24326
|
1 |
(* Title: HOL/ex/MT.thy
|
1476
|
2 |
Author: Jacob Frost, Cambridge University Computer Laboratory
|
969
|
3 |
Copyright 1993 University of Cambridge
|
|
4 |
|
|
5 |
Based upon the article
|
|
6 |
Robin Milner and Mads Tofte,
|
|
7 |
Co-induction in Relational Semantics,
|
|
8 |
Theoretical Computer Science 87 (1991), pages 209-220.
|
|
9 |
|
|
10 |
Written up as
|
|
11 |
Jacob Frost, A Case Study of Co_induction in Isabelle/HOL
|
|
12 |
Report 308, Computer Lab, University of Cambridge (1993).
|
|
13 |
*)
|
|
14 |
|
24326
|
15 |
header {* Milner-Tofte: Co-induction in Relational Semantics *}
|
|
16 |
|
17289
|
17 |
theory MT
|
|
18 |
imports Main
|
|
19 |
begin
|
969
|
20 |
|
17289
|
21 |
typedecl Const
|
969
|
22 |
|
17289
|
23 |
typedecl ExVar
|
|
24 |
typedecl Ex
|
969
|
25 |
|
17289
|
26 |
typedecl TyConst
|
|
27 |
typedecl Ty
|
969
|
28 |
|
17289
|
29 |
typedecl Clos
|
|
30 |
typedecl Val
|
969
|
31 |
|
17289
|
32 |
typedecl ValEnv
|
|
33 |
typedecl TyEnv
|
969
|
34 |
|
|
35 |
consts
|
15450
|
36 |
c_app :: "[Const, Const] => Const"
|
969
|
37 |
|
15450
|
38 |
e_const :: "Const => Ex"
|
|
39 |
e_var :: "ExVar => Ex"
|
|
40 |
e_fn :: "[ExVar, Ex] => Ex" ("fn _ => _" [0,51] 1000)
|
|
41 |
e_fix :: "[ExVar, ExVar, Ex] => Ex" ("fix _ ( _ ) = _" [0,51,51] 1000)
|
17289
|
42 |
e_app :: "[Ex, Ex] => Ex" ("_ @@ _" [51,51] 1000)
|
15450
|
43 |
e_const_fst :: "Ex => Const"
|
969
|
44 |
|
15450
|
45 |
t_const :: "TyConst => Ty"
|
|
46 |
t_fun :: "[Ty, Ty] => Ty" ("_ -> _" [51,51] 1000)
|
969
|
47 |
|
15450
|
48 |
v_const :: "Const => Val"
|
|
49 |
v_clos :: "Clos => Val"
|
17289
|
50 |
|
1376
|
51 |
ve_emp :: ValEnv
|
15450
|
52 |
ve_owr :: "[ValEnv, ExVar, Val] => ValEnv" ("_ + { _ |-> _ }" [36,0,0] 50)
|
|
53 |
ve_dom :: "ValEnv => ExVar set"
|
|
54 |
ve_app :: "[ValEnv, ExVar] => Val"
|
969
|
55 |
|
15450
|
56 |
clos_mk :: "[ExVar, Ex, ValEnv] => Clos" ("<| _ , _ , _ |>" [0,0,0] 1000)
|
969
|
57 |
|
1376
|
58 |
te_emp :: TyEnv
|
15450
|
59 |
te_owr :: "[TyEnv, ExVar, Ty] => TyEnv" ("_ + { _ |=> _ }" [36,0,0] 50)
|
|
60 |
te_app :: "[TyEnv, ExVar] => Ty"
|
|
61 |
te_dom :: "TyEnv => ExVar set"
|
969
|
62 |
|
|
63 |
eval_fun :: "((ValEnv * Ex) * Val) set => ((ValEnv * Ex) * Val) set"
|
|
64 |
eval_rel :: "((ValEnv * Ex) * Val) set"
|
15450
|
65 |
eval :: "[ValEnv, Ex, Val] => bool" ("_ |- _ ---> _" [36,0,36] 50)
|
969
|
66 |
|
|
67 |
elab_fun :: "((TyEnv * Ex) * Ty) set => ((TyEnv * Ex) * Ty) set"
|
|
68 |
elab_rel :: "((TyEnv * Ex) * Ty) set"
|
15450
|
69 |
elab :: "[TyEnv, Ex, Ty] => bool" ("_ |- _ ===> _" [36,0,36] 50)
|
17289
|
70 |
|
15450
|
71 |
isof :: "[Const, Ty] => bool" ("_ isof _" [36,36] 50)
|
|
72 |
isof_env :: "[ValEnv,TyEnv] => bool" ("_ isofenv _")
|
969
|
73 |
|
|
74 |
hasty_fun :: "(Val * Ty) set => (Val * Ty) set"
|
|
75 |
hasty_rel :: "(Val * Ty) set"
|
15450
|
76 |
hasty :: "[Val, Ty] => bool" ("_ hasty _" [36,36] 50)
|
|
77 |
hasty_env :: "[ValEnv,TyEnv] => bool" ("_ hastyenv _ " [36,36] 35)
|
969
|
78 |
|
17289
|
79 |
(*
|
969
|
80 |
Expression constructors must be injective, distinct and it must be possible
|
|
81 |
to do induction over expressions.
