 | 264 | "P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)" | 
| 23212 | 265 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 266 | |
| 21248 | 267 | end | 
| 268 | ||
| 28516 | 269 | text {* Explicit dictionaries for code generation *}
 | 
| 270 | ||
| 271 | lemma min_ord_min [code, code unfold, code inline del]: | |
| 272 | "min = ord.min (op \<le>)" | |
| 273 | by (rule ext)+ (simp add: min_def ord.min_def) | |
| 274 | ||
| 275 | declare ord.min_def [code] | |
| 276 | ||
| 277 | lemma max_ord_max [code, code unfold, code inline del]: | |
| 278 | "max = ord.max (op \<le>)" | |
| 279 | by (rule ext)+ (simp add: max_def ord.max_def) | |
| 280 | ||
| 281 | declare ord.max_def [code] | |
| 282 | ||
| 23948 | 283 | |
| 21083 | 284 | subsection {* Reasoning tools setup *}
 | 
| 285 | ||
| 21091 | 286 | ML {*
 | 
| 287 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 288 | signature ORDERS = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 289 | sig | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 290 | val print_structures: Proof.context -> unit | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 291 | val setup: theory -> theory | 
| 24704 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 292 | val order_tac: thm list -> Proof.context -> int -> tactic | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 293 | end; | 
| 21091 | 294 | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 295 | structure Orders: ORDERS = | 
| 21248 | 296 | struct | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 297 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 298 | (** Theory and context data **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 299 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 300 | fun struct_eq ((s1: string, ts1), (s2, ts2)) = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 301 | (s1 = s2) andalso eq_list (op aconv) (ts1, ts2); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 302 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 303 | structure Data = GenericDataFun | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 304 | ( | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 305 | type T = ((string * term list) * Order_Tac.less_arith) list; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 306 | (* Order structures: | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 307 | identifier of the structure, list of operations and record of theorems | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 308 | needed to set up the transitivity reasoner, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 309 | identifier and operations identify the structure uniquely. *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 310 | val empty = []; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 311 | val extend = I; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 312 | fun merge _ = AList.join struct_eq (K fst); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 313 | ); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 314 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 315 | fun print_structures ctxt = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 316 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 317 | val structs = Data.get (Context.Proof ctxt); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 318 | fun pretty_term t = Pretty.block | 
| 24920 | 319 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 320 | Pretty.str "::", Pretty.brk 1, | 
| 24920 | 321 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 322 | fun pretty_struct ((s, ts), _) = Pretty.block | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 323 | [Pretty.str s, Pretty.str ":", Pretty.brk 1, | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 324 |        Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))];
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 325 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 326 | Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs)) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 327 | end; | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 328 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 329 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 330 | (** Method **) | 
| 21091 | 331 | |
| 24704 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 332 | fun struct_tac ((s, [eq, le, less]), thms) prems = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 333 | let | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 334 |     fun decomp thy (@{const Trueprop} $ t) =
 | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 335 | let | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 336 | fun excluded t = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 337 | (* exclude numeric types: linear arithmetic subsumes transitivity *) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 338 | let val T = type_of t | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 339 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 340 | T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 341 | end; | 
| 24741 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 342 | fun rel (bin_op $ t1 $ t2) = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 343 | if excluded t1 then NONE | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 344 | else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 345 | else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 346 | else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 347 | else NONE | 
| 24741 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 348 | | rel _ = NONE; | 
| 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 349 | 	fun dec (Const (@{const_name Not}, _) $ t) = (case rel t
 | 
| 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 350 | of NONE => NONE | 
| 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 351 | | SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) | 
| 
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
 ballarin parents: 
24704diff
changeset | 352 | | dec x = rel x; | 
| 30107 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 353 | in dec t end | 
| 
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
 berghofe parents: 
29823diff
changeset | 354 | | decomp thy _ = NONE; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 355 | in | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 356 | case s of | 
| 24704 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 357 | "order" => Order_Tac.partial_tac decomp thms prems | 
| 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 358 | | "linorder" => Order_Tac.linear_tac decomp thms prems | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 359 |     | _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.")
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 360 | end | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 361 | |
| 24704 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 362 | fun order_tac prems ctxt = | 
| 
9a95634ab135
Transitivity reasoner gets additional argument of premises to improve integration with simplifier.
 ballarin parents: 
24641diff
changeset | 363 | FIRST' (map (fn s => CHANGED o struct_tac s prems) (Data.get (Context.Proof ctxt))); | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 364 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 365 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 366 | (** Attribute **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 367 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 368 | fun add_struct_thm s tag = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 369 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 370 | (fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 371 | fun del_struct s = | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 372 | Thm.declaration_attribute | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 373 | (fn _ => Data.map (AList.delete struct_eq s)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 374 | |
| 30722 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 375 | val attrib_setup = | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 376 |   Attrib.setup @{binding order}
 | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 377 | (Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 378 | Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 379 | Scan.repeat Args.term | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 380 | >> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 381 | | ((NONE, n), ts) => del_struct (n, ts))) | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 382 | "theorems controlling transitivity reasoner"; | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 383 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 384 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 385 | (** Diagnostic command **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 386 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 387 | val print = Toplevel.unknown_context o | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 388 | Toplevel.keep (Toplevel.node_case | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 389 | (Context.cases (print_structures o ProofContext.init) print_structures) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 390 | (print_structures o Proof.context_of)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 391 | |
| 24867 | 392 | val _ = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 393 | OuterSyntax.improper_command "print_orders" | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 394 | "print order structures available to transitivity reasoner" OuterKeyword.diag | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 395 | (Scan.succeed (Toplevel.no_timing o print)); | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 396 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 397 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 398 | (** Setup **) | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 399 | |
| 24867 | 400 | val setup = | 
| 30722 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 401 |   Method.setup @{binding order} (Scan.succeed (SIMPLE_METHOD' o order_tac []))
 | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 402 | "transitivity reasoner" #> | 
| 
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
 wenzelm parents: 
30528diff
changeset | 403 | attrib_setup; | 
| 21091 | 404 | |
| 405 | end; | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 406 | |
| 21091 | 407 | *} | 
| 408 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 409 | setup Orders.setup | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 410 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 411 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 412 | text {* Declarations to set up transitivity reasoner of partial and linear orders. *}
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 413 | |
| 25076 | 414 | context order | 
| 415 | begin | |
| 416 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 417 | (* The type constraint on @{term op =} below is necessary since the operation
 | 
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 418 | is not a parameter of the locale. *) | 
| 25076 | 419 | |
| 27689 | 420 | declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] | 
| 421 | ||
| 422 | declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 423 | ||
| 424 | declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 425 | ||
| 426 | declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 427 | ||
| 428 | declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 429 | ||
| 430 | declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 431 | ||
| 432 | declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 433 | ||
| 434 | declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 435 | ||
| 436 | declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 437 | ||
| 438 | declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 439 | ||
| 440 | declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 441 | ||
| 442 | declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 443 | ||
| 444 | declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 445 | ||
| 446 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 447 | ||
| 448 | declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 449 | |
| 25076 | 450 | end | 
| 451 | ||
| 452 | context linorder | |
| 453 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 454 | |
| 27689 | 455 | declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] | 
| 456 | ||
| 457 | declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 458 | ||
| 459 | declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 460 | ||
| 461 | declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 462 | ||
| 463 | declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 464 | ||
| 465 | declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 466 | ||
| 467 | declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 468 | ||
