src/HOL/Real/Float.thy
author wenzelm
Wed Nov 08 23:11:13 2006 +0100 (2006-11-08)
changeset 21256 47195501ecf7
parent 20771 89bec28a03c8
child 21404 eb85850d3eb7
permissions -rw-r--r--
moved theories Parity, GCD, Binomial to Library;
obua@16782
     1
(*  Title: HOL/Real/Float.thy
obua@16782
     2
    ID:    $Id$
obua@16782
     3
    Author: Steven Obua
obua@16782
     4
*)
obua@16782
     5
huffman@20717
     6
header {* Floating Point Representation of the Reals *}
huffman@20717
     7
haftmann@20485
     8
theory Float
wenzelm@21256
     9
imports Real Parity
wenzelm@20771
    10
uses ("float.ML")
haftmann@20485
    11
begin
obua@16782
    12
wenzelm@19765
    13
definition
obua@16782
    14
  pow2 :: "int \<Rightarrow> real"
wenzelm@19765
    15
  "pow2 a = (if (0 <= a) then (2^(nat a)) else (inverse (2^(nat (-a)))))"
obua@16782
    16
  float :: "int * int \<Rightarrow> real"
wenzelm@19765
    17
  "float x = real (fst x) * pow2 (snd x)"
obua@16782
    18
obua@16782
    19
lemma pow2_0[simp]: "pow2 0 = 1"
obua@16782
    20
by (simp add: pow2_def)
obua@16782
    21
obua@16782
    22
lemma pow2_1[simp]: "pow2 1 = 2"
obua@16782
    23
by (simp add: pow2_def)
obua@16782
    24
obua@16782
    25
lemma pow2_neg: "pow2 x = inverse (pow2 (-x))"
obua@16782
    26
by (simp add: pow2_def)
obua@16782
    27
wenzelm@19765
    28
lemma pow2_add1: "pow2 (1 + a) = 2 * (pow2 a)"
obua@16782
    29
proof -
obua@16782
    30
  have h: "! n. nat (2 + int n) - Suc 0 = nat (1 + int n)" by arith
obua@16782
    31
  have g: "! a b. a - -1 = a + (1::int)" by arith
obua@16782
    32
  have pos: "! n. pow2 (int n + 1) = 2 * pow2 (int n)"
obua@16782
    33
    apply (auto, induct_tac n)
obua@16782
    34
    apply (simp_all add: pow2_def)
obua@16782
    35
    apply (rule_tac m1="2" and n1="nat (2 + int na)" in ssubst[OF realpow_num_eq_if])
webertj@20217
    36
    by (auto simp add: h)
obua@16782
    37
  show ?thesis
obua@16782
    38
  proof (induct a)
obua@16782
    39
    case (1 n)
obua@16782
    40
    from pos show ?case by (simp add: ring_eq_simps)
obua@16782
    41
  next
obua@16782
    42
    case (2 n)
obua@16782
    43
    show ?case
obua@16782
    44
      apply (auto)
obua@16782
    45
      apply (subst pow2_neg[of "- int n"])
obua@16782
    46
      apply (subst pow2_neg[of "-1 - int n"])
obua@16782
    47
      apply (auto simp add: g pos)
obua@16782
    48
      done
wenzelm@19765
    49
  qed
obua@16782
    50
qed
wenzelm@19765
    51
obua@16782
    52
lemma pow2_add: "pow2 (a+b) = (pow2 a) * (pow2 b)"
obua@16782
    53
proof (induct b)
wenzelm@19765
    54
  case (1 n)
obua@16782
    55
  show ?case
obua@16782
    56
  proof (induct n)
obua@16782
    57
    case 0
obua@16782
    58
    show ?case by simp
obua@16782
    59
  next
obua@16782
    60
    case (Suc m)
obua@16782
    61
    show ?case by (auto simp add: ring_eq_simps pow2_add1 prems)
obua@16782
    62
  qed
obua@16782
    63
next
obua@16782
    64
  case (2 n)
wenzelm@19765
    65
  show ?case
obua@16782
    66
  proof (induct n)
obua@16782
    67
    case 0
wenzelm@19765
    68
    show ?case
obua@16782
    69
      apply (auto)
obua@16782
    70
      apply (subst pow2_neg[of "a + -1"])
obua@16782
    71
      apply (subst pow2_neg[of "-1"])
obua@16782
    72
      apply (simp)
obua@16782
    73
      apply (insert pow2_add1[of "-a"])
obua@16782
    74
      apply (simp add: ring_eq_simps)
obua@16782
    75
      apply (subst pow2_neg[of "-a"])
obua@16782
    76
      apply (simp)
obua@16782
    77
      done
obua@16782
    78
    case (Suc m)
wenzelm@19765
    79
    have a: "int m - (a + -2) =  1 + (int m - a + 1)" by arith
obua@16782
    80
    have b: "int m - -2 = 1 + (int m + 1)" by arith
obua@16782
    81
    show ?case
obua@16782
    82
      apply (auto)
obua@16782
    83
      apply (subst pow2_neg[of "a + (-2 - int m)"])
obua@16782
    84
      apply (subst pow2_neg[of "-2 - int m"])
obua@16782
    85
      apply (auto simp add: ring_eq_simps)
obua@16782
    86
      apply (subst a)
obua@16782
    87
      apply (subst b)
obua@16782
    88
      apply (simp only: pow2_add1)
obua@16782
    89
      apply (subst pow2_neg[of "int m - a + 1"])
obua@16782
    90
      apply (subst pow2_neg[of "int m + 1"])
obua@16782
    91
      apply auto
obua@16782
    92
      apply (insert prems)
obua@16782
    93
      apply (auto simp add: ring_eq_simps)
obua@16782
    94
      done
obua@16782
    95
  qed
obua@16782
    96
qed
obua@16782
    97
wenzelm@19765
    98
lemma "float (a, e) + float (b, e) = float (a + b, e)"
obua@16782
    99
by (simp add: float_def ring_eq_simps)
obua@16782
   100
wenzelm@19765
   101
definition
obua@16782
   102
  int_of_real :: "real \<Rightarrow> int"
wenzelm@19765
   103
  "int_of_real x = (SOME y. real y = x)"
obua@16782
   104
  real_is_int :: "real \<Rightarrow> bool"
wenzelm@19765
   105
  "real_is_int x = (EX (u::int). x = real u)"
obua@16782
   106
obua@16782
   107
lemma real_is_int_def2: "real_is_int x = (x = real (int_of_real x))"
obua@16782
   108
by (auto simp add: real_is_int_def int_of_real_def)
obua@16782
   109
obua@16782
   110
lemma float_transfer: "real_is_int ((real a)*(pow2 c)) \<Longrightarrow> float (a, b) = float (int_of_real ((real a)*(pow2 c)), b - c)"
obua@16782
   111
by (simp add: float_def real_is_int_def2 pow2_add[symmetric])
obua@16782
   112
obua@16782
   113
lemma pow2_int: "pow2 (int c) = (2::real)^c"
obua@16782
   114
by (simp add: pow2_def)
obua@16782
   115
wenzelm@19765
   116
lemma float_transfer_nat: "float (a, b) = float (a * 2^c, b - int c)"
obua@16782
   117
by (simp add: float_def pow2_int[symmetric] pow2_add[symmetric])
obua@16782
   118
obua@16782
   119
lemma real_is_int_real[simp]: "real_is_int (real (x::int))"
obua@16782
   120
by (auto simp add: real_is_int_def int_of_real_def)
obua@16782
   121
obua@16782
   122
lemma int_of_real_real[simp]: "int_of_real (real x) = x"
obua@16782
   123
by (simp add: int_of_real_def)
obua@16782
   124
obua@16782
   125
lemma real_int_of_real[simp]: "real_is_int x \<Longrightarrow> real (int_of_real x) = x"
obua@16782
   126
by (auto simp add: int_of_real_def real_is_int_def)
obua@16782
   127
obua@16782
   128
lemma real_is_int_add_int_of_real: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> (int_of_real (a+b)) = (int_of_real a) + (int_of_real b)"
obua@16782
   129
by (auto simp add: int_of_real_def real_is_int_def)
obua@16782
   130
obua@16782
   131
lemma real_is_int_add[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a+b)"
obua@16782
   132
apply (subst real_is_int_def2)
obua@16782
   133
apply (simp add: real_is_int_add_int_of_real real_int_of_real)
obua@16782
   134
done
obua@16782
   135
obua@16782
   136
lemma int_of_real_sub: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> (int_of_real (a-b)) = (int_of_real a) - (int_of_real b)"
obua@16782
   137
by (auto simp add: int_of_real_def real_is_int_def)
obua@16782
   138
obua@16782
   139
lemma real_is_int_sub[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a-b)"
obua@16782
   140
apply (subst real_is_int_def2)
obua@16782
   141
apply (simp add: int_of_real_sub real_int_of_real)
obua@16782
   142
done
obua@16782
   143
obua@16782
   144
lemma real_is_int_rep: "real_is_int x \<Longrightarrow> ?! (a::int). real a = x"
obua@16782
   145
by (auto simp add: real_is_int_def)
obua@16782
   146
wenzelm@19765
   147
lemma int_of_real_mult:
obua@16782
   148
  assumes "real_is_int a" "real_is_int b"
obua@16782
   149
  shows "(int_of_real (a*b)) = (int_of_real a) * (int_of_real b)"
obua@16782
   150
proof -
obua@16782
   151
  from prems have a: "?! (a'::int). real a' = a" by (rule_tac real_is_int_rep, auto)
obua@16782
   152
  from prems have b: "?! (b'::int). real b' = b" by (rule_tac real_is_int_rep, auto)
obua@16782
   153
  from a obtain a'::int where a':"a = real a'" by auto
obua@16782
   154
  from b obtain b'::int where b':"b = real b'" by auto
obua@16782
   155
  have r: "real a' * real b' = real (a' * b')" by auto
obua@16782
   156
  show ?thesis
obua@16782
   157
    apply (simp add: a' b')
obua@16782
   158
    apply (subst r)
obua@16782
   159
    apply (simp only: int_of_real_real)
obua@16782
   160
    done
obua@16782
   161
qed
obua@16782
   162
obua@16782
   163
lemma real_is_int_mult[simp]: "real_is_int a \<Longrightarrow> real_is_int b \<Longrightarrow> real_is_int (a*b)"
obua@16782
   164
apply (subst real_is_int_def2)
obua@16782
   165
apply (simp add: int_of_real_mult)
obua@16782
   166
done
obua@16782
   167
obua@16782
   168
lemma real_is_int_0[simp]: "real_is_int (0::real)"
obua@16782
   169
by (simp add: real_is_int_def int_of_real_def)
obua@16782
   170
obua@16782
   171
lemma real_is_int_1[simp]: "real_is_int (1::real)"
obua@16782
   172
proof -
obua@16782
   173
  have "real_is_int (1::real) = real_is_int(real (1::int))" by auto
obua@16782
   174
  also have "\<dots> = True" by (simp only: real_is_int_real)
obua@16782
   175
  ultimately show ?thesis by auto
obua@16782
   176
qed
obua@16782
   177
obua@16782
   178
lemma real_is_int_n1: "real_is_int (-1::real)"
obua@16782
   179
proof -
obua@16782
   180
  have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto
obua@16782
   181
  also have "\<dots> = True" by (simp only: real_is_int_real)
obua@16782
   182
  ultimately show ?thesis by auto
obua@16782
   183
qed
obua@16782
   184
haftmann@20485
   185
lemma real_is_int_number_of[simp]: "real_is_int ((number_of \<Colon> int \<Rightarrow> real) x)"
obua@16782
   186
proof -
obua@16782
   187
  have neg1: "real_is_int (-1::real)"
obua@16782
   188
  proof -
obua@16782
   189
    have "real_is_int (-1::real) = real_is_int(real (-1::int))" by auto
obua@16782
   190
    also have "\<dots> = True" by (simp only: real_is_int_real)
obua@16782
   191
    ultimately show ?thesis by auto
obua@16782
   192
  qed
wenzelm@19765
   193
wenzelm@19765
   194
  {
haftmann@20485
   195
    fix x :: int
haftmann@20485
   196
    have "real_is_int ((number_of \<Colon> int \<Rightarrow> real) x)"
haftmann@20485
   197
      unfolding number_of_eq
obua@16782
   198
      apply (induct x)
obua@16782
   199
      apply (induct_tac n)
obua@16782
   200
      apply (simp)
obua@16782
   201
      apply (simp)
obua@16782
   202
      apply (induct_tac n)
obua@16782
   203
      apply (simp add: neg1)
obua@16782
   204
    proof -
obua@16782
   205
      fix n :: nat
obua@16782
   206
      assume rn: "(real_is_int (of_int (- (int (Suc n)))))"
obua@16782
   207
      have s: "-(int (Suc (Suc n))) = -1 + - (int (Suc n))" by simp
obua@16782
   208
      show "real_is_int (of_int (- (int (Suc (Suc n)))))"
wenzelm@19765
   209
        apply (simp only: s of_int_add)
wenzelm@19765
   210
        apply (rule real_is_int_add)
wenzelm@19765
   211
        apply (simp add: neg1)
wenzelm@19765
   212
        apply (simp only: rn)
wenzelm@19765
   213
        done
obua@16782
   214
    qed
obua@16782
   215
  }
obua@16782
   216
  note Abs_Bin = this
obua@16782
   217
  {
haftmann@20485
   218
    fix x :: int
haftmann@20485
   219
    have "? u. x = u"
haftmann@20485
   220
      apply (rule exI[where x = "x"])
haftmann@20485
   221
      apply (simp)
obua@16782
   222
      done
obua@16782
   223
  }
haftmann@20485
   224
  then obtain u::int where "x = u" by auto
obua@16782
   225
  with Abs_Bin show ?thesis by auto
obua@16782
   226
qed
obua@16782
   227
obua@16782
   228
lemma int_of_real_0[simp]: "int_of_real (0::real) = (0::int)"
obua@16782
   229
by (simp add: int_of_real_def)
obua@16782
   230
obua@16782
   231
lemma int_of_real_1[simp]: "int_of_real (1::real) = (1::int)"
wenzelm@19765
   232
proof -
obua@16782
   233
  have 1: "(1::real) = real (1::int)" by auto
obua@16782
   234
  show ?thesis by (simp only: 1 int_of_real_real)
obua@16782
   235
qed
obua@16782
   236
obua@16782
   237
lemma int_of_real_number_of[simp]: "int_of_real (number_of b) = number_of b"
obua@16782
   238
proof -
obua@16782
   239
  have "real_is_int (number_of b)" by simp
obua@16782
   240
  then have uu: "?! u::int. number_of b = real u" by (auto simp add: real_is_int_rep)
obua@16782
   241
  then obtain u::int where u:"number_of b = real u" by auto
wenzelm@19765
   242
  have "number_of b = real ((number_of b)::int)"
obua@16782
   243
    by (simp add: number_of_eq real_of_int_def)
wenzelm@19765
   244
  have ub: "number_of b = real ((number_of b)::int)"
obua@16782
   245
    by (simp add: number_of_eq real_of_int_def)
obua@16782
   246
  from uu u ub have unb: "u = number_of b"
obua@16782
   247
    by blast
obua@16782
   248
  have "int_of_real (number_of b) = u" by (simp add: u)
obua@16782
   249
  with unb show ?thesis by simp
obua@16782
   250
qed
obua@16782
   251
obua@16782
   252
lemma float_transfer_even: "even a \<Longrightarrow> float (a, b) = float (a div 2, b+1)"
obua@16782
   253
  apply (subst float_transfer[where a="a" and b="b" and c="-1", simplified])
obua@16782
   254
  apply (simp_all add: pow2_def even_def real_is_int_def ring_eq_simps)
obua@16782
   255
  apply (auto)
obua@16782
   256
proof -
obua@16782
   257
  fix q::int
obua@16782
   258
  have a:"b - (-1\<Colon>int) = (1\<Colon>int) + b" by arith
wenzelm@19765
   259
  show "(float (q, (b - (-1\<Colon>int)))) = (float (q, ((1\<Colon>int) + b)))"
obua@16782
   260
    by (simp add: a)
obua@16782
   261
qed
wenzelm@19765
   262
obua@16782
   263
consts
obua@16782
   264
  norm_float :: "int*int \<Rightarrow> int*int"
obua@16782
   265
obua@16782
   266
lemma int_div_zdiv: "int (a div b) = (int a) div (int b)"
obua@16782
   267
apply (subst split_div, auto)
obua@16782
   268
apply (subst split_zdiv, auto)
obua@16782
   269
apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in IntDiv.unique_quotient)
obua@16782
   270
apply (auto simp add: IntDiv.quorem_def int_eq_of_nat)
obua@16782
   271
done
obua@16782
   272
obua@16782
   273
lemma int_mod_zmod: "int (a mod b) = (int a) mod (int b)"
obua@16782
   274
apply (subst split_mod, auto)
obua@16782
   275
apply (subst split_zmod, auto)
obua@16782
   276
apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia in IntDiv.unique_remainder)
obua@16782
   277
apply (auto simp add: IntDiv.quorem_def int_eq_of_nat)
obua@16782
   278
done
obua@16782
   279
obua@16782
   280
lemma abs_div_2_less: "a \<noteq> 0 \<Longrightarrow> a \<noteq> -1 \<Longrightarrow> abs((a::int) div 2) < abs a"
obua@16782
   281
by arith
obua@16782
   282
obua@16782
   283
lemma terminating_norm_float: "\<forall>a. (a::int) \<noteq> 0 \<and> even a \<longrightarrow> a \<noteq> 0 \<and> \<bar>a div 2\<bar> < \<bar>a\<bar>"
obua@16782
   284
apply (auto)
obua@16782
   285
apply (rule abs_div_2_less)
obua@16782
   286
apply (auto)
obua@16782
   287
done
obua@16782
   288
wenzelm@19765
   289
ML {* simp_depth_limit := 2 *}
obua@16782
   290
recdef norm_float "measure (% (a,b). nat (abs a))"
obua@16782
   291
  "norm_float (a,b) = (if (a \<noteq> 0) & (even a) then norm_float (a div 2, b+1) else (if a=0 then (0,0) else (a,b)))"
obua@16782
   292
(hints simp: terminating_norm_float)
obua@16782
   293
ML {* simp_depth_limit := 1000 *}
obua@16782
   294
obua@16782
   295
lemma norm_float: "float x = float (norm_float x)"
obua@16782
   296
proof -
obua@16782
   297
  {
wenzelm@19765
   298
    fix a b :: int
wenzelm@19765
   299
    have norm_float_pair: "float (a,b) = float (norm_float (a,b))"
obua@16782
   300
    proof (induct a b rule: norm_float.induct)
obua@16782
   301
      case (1 u v)
wenzelm@19765
   302
      show ?case
obua@16782
   303
      proof cases
wenzelm@19765
   304
        assume u: "u \<noteq> 0 \<and> even u"
wenzelm@19765
   305
        with prems have ind: "float (u div 2, v + 1) = float (norm_float (u div 2, v + 1))" by auto
wenzelm@19765
   306
        with u have "float (u,v) = float (u div 2, v+1)" by (simp add: float_transfer_even)
wenzelm@19765
   307
        then show ?thesis
wenzelm@19765
   308
          apply (subst norm_float.simps)
wenzelm@19765
   309
          apply (simp add: ind)
wenzelm@19765
   310
          done
obua@16782
   311
      next
wenzelm@19765
   312
        assume "~(u \<noteq> 0 \<and> even u)"
wenzelm@19765
   313
        then show ?thesis
wenzelm@19765
   314
          by (simp add: prems float_def)
obua@16782
   315
      qed
obua@16782
   316
    qed
obua@16782
   317
  }
obua@16782
   318
  note helper = this
obua@16782
   319
  have "? a b. x = (a,b)" by auto
obua@16782
   320
  then obtain a b where "x = (a, b)" by blast
obua@16782
   321
  then show ?thesis by (simp only: helper)
obua@16782
   322
qed
obua@16782
   323
obua@16782
   324
lemma pow2_int: "pow2 (int n) = 2^n"
obua@16782
   325
  by (simp add: pow2_def)
obua@16782
   326
wenzelm@19765
   327
lemma float_add:
wenzelm@19765
   328
  "float (a1, e1) + float (a2, e2) =
wenzelm@19765
   329
  (if e1<=e2 then float (a1+a2*2^(nat(e2-e1)), e1)
obua@16782
   330
  else float (a1*2^(nat (e1-e2))+a2, e2))"
obua@16782
   331
  apply (simp add: float_def ring_eq_simps)
obua@16782
   332
  apply (auto simp add: pow2_int[symmetric] pow2_add[symmetric])
obua@16782
   333
  done
obua@16782
   334
obua@16782
   335
lemma float_mult:
wenzelm@19765
   336
  "float (a1, e1) * float (a2, e2) =
obua@16782
   337
  (float (a1 * a2, e1 + e2))"
obua@16782
   338
  by (simp add: float_def pow2_add)
obua@16782
   339
obua@16782
   340
lemma float_minus:
obua@16782
   341
  "- (float (a,b)) = float (-a, b)"
obua@16782
   342
  by (simp add: float_def)
obua@16782
   343
obua@16782
   344
lemma zero_less_pow2:
obua@16782
   345
  "0 < pow2 x"
obua@16782
   346
proof -
obua@16782
   347
  {
obua@16782
   348
    fix y
wenzelm@19765
   349
    have "0 <= y \<Longrightarrow> 0 < pow2 y"
obua@16782
   350
      by (induct y, induct_tac n, simp_all add: pow2_add)
obua@16782
   351
  }
obua@16782
   352
  note helper=this
obua@16782
   353
  show ?thesis
obua@16782
   354
    apply (case_tac "0 <= x")
obua@16782
   355
    apply (simp add: helper)
obua@16782
   356
    apply (subst pow2_neg)
obua@16782
   357
    apply (simp add: helper)
obua@16782
   358
    done
obua@16782
   359
qed
obua@16782
   360
obua@16782
   361
lemma zero_le_float:
obua@16782
   362
  "(0 <= float (a,b)) = (0 <= a)"
obua@16782
   363
  apply (auto simp add: float_def)
wenzelm@19765
   364
  apply (auto simp add: zero_le_mult_iff zero_less_pow2)
obua@16782
   365
  apply (insert zero_less_pow2[of b])
obua@16782
   366
  apply (simp_all)
obua@16782
   367
  done
obua@16782
   368
obua@16782
   369
lemma float_le_zero:
obua@16782
   370
  "(float (a,b) <= 0) = (a <= 0)"
obua@16782
   371
  apply (auto simp add: float_def)
obua@16782
   372
  apply (auto simp add: mult_le_0_iff)
obua@16782
   373
  apply (insert zero_less_pow2[of b])
obua@16782
   374
  apply auto
obua@16782
   375
  done
obua@16782
   376
obua@16782
   377
lemma float_abs:
obua@16782
   378
  "abs (float (a,b)) = (if 0 <= a then (float (a,b)) else (float (-a,b)))"
obua@16782
   379
  apply (auto simp add: abs_if)
obua@16782
   380
  apply (simp_all add: zero_le_float[symmetric, of a b] float_minus)
obua@16782
   381
  done
obua@16782
   382
obua@16782
   383
lemma float_zero:
obua@16782
   384
  "float (0, b) = 0"
obua@16782
   385
  by (simp add: float_def)
obua@16782
   386
obua@16782
   387
lemma float_pprt:
obua@16782
   388
  "pprt (float (a, b)) = (if 0 <= a then (float (a,b)) else (float (0, b)))"
obua@16782
   389
  by (auto simp add: zero_le_float float_le_zero float_zero)
obua@16782
   390
obua@16782
   391
lemma float_nprt:
obua@16782
   392
  "nprt (float (a, b)) = (if 0 <= a then (float (0,b)) else (float (a, b)))"
obua@16782
   393
  by (auto simp add: zero_le_float float_le_zero float_zero)
obua@16782
   394
obua@16782
   395
lemma norm_0_1: "(0::_::number_ring) = Numeral0 & (1::_::number_ring) = Numeral1"
obua@16782
   396
  by auto
wenzelm@19765
   397
obua@16782
   398
lemma add_left_zero: "0 + a = (a::'a::comm_monoid_add)"
obua@16782
   399
  by simp
obua@16782
   400
obua@16782
   401
lemma add_right_zero: "a + 0 = (a::'a::comm_monoid_add)"
obua@16782
   402
  by simp
obua@16782
   403
obua@16782
   404
lemma mult_left_one: "1 * a = (a::'a::semiring_1)"
obua@16782
   405
  by simp
obua@16782
   406
obua@16782
   407
lemma mult_right_one: "a * 1 = (a::'a::semiring_1)"
obua@16782
   408
  by simp
obua@16782
   409
obua@16782
   410
lemma int_pow_0: "(a::int)^(Numeral0) = 1"
obua@16782
   411
  by simp
obua@16782
   412
obua@16782
   413
lemma int_pow_1: "(a::int)^(Numeral1) = a"
obua@16782
   414
  by simp
obua@16782
   415
obua@16782
   416
lemma zero_eq_Numeral0_nring: "(0::'a::number_ring) = Numeral0"
obua@16782
   417
  by simp
obua@16782
   418
obua@16782
   419
lemma one_eq_Numeral1_nring: "(1::'a::number_ring) = Numeral1"
obua@16782
   420
  by simp
obua@16782
   421
obua@16782
   422
lemma zero_eq_Numeral0_nat: "(0::nat) = Numeral0"
obua@16782
   423
  by simp
obua@16782
   424
obua@16782
   425
lemma one_eq_Numeral1_nat: "(1::nat) = Numeral1"
obua@16782
   426
  by simp
obua@16782
   427
obua@16782
   428
lemma zpower_Pls: "(z::int)^Numeral0 = Numeral1"
obua@16782
   429
  by simp
obua@16782
   430
obua@16782
   431
lemma zpower_Min: "(z::int)^((-1)::nat) = Numeral1"
obua@16782
   432
proof -
obua@16782
   433
  have 1:"((-1)::nat) = 0"
obua@16782
   434
    by simp
obua@16782
   435
  show ?thesis by (simp add: 1)
obua@16782
   436
qed
obua@16782
   437
obua@16782
   438
lemma fst_cong: "a=a' \<Longrightarrow> fst (a,b) = fst (a',b)"
obua@16782
   439
  by simp
obua@16782
   440
obua@16782
   441
lemma snd_cong: "b=b' \<Longrightarrow> snd (a,b) = snd (a,b')"
obua@16782
   442
  by simp
obua@16782
   443
obua@16782
   444
lemma lift_bool: "x \<Longrightarrow> x=True"
obua@16782
   445
  by simp
obua@16782
   446
obua@16782
   447
lemma nlift_bool: "~x \<Longrightarrow> x=False"
obua@16782
   448
  by simp
obua@16782
   449
obua@16782
   450
lemma not_false_eq_true: "(~ False) = True" by simp
obua@16782
   451
obua@16782
   452
lemma not_true_eq_false: "(~ True) = False" by simp
obua@16782
   453
wenzelm@19765
   454
lemmas binarith =
obua@16782
   455
  Pls_0_eq Min_1_eq
haftmann@20485
   456
  pred_Pls pred_Min pred_1 pred_0
haftmann@20485
   457
  succ_Pls succ_Min succ_1 succ_0
haftmann@20485
   458
  add_Pls add_Min add_BIT_0 add_BIT_10
haftmann@20485
   459
  add_BIT_11 minus_Pls minus_Min minus_1
haftmann@20485
   460
  minus_0 mult_Pls mult_Min mult_num1 mult_num0
haftmann@20485
   461
  add_Pls_right add_Min_right
obua@16782
   462
haftmann@20485
   463
lemma int_eq_number_of_eq:
haftmann@20485
   464
  "(((number_of v)::int)=(number_of w)) = iszero ((number_of (v + uminus w))::int)"
obua@16782
   465
  by simp
obua@16782
   466
wenzelm@19765
   467
lemma int_iszero_number_of_Pls: "iszero (Numeral0::int)"
obua@16782
   468
  by (simp only: iszero_number_of_Pls)
obua@16782
   469
obua@16782
   470
lemma int_nonzero_number_of_Min: "~(iszero ((-1)::int))"
obua@16782
   471
  by simp
obua@16782
   472
obua@16782
   473
lemma int_iszero_number_of_0: "iszero ((number_of (w BIT bit.B0))::int) = iszero ((number_of w)::int)"
obua@16782
   474
  by simp
obua@16782
   475
wenzelm@19765
   476
lemma int_iszero_number_of_1: "\<not> iszero ((number_of (w BIT bit.B1))::int)"
obua@16782
   477
  by simp
obua@16782
   478
haftmann@20485
   479
lemma int_less_number_of_eq_neg: "(((number_of x)::int) < number_of y) = neg ((number_of (x + (uminus y)))::int)"
obua@16782
   480
  by simp
obua@16782
   481
wenzelm@19765
   482
lemma int_not_neg_number_of_Pls: "\<not> (neg (Numeral0::int))"
obua@16782
   483
  by simp
obua@16782
   484
obua@16782
   485
lemma int_neg_number_of_Min: "neg (-1::int)"
obua@16782
   486
  by simp
obua@16782
   487
obua@16782
   488
lemma int_neg_number_of_BIT: "neg ((number_of (w BIT x))::int) = neg ((number_of w)::int)"
obua@16782
   489
  by simp
obua@16782
   490
haftmann@20485
   491
lemma int_le_number_of_eq: "(((number_of x)::int) \<le> number_of y) = (\<not> neg ((number_of (y + (uminus x)))::int))"
obua@16782
   492
  by simp
obua@16782
   493
wenzelm@19765
   494
lemmas intarithrel =
wenzelm@19765
   495
  int_eq_number_of_eq
wenzelm@19765
   496
  lift_bool[OF int_iszero_number_of_Pls] nlift_bool[OF int_nonzero_number_of_Min] int_iszero_number_of_0
obua@16782
   497
  lift_bool[OF int_iszero_number_of_1] int_less_number_of_eq_neg nlift_bool[OF int_not_neg_number_of_Pls] lift_bool[OF int_neg_number_of_Min]
obua@16782
   498
  int_neg_number_of_BIT int_le_number_of_eq
obua@16782
   499
haftmann@20485
   500
lemma int_number_of_add_sym: "((number_of v)::int) + number_of w = number_of (v + w)"
obua@16782
   501
  by simp
obua@16782
   502
haftmann@20485
   503
lemma int_number_of_diff_sym: "((number_of v)::int) - number_of w = number_of (v + (uminus w))"
obua@16782
   504
  by simp
obua@16782
   505
haftmann@20485
   506
lemma int_number_of_mult_sym: "((number_of v)::int) * number_of w = number_of (v * w)"
obua@16782
   507
  by simp
obua@16782
   508
haftmann@20485
   509
lemma int_number_of_minus_sym: "- ((number_of v)::int) = number_of (uminus v)"
obua@16782
   510
  by simp
obua@16782
   511
obua@16782
   512
lemmas intarith = int_number_of_add_sym int_number_of_minus_sym int_number_of_diff_sym int_number_of_mult_sym
obua@16782
   513
obua@16782
   514
lemmas natarith = add_nat_number_of diff_nat_number_of mult_nat_number_of eq_nat_number_of less_nat_number_of
obua@16782
   515
wenzelm@19765
   516
lemmas powerarith = nat_number_of zpower_number_of_even
wenzelm@19765
   517
  zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring]
obua@16782
   518
  zpower_Pls zpower_Min
obua@16782
   519
obua@16782
   520
lemmas floatarith[simplified norm_0_1] = float_add float_mult float_minus float_abs zero_le_float float_pprt float_nprt
obua@16782
   521
obua@16782
   522
(* for use with the compute oracle *)
obua@16782
   523
lemmas arith = binarith intarith intarithrel natarith powerarith floatarith not_false_eq_true not_true_eq_false
obua@16782
   524
wenzelm@20771
   525
use "float.ML";
wenzelm@20771
   526
obua@16782
   527
end