|
|
82 |
*)
|
|
83 |
|
|
84 |
(* All the constructors are injective *)
|
51305
|
85 |
axiomatization where
|
|
86 |
e_const_inj: "e_const(c1) = e_const(c2) ==> c1 = c2" and
|
|
87 |
e_var_inj: "e_var(ev1) = e_var(ev2) ==> ev1 = ev2" and
|
|
88 |
e_fn_inj: "fn ev1 => e1 = fn ev2 => e2 ==> ev1 = ev2 & e1 = e2" and
|
17289
|
89 |
e_fix_inj:
|
|
90 |
" fix ev11e(v12) = e1 = fix ev21(ev22) = e2 ==>
|
51305
|
91 |
ev11 = ev21 & ev12 = ev22 & e1 = e2" and
|
17289
|
92 |
e_app_inj: "e11 @@ e12 = e21 @@ e22 ==> e11 = e21 & e12 = e22"
|
969
|
93 |
|
|
94 |
(* All constructors are distinct *)
|
|
95 |
|
51305
|
96 |
axiomatization where
|
|
97 |
e_disj_const_var: "~e_const(c) = e_var(ev)" and
|
|
98 |
e_disj_const_fn: "~e_const(c) = fn ev => e" and
|
|
99 |
e_disj_const_fix: "~e_const(c) = fix ev1(ev2) = e" and
|
|
100 |
e_disj_const_app: "~e_const(c) = e1 @@ e2" and
|
|
101 |
e_disj_var_fn: "~e_var(ev1) = fn ev2 => e" and
|
|
102 |
e_disj_var_fix: "~e_var(ev) = fix ev1(ev2) = e" and
|
|
103 |
e_disj_var_app: "~e_var(ev) = e1 @@ e2" and
|
|
104 |
e_disj_fn_fix: "~fn ev1 => e1 = fix ev21(ev22) = e2" and
|
|
105 |
e_disj_fn_app: "~fn ev1 => e1 = e21 @@ e22" and
|
17289
|
106 |
e_disj_fix_app: "~fix ev11(ev12) = e1 = e21 @@ e22"
|
969
|
107 |
|
|
108 |
(* Strong elimination, induction on expressions *)
|
|
109 |
|
51305
|
110 |
axiomatization where
|
17289
|
111 |
e_ind:
|
|
112 |
" [| !!ev. P(e_var(ev));
|
|
113 |
!!c. P(e_const(c));
|
|
114 |
!!ev e. P(e) ==> P(fn ev => e);
|
|
115 |
!!ev1 ev2 e. P(e) ==> P(fix ev1(ev2) = e);
|
|
116 |
!!e1 e2. P(e1) ==> P(e2) ==> P(e1 @@ e2)
|
|
117 |
|] ==>
|
|
118 |
P(e)
|
1151
|
119 |
"
|
969
|
120 |
|
|
121 |
(* Types - same scheme as for expressions *)
|
|
122 |
|
17289
|
123 |
(* All constructors are injective *)
|
969
|
124 |
|
51305
|
125 |
axiomatization where
|
|
126 |
t_const_inj: "t_const(c1) = t_const(c2) ==> c1 = c2" and
|
17289
|
127 |
t_fun_inj: "t11 -> t12 = t21 -> t22 ==> t11 = t21 & t12 = t22"
|
969
|
128 |
|
|
129 |
(* All constructors are distinct, not needed so far ... *)
|
|
130 |
|
|
131 |
(* Strong elimination, induction on types *)
|
|
132 |
|
51305
|
133 |
axiomatization where
|
17289
|
134 |
t_ind:
|
|
135 |
"[| !!p. P(t_const p); !!t1 t2. P(t1) ==> P(t2) ==> P(t_fun t1 t2) |]
|
1151
|
136 |
==> P(t)"
|
969
|
137 |
|
|
138 |
|
|
139 |
(* Values - same scheme again *)
|
|
140 |
|
17289
|
141 |
(* All constructors are injective *)
|
969
|
142 |
|
51305
|
143 |
axiomatization where
|
|
144 |
v_const_inj: "v_const(c1) = v_const(c2) ==> c1 = c2" and
|
17289
|
145 |
v_clos_inj:
|
|
146 |
" v_clos(<|ev1,e1,ve1|>) = v_clos(<|ev2,e2,ve2|>) ==>
|
1151
|
147 |
ev1 = ev2 & e1 = e2 & ve1 = ve2"
|
17289
|
148 |
|
969
|
149 |
(* All constructors are distinct *)
|
|
150 |
|
51305
|
151 |
axiomatization where
|
17289
|
152 |
v_disj_const_clos: "~v_const(c) = v_clos(cl)"
|
969
|
153 |
|
15450
|
154 |
(* No induction on values: they are a codatatype! ... *)
|
969
|
155 |
|
|
156 |
|
17289
|
157 |
(*
|
969
|
158 |
Value environments bind variables to values. Only the following trivial
|
|
159 |
properties are needed.
|
|
160 |
*)
|
|
161 |
|
51305
|
162 |
axiomatization where
|
|
163 |
ve_dom_owr: "ve_dom(ve + {ev |-> v}) = ve_dom(ve) Un {ev}" and
|
17289
|
164 |
|
51305
|
165 |
ve_app_owr1: "ve_app (ve + {ev |-> v}) ev=v" and
|
17289
|
166 |
ve_app_owr2: "~ev1=ev2 ==> ve_app (ve+{ev1 |-> v}) ev2=ve_app ve ev2"
|
969
|
167 |
|
|
168 |
|
|
169 |
(* Type Environments bind variables to types. The following trivial
|
|
170 |
properties are needed. *)
|
|
171 |
|
51305
|
172 |
axiomatization where
|
|
173 |
te_dom_owr: "te_dom(te + {ev |=> t}) = te_dom(te) Un {ev}" and
|
17289
|
174 |
|
51305
|
175 |
te_app_owr1: "te_app (te + {ev |=> t}) ev=t" and
|
17289
|
176 |
te_app_owr2: "~ev1=ev2 ==> te_app (te+{ev1 |=> t}) ev2=te_app te ev2"
|
969
|
177 |
|
|
178 |
|
|
179 |
(* The dynamic semantics is defined inductively by a set of inference
|
|
180 |
rules. These inference rules allows one to draw conclusions of the form ve
|
|
181 |
|- e ---> v, read the expression e evaluates to the value v in the value
|
|
182 |
environment ve. Therefore the relation _ |- _ ---> _ is defined in Isabelle
|
|
183 |
as the least fixpoint of the functor eval_fun below. From this definition
|
|
184 |
introduction rules and a strong elimination (induction) rule can be
|
17289
|
185 |
derived.
|
969
|
186 |
*)
|
|
187 |
|
17289
|
188 |
defs
|
|
189 |
eval_fun_def:
|
|
190 |
" eval_fun(s) ==
|
|
191 |
{ pp.
|
|
192 |
(? ve c. pp=((ve,e_const(c)),v_const(c))) |
|
1151
|
193 |
(? ve x. pp=((ve,e_var(x)),ve_app ve x) & x:ve_dom(ve)) |
|
17289
|
194 |
(? ve e x. pp=((ve,fn x => e),v_clos(<|x,e,ve|>)))|
|
|
195 |
( ? ve e x f cl.
|
|
196 |
pp=((ve,fix f(x) = e),v_clos(cl)) &
|
|
197 |
cl=<|x, e, ve+{f |-> v_clos(cl)} |>
|
|
198 |
) |
|
|
199 |
( ? ve e1 e2 c1 c2.
|
|
200 |
pp=((ve,e1 @@ e2),v_const(c_app c1 c2)) &
|
|
201 |
((ve,e1),v_const(c1)):s & ((ve,e2),v_const(c2)):s
|
|
202 |
) |
|
|
203 |
( ? ve vem e1 e2 em xm v v2.
|
|
204 |
pp=((ve,e1 @@ e2),v) &
|
|
205 |
((ve,e1),v_clos(<|xm,em,vem|>)):s &
|
|
206 |
((ve,e2),v2):s &
|
|
207 |
((vem+{xm |-> v2},em),v):s
|
|
208 |
)
|
1151
|
209 |
}"
|
969
|
210 |
|
17289
|
211 |
eval_rel_def: "eval_rel == lfp(eval_fun)"
|
|
212 |
eval_def: "ve |- e ---> v == ((ve,e),v):eval_rel"
|
969
|
213 |
|
|
214 |
(* The static semantics is defined in the same way as the dynamic
|
|
215 |
semantics. The relation te |- e ===> t express the expression e has the
|
|
216 |
type t in the type environment te.
|
|
217 |
*)
|
|
218 |
|
17289
|
219 |
elab_fun_def:
|
|
220 |
"elab_fun(s) ==
|
|
221 |
{ pp.
|
|
222 |
(? te c t. pp=((te,e_const(c)),t) & c isof t) |
|
|
223 |
(? te x. pp=((te,e_var(x)),te_app te x) & x:te_dom(te)) |
|
|
224 |
(? te x e t1 t2. pp=((te,fn x => e),t1->t2) & ((te+{x |=> t1},e),t2):s) |
|
|
225 |
(? te f x e t1 t2.
|
|
226 |
pp=((te,fix f(x)=e),t1->t2) & ((te+{f |=> t1->t2}+{x |=> t1},e),t2):s
|
|
227 |
) |
|
|
228 |
(? te e1 e2 t1 t2.
|
|
229 |
pp=((te,e1 @@ e2),t2) & ((te,e1),t1->t2):s & ((te,e2),t1):s
|
|
230 |
)
|
1151
|
231 |
}"
|
969
|
232 |
|
17289
|
233 |
elab_rel_def: "elab_rel == lfp(elab_fun)"
|
|
234 |
elab_def: "te |- e ===> t == ((te,e),t):elab_rel"
|
969
|
235 |
|
|
236 |
(* The original correspondence relation *)
|
|
237 |
|
17289
|
238 |
isof_env_def:
|
|
239 |
" ve isofenv te ==
|
|
240 |
ve_dom(ve) = te_dom(te) &
|
|
241 |
( ! x.
|
|
242 |
x:ve_dom(ve) -->
|
|
243 |
(? c. ve_app ve x = v_const(c) & c isof te_app te x)
|
|
244 |
)
|
1151
|
245 |
"
|
969
|
246 |
|
51305
|
247 |
axiomatization where
|
17289
|
248 |
isof_app: "[| c1 isof t1->t2; c2 isof t1 |] ==> c_app c1 c2 isof t2"
|
969
|
249 |
|
17289
|
250 |
defs
|
969
|
251 |
(* The extented correspondence relation *)
|
|
252 |
|
17289
|
253 |
hasty_fun_def:
|
|
254 |
" hasty_fun(r) ==
|
|
255 |
{ p.
|
|
256 |
( ? c t. p = (v_const(c),t) & c isof t) |
|
|
257 |
( ? ev e ve t te.
|
|
258 |
p = (v_clos(<|ev,e,ve|>),t) &
|
|
259 |
te |- fn ev => e ===> t &
|
|
260 |
ve_dom(ve) = te_dom(te) &
|
|
261 |
(! ev1. ev1:ve_dom(ve) --> (ve_app ve ev1,te_app te ev1) : r)
|
|
262 |
)
|
|
263 |
}
|
1151
|
264 |
"
|
969
|
265 |
|
17289
|
266 |
hasty_rel_def: "hasty_rel == gfp(hasty_fun)"
|
|
267 |
hasty_def: "v hasty t == (v,t) : hasty_rel"
|
|
268 |
hasty_env_def:
|
|
269 |
" ve hastyenv te ==
|
|
270 |
ve_dom(ve) = te_dom(te) &
|
1151
|
271 |
(! x. x: ve_dom(ve) --> ve_app ve x hasty te_app te x)"
|
969
|
272 |
|
24326
|
273 |
|
|
274 |
(* ############################################################ *)
|
|
275 |
(* Inference systems *)
|
|
276 |
(* ############################################################ *)
|
|
277 |
|
|
278 |
ML {*
|
|
279 |
val infsys_mono_tac = REPEAT (ares_tac (@{thms basic_monos} @ [allI, impI]) 1)
|
|
280 |
*}
|
|
281 |
|
|
282 |
lemma infsys_p1: "P a b ==> P (fst (a,b)) (snd (a,b))"
|
|
283 |
by simp
|
|
284 |
|
|
285 |
lemma infsys_p2: "P (fst (a,b)) (snd (a,b)) ==> P a b"
|
|
286 |
by simp
|
|
287 |
|
|
288 |
lemma infsys_pp1: "P a b c ==> P (fst(fst((a,b),c))) (snd(fst ((a,b),c))) (snd ((a,b),c))"
|
|
289 |
by simp
|
|
290 |
|
|
291 |
lemma infsys_pp2: "P (fst(fst((a,b),c))) (snd(fst((a,b),c))) (snd((a,b),c)) ==> P a b c"
|
|
292 |
by simp
|
|
293 |
|
|
294 |
|
|
295 |
(* ############################################################ *)
|
|
296 |
(* Fixpoints *)
|
|
297 |
(* ############################################################ *)
|
|
298 |
|
|
299 |
(* Least fixpoints *)
|
|
300 |
|
|
301 |
lemma lfp_intro2: "[| mono(f); x:f(lfp(f)) |] ==> x:lfp(f)"
|
|
302 |
apply (rule subsetD)
|
|
303 |
apply (rule lfp_lemma2)
|
|
304 |
apply assumption+
|
|
305 |
done
|
|
306 |
|
|
307 |
lemma lfp_elim2:
|
|
308 |
assumes lfp: "x:lfp(f)"
|
|
309 |
and mono: "mono(f)"
|
|
310 |
and r: "!!y. y:f(lfp(f)) ==> P(y)"
|
|
311 |
shows "P(x)"
|
|
312 |
apply (rule r)
|
|
313 |
apply (rule subsetD)
|
|
314 |
apply (rule lfp_lemma3)
|
|
315 |
apply (rule mono)
|
|
316 |
apply (rule lfp)
|
|
317 |
done
|
|
318 |
|
|
319 |
lemma lfp_ind2:
|
|
320 |
assumes lfp: "x:lfp(f)"
|
|
321 |
and mono: "mono(f)"
|
|
322 |
and r: "!!y. y:f(lfp(f) Int {x. P(x)}) ==> P(y)"
|
|
323 |
shows "P(x)"
|
|
324 |
apply (rule lfp_induct_set [OF lfp mono])
|
|
325 |
apply (erule r)
|
|
326 |
done
|
|
327 |
|
|
328 |
(* Greatest fixpoints *)
|
|
329 |
|
|
330 |
(* Note : "[| x:S; S <= f(S Un gfp(f)); mono(f) |] ==> x:gfp(f)" *)
|
|
331 |
|
|
332 |
lemma gfp_coind2:
|
|
333 |
assumes cih: "x:f({x} Un gfp(f))"
|
|
334 |
and monoh: "mono(f)"
|
|
335 |
shows "x:gfp(f)"
|
|
336 |
apply (rule cih [THEN [2] gfp_upperbound [THEN subsetD]])
|
|
337 |
apply (rule monoh [THEN monoD])
|
|
338 |
apply (rule UnE [THEN subsetI])
|
|
339 |
apply assumption
|
|
340 |
apply (blast intro!: cih)
|
|
341 |
apply (rule monoh [THEN monoD [THEN subsetD]])
|
|
342 |
apply (rule Un_upper2)
|
|
343 |
apply (erule monoh [THEN gfp_lemma2, THEN subsetD])
|
|
344 |
done
|
|
345 |
|
|
346 |
lemma gfp_elim2:
|
|
347 |
assumes gfph: "x:gfp(f)"
|
|
348 |
and monoh: "mono(f)"
|
|
349 |
and caseh: "!!y. y:f(gfp(f)) ==> P(y)"
|
|
350 |
shows "P(x)"
|
|
351 |
apply (rule caseh)
|
|
352 |
apply (rule subsetD)
|
|
353 |
apply (rule gfp_lemma2)
|
|
354 |
apply (rule monoh)
|
|
355 |
apply (rule gfph)
|
|
356 |
done
|
|
357 |
|
|
358 |
(* ############################################################ *)
|
|
359 |
(* Expressions *)
|
|
360 |
(* ############################################################ *)
|
|
361 |
|
|
362 |
lemmas e_injs = e_const_inj e_var_inj e_fn_inj e_fix_inj e_app_inj
|
|
363 |
|
|
364 |
lemmas e_disjs =
|
|
365 |
e_disj_const_var
|
|
366 |
e_disj_const_fn
|
|
367 |
e_disj_const_fix
|
|
368 |
e_disj_const_app
|
|
369 |
e_disj_var_fn
|
|
370 |
e_disj_var_fix
|
|
371 |
e_disj_var_app
|
|
372 |
e_disj_fn_fix
|
|
373 |
e_disj_fn_app
|
|
374 |
e_disj_fix_app
|
|
375 |
|
|
376 |
lemmas e_disj_si = e_disjs e_disjs [symmetric]
|
|
377 |
|
|
378 |
lemmas e_disj_se = e_disj_si [THEN notE]
|
|
379 |
|
|
380 |
(* ############################################################ *)
|
|
381 |
(* Values *)
|
|
382 |
(* ############################################################ *)
|
|
383 |
|
|
384 |
lemmas v_disjs = v_disj_const_clos
|
|
385 |
lemmas v_disj_si = v_disjs v_disjs [symmetric]
|
|
386 |
lemmas v_disj_se = v_disj_si [THEN notE]
|
|
387 |
|
|
388 |
lemmas v_injs = v_const_inj v_clos_inj
|
|
389 |
|
|
390 |
(* ############################################################ *)
|
|
391 |
(* Evaluations *)
|
|
392 |
(* ############################################################ *)
|
|
393 |
|
|
394 |
(* Monotonicity of eval_fun *)
|
|
395 |
|
|
396 |
lemma eval_fun_mono: "mono(eval_fun)"
|
|
397 |
unfolding mono_def eval_fun_def
|
|
398 |
apply (tactic infsys_mono_tac)
|
|
399 |
done
|
|
400 |
|
|
401 |
(* Introduction rules *)
|
|
402 |
|
|
403 |
lemma eval_const: "ve |- e_const(c) ---> v_const(c)"
|
|
404 |
unfolding eval_def eval_rel_def
|
|
405 |
apply (rule lfp_intro2)
|
|
406 |
apply (rule eval_fun_mono)
|
|
407 |
apply (unfold eval_fun_def)
|
|
408 |
(*Naughty! But the quantifiers are nested VERY deeply...*)
|
|
409 |
apply (blast intro!: exI)
|
|
410 |
done
|
|
411 |
|
|
412 |
lemma eval_var2:
|
|
413 |
"ev:ve_dom(ve) ==> ve |- e_var(ev) ---> ve_app ve ev"
|
|
414 |
apply (unfold eval_def eval_rel_def)
|
|
415 |
apply (rule lfp_intro2)
|
|
416 |
apply (rule eval_fun_mono)
|
|
417 |
apply (unfold eval_fun_def)
|
|
418 |
apply (blast intro!: exI)
|
|
419 |
done
|
|
420 |
|
|
421 |
lemma eval_fn:
|
|
422 |
"ve |- fn ev => e ---> v_clos(<|ev,e,ve|>)"
|
|
423 |
apply (unfold eval_def eval_rel_def)
|
|
424 |
apply (rule lfp_intro2)
|
|
425 |
apply (rule eval_fun_mono)
|
|
426 |
apply (unfold eval_fun_def)
|
|
427 |
apply (blast intro!: exI)
|
|
428 |
done
|
|
429 |
|
|
430 |
lemma eval_fix:
|
|
431 |
" cl = <| ev1, e, ve + {ev2 |-> v_clos(cl)} |> ==>
|
|
432 |
ve |- fix ev2(ev1) = e ---> v_clos(cl)"
|
|
433 |
apply (unfold eval_def eval_rel_def)
|
|
434 |
apply (rule lfp_intro2)
|
|
435 |
apply (rule eval_fun_mono)
|
|
436 |
apply (unfold eval_fun_def)
|
|
437 |
apply (blast intro!: exI)
|
|
438 |
done
|
|
439 |
|
|
440 |
lemma eval_app1:
|
|
441 |
" [| ve |- e1 ---> v_const(c1); ve |- e2 ---> v_const(c2) |] ==>
|
|
442 |
ve |- e1 @@ e2 ---> v_const(c_app c1 c2)"
|
|
443 |
apply (unfold eval_def eval_rel_def)
|
|
444 |
apply (rule lfp_intro2)
|
|
445 |
apply (rule eval_fun_mono)
|
|
446 |
apply (unfold eval_fun_def)
|
|
447 |
apply (blast intro!: exI)
|
|
448 |
done
|
|
449 |
|
|
450 |
lemma eval_app2:
|
|
451 |
" [| ve |- e1 ---> v_clos(<|xm,em,vem|>);
|
|
452 |
ve |- e2 ---> v2;
|
|
453 |
vem + {xm |-> v2} |- em ---> v
|
|
454 |
|] ==>
|
|
455 |
ve |- e1 @@ e2 ---> v"
|
|
456 |
apply (unfold eval_def eval_rel_def)
|
|
457 |
apply (rule lfp_intro2)
|
|
458 |
apply (rule eval_fun_mono)
|
|
459 |
apply (unfold eval_fun_def)
|
|
460 |
apply (blast intro!: disjI2)
|
|
461 |
done
|
|
462 |
|
|
463 |
(* Strong elimination, induction on evaluations *)
|
|
464 |
|
|
465 |
lemma eval_ind0:
|
|
466 |
" [| ve |- e ---> v;
|
|
467 |
!!ve c. P(((ve,e_const(c)),v_const(c)));
|
|
468 |
!!ev ve. ev:ve_dom(ve) ==> P(((ve,e_var(ev)),ve_app ve ev));
|
|
469 |
!!ev ve e. P(((ve,fn ev => e),v_clos(<|ev,e,ve|>)));
|
|
470 |
!!ev1 ev2 ve cl e.
|
|
471 |
cl = <| ev1, e, ve + {ev2 |-> v_clos(cl)} |> ==>
|
|
472 |
P(((ve,fix ev2(ev1) = e),v_clos(cl)));
|
|
473 |
!!ve c1 c2 e1 e2.
|
|
474 |
[| P(((ve,e1),v_const(c1))); P(((ve,e2),v_const(c2))) |] ==>
|
|
475 |
P(((ve,e1 @@ e2),v_const(c_app c1 c2)));
|
|
476 |
!!ve vem xm e1 e2 em v v2.
|
|
477 |
[| P(((ve,e1),v_clos(<|xm,em,vem|>)));
|
|
478 |
P(((ve,e2),v2));
|
|
479 |
P(((vem + {xm |-> v2},em),v))
|
|
480 |
|] ==>
|
|
481 |
P(((ve,e1 @@ e2),v))
|
|
482 |
|] ==>
|
|
483 |
P(((ve,e),v))"
|
|
484 |
unfolding eval_def eval_rel_def
|
|
485 |
apply (erule lfp_ind2)
|
|
486 |
apply (rule eval_fun_mono)
|
|
487 |
apply (unfold eval_fun_def)
|
|
488 |
apply (drule CollectD)
|
|
489 |
apply safe
|
|
490 |
apply auto
|
|
491 |
done
|
|
492 |
|
|
493 |
lemma eval_ind:
|
|
494 |
" [| ve |- e ---> v;
|
|
495 |
!!ve c. P ve (e_const c) (v_const c);
|
|
496 |
!!ev ve. ev:ve_dom(ve) ==> P ve (e_var ev) (ve_app ve ev);
|
|
497 |
!!ev ve e. P ve (fn ev => e) (v_clos <|ev,e,ve|>);
|
|
498 |
!!ev1 ev2 ve cl e.
|
|
499 |
cl = <| ev1, e, ve + {ev2 |-> v_clos(cl)} |> ==>
|
|
500 |
P ve (fix ev2(ev1) = e) (v_clos cl);
|
|
501 |
!!ve c1 c2 e1 e2.
|
|
502 |
[| P ve e1 (v_const c1); P ve e2 (v_const c2) |] ==>
|
|
503 |
P ve (e1 @@ e2) (v_const(c_app c1 c2));
|
|
504 |
!!ve vem evm e1 e2 em v v2.
|
|
505 |
[| P ve e1 (v_clos <|evm,em,vem|>);
|
|
506 |
P ve e2 v2;
|
|
507 |
P (vem + {evm |-> v2}) em v
|
|
508 |
|] ==> P ve (e1 @@ e2) v
|
|
509 |
|] ==> P ve e v"
|
|
510 |
apply (rule_tac P = "P" in infsys_pp2)
|
|
511 |
apply (rule eval_ind0)
|
|
512 |
apply (rule infsys_pp1)
|
|
513 |
apply auto
|
|
514 |
done
|
|
515 |
|
|
516 |
(* ############################################################ *)
|
|
517 |
(* Elaborations *)
|
|
518 |
(* ############################################################ *)
|
|
519 |
|
|
520 |
lemma elab_fun_mono: "mono(elab_fun)"
|
|
521 |
unfolding mono_def elab_fun_def
|
|
522 |
apply (tactic infsys_mono_tac)
|
|
523 |
done
|
|
524 |
|
|
525 |
(* Introduction rules *)
|
|
526 |
|
|
527 |
lemma elab_const:
|
|
528 |
"c isof ty ==> te |- e_const(c) ===> ty"
|
|
529 |
apply (unfold elab_def elab_rel_def)
|
|
530 |
apply (rule lfp_intro2)
|
|
531 |
apply (rule elab_fun_mono)
|
|
532 |
apply (unfold elab_fun_def)
|
|
533 |
apply (blast intro!: exI)
|
|
534 |
done
|
|
535 |
|
|
536 |
lemma elab_var:
|
|
537 |
"x:te_dom(te) ==> te |- e_var(x) ===> te_app te x"
|
|
538 |
apply (unfold elab_def elab_rel_def)
|
|
539 |
apply (rule lfp_intro2)
|
|
540 |
apply (rule elab_fun_mono)
|
|
541 |
apply (unfold elab_fun_def)
|
|
542 |
apply (blast intro!: exI)
|
|
543 |
done
|
|
544 |
|
|
545 |
lemma elab_fn:
|
|
546 |
"te + {x |=> ty1} |- e ===> ty2 ==> te |- fn x => e ===> ty1->ty2"
|
|
547 |
apply (unfold elab_def elab_rel_def)
|
|
548 |
apply (rule lfp_intro2)
|
|
549 |
apply (rule elab_fun_mono)
|
|
550 |
apply (unfold elab_fun_def)
|
|
551 |
apply (blast intro!: exI)
|
|
552 |
done
|
|
553 |
|
|
554 |
lemma elab_fix:
|
|
555 |
"te + {f |=> ty1->ty2} + {x |=> ty1} |- e ===> ty2 ==>
|
|
556 |
te |- fix f(x) = e ===> ty1->ty2"
|
|
557 |
apply (unfold elab_def elab_rel_def)
|
|
558 |
apply (rule lfp_intro2)
|
|
559 |
apply (rule elab_fun_mono)
|
|
560 |
apply (unfold elab_fun_def)
|
|
561 |
apply (blast intro!: exI)
|
|
562 |
done
|
|
563 |
|
|
564 |
lemma elab_app:
|
|
565 |
"[| te |- e1 ===> ty1->ty2; te |- e2 ===> ty1 |] ==>
|
|
566 |
te |- e1 @@ e2 ===> ty2"
|
|
567 |
apply (unfold elab_def elab_rel_def)
|
|
568 |
apply (rule lfp_intro2)
|
|
569 |
apply (rule elab_fun_mono)
|
|
570 |
apply (unfold elab_fun_def)
|
|
571 |
apply (blast intro!: disjI2)
|
|
572 |
done
|
|
573 |
|
|
574 |
(* Strong elimination, induction on elaborations *)
|
|
575 |
|
|
576 |
lemma elab_ind0:
|
|
577 |
assumes 1: "te |- e ===> t"
|
|
578 |
and 2: "!!te c t. c isof t ==> P(((te,e_const(c)),t))"
|
|
579 |
and 3: "!!te x. x:te_dom(te) ==> P(((te,e_var(x)),te_app te x))"
|
|
580 |
and 4: "!!te x e t1 t2.
|
|
581 |
[| te + {x |=> t1} |- e ===> t2; P(((te + {x |=> t1},e),t2)) |] ==>
|
|
582 |
P(((te,fn x => e),t1->t2))"
|
|
583 |
and 5: "!!te f x e t1 t2.
|
|
584 |
[| te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2;
|
|
585 |
P(((te + {f |=> t1->t2} + {x |=> t1},e),t2))
|
|
586 |
|] ==>
|
|
587 |
P(((te,fix f(x) = e),t1->t2))"
|
|
588 |
and 6: "!!te e1 e2 t1 t2.
|
|
589 |
[| te |- e1 ===> t1->t2; P(((te,e1),t1->t2));
|
|
590 |
te |- e2 ===> t1; P(((te,e2),t1))
|
|
591 |
|] ==>
|
|
592 |
P(((te,e1 @@ e2),t2))"
|
|
593 |
shows "P(((te,e),t))"
|
|
594 |
apply (rule lfp_ind2 [OF 1 [unfolded elab_def elab_rel_def]])
|
|
595 |
apply (rule elab_fun_mono)
|
|
596 |
apply (unfold elab_fun_def)
|
|
597 |
apply (drule CollectD)
|
|
598 |
apply safe
|
|
599 |
apply (erule 2)
|
|
600 |
apply (erule 3)
|
|
601 |
apply (rule 4 [unfolded elab_def elab_rel_def]) apply blast+
|
|
602 |
apply (rule 5 [unfolded elab_def elab_rel_def]) apply blast+
|
|
603 |
apply (rule 6 [unfolded elab_def elab_rel_def]) apply blast+
|
|
604 |
done
|
|
605 |
|
|
606 |
lemma elab_ind:
|
|
607 |
" [| te |- e ===> t;
|
|
608 |
!!te c t. c isof t ==> P te (e_const c) t;
|
|
609 |
!!te x. x:te_dom(te) ==> P te (e_var x) (te_app te x);
|
|
610 |
!!te x e t1 t2.
|
|
611 |
[| te + {x |=> t1} |- e ===> t2; P (te + {x |=> t1}) e t2 |] ==>
|
|
612 |
P te (fn x => e) (t1->t2);
|
|
613 |
!!te f x e t1 t2.
|
|
614 |
[| te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2;
|
|
615 |
P (te + {f |=> t1->t2} + {x |=> t1}) e t2
|
|
616 |
|] ==>
|
|
617 |
P te (fix f(x) = e) (t1->t2);
|
|
618 |
!!te e1 e2 t1 t2.
|
|
619 |
[| te |- e1 ===> t1->t2; P te e1 (t1->t2);
|
|
620 |
te |- e2 ===> t1; P te e2 t1
|
|
621 |
|] ==>
|
|
622 |
P te (e1 @@ e2) t2
|
|
623 |
|] ==>
|
|
624 |
P te e t"
|
|
625 |
apply (rule_tac P = "P" in infsys_pp2)
|
|
626 |
apply (erule elab_ind0)
|
|
627 |
apply (rule_tac [!] infsys_pp1)
|
|
628 |
apply auto
|
|
629 |
done
|
|
630 |
|
|
631 |
(* Weak elimination, case analysis on elaborations *)
|
|
632 |
|
|
633 |
lemma elab_elim0:
|
|
634 |
assumes 1: "te |- e ===> t"
|
|
635 |
and 2: "!!te c t. c isof t ==> P(((te,e_const(c)),t))"
|
|
636 |
and 3: "!!te x. x:te_dom(te) ==> P(((te,e_var(x)),te_app te x))"
|
|
637 |
and 4: "!!te x e t1 t2.
|
|
638 |
te + {x |=> t1} |- e ===> t2 ==> P(((te,fn x => e),t1->t2))"
|
|
639 |
and 5: "!!te f x e t1 t2.
|
|
640 |
te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2 ==>
|
|
641 |
P(((te,fix f(x) = e),t1->t2))"
|
|
642 |
and 6: "!!te e1 e2 t1 t2.
|
|
643 |
[| te |- e1 ===> t1->t2; te |- e2 ===> t1 |] ==>
|
|
644 |
P(((te,e1 @@ e2),t2))"
|
|
645 |
shows "P(((te,e),t))"
|
|
646 |
apply (rule lfp_elim2 [OF 1 [unfolded elab_def elab_rel_def]])
|
|
647 |
apply (rule elab_fun_mono)
|
|
648 |
apply (unfold elab_fun_def)
|
|
649 |
apply (drule CollectD)
|
|
650 |
apply safe
|
|
651 |
apply (erule 2)
|
|
652 |
apply (erule 3)
|
|
653 |
apply (rule 4 [unfolded elab_def elab_rel_def]) apply blast+
|
|
654 |
apply (rule 5 [unfolded elab_def elab_rel_def]) apply blast+
|
|
655 |
apply (rule 6 [unfolded elab_def elab_rel_def]) apply blast+
|
|
656 |
done
|
|
657 |
|
|
658 |
lemma elab_elim:
|
|
659 |
" [| te |- e ===> t;
|
|
660 |
!!te c t. c isof t ==> P te (e_const c) t;
|
|
661 |
!!te x. x:te_dom(te) ==> P te (e_var x) (te_app te x);
|
|
662 |
!!te x e t1 t2.
|
|
663 |
te + {x |=> t1} |- e ===> t2 ==> P te (fn x => e) (t1->t2);
|
|
664 |
!!te f x e t1 t2.
|
|
665 |
te + {f |=> t1->t2} + {x |=> t1} |- e ===> t2 ==>
|
|
666 |
P te (fix f(x) = e) (t1->t2);
|
|
667 |
!!te e1 e2 t1 t2.
|
|
668 |
[| te |- e1 ===> t1->t2; te |- e2 ===> t1 |] ==>
|
|
669 |
P te (e1 @@ e2) t2
|
|
670 |
|] ==>
|
|
671 |
P te e t"
|
|
672 |
apply (rule_tac P = "P" in infsys_pp2)
|
|
673 |
apply (rule elab_elim0)
|
|
674 |
apply auto
|
|
675 |
done
|
|
676 |
|
|
677 |
(* Elimination rules for each expression *)
|
|
678 |
|
|
679 |
lemma elab_const_elim_lem:
|
|
680 |
"te |- e ===> t ==> (e = e_const(c) --> c isof t)"
|
|
681 |
apply (erule elab_elim)
|
|
682 |
apply (fast intro!: e_disj_si elim!: e_disj_se dest!: e_injs)+
|
|
683 |
done
|
|
684 |
|
|
685 |
lemma elab_const_elim: "te |- e_const(c) ===> t ==> c isof t"
|
|
686 |
apply (drule elab_const_elim_lem)
|
|
687 |
apply blast
|
|
688 |
done
|
|
689 |
|
|
690 |
lemma elab_var_elim_lem:
|
|
691 |
"te |- e ===> t ==> (e = e_var(x) --> t=te_app te x & x:te_dom(te))"
|
|
692 |
apply (erule elab_elim)
|
|
693 |
apply (fast intro!: e_disj_si elim!: e_disj_se dest!: e_injs)+
|
|
694 |
done
|
|
695 |
|
|
696 |
lemma elab_var_elim: "te |- e_var(ev) ===> t ==> t=te_app te ev & ev : te_dom(te)"
|
|
697 |
apply (drule elab_var_elim_lem)
|
|
698 |
apply blast
|
|
699 |
done
|
|
700 |
|
|
701 |
lemma elab_fn_elim_lem:
|
|
702 |
" te |- e ===> t ==>
|
|
703 |
( e = fn x1 => e1 -->
|
|
704 |
(? t1 t2. t=t_fun t1 t2 & te + {x1 |=> t1} |- e1 ===> t2)
|
|
705 |
)"
|
|
706 |
apply (erule elab_elim)
|
|
707 |
apply (fast intro!: e_disj_si elim!: e_disj_se dest!: e_injs)+
|
|
708 |
done
|
|
709 |
|
|
710 |
lemma elab_fn_elim: " te |- fn x1 => e1 ===> t ==>
|
|
711 |
(? t1 t2. t=t1->t2 & te + {x1 |=> t1} |- e1 ===> t2)"
|
|
712 |
apply (drule elab_fn_elim_lem)
|
|
713 |
apply blast
|
|
714 |
done
|
|
715 |
|
|
716 |
lemma elab_fix_elim_lem:
|
|
717 |
" te |- e ===> t ==>
|
|
718 |
(e = fix f(x) = e1 -->
|
|
719 |
(? t1 t2. t=t1->t2 & te + {f |=> t1->t2} + {x |=> t1} |- e1 ===> t2))"
|
|
720 |
apply (erule elab_elim)
|
|
721 |
apply (fast intro!: e_disj_si elim!: e_disj_se dest!: e_injs)+
|
|
722 |
done
|
|
723 |
|
|
724 |
lemma elab_fix_elim: " te |- fix ev1(ev2) = e1 ===> t ==>
|
|
725 |
(? t1 t2. t=t1->t2 & te + {ev1 |=> t1->t2} + {ev2 |=> t1} |- e1 ===> t2)"
|
|
726 |
apply (drule elab_fix_elim_lem)
|
|
727 |
apply blast
|
|
728 |
done
|
|
729 |
|
|
730 |
lemma elab_app_elim_lem:
|
|
731 |
" te |- e ===> t2 ==>
|
|
732 |
(e = e1 @@ e2 --> (? t1 . te |- e1 ===> t1->t2 & te |- e2 ===> t1))"
|
|
733 |
apply (erule elab_elim)
|
|
734 |
apply (fast intro!: e_disj_si elim!: e_disj_se dest!: e_injs)+
|
|
735 |
done
|
|
736 |
|
|
737 |
lemma elab_app_elim: "te |- e1 @@ e2 ===> t2 ==> (? t1 . te |- e1 ===> t1->t2 & te |- e2 ===> t1)"
|
|
738 |
apply (drule elab_app_elim_lem)
|
|
739 |
apply blast
|
|
740 |
done
|
|
741 |
|
|
742 |
(* ############################################################ *)
|
|
743 |
(* The extended correspondence relation *)
|
|
744 |
(* ############################################################ *)
|
|
745 |
|
|
746 |
(* Monotonicity of hasty_fun *)
|
|
747 |
|
|
748 |
lemma mono_hasty_fun: "mono(hasty_fun)"
|
|
749 |
unfolding mono_def hasty_fun_def
|
|
750 |
apply (tactic infsys_mono_tac)
|
|
751 |
apply blast
|
|
752 |
done
|
|
753 |
|
|
754 |
(*
|
|
755 |
Because hasty_rel has been defined as the greatest fixpoint of hasty_fun it
|
|
756 |
enjoys two strong indtroduction (co-induction) rules and an elimination rule.
|
|
757 |
*)
|
|
758 |
|
|
759 |
(* First strong indtroduction (co-induction) rule for hasty_rel *)
|
|
760 |
|
|
761 |
lemma hasty_rel_const_coind: "c isof t ==> (v_const(c),t) : hasty_rel"
|
|
762 |
apply (unfold hasty_rel_def)
|
|
763 |
apply (rule gfp_coind2)
|
|
764 |
apply (unfold hasty_fun_def)
|
|
765 |
apply (rule CollectI)
|
|
766 |
apply (rule disjI1)
|
|
767 |
apply blast
|
|
768 |
apply (rule mono_hasty_fun)
|
|
769 |
done
|
|
770 |
|
|
771 |
(* Second strong introduction (co-induction) rule for hasty_rel *)
|
|
772 |
|
|
773 |
lemma hasty_rel_clos_coind:
|
|
774 |
" [| te |- fn ev => e ===> t;
|
|
775 |
ve_dom(ve) = te_dom(te);
|
|
776 |
! ev1.
|
|
777 |
ev1:ve_dom(ve) -->
|
|
778 |
(ve_app ve ev1,te_app te ev1) : {(v_clos(<|ev,e,ve|>),t)} Un hasty_rel
|
|
779 |
|] ==>
|
|
780 |
(v_clos(<|ev,e,ve|>),t) : hasty_rel"
|
|
781 |
apply (unfold hasty_rel_def)
|
|
782 |
apply (rule gfp_coind2)
|
|
783 |
apply (unfold hasty_fun_def)
|
|
784 |
apply (rule CollectI)
|
|
785 |
apply (rule disjI2)
|
|
786 |
apply blast
|
|
787 |
apply (rule mono_hasty_fun)
|
|
788 |
done
|
|
789 |
|
|
790 |
(* Elimination rule for hasty_rel *)
|
|
791 |
|
|
792 |
lemma hasty_rel_elim0:
|
|
793 |
" [| !! c t. c isof t ==> P((v_const(c),t));
|
|
794 |
!! te ev e t ve.
|
|
795 |
[| te |- fn ev => e ===> t;
|
|
796 |
ve_dom(ve) = te_dom(te);
|
|
797 |
!ev1. ev1:ve_dom(ve) --> (ve_app ve ev1,te_app te ev1) : hasty_rel
|
|
798 |
|] ==> P((v_clos(<|ev,e,ve|>),t));
|
|
799 |
(v,t) : hasty_rel
|
|
800 |
|] ==> P(v,t)"
|
|
801 |
unfolding hasty_rel_def
|
|
802 |
apply (erule gfp_elim2)
|
|
803 |
apply (rule mono_hasty_fun)
|
|
804 |
apply (unfold hasty_fun_def)
|
|
805 |
apply (drule CollectD)
|
|
806 |
apply (fold hasty_fun_def)
|
|
807 |
apply auto
|
|
808 |
done
|
|
809 |
|
|
810 |
lemma hasty_rel_elim:
|
|
811 |
" [| (v,t) : hasty_rel;
|
|
812 |
!! c t. c isof t ==> P (v_const c) t;
|
|
813 |
!! te ev e t ve.
|
|
814 |
[| te |- fn ev => e ===> t;
|
|
815 |
ve_dom(ve) = te_dom(te);
|
|
816 |
!ev1. ev1:ve_dom(ve) --> (ve_app ve ev1,te_app te ev1) : hasty_rel
|
|
817 |
|] ==> P (v_clos <|ev,e,ve|>) t
|
|
818 |
|] ==> P v t"
|
|
819 |
apply (rule_tac P = "P" in infsys_p2)
|
|
820 |
apply (rule hasty_rel_elim0)
|
|
821 |
apply auto
|
|
822 |
done
|
|
823 |
|
|
824 |
(* Introduction rules for hasty *)
|
|
825 |
|
|
826 |
lemma hasty_const: "c isof t ==> v_const(c) hasty t"
|
|
827 |
apply (unfold hasty_def)
|
|
828 |
apply (erule hasty_rel_const_coind)
|
|
829 |
done
|
|
830 |
|
|
831 |
lemma hasty_clos:
|
|
832 |
"te |- fn ev => e ===> t & ve hastyenv te ==> v_clos(<|ev,e,ve|>) hasty t"
|
|
833 |
apply (unfold hasty_def hasty_env_def)
|
|
834 |
apply (rule hasty_rel_clos_coind)
|
|
835 |
apply (blast del: equalityI)+
|
|
836 |
done
|
|
837 |
|
|
838 |
(* Elimination on constants for hasty *)
|
|
839 |
|
|
840 |
lemma hasty_elim_const_lem:
|
|
841 |
"v hasty t ==> (!c.(v = v_const(c) --> c isof t))"
|
|
842 |
apply (unfold hasty_def)
|
|
843 |
apply (rule hasty_rel_elim)
|
|
844 |
apply (blast intro!: v_disj_si elim!: v_disj_se dest!: v_injs)+
|
|
845 |
done
|
|
846 |
|
|
847 |
lemma hasty_elim_const: "v_const(c) hasty t ==> c isof t"
|
|
848 |
apply (drule hasty_elim_const_lem)
|
|
849 |
apply blast
|
|
850 |
done
|
|
851 |
|
|
852 |
(* Elimination on closures for hasty *)
|
|
853 |
|
|
854 |
lemma hasty_elim_clos_lem:
|
|
855 |
" v hasty t ==>
|
|
856 |
! x e ve.
|
|
857 |
v=v_clos(<|x,e,ve|>) --> (? te. te |- fn x => e ===> t & ve hastyenv te)"
|
|
858 |
apply (unfold hasty_env_def hasty_def)
|
|
859 |
apply (rule hasty_rel_elim)
|
|
860 |
apply (blast intro!: v_disj_si elim!: v_disj_se dest!: v_injs)+
|
|
861 |
done
|
|
862 |
|
|
863 |
lemma hasty_elim_clos: "v_clos(<|ev,e,ve|>) hasty t ==>
|
|
864 |
? te. te |- fn ev => e ===> t & ve hastyenv te "
|
|
865 |
apply (drule hasty_elim_clos_lem)
|
|
866 |
apply blast
|
|
867 |
done
|
|
868 |
|
|
869 |
(* ############################################################ *)
|
|
870 |
(* The pointwise extension of hasty to environments *)
|
|
871 |
(* ############################################################ *)
|
|
872 |
|
|
873 |
lemma hasty_env1: "[| ve hastyenv te; v hasty t |] ==>
|
|
874 |
ve + {ev |-> v} hastyenv te + {ev |=> t}"
|
|
875 |
apply (unfold hasty_env_def)
|
|
876 |
apply (simp del: mem_simps add: ve_dom_owr te_dom_owr)
|
42793
|
877 |
apply (tactic {* safe_tac (put_claset HOL_cs @{context}) *})
|
24326
|
878 |
apply (case_tac "ev=x")
|
|
879 |
apply (simp (no_asm_simp) add: ve_app_owr1 te_app_owr1)
|
|
880 |
apply (simp add: ve_app_owr2 te_app_owr2)
|
|
881 |
done
|
|
882 |
|
|
883 |
(* ############################################################ *)
|
|
884 |
(* The Consistency theorem *)
|
|
885 |
(* ############################################################ *)
|
|
886 |
|
|
887 |
lemma consistency_const: "[| ve hastyenv te ; te |- e_const(c) ===> t |] ==> v_const(c) hasty t"
|
|
888 |
apply (drule elab_const_elim)
|
|
889 |
apply (erule hasty_const)
|
|
890 |
done
|
|
891 |
|
|
892 |
lemma consistency_var:
|
|
893 |
"[| ev : ve_dom(ve); ve hastyenv te ; te |- e_var(ev) ===> t |] ==>
|
|
894 |
ve_app ve ev hasty t"
|
|
895 |
apply (unfold hasty_env_def)
|
|
896 |
apply (drule elab_var_elim)
|
|
897 |
apply blast
|
|
898 |
done
|
|
899 |
|
|
900 |
lemma consistency_fn: "[| ve hastyenv te ; te |- fn ev => e ===> t |] ==>
|
|
901 |
v_clos(<| ev, e, ve |>) hasty t"
|
|
902 |
apply (rule hasty_clos)
|
|
903 |
apply blast
|
|
904 |
done
|
|
905 |
|
|
906 |
lemma consistency_fix:
|
|
907 |
"[| cl = <| ev1, e, ve + { ev2 |-> v_clos(cl) } |>;
|
|
908 |
ve hastyenv te ;
|
|
909 |
te |- fix ev2 ev1 = e ===> t
|
|
910 |
|] ==>
|
|
911 |
v_clos(cl) hasty t"
|
|
912 |
apply (unfold hasty_env_def hasty_def)
|
|
913 |
apply (drule elab_fix_elim)
|
42793
|
914 |
apply (tactic {* safe_tac (put_claset HOL_cs @{context}) *})
|
24326
|
915 |
(*Do a single unfolding of cl*)
|
|
916 |
apply (frule ssubst) prefer 2 apply assumption
|
|
917 |
apply (rule hasty_rel_clos_coind)
|
|
918 |
apply (erule elab_fn)
|
|
919 |
apply (simp (no_asm_simp) add: ve_dom_owr te_dom_owr)
|
|
920 |
|
|
921 |
apply (simp (no_asm_simp) del: mem_simps add: ve_dom_owr)
|
42793
|
922 |
apply (tactic {* safe_tac (put_claset HOL_cs @{context}) *})
|
24326
|
923 |
apply (case_tac "ev2=ev1a")
|
|
924 |
apply (simp (no_asm_simp) del: mem_simps add: ve_app_owr1 te_app_owr1)
|
|
925 |
apply blast
|
|
926 |
apply (simp add: ve_app_owr2 te_app_owr2)
|
|
927 |
done
|
|
928 |
|
|
929 |
lemma consistency_app1: "[| ! t te. ve hastyenv te --> te |- e1 ===> t --> v_const(c1) hasty t;
|
|
930 |
! t te. ve hastyenv te --> te |- e2 ===> t --> v_const(c2) hasty t;
|
|
931 |
ve hastyenv te ; te |- e1 @@ e2 ===> t
|
|
932 |
|] ==>
|
|
933 |
v_const(c_app c1 c2) hasty t"
|
|
934 |
apply (drule elab_app_elim)
|
|
935 |
apply safe
|
|
936 |
apply (rule hasty_const)
|
|
937 |
apply (rule isof_app)
|
|
938 |
apply (rule hasty_elim_const)
|
|
939 |
apply blast
|
|
940 |
apply (rule hasty_elim_const)
|
|
941 |
apply blast
|
|
942 |
done
|
|
943 |
|
|
944 |
lemma consistency_app2: "[| ! t te.
|
|
945 |
ve hastyenv te -->
|
|
946 |
te |- e1 ===> t --> v_clos(<|evm, em, vem|>) hasty t;
|
|
947 |
! t te. ve hastyenv te --> te |- e2 ===> t --> v2 hasty t;
|
|
948 |
! t te.
|
|
949 |
vem + { evm |-> v2 } hastyenv te --> te |- em ===> t --> v hasty t;
|
|
950 |
ve hastyenv te ;
|
|
951 |
te |- e1 @@ e2 ===> t
|
|
952 |
|] ==>
|
|
953 |
v hasty t"
|
|
954 |
apply (drule elab_app_elim)
|
|
955 |
apply safe
|
|
956 |
apply (erule allE, erule allE, erule impE)
|
|
957 |
apply assumption
|
|
958 |
apply (erule impE)
|
|
959 |
apply assumption
|
|
960 |
apply (erule allE, erule allE, erule impE)
|
|
961 |
apply assumption
|
|
962 |
apply (erule impE)
|
|
963 |
apply assumption
|
|
964 |
apply (drule hasty_elim_clos)
|
|
965 |
apply safe
|
|
966 |
apply (drule elab_fn_elim)
|
|
967 |
apply (blast intro: hasty_env1 dest!: t_fun_inj)
|
|
968 |
done
|
|
969 |
|
|
970 |
lemma consistency: "ve |- e ---> v ==>
|
|
971 |
(! t te. ve hastyenv te --> te |- e ===> t --> v hasty t)"
|
|
972 |
|
|
973 |
(* Proof by induction on the structure of evaluations *)
|
|
974 |
|
|
975 |
apply (erule eval_ind)
|
|
976 |
apply safe
|
|
977 |
apply (blast intro: consistency_const consistency_var consistency_fn consistency_fix consistency_app1 consistency_app2)+
|
|
978 |
done
|
|
979 |
|
|
980 |
(* ############################################################ *)
|
|
981 |
(* The Basic Consistency theorem *)
|
|
982 |
(* ############################################################ *)
|
|
983 |
|
|
984 |
lemma basic_consistency_lem:
|
|
985 |
"ve isofenv te ==> ve hastyenv te"
|
|
986 |
apply (unfold isof_env_def hasty_env_def)
|
|
987 |
apply safe
|
|
988 |
apply (erule allE)
|
|
989 |
apply (erule impE)
|
|
990 |
apply assumption
|
|
991 |
apply (erule exE)
|
|
992 |
apply (erule conjE)
|
|
993 |
apply (drule hasty_const)
|
|
994 |
apply (simp (no_asm_simp))
|
|
995 |
done
|
|
996 |
|
|
997 |
lemma basic_consistency:
|
|
998 |
"[| ve isofenv te; ve |- e ---> v_const(c); te |- e ===> t |] ==> c isof t"
|
|
999 |
apply (rule hasty_elim_const)
|
|
1000 |
apply (drule consistency)
|
|
1001 |
apply (blast intro!: basic_consistency_lem)
|
|
1002 |
done
|
17289
|
1003 |
|
969
|
1004 |
end
|