author | wenzelm |
Thu, 30 Jul 2009 21:27:15 +0200 | |
changeset 32290 | 47278524df55 |
parent 26056 | 6a0801279f4c |
child 32960 | 69916a850301 |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/Cardinal.thy |
435 | 2 |
ID: $Id$ |
1478 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
435 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
13328 | 6 |
*) |
13221 | 7 |
|
13328 | 8 |
header{*Cardinal Numbers Without the Axiom of Choice*} |
435 | 9 |
|
26056
6a0801279f4c
Made theory names in ZF disjoint from HOL theory names to allow loading both developments
krauss
parents:
24893
diff
changeset
|
10 |
theory Cardinal imports OrderType Finite Nat_ZF Sum begin |
13221 | 11 |
|
24893 | 12 |
definition |
435 | 13 |
(*least ordinal operator*) |
24893 | 14 |
Least :: "(i=>o) => i" (binder "LEAST " 10) where |
13221 | 15 |
"Least(P) == THE i. Ord(i) & P(i) & (ALL j. j<i --> ~P(j))" |
435 | 16 |
|
24893 | 17 |
definition |
18 |
eqpoll :: "[i,i] => o" (infixl "eqpoll" 50) where |
|
13221 | 19 |
"A eqpoll B == EX f. f: bij(A,B)" |
435 | 20 |
|
24893 | 21 |
definition |
22 |
lepoll :: "[i,i] => o" (infixl "lepoll" 50) where |
|
13221 | 23 |
"A lepoll B == EX f. f: inj(A,B)" |
435 | 24 |
|
24893 | 25 |
definition |
26 |
lesspoll :: "[i,i] => o" (infixl "lesspoll" 50) where |
|
13221 | 27 |
"A lesspoll B == A lepoll B & ~(A eqpoll B)" |
832 | 28 |
|
24893 | 29 |
definition |
30 |
cardinal :: "i=>i" ("|_|") where |
|
13221 | 31 |
"|A| == LEAST i. i eqpoll A" |
435 | 32 |
|
24893 | 33 |
definition |
34 |
Finite :: "i=>o" where |
|
13221 | 35 |
"Finite(A) == EX n:nat. A eqpoll n" |
435 | 36 |
|
24893 | 37 |
definition |
38 |
Card :: "i=>o" where |
|
13221 | 39 |
"Card(i) == (i = |i|)" |
435 | 40 |
|
21524 | 41 |
notation (xsymbols) |
42 |
eqpoll (infixl "\<approx>" 50) and |
|
43 |
lepoll (infixl "\<lesssim>" 50) and |
|
44 |
lesspoll (infixl "\<prec>" 50) and |
|
45 |
Least (binder "\<mu>" 10) |
|
13221 | 46 |
|
21524 | 47 |
notation (HTML output) |
48 |
eqpoll (infixl "\<approx>" 50) and |
|
49 |
Least (binder "\<mu>" 10) |
|
50 |
||
14565 | 51 |
|
13357 | 52 |
subsection{*The Schroeder-Bernstein Theorem*} |
53 |
text{*See Davey and Priestly, page 106*} |
|
13221 | 54 |
|
55 |
(** Lemma: Banach's Decomposition Theorem **) |
|
56 |
||
57 |
lemma decomp_bnd_mono: "bnd_mono(X, %W. X - g``(Y - f``W))" |
|
58 |
by (rule bnd_monoI, blast+) |
|
59 |
||
60 |
lemma Banach_last_equation: |
|
61 |
"g: Y->X |
|
62 |
==> g``(Y - f`` lfp(X, %W. X - g``(Y - f``W))) = |
|
63 |
X - lfp(X, %W. X - g``(Y - f``W))" |
|
64 |
apply (rule_tac P = "%u. ?v = X-u" |
|
65 |
in decomp_bnd_mono [THEN lfp_unfold, THEN ssubst]) |
|
66 |
apply (simp add: double_complement fun_is_rel [THEN image_subset]) |
|
67 |
done |
|
68 |
||
69 |
lemma decomposition: |
|
70 |
"[| f: X->Y; g: Y->X |] ==> |
|
71 |
EX XA XB YA YB. (XA Int XB = 0) & (XA Un XB = X) & |