| 469 | declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 470 | ||
| 471 | declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 472 | ||
| 473 | declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 25076 | 474 | |
| 27689 | 475 | declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | 
| 476 | ||
| 477 | declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 478 | ||
| 479 | declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 480 | ||
| 481 | declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 482 | ||
| 483 | declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 484 | ||
| 485 | declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 486 | ||
| 487 | declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 488 | ||
| 489 | declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 490 | ||
| 491 | declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 492 | ||
| 493 | declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 494 | |
| 25076 | 495 | end | 
| 496 | ||
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 497 | |
| 21083 | 498 | setup {*
 | 
| 499 | let | |
| 500 | ||
| 501 | fun prp t thm = (#prop (rep_thm thm) = t); | |
| 15524 | 502 | |
| 21083 | 503 | fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = | 
| 504 | let val prems = prems_of_ss ss; | |
| 22916 | 505 |       val less = Const (@{const_name less}, T);
 | 
| 21083 | 506 | val t = HOLogic.mk_Trueprop(le $ s $ r); | 
| 507 | in case find_first (prp t) prems of | |
| 508 | NONE => | |
| 509 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) | |
| 510 | in case find_first (prp t) prems of | |
| 511 | NONE => NONE | |
| 24422 | 512 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1}))
 | 
| 21083 | 513 | end | 
| 24422 | 514 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv}))
 | 
| 21083 | 515 | end | 
| 516 | handle THM _ => NONE; | |
| 15524 | 517 | |
| 21083 | 518 | fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = | 
| 519 | let val prems = prems_of_ss ss; | |
| 22916 | 520 |       val le = Const (@{const_name less_eq}, T);
 | 
| 21083 | 521 | val t = HOLogic.mk_Trueprop(le $ r $ s); | 
| 522 | in case find_first (prp t) prems of | |
| 523 | NONE => | |
| 524 | let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) | |
| 525 | in case find_first (prp t) prems of | |
| 526 | NONE => NONE | |
| 24422 | 527 |             | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3}))
 | 
| 21083 | 528 | end | 
| 24422 | 529 |      | SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2}))
 | 
| 21083 | 530 | end | 
| 531 | handle THM _ => NONE; | |
| 15524 | 532 | |
| 21248 | 533 | fun add_simprocs procs thy = | 
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 534 | Simplifier.map_simpset (fn ss => ss | 
| 21248 | 535 | addsimprocs (map (fn (name, raw_ts, proc) => | 
| 26496 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 536 | Simplifier.simproc thy name raw_ts proc) procs)) thy; | 
| 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 537 | fun add_solver name tac = | 
| 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 538 | Simplifier.map_simpset (fn ss => ss addSolver | 
| 
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
 wenzelm parents: 
26324diff
changeset | 539 | mk_solver' name (fn ss => tac (Simplifier.prems_of_ss ss) (Simplifier.the_context ss))); | 
| 21083 | 540 | |
| 541 | in | |
| 21248 | 542 | add_simprocs [ | 
| 543 |        ("antisym le", ["(x::'a::order) <= y"], prove_antisym_le),
 | |
| 544 |        ("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less)
 | |
| 545 | ] | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 546 | #> add_solver "Transitivity" Orders.order_tac | 
| 21248 | 547 | (* Adding the transitivity reasoners also as safe solvers showed a slight | 
| 548 | speed up, but the reasoning strength appears to be not higher (at least | |
| 549 | no breaking of additional proofs in the entire HOL distribution, as | |
| 550 | of 5 March 2004, was observed). *) | |
| 21083 | 551 | end | 
| 552 | *} | |
| 15524 | 553 | |
| 554 | ||
| 24422 | 555 | subsection {* Name duplicates *}
 | 
| 556 | ||
| 557 | lemmas order_less_le = less_le | |
| 27682 | 558 | lemmas order_eq_refl = preorder_class.eq_refl | 
| 559 | lemmas order_less_irrefl = preorder_class.less_irrefl | |
| 24422 | 560 | lemmas order_le_less = order_class.le_less | 
| 561 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | |
| 27682 | 562 | lemmas order_less_imp_le = preorder_class.less_imp_le | 
| 24422 | 563 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | 
| 564 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | |
| 565 | lemmas order_neq_le_trans = order_class.neq_le_trans | |
| 566 | lemmas order_le_neq_trans = order_class.le_neq_trans | |
| 567 | ||
| 568 | lemmas order_antisym = antisym | |
| 27682 | 569 | lemmas order_less_not_sym = preorder_class.less_not_sym | 
| 570 | lemmas order_less_asym = preorder_class.less_asym | |
| 24422 | 571 | lemmas order_eq_iff = order_class.eq_iff | 
| 572 | lemmas order_antisym_conv = order_class.antisym_conv | |
| 27682 | 573 | lemmas order_less_trans = preorder_class.less_trans | 
| 574 | lemmas order_le_less_trans = preorder_class.le_less_trans | |
| 575 | lemmas order_less_le_trans = preorder_class.less_le_trans | |
| 576 | lemmas order_less_imp_not_less = preorder_class.less_imp_not_less | |
| 577 | lemmas order_less_imp_triv = preorder_class.less_imp_triv | |
| 578 | lemmas order_less_asym' = preorder_class.less_asym' | |
| 24422 | 579 | |
| 580 | lemmas linorder_linear = linear | |
| 581 | lemmas linorder_less_linear = linorder_class.less_linear | |
| 582 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | |
| 583 | lemmas linorder_le_cases = linorder_class.le_cases | |
| 584 | lemmas linorder_not_less = linorder_class.not_less | |
| 585 | lemmas linorder_not_le = linorder_class.not_le | |
| 586 | lemmas linorder_neq_iff = linorder_class.neq_iff | |
| 587 | lemmas linorder_neqE = linorder_class.neqE | |
| 588 | lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 | |
| 589 | lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 | |
| 590 | lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 | |
| 591 | ||
| 592 | ||
| 21083 | 593 | subsection {* Bounded quantifiers *}
 | 
| 594 | ||
| 595 | syntax | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 596 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 597 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 598 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 599 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 600 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 601 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 602 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 603 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 604 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 605 | |
| 606 | syntax (xsymbols) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 607 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 608 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 609 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 610 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 611 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 612 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 613 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 614 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 615 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 616 | |
| 617 | syntax (HOL) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 618 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 619 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 620 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 621 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 622 | |
| 623 | syntax (HTML output) | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 624 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 625 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 626 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 627 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 628 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 629 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 630 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 631 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 632 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 633 | |
| 634 | translations | |
| 635 | "ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" | |
| 636 | "EX x<y. P" => "EX x. x < y \<and> P" | |
| 637 | "ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" | |
| 638 | "EX x<=y. P" => "EX x. x <= y \<and> P" | |
| 639 | "ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" | |
| 640 | "EX x>y. P" => "EX x. x > y \<and> P" | |
| 641 | "ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" | |
| 642 | "EX x>=y. P" => "EX x. x >= y \<and> P" | |
| 643 | ||
| 644 | print_translation {*
 | |
| 645 | let | |
| 22916 | 646 |   val All_binder = Syntax.binder_name @{const_syntax All};
 | 
| 647 |   val Ex_binder = Syntax.binder_name @{const_syntax Ex};
 | |
| 22377 | 648 |   val impl = @{const_syntax "op -->"};
 | 
| 649 |   val conj = @{const_syntax "op &"};
 | |
| 22916 | 650 |   val less = @{const_syntax less};
 | 
| 651 |   val less_eq = @{const_syntax less_eq};
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 652 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 653 | val trans = | 
| 21524 | 654 |    [((All_binder, impl, less), ("_All_less", "_All_greater")),
 | 
| 655 |     ((All_binder, impl, less_eq), ("_All_less_eq", "_All_greater_eq")),
 | |
| 656 |     ((Ex_binder, conj, less), ("_Ex_less", "_Ex_greater")),
 | |
| 657 |     ((Ex_binder, conj, less_eq), ("_Ex_less_eq", "_Ex_greater_eq"))];
 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 658 | |
| 22344 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 659 | fun matches_bound v t = | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 660 |      case t of (Const ("_bound", _) $ Free (v', _)) => (v = v')
 | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 661 | | _ => false | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 662 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false) | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 663 | fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 664 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 665 | fun tr' q = (q, | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 666 |     fn [Const ("_bound", _) $ Free (v, _), Const (c, _) $ (Const (d, _) $ t $ u) $ P] =>
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 667 | (case AList.lookup (op =) trans (q, c, d) of | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 668 | NONE => raise Match | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 669 | | SOME (l, g) => | 
| 22344 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 670 | if matches_bound v t andalso not (contains_var v u) then mk v l u P | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 671 | else if matches_bound v u andalso not (contains_var v t) then mk v g t P | 
| 
eddeabf16b5d
Fixed print translations for quantifiers a la "ALL x>=t. P x". These used
 krauss parents: 
22316diff
changeset | 672 | else raise Match) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 673 | | _ => raise Match); | 
| 21524 | 674 | in [tr' All_binder, tr' Ex_binder] end | 
| 21083 | 675 | *} | 
| 676 | ||
| 677 | ||
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 678 | subsection {* Transitivity reasoning *}
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 679 | |
| 25193 | 680 | context ord | 
| 681 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 682 | |
| 25193 | 683 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 684 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 685 | |
| 25193 | 686 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 687 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 688 | |
| 25193 | 689 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 690 | by (rule subst) | |
| 691 | ||
| 692 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 693 | by (rule ssubst) | |
| 694 | ||
| 695 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 696 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 697 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 698 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 699 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 700 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 701 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 702 | also assume "f b < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 703 | finally (order_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 704 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 705 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 706 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 707 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 708 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 709 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 710 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 711 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 712 | finally (order_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 713 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 714 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 715 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 716 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 717 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 718 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 719 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 720 | also assume "f b < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 721 | finally (order_le_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 722 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 723 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 724 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 725 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 726 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 727 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 728 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 729 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 730 | finally (order_le_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 731 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 732 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 733 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 734 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 735 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 736 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 737 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 738 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 739 | finally (order_less_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 740 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 741 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 742 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 743 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 744 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 745 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 746 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 747 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 748 | finally (order_less_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 749 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 750 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 751 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 752 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 753 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 754 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 755 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 756 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 757 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 758 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 759 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 760 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 761 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 762 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 763 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 764 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 765 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 766 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 767 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 768 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 769 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 770 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 771 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 772 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 773 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 774 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 775 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 776 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 777 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 778 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 779 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 780 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 781 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 782 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 783 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 784 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 785 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 786 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 787 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 788 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 789 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 790 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 791 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 792 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 793 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 794 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 795 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 796 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 797 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 798 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 799 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 800 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 801 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 802 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 803 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 804 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 805 | text {*
 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 806 | Note that this list of rules is in reverse order of priorities. | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 807 | *} | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 808 | |
| 27682 | 809 | lemmas [trans] = | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 810 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 811 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 812 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 813 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 814 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 815 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 816 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 817 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 818 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 819 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 820 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 821 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 822 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 823 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 824 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 825 | mp | 
| 27682 | 826 | |
| 827 | lemmas (in order) [trans] = | |
| 828 | neq_le_trans | |
| 829 | le_neq_trans | |
| 830 | ||
| 831 | lemmas (in preorder) [trans] = | |
| 832 | less_trans | |
| 833 | less_asym' | |
| 834 | le_less_trans | |
| 835 | less_le_trans | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 836 | order_trans | 
| 27682 | 837 | |
| 838 | lemmas (in order) [trans] = | |
| 839 | antisym | |
| 840 | ||
| 841 | lemmas (in ord) [trans] = | |
| 842 | ord_le_eq_trans | |
| 843 | ord_eq_le_trans | |
| 844 | ord_less_eq_trans | |
| 845 | ord_eq_less_trans | |
| 846 | ||
| 847 | lemmas [trans] = | |
| 848 | trans | |
| 849 | ||
| 850 | lemmas order_trans_rules = | |
| 851 | order_less_subst2 | |
| 852 | order_less_subst1 | |
| 853 | order_le_less_subst2 | |
| 854 | order_le_less_subst1 | |
| 855 | order_less_le_subst2 | |
| 856 | order_less_le_subst1 | |
| 857 | order_subst2 | |
| 858 | order_subst1 | |
| 859 | ord_le_eq_subst | |
| 860 | ord_eq_le_subst | |
| 861 | ord_less_eq_subst | |
| 862 | ord_eq_less_subst | |
| 863 | forw_subst | |
| 864 | back_subst | |
| 865 | rev_mp | |
| 866 | mp | |
| 867 | neq_le_trans | |
| 868 | le_neq_trans | |
| 869 | less_trans | |
| 870 | less_asym' | |
| 871 | le_less_trans | |
| 872 | less_le_trans | |
| 873 | order_trans | |
| 874 | antisym | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 875 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 876 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 877 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 878 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 879 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 880 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 881 | (* FIXME cleanup *) | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 882 | |
| 21083 | 883 | text {* These support proving chains of decreasing inequalities
 | 
| 884 | a >= b >= c ... in Isar proofs. *} | |
| 885 | ||
| 886 | lemma xt1: | |
| 887 | "a = b ==> b > c ==> a > c" | |
| 888 | "a > b ==> b = c ==> a > c" | |
| 889 | "a = b ==> b >= c ==> a >= c" | |
| 890 | "a >= b ==> b = c ==> a >= c" | |
| 891 | "(x::'a::order) >= y ==> y >= x ==> x = y" | |
| 892 | "(x::'a::order) >= y ==> y >= z ==> x >= z" | |
| 893 | "(x::'a::order) > y ==> y >= z ==> x > z" | |
| 894 | "(x::'a::order) >= y ==> y > z ==> x > z" | |
| 23417 | 895 | "(a::'a::order) > b ==> b > a ==> P" | 
| 21083 | 896 | "(x::'a::order) > y ==> y > z ==> x > z" | 
| 897 | "(a::'a::order) >= b ==> a ~= b ==> a > b" | |
| 898 | "(a::'a::order) ~= b ==> a >= b ==> a > b" | |
| 899 | "a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 900 | "a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 901 | "a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 902 | "a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 25076 | 903 | by auto | 
| 21083 | 904 | |
| 905 | lemma xt2: | |
| 906 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | |
| 907 | by (subgoal_tac "f b >= f c", force, force) | |
| 908 | ||
| 909 | lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | |
| 910 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | |
| 911 | by (subgoal_tac "f a >= f b", force, force) | |
| 912 | ||
| 913 | lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | |
| 914 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | |
| 915 | by (subgoal_tac "f b >= f c", force, force) | |
| 916 | ||
| 917 | lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | |
| 918 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 919 | by (subgoal_tac "f a > f b", force, force) | |
| 920 | ||
| 921 | lemma xt6: "(a::'a::order) >= f b ==> b > c ==> | |
| 922 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 923 | by (subgoal_tac "f b > f c", force, force) | |
| 924 | ||
| 925 | lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | |
| 926 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | |
| 927 | by (subgoal_tac "f a >= f b", force, force) | |
| 928 | ||
| 929 | lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | |
| 930 | (!!x y. x > y ==> f x > f y) ==> a > f c" | |
| 931 | by (subgoal_tac "f b > f c", force, force) | |
| 932 | ||
| 933 | lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | |
| 934 | (!!x y. x > y ==> f x > f y) ==> f a > c" | |
| 935 | by (subgoal_tac "f a > f b", force, force) | |
| 936 | ||
| 937 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | |
| 938 | ||
| 939 | (* | |
| 940 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | |
| 941 | for the wrong thing in an Isar proof. | |
| 942 | ||
| 943 | The extra transitivity rules can be used as follows: | |
| 944 | ||
| 945 | lemma "(a::'a::order) > z" | |
| 946 | proof - | |
| 947 | have "a >= b" (is "_ >= ?rhs") | |
| 948 | sorry | |
| 949 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 950 | sorry | |
| 951 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 952 | sorry | |
| 953 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 954 | sorry | |
| 955 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 956 | sorry | |
| 957 | also (xtrans) have "?rhs > z" | |
| 958 | sorry | |
| 959 | finally (xtrans) show ?thesis . | |
| 960 | qed | |
| 961 | ||
| 962 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 963 | leave out the "(xtrans)" above. | |
| 964 | *) | |
| 965 | ||
| 23881 | 966 | |
| 967 | subsection {* Monotonicity, least value operator and min/max *}
 | |
| 21083 | 968 | |
| 25076 | 969 | context order | 
| 970 | begin | |
| 971 | ||
| 30298 | 972 | definition mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
 | 
| 25076 | 973 | "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" | 
| 974 | ||
| 975 | lemma monoI [intro?]: | |
| 976 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 977 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" | |
| 978 | unfolding mono_def by iprover | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 979 | |
| 25076 | 980 | lemma monoD [dest?]: | 
| 981 | fixes f :: "'a \<Rightarrow> 'b\<Colon>order" | |
| 982 | shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 983 | unfolding mono_def by iprover | |
| 984 | ||
| 30298 | 985 | definition strict_mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where
 | 
| 986 | "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" | |
| 987 | ||
| 988 | lemma strict_monoI [intro?]: | |
| 989 | assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" | |
| 990 | shows "strict_mono f" | |
| 991 | using assms unfolding strict_mono_def by auto | |
| 992 | ||
| 993 | lemma strict_monoD [dest?]: | |
| 994 | "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" | |
| 995 | unfolding strict_mono_def by auto | |
| 996 | ||
| 997 | lemma strict_mono_mono [dest?]: | |
| 998 | assumes "strict_mono f" | |
| 999 | shows "mono f" | |
| 1000 | proof (rule monoI) | |
| 1001 | fix x y | |
| 1002 | assume "x \<le> y" | |
| 1003 | show "f x \<le> f y" | |
| 1004 | proof (cases "x = y") | |
| 1005 | case True then show ?thesis by simp | |
| 1006 | next | |
| 1007 | case False with `x \<le> y` have "x < y" by simp | |
| 1008 | with assms strict_monoD have "f x < f y" by auto | |
| 1009 | then show ?thesis by simp | |
| 1010 | qed | |
| 1011 | qed | |
| 1012 | ||
| 25076 | 1013 | end | 
| 1014 | ||
| 1015 | context linorder | |
| 1016 | begin | |
| 1017 | ||
| 30298 | 1018 | lemma strict_mono_eq: | 
| 1019 | assumes "strict_mono f" | |
| 1020 | shows "f x = f y \<longleftrightarrow> x = y" | |
| 1021 | proof | |
| 1022 | assume "f x = f y" | |
| 1023 | show "x = y" proof (cases x y rule: linorder_cases) | |
| 1024 | case less with assms strict_monoD have "f x < f y" by auto | |
| 1025 | with `f x = f y` show ?thesis by simp | |
| 1026 | next | |
| 1027 | case equal then show ?thesis . | |
| 1028 | next | |
| 1029 | case greater with assms strict_monoD have "f y < f x" by auto | |
| 1030 | with `f x = f y` show ?thesis by simp | |
| 1031 | qed | |
| 1032 | qed simp | |
| 1033 | ||
| 1034 | lemma strict_mono_less_eq: | |
| 1035 | assumes "strict_mono f" | |
| 1036 | shows "f x \<le> f y \<longleftrightarrow> x \<le> y" | |
| 1037 | proof | |
| 1038 | assume "x \<le> y" | |
| 1039 | with assms strict_mono_mono monoD show "f x \<le> f y" by auto | |
| 1040 | next | |
| 1041 | assume "f x \<le> f y" | |
| 1042 | show "x \<le> y" proof (rule ccontr) | |
| 1043 | assume "\<not> x \<le> y" then have "y < x" by simp | |
| 1044 | with assms strict_monoD have "f y < f x" by auto | |
| 1045 | with `f x \<le> f y` show False by simp | |
| 1046 | qed | |
| 1047 | qed | |
| 1048 | ||
| 1049 | lemma strict_mono_less: | |
| 1050 | assumes "strict_mono f" | |
| 1051 | shows "f x < f y \<longleftrightarrow> x < y" | |
| 1052 | using assms | |
| 1053 | by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) | |
| 1054 | ||
| 25076 | 1055 | lemma min_of_mono: | 
| 1056 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" | |
| 25377 | 1057 | shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)" | 
| 25076 | 1058 | by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym) | 
| 1059 | ||
| 1060 | lemma max_of_mono: | |
| 1061 | fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" | |
| 25377 | 1062 | shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)" | 
| 25076 | 1063 | by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym) | 
| 1064 | ||
| 1065 | end | |
| 21083 | 1066 | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1067 | lemma min_leastL: "(!!x. least <= x) ==> min least x = least" | 
| 23212 | 1068 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1069 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1070 | lemma max_leastL: "(!!x. least <= x) ==> max least x = x" | 
| 23212 | 1071 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1072 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1073 | lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least" | 
| 23212 | 1074 | apply (simp add: min_def) | 
| 1075 | apply (blast intro: order_antisym) | |
| 1076 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1077 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1078 | lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x" | 
| 23212 | 1079 | apply (simp add: max_def) | 
| 1080 | apply (blast intro: order_antisym) | |
| 1081 | done | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1082 | |
| 27823 | 1083 | |
| 28685 | 1084 | subsection {* Top and bottom elements *}
 | 
| 1085 | ||
| 1086 | class top = preorder + | |
| 1087 | fixes top :: 'a | |
| 1088 | assumes top_greatest [simp]: "x \<le> top" | |
| 1089 | ||
| 1090 | class bot = preorder + | |
| 1091 | fixes bot :: 'a | |
| 1092 | assumes bot_least [simp]: "bot \<le> x" | |
| 1093 | ||
| 1094 | ||
| 27823 | 1095 | subsection {* Dense orders *}
 | 
| 1096 | ||
| 1097 | class dense_linear_order = linorder + | |
| 1098 | assumes gt_ex: "\<exists>y. x < y" | |
| 1099 | and lt_ex: "\<exists>y. y < x" | |
| 1100 | and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | |
| 1101 | ||
| 1102 | ||
| 1103 | subsection {* Wellorders *}
 | |
| 1104 | ||
| 1105 | class wellorder = linorder + | |
| 1106 | assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" | |
| 1107 | begin | |
| 1108 | ||
| 1109 | lemma wellorder_Least_lemma: | |
| 1110 | fixes k :: 'a | |
| 1111 | assumes "P k" | |
| 1112 | shows "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" | |
| 1113 | proof - | |
| 1114 | have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" | |
| 1115 | using assms proof (induct k rule: less_induct) | |
| 1116 | case (less x) then have "P x" by simp | |
| 1117 | show ?case proof (rule classical) | |
| 1118 | assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" | |
| 1119 | have "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 1120 | proof (rule classical) | |
| 1121 | fix y | |
| 1122 | assume "P y" and "\<not> x \<le> y" | |
| 1123 | with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1124 | by (auto simp add: not_le) | |
| 1125 | with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1126 | by auto | |
| 1127 | then show "x \<le> y" by auto | |
| 1128 | qed | |
| 1129 | with `P x` have Least: "(LEAST a. P a) = x" | |
| 1130 | by (rule Least_equality) | |
| 1131 | with `P x` show ?thesis by simp | |
| 1132 | qed | |
| 1133 | qed | |
| 1134 | then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto | |
| 1135 | qed | |
| 1136 | ||
| 1137 | lemmas LeastI = wellorder_Least_lemma(1) | |
| 1138 | lemmas Least_le = wellorder_Least_lemma(2) | |
| 1139 | ||
| 1140 | -- "The following 3 lemmas are due to Brian Huffman" | |
| 1141 | lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" | |
| 1142 | by (erule exE) (erule LeastI) | |
| 1143 | ||
| 1144 | lemma LeastI2: | |
| 1145 | "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1146 | by (blast intro: LeastI) | |
| 1147 | ||
| 1148 | lemma LeastI2_ex: | |
| 1149 | "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1150 | by (blast intro: LeastI_ex) | |
| 1151 | ||
| 1152 | lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" | |
| 1153 | apply (simp (no_asm_use) add: not_le [symmetric]) | |
| 1154 | apply (erule contrapos_nn) | |
| 1155 | apply (erule Least_le) | |
| 1156 | done | |
| 1157 | ||
| 1158 | end | |
| 1159 | ||
| 28685 | 1160 | |
| 1161 | subsection {* Order on bool *}
 | |
| 1162 | ||
| 1163 | instantiation bool :: "{order, top, bot}"
 | |
| 1164 | begin | |
| 1165 | ||
| 1166 | definition | |
| 1167 | le_bool_def [code del]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | |
| 1168 | ||
| 1169 | definition | |
| 1170 | less_bool_def [code del]: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q" | |
| 1171 | ||
| 1172 | definition | |
| 1173 | top_bool_eq: "top = True" | |
| 1174 | ||
| 1175 | definition | |
| 1176 | bot_bool_eq: "bot = False" | |
| 1177 | ||
| 1178 | instance proof | |
| 1179 | qed (auto simp add: le_bool_def less_bool_def top_bool_eq bot_bool_eq) | |
| 1180 | ||
| 15524 | 1181 | end | 
| 28685 | 1182 | |
| 1183 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 1184 | by (simp add: le_bool_def) | |
| 1185 | ||
| 1186 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 1187 | by (simp add: le_bool_def) | |
| 1188 | ||
| 1189 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 1190 | by (simp add: le_bool_def) | |
| 1191 | ||
| 1192 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 1193 | by (simp add: le_bool_def) | |
| 1194 | ||
| 1195 | lemma [code]: | |
| 1196 | "False \<le> b \<longleftrightarrow> True" | |
| 1197 | "True \<le> b \<longleftrightarrow> b" | |
| 1198 | "False < b \<longleftrightarrow> b" | |
| 1199 | "True < b \<longleftrightarrow> False" | |
| 1200 | unfolding le_bool_def less_bool_def by simp_all | |
| 1201 | ||
| 1202 | ||
| 1203 | subsection {* Order on functions *}
 | |
| 1204 | ||
| 1205 | instantiation "fun" :: (type, ord) ord | |
| 1206 | begin | |
| 1207 | ||
| 1208 | definition | |
| 1209 | le_fun_def [code del]: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | |
| 1210 | ||
| 1211 | definition | |
| 1212 | less_fun_def [code del]: "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" | |
| 1213 | ||
| 1214 | instance .. | |
| 1215 | ||
| 1216 | end | |
| 1217 | ||
| 1218 | instance "fun" :: (type, preorder) preorder proof | |
| 1219 | qed (auto simp add: le_fun_def less_fun_def | |
| 1220 | intro: order_trans order_antisym intro!: ext) | |
| 1221 | ||
| 1222 | instance "fun" :: (type, order) order proof | |
| 1223 | qed (auto simp add: le_fun_def intro: order_antisym ext) | |
| 1224 | ||
| 1225 | instantiation "fun" :: (type, top) top | |
| 1226 | begin | |
| 1227 | ||
| 1228 | definition | |
| 1229 | top_fun_eq: "top = (\<lambda>x. top)" | |
| 1230 | ||
| 1231 | instance proof | |
| 1232 | qed (simp add: top_fun_eq le_fun_def) | |
| 1233 | ||
| 1234 | end | |
| 1235 | ||
| 1236 | instantiation "fun" :: (type, bot) bot | |
| 1237 | begin | |
| 1238 | ||
| 1239 | definition | |
| 1240 | bot_fun_eq: "bot = (\<lambda>x. bot)" | |
| 1241 | ||
| 1242 | instance proof | |
| 1243 | qed (simp add: bot_fun_eq le_fun_def) | |
| 1244 | ||
| 1245 | end | |
| 1246 | ||
| 1247 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 1248 | unfolding le_fun_def by simp | |
| 1249 | ||
| 1250 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1251 | unfolding le_fun_def by simp | |
| 1252 | ||
| 1253 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 1254 | unfolding le_fun_def by simp | |
| 1255 | ||
| 1256 | text {*
 | |
| 1257 |   Handy introduction and elimination rules for @{text "\<le>"}
 | |
| 1258 | on unary and binary predicates | |
| 1259 | *} | |
| 1260 | ||
| 1261 | lemma predicate1I: | |
| 1262 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | |
| 1263 | shows "P \<le> Q" | |
| 1264 | apply (rule le_funI) | |
| 1265 | apply (rule le_boolI) | |
| 1266 | apply (rule PQ) | |
| 1267 | apply assumption | |
| 1268 | done | |
| 1269 | ||
| 1270 | lemma predicate1D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | |
| 1271 | apply (erule le_funE) | |
| 1272 | apply (erule le_boolE) | |
| 1273 | apply assumption+ | |
| 1274 | done | |
| 1275 | ||
| 1276 | lemma predicate2I [Pure.intro!, intro!]: | |
| 1277 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | |
| 1278 | shows "P \<le> Q" | |
| 1279 | apply (rule le_funI)+ | |
| 1280 | apply (rule le_boolI) | |
| 1281 | apply (rule PQ) | |
| 1282 | apply assumption | |
| 1283 | done | |
| 1284 | ||
| 1285 | lemma predicate2D [Pure.dest, dest]: "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | |
| 1286 | apply (erule le_funE)+ | |
| 1287 | apply (erule le_boolE) | |
| 1288 | apply assumption+ | |
| 1289 | done | |
| 1290 | ||
| 1291 | lemma rev_predicate1D: "P x ==> P <= Q ==> Q x" | |
| 1292 | by (rule predicate1D) | |
| 1293 | ||
| 1294 | lemma rev_predicate2D: "P x y ==> P <= Q ==> Q x y" | |
| 1295 | by (rule predicate2D) | |
| 1296 | ||
| 1297 | end |