|
72 |
(YA Int YB = 0) & (YA Un YB = Y) & |
|
73 |
f``XA=YA & g``YB=XB" |
|
74 |
apply (intro exI conjI) |
|
75 |
apply (rule_tac [6] Banach_last_equation) |
|
76 |
apply (rule_tac [5] refl) |
|
77 |
apply (assumption | |
|
78 |
rule Diff_disjoint Diff_partition fun_is_rel image_subset lfp_subset)+ |
|
79 |
done |
|
80 |
||
81 |
lemma schroeder_bernstein: |
|
82 |
"[| f: inj(X,Y); g: inj(Y,X) |] ==> EX h. h: bij(X,Y)" |
|
83 |
apply (insert decomposition [of f X Y g]) |
|
84 |
apply (simp add: inj_is_fun) |
|
85 |
apply (blast intro!: restrict_bij bij_disjoint_Un intro: bij_converse_bij) |
|
86 |
(* The instantiation of exI to "restrict(f,XA) Un converse(restrict(g,YB))" |
|
87 |
is forced by the context!! *) |
|
88 |
done |
|
89 |
||
90 |
||
91 |
(** Equipollence is an equivalence relation **) |
|
92 |
||
93 |
lemma bij_imp_eqpoll: "f: bij(A,B) ==> A \<approx> B" |
|
94 |
apply (unfold eqpoll_def) |
|
95 |
apply (erule exI) |
|
96 |
done |
|
97 |
||
98 |
(*A eqpoll A*) |
|
99 |
lemmas eqpoll_refl = id_bij [THEN bij_imp_eqpoll, standard, simp] |
|
100 |
||
101 |
lemma eqpoll_sym: "X \<approx> Y ==> Y \<approx> X" |
|
102 |
apply (unfold eqpoll_def) |
|
103 |
apply (blast intro: bij_converse_bij) |
|
104 |
done |
|
105 |
||
106 |
lemma eqpoll_trans: |
|
107 |
"[| X \<approx> Y; Y \<approx> Z |] ==> X \<approx> Z" |
|
108 |
apply (unfold eqpoll_def) |
|
109 |
apply (blast intro: comp_bij) |
|
110 |
done |
|
111 |
||
112 |
(** Le-pollence is a partial ordering **) |
|
113 |
||
114 |
lemma subset_imp_lepoll: "X<=Y ==> X \<lesssim> Y" |
|
115 |
apply (unfold lepoll_def) |
|
116 |
apply (rule exI) |
|
117 |
apply (erule id_subset_inj) |
|
118 |
done |
|
119 |
||
120 |
lemmas lepoll_refl = subset_refl [THEN subset_imp_lepoll, standard, simp] |
|
121 |
||
122 |
lemmas le_imp_lepoll = le_imp_subset [THEN subset_imp_lepoll, standard] |
|
123 |
||
124 |
lemma eqpoll_imp_lepoll: "X \<approx> Y ==> X \<lesssim> Y" |
|
125 |
by (unfold eqpoll_def bij_def lepoll_def, blast) |
|
126 |
||
127 |
lemma lepoll_trans: "[| X \<lesssim> Y; Y \<lesssim> Z |] ==> X \<lesssim> Z" |
|
128 |
apply (unfold lepoll_def) |
|
129 |
apply (blast intro: comp_inj) |
|
130 |
done |
|
131 |
||
132 |
(*Asymmetry law*) |
|
133 |
lemma eqpollI: "[| X \<lesssim> Y; Y \<lesssim> X |] ==> X \<approx> Y" |
|
134 |
apply (unfold lepoll_def eqpoll_def) |
|
135 |
apply (elim exE) |
|
136 |
apply (rule schroeder_bernstein, assumption+) |
|
137 |
done |
|
138 |
||
139 |
lemma eqpollE: |
|
140 |
"[| X \<approx> Y; [| X \<lesssim> Y; Y \<lesssim> X |] ==> P |] ==> P" |
|
141 |
by (blast intro: eqpoll_imp_lepoll eqpoll_sym) |
|
142 |
||
143 |
lemma eqpoll_iff: "X \<approx> Y <-> X \<lesssim> Y & Y \<lesssim> X" |
|
144 |
by (blast intro: eqpollI elim!: eqpollE) |
|
145 |
||
146 |
lemma lepoll_0_is_0: "A \<lesssim> 0 ==> A = 0" |
|
147 |
apply (unfold lepoll_def inj_def) |
|
148 |
apply (blast dest: apply_type) |
|
149 |
done |
|
150 |
||
151 |
(*0 \<lesssim> Y*) |
|
152 |
lemmas empty_lepollI = empty_subsetI [THEN subset_imp_lepoll, standard] |
|
153 |
||
154 |
lemma lepoll_0_iff: "A \<lesssim> 0 <-> A=0" |
|
155 |
by (blast intro: lepoll_0_is_0 lepoll_refl) |
|
156 |
||
157 |
lemma Un_lepoll_Un: |
|
158 |
"[| A \<lesssim> B; C \<lesssim> D; B Int D = 0 |] ==> A Un C \<lesssim> B Un D" |
|
159 |
apply (unfold lepoll_def) |
|
160 |
apply (blast intro: inj_disjoint_Un) |
|
161 |
done |
|
162 |
||
163 |
(*A eqpoll 0 ==> A=0*) |
|
164 |
lemmas eqpoll_0_is_0 = eqpoll_imp_lepoll [THEN lepoll_0_is_0, standard] |
|
165 |
||
166 |
lemma eqpoll_0_iff: "A \<approx> 0 <-> A=0" |
|
167 |
by (blast intro: eqpoll_0_is_0 eqpoll_refl) |
|
168 |
||
169 |
lemma eqpoll_disjoint_Un: |
|
170 |
"[| A \<approx> B; C \<approx> D; A Int C = 0; B Int D = 0 |] |
|
171 |
==> A Un C \<approx> B Un D" |
|
172 |
apply (unfold eqpoll_def) |
|
173 |
apply (blast intro: bij_disjoint_Un) |
|
174 |
done |
|
175 |
||
176 |
||
13356 | 177 |
subsection{*lesspoll: contributions by Krzysztof Grabczewski *} |
13221 | 178 |
|
179 |
lemma lesspoll_not_refl: "~ (i \<prec> i)" |
|
180 |
by (simp add: lesspoll_def) |
|
181 |
||
182 |
lemma lesspoll_irrefl [elim!]: "i \<prec> i ==> P" |
|
183 |
by (simp add: lesspoll_def) |
|
184 |
||
185 |
lemma lesspoll_imp_lepoll: "A \<prec> B ==> A \<lesssim> B" |
|
186 |
by (unfold lesspoll_def, blast) |
|
187 |
||
188 |
lemma lepoll_well_ord: "[| A \<lesssim> B; well_ord(B,r) |] ==> EX s. well_ord(A,s)" |
|
189 |
apply (unfold lepoll_def) |
|
190 |
apply (blast intro: well_ord_rvimage) |
|
191 |
done |
|
192 |
||
193 |
lemma lepoll_iff_leqpoll: "A \<lesssim> B <-> A \<prec> B | A \<approx> B" |
|
194 |
apply (unfold lesspoll_def) |
|
195 |
apply (blast intro!: eqpollI elim!: eqpollE) |
|
196 |
done |
|
197 |
||
198 |
lemma inj_not_surj_succ: |
|
199 |
"[| f : inj(A, succ(m)); f ~: surj(A, succ(m)) |] ==> EX f. f:inj(A,m)" |
|
200 |
apply (unfold inj_def surj_def) |
|
201 |
apply (safe del: succE) |
|
202 |
apply (erule swap, rule exI) |
|
203 |
apply (rule_tac a = "lam z:A. if f`z=m then y else f`z" in CollectI) |
|
204 |
txt{*the typing condition*} |
|
205 |
apply (best intro!: if_type [THEN lam_type] elim: apply_funtype [THEN succE]) |
|
206 |
txt{*Proving it's injective*} |
|
207 |
apply simp |
|
208 |
apply blast |
|
209 |
done |
|
210 |
||
211 |
(** Variations on transitivity **) |
|
212 |
||
213 |
lemma lesspoll_trans: |
|
214 |
"[| X \<prec> Y; Y \<prec> Z |] ==> X \<prec> Z" |
|
215 |
apply (unfold lesspoll_def) |
|
216 |
apply (blast elim!: eqpollE intro: eqpollI lepoll_trans) |
|
217 |
done |
|
218 |
||
219 |
lemma lesspoll_trans1: |
|
220 |
"[| X \<lesssim> Y; Y \<prec> Z |] ==> X \<prec> Z" |
|
221 |
apply (unfold lesspoll_def) |
|
222 |
apply (blast elim!: eqpollE intro: eqpollI lepoll_trans) |
|
223 |
done |
|
224 |
||
225 |
lemma lesspoll_trans2: |
|
226 |
"[| X \<prec> Y; Y \<lesssim> Z |] ==> X \<prec> Z" |
|
227 |
apply (unfold lesspoll_def) |
|
228 |
apply (blast elim!: eqpollE intro: eqpollI lepoll_trans) |
|
229 |
done |
|
230 |
||
231 |
||
232 |
(** LEAST -- the least number operator [from HOL/Univ.ML] **) |
|
233 |
||
234 |
lemma Least_equality: |
|
235 |
"[| P(i); Ord(i); !!x. x<i ==> ~P(x) |] ==> (LEAST x. P(x)) = i" |
|
236 |
apply (unfold Least_def) |
|
237 |
apply (rule the_equality, blast) |
|
238 |
apply (elim conjE) |
|
239 |
apply (erule Ord_linear_lt, assumption, blast+) |
|
240 |
done |
|
241 |
||
242 |
lemma LeastI: "[| P(i); Ord(i) |] ==> P(LEAST x. P(x))" |
|
243 |
apply (erule rev_mp) |
|
244 |
apply (erule_tac i=i in trans_induct) |
|
245 |
apply (rule impI) |
|
246 |
apply (rule classical) |
|
247 |
apply (blast intro: Least_equality [THEN ssubst] elim!: ltE) |
|
248 |
done |
|
249 |
||
250 |
(*Proof is almost identical to the one above!*) |
|
251 |
lemma Least_le: "[| P(i); Ord(i) |] ==> (LEAST x. P(x)) le i" |
|
252 |
apply (erule rev_mp) |
|
253 |
apply (erule_tac i=i in trans_induct) |
|
254 |
apply (rule impI) |
|
255 |
apply (rule classical) |
|
256 |
apply (subst Least_equality, assumption+) |
|
257 |
apply (erule_tac [2] le_refl) |
|
258 |
apply (blast elim: ltE intro: leI ltI lt_trans1) |
|
259 |
done |
|
260 |
||
261 |
(*LEAST really is the smallest*) |
|
262 |
lemma less_LeastE: "[| P(i); i < (LEAST x. P(x)) |] ==> Q" |
|
263 |
apply (rule Least_le [THEN [2] lt_trans2, THEN lt_irrefl], assumption+) |
|
264 |
apply (simp add: lt_Ord) |
|
265 |
done |
|
266 |
||
267 |
(*Easier to apply than LeastI: conclusion has only one occurrence of P*) |
|
268 |
lemma LeastI2: |
|
269 |
"[| P(i); Ord(i); !!j. P(j) ==> Q(j) |] ==> Q(LEAST j. P(j))" |
|
270 |
by (blast intro: LeastI ) |
|
271 |
||
272 |
(*If there is no such P then LEAST is vacuously 0*) |
|
273 |
lemma Least_0: |
|
274 |
"[| ~ (EX i. Ord(i) & P(i)) |] ==> (LEAST x. P(x)) = 0" |
|
275 |
apply (unfold Least_def) |
|
276 |
apply (rule the_0, blast) |
|
277 |
done |
|
278 |
||
13356 | 279 |
lemma Ord_Least [intro,simp,TC]: "Ord(LEAST x. P(x))" |
14153 | 280 |
apply (case_tac "\<exists>i. Ord(i) & P(i)") |
13221 | 281 |
apply safe |
282 |
apply (rule Least_le [THEN ltE]) |
|
283 |
prefer 3 apply assumption+ |
|
284 |
apply (erule Least_0 [THEN ssubst]) |
|
285 |
apply (rule Ord_0) |
|
286 |
done |
|
287 |
||
288 |
||
289 |
(** Basic properties of cardinals **) |
|
290 |
||
291 |
(*Not needed for simplification, but helpful below*) |
|
292 |
lemma Least_cong: |
|
293 |
"(!!y. P(y) <-> Q(y)) ==> (LEAST x. P(x)) = (LEAST x. Q(x))" |
|
294 |
by simp |
|
295 |
||
296 |
(*Need AC to get X \<lesssim> Y ==> |X| le |Y|; see well_ord_lepoll_imp_Card_le |
|
297 |
Converse also requires AC, but see well_ord_cardinal_eqE*) |
|
298 |
lemma cardinal_cong: "X \<approx> Y ==> |X| = |Y|" |
|
299 |
apply (unfold eqpoll_def cardinal_def) |
|
300 |
apply (rule Least_cong) |
|
301 |
apply (blast intro: comp_bij bij_converse_bij) |
|
302 |
done |
|
303 |
||
304 |
(*Under AC, the premise becomes trivial; one consequence is ||A|| = |A|*) |
|
305 |
lemma well_ord_cardinal_eqpoll: |
|
306 |
"well_ord(A,r) ==> |A| \<approx> A" |
|
307 |
apply (unfold cardinal_def) |
|
308 |
apply (rule LeastI) |
|
309 |
apply (erule_tac [2] Ord_ordertype) |
|
310 |
apply (erule ordermap_bij [THEN bij_converse_bij, THEN bij_imp_eqpoll]) |
|
311 |
done |
|
312 |
||
313 |
(* Ord(A) ==> |A| \<approx> A *) |
|
314 |
lemmas Ord_cardinal_eqpoll = well_ord_Memrel [THEN well_ord_cardinal_eqpoll] |
|
315 |
||
316 |
lemma well_ord_cardinal_eqE: |
|
317 |
"[| well_ord(X,r); well_ord(Y,s); |X| = |Y| |] ==> X \<approx> Y" |
|
318 |
apply (rule eqpoll_sym [THEN eqpoll_trans]) |
|
319 |
apply (erule well_ord_cardinal_eqpoll) |
|
320 |
apply (simp (no_asm_simp) add: well_ord_cardinal_eqpoll) |
|
321 |
done |
|
322 |
||
323 |
lemma well_ord_cardinal_eqpoll_iff: |
|
324 |
"[| well_ord(X,r); well_ord(Y,s) |] ==> |X| = |Y| <-> X \<approx> Y" |
|
325 |
by (blast intro: cardinal_cong well_ord_cardinal_eqE) |
|
326 |
||
327 |
||
328 |
(** Observations from Kunen, page 28 **) |
|
329 |
||
330 |
lemma Ord_cardinal_le: "Ord(i) ==> |i| le i" |
|
331 |
apply (unfold cardinal_def) |
|
332 |
apply (erule eqpoll_refl [THEN Least_le]) |
|
333 |
done |
|
334 |
||
335 |
lemma Card_cardinal_eq: "Card(K) ==> |K| = K" |
|
336 |
apply (unfold Card_def) |
|
337 |
apply (erule sym) |
|
338 |
done |
|
339 |
||
340 |
(* Could replace the ~(j \<approx> i) by ~(i \<lesssim> j) *) |
|
341 |
lemma CardI: "[| Ord(i); !!j. j<i ==> ~(j \<approx> i) |] ==> Card(i)" |
|
342 |
apply (unfold Card_def cardinal_def) |
|
343 |
apply (subst Least_equality) |
|
344 |
apply (blast intro: eqpoll_refl )+ |
|
345 |
done |
|
346 |
||
347 |
lemma Card_is_Ord: "Card(i) ==> Ord(i)" |
|
348 |
apply (unfold Card_def cardinal_def) |
|
349 |
apply (erule ssubst) |
|
350 |
apply (rule Ord_Least) |
|
351 |
done |
|
352 |
||
353 |
lemma Card_cardinal_le: "Card(K) ==> K le |K|" |
|
354 |
apply (simp (no_asm_simp) add: Card_is_Ord Card_cardinal_eq) |
|
355 |
done |
|
356 |
||
357 |
lemma Ord_cardinal [simp,intro!]: "Ord(|A|)" |
|
358 |
apply (unfold cardinal_def) |
|
359 |
apply (rule Ord_Least) |
|
360 |
done |
|
361 |
||
362 |
(*The cardinals are the initial ordinals*) |
|
363 |
lemma Card_iff_initial: "Card(K) <-> Ord(K) & (ALL j. j<K --> ~ j \<approx> K)" |
|
364 |
apply (safe intro!: CardI Card_is_Ord) |
|
365 |
prefer 2 apply blast |
|
366 |
apply (unfold Card_def cardinal_def) |
|
367 |
apply (rule less_LeastE) |
|
368 |
apply (erule_tac [2] subst, assumption+) |
|
369 |
done |
|
370 |
||
371 |
lemma lt_Card_imp_lesspoll: "[| Card(a); i<a |] ==> i \<prec> a" |
|
372 |
apply (unfold lesspoll_def) |
|
373 |
apply (drule Card_iff_initial [THEN iffD1]) |
|
374 |
apply (blast intro!: leI [THEN le_imp_lepoll]) |
|
375 |
done |
|
376 |
||
377 |
lemma Card_0: "Card(0)" |
|
378 |
apply (rule Ord_0 [THEN CardI]) |
|
379 |
apply (blast elim!: ltE) |
|
380 |
done |
|
381 |
||
382 |
lemma Card_Un: "[| Card(K); Card(L) |] ==> Card(K Un L)" |
|
383 |
apply (rule Ord_linear_le [of K L]) |
|
384 |
apply (simp_all add: subset_Un_iff [THEN iffD1] Card_is_Ord le_imp_subset |
|
385 |
subset_Un_iff2 [THEN iffD1]) |
|
386 |
done |
|
387 |
||
388 |
(*Infinite unions of cardinals? See Devlin, Lemma 6.7, page 98*) |
|
389 |
||
390 |
lemma Card_cardinal: "Card(|A|)" |
|
391 |
apply (unfold cardinal_def) |
|
14153 | 392 |
apply (case_tac "EX i. Ord (i) & i \<approx> A") |
13221 | 393 |
txt{*degenerate case*} |
394 |
prefer 2 apply (erule Least_0 [THEN ssubst], rule Card_0) |
|
395 |
txt{*real case: A is isomorphic to some ordinal*} |
|
396 |
apply (rule Ord_Least [THEN CardI], safe) |
|
397 |
apply (rule less_LeastE) |
|
398 |
prefer 2 apply assumption |
|
399 |
apply (erule eqpoll_trans) |
|
400 |
apply (best intro: LeastI ) |
|
401 |
done |
|
402 |
||
403 |
(*Kunen's Lemma 10.5*) |
|
404 |
lemma cardinal_eq_lemma: "[| |i| le j; j le i |] ==> |j| = |i|" |
|
405 |
apply (rule eqpollI [THEN cardinal_cong]) |
|
406 |
apply (erule le_imp_lepoll) |
|
407 |
apply (rule lepoll_trans) |
|
408 |
apply (erule_tac [2] le_imp_lepoll) |
|
409 |
apply (rule eqpoll_sym [THEN eqpoll_imp_lepoll]) |
|
410 |
apply (rule Ord_cardinal_eqpoll) |
|
411 |
apply (elim ltE Ord_succD) |
|
412 |
done |
|
413 |
||
414 |
lemma cardinal_mono: "i le j ==> |i| le |j|" |
|
415 |
apply (rule_tac i = "|i|" and j = "|j|" in Ord_linear_le) |
|
416 |
apply (safe intro!: Ord_cardinal le_eqI) |
|
417 |
apply (rule cardinal_eq_lemma) |
|
418 |
prefer 2 apply assumption |
|
419 |
apply (erule le_trans) |
|
420 |
apply (erule ltE) |
|
421 |
apply (erule Ord_cardinal_le) |
|
422 |
done |
|
423 |
||
424 |
(*Since we have |succ(nat)| le |nat|, the converse of cardinal_mono fails!*) |
|
425 |
lemma cardinal_lt_imp_lt: "[| |i| < |j|; Ord(i); Ord(j) |] ==> i < j" |
|
426 |
apply (rule Ord_linear2 [of i j], assumption+) |
|
427 |
apply (erule lt_trans2 [THEN lt_irrefl]) |
|
428 |
apply (erule cardinal_mono) |
|
429 |
done |
|
430 |
||
431 |
lemma Card_lt_imp_lt: "[| |i| < K; Ord(i); Card(K) |] ==> i < K" |
|
432 |
apply (simp (no_asm_simp) add: cardinal_lt_imp_lt Card_is_Ord Card_cardinal_eq) |
|
433 |
done |
|
434 |
||
435 |
lemma Card_lt_iff: "[| Ord(i); Card(K) |] ==> (|i| < K) <-> (i < K)" |
|
436 |
by (blast intro: Card_lt_imp_lt Ord_cardinal_le [THEN lt_trans1]) |
|
437 |
||
438 |
lemma Card_le_iff: "[| Ord(i); Card(K) |] ==> (K le |i|) <-> (K le i)" |
|
13269 | 439 |
by (simp add: Card_lt_iff Card_is_Ord Ord_cardinal not_lt_iff_le [THEN iff_sym]) |
13221 | 440 |
|
441 |
(*Can use AC or finiteness to discharge first premise*) |
|
442 |
lemma well_ord_lepoll_imp_Card_le: |
|
443 |
"[| well_ord(B,r); A \<lesssim> B |] ==> |A| le |B|" |
|
444 |
apply (rule_tac i = "|A|" and j = "|B|" in Ord_linear_le) |
|
445 |
apply (safe intro!: Ord_cardinal le_eqI) |
|
446 |
apply (rule eqpollI [THEN cardinal_cong], assumption) |
|
447 |
apply (rule lepoll_trans) |
|
448 |
apply (rule well_ord_cardinal_eqpoll [THEN eqpoll_sym, THEN eqpoll_imp_lepoll], assumption) |
|
449 |
apply (erule le_imp_lepoll [THEN lepoll_trans]) |
|
450 |
apply (rule eqpoll_imp_lepoll) |
|
451 |
apply (unfold lepoll_def) |
|
452 |
apply (erule exE) |
|
453 |
apply (rule well_ord_cardinal_eqpoll) |
|
454 |
apply (erule well_ord_rvimage, assumption) |
|
455 |
done |
|
456 |
||
457 |
lemma lepoll_cardinal_le: "[| A \<lesssim> i; Ord(i) |] ==> |A| le i" |
|
458 |
apply (rule le_trans) |
|
459 |
apply (erule well_ord_Memrel [THEN well_ord_lepoll_imp_Card_le], assumption) |
|
460 |
apply (erule Ord_cardinal_le) |
|
461 |
done |
|
462 |
||
463 |
lemma lepoll_Ord_imp_eqpoll: "[| A \<lesssim> i; Ord(i) |] ==> |A| \<approx> A" |
|
464 |
by (blast intro: lepoll_cardinal_le well_ord_Memrel well_ord_cardinal_eqpoll dest!: lepoll_well_ord) |
|
465 |
||
14046 | 466 |
lemma lesspoll_imp_eqpoll: "[| A \<prec> i; Ord(i) |] ==> |A| \<approx> A" |
13221 | 467 |
apply (unfold lesspoll_def) |
468 |
apply (blast intro: lepoll_Ord_imp_eqpoll) |
|
469 |
done |
|
470 |
||
14046 | 471 |
lemma cardinal_subset_Ord: "[|A<=i; Ord(i)|] ==> |A| <= i" |
472 |
apply (drule subset_imp_lepoll [THEN lepoll_cardinal_le]) |
|
473 |
apply (auto simp add: lt_def) |
|
474 |
apply (blast intro: Ord_trans) |
|
475 |
done |
|
13221 | 476 |
|
13356 | 477 |
subsection{*The finite cardinals *} |
13221 | 478 |
|
479 |
lemma cons_lepoll_consD: |
|
480 |
"[| cons(u,A) \<lesssim> cons(v,B); u~:A; v~:B |] ==> A \<lesssim> B" |
|
481 |
apply (unfold lepoll_def inj_def, safe) |
|
482 |
apply (rule_tac x = "lam x:A. if f`x=v then f`u else f`x" in exI) |
|
483 |
apply (rule CollectI) |
|
484 |
(*Proving it's in the function space A->B*) |
|
485 |
apply (rule if_type [THEN lam_type]) |
|
486 |
apply (blast dest: apply_funtype) |
|
487 |
apply (blast elim!: mem_irrefl dest: apply_funtype) |
|
488 |
(*Proving it's injective*) |
|
489 |
apply (simp (no_asm_simp)) |
|
490 |
apply blast |
|
491 |
done |
|
492 |
||
493 |
lemma cons_eqpoll_consD: "[| cons(u,A) \<approx> cons(v,B); u~:A; v~:B |] ==> A \<approx> B" |
|
494 |
apply (simp add: eqpoll_iff) |
|
495 |
apply (blast intro: cons_lepoll_consD) |
|
496 |
done |
|
497 |
||
498 |
(*Lemma suggested by Mike Fourman*) |
|
499 |
lemma succ_lepoll_succD: "succ(m) \<lesssim> succ(n) ==> m \<lesssim> n" |
|
500 |
apply (unfold succ_def) |
|
501 |
apply (erule cons_lepoll_consD) |
|
502 |
apply (rule mem_not_refl)+ |
|
503 |
done |
|
504 |
||
505 |
lemma nat_lepoll_imp_le [rule_format]: |
|
506 |
"m:nat ==> ALL n: nat. m \<lesssim> n --> m le n" |
|
13244 | 507 |
apply (induct_tac m) |
13221 | 508 |
apply (blast intro!: nat_0_le) |
509 |
apply (rule ballI) |
|
13784 | 510 |
apply (erule_tac n = n in natE) |
13221 | 511 |
apply (simp (no_asm_simp) add: lepoll_def inj_def) |
512 |
apply (blast intro!: succ_leI dest!: succ_lepoll_succD) |
|
513 |
done |
|
514 |
||
515 |
lemma nat_eqpoll_iff: "[| m:nat; n: nat |] ==> m \<approx> n <-> m = n" |
|
516 |
apply (rule iffI) |
|
517 |
apply (blast intro: nat_lepoll_imp_le le_anti_sym elim!: eqpollE) |
|
518 |
apply (simp add: eqpoll_refl) |
|
519 |
done |
|
520 |
||
521 |
(*The object of all this work: every natural number is a (finite) cardinal*) |
|
522 |
lemma nat_into_Card: |
|
523 |
"n: nat ==> Card(n)" |
|
524 |
apply (unfold Card_def cardinal_def) |
|
525 |
apply (subst Least_equality) |
|
526 |
apply (rule eqpoll_refl) |
|
527 |
apply (erule nat_into_Ord) |
|
528 |
apply (simp (no_asm_simp) add: lt_nat_in_nat [THEN nat_eqpoll_iff]) |
|
529 |
apply (blast elim!: lt_irrefl)+ |
|
530 |
done |
|
531 |
||
532 |
lemmas cardinal_0 = nat_0I [THEN nat_into_Card, THEN Card_cardinal_eq, iff] |
|
533 |
lemmas cardinal_1 = nat_1I [THEN nat_into_Card, THEN Card_cardinal_eq, iff] |
|
534 |
||
535 |
||
536 |
(*Part of Kunen's Lemma 10.6*) |
|
537 |
lemma succ_lepoll_natE: "[| succ(n) \<lesssim> n; n:nat |] ==> P" |
|
538 |
by (rule nat_lepoll_imp_le [THEN lt_irrefl], auto) |
|
539 |
||
540 |
lemma n_lesspoll_nat: "n \<in> nat ==> n \<prec> nat" |
|
541 |
apply (unfold lesspoll_def) |
|
542 |
apply (fast elim!: Ord_nat [THEN [2] ltI [THEN leI, THEN le_imp_lepoll]] |
|
543 |
eqpoll_sym [THEN eqpoll_imp_lepoll] |
|
544 |
intro: Ord_nat [THEN [2] nat_succI [THEN ltI], THEN leI, |
|
545 |
THEN le_imp_lepoll, THEN lepoll_trans, THEN succ_lepoll_natE]) |
|
546 |
done |
|
547 |
||
548 |
lemma nat_lepoll_imp_ex_eqpoll_n: |
|
549 |
"[| n \<in> nat; nat \<lesssim> X |] ==> \<exists>Y. Y \<subseteq> X & n \<approx> Y" |
|
550 |
apply (unfold lepoll_def eqpoll_def) |
|
551 |
apply (fast del: subsetI subsetCE |
|
552 |
intro!: subset_SIs |
|
553 |
dest!: Ord_nat [THEN [2] OrdmemD, THEN [2] restrict_inj] |
|
554 |
elim!: restrict_bij |
|
555 |
inj_is_fun [THEN fun_is_rel, THEN image_subset]) |
|
556 |
done |
|
557 |
||
558 |
||
559 |
(** lepoll, \<prec> and natural numbers **) |
|
560 |
||
561 |
lemma lepoll_imp_lesspoll_succ: |
|
562 |
"[| A \<lesssim> m; m:nat |] ==> A \<prec> succ(m)" |
|
563 |
apply (unfold lesspoll_def) |
|
564 |
apply (rule conjI) |
|
565 |
apply (blast intro: subset_imp_lepoll [THEN [2] lepoll_trans]) |
|
566 |
apply (rule notI) |
|
567 |
apply (drule eqpoll_sym [THEN eqpoll_imp_lepoll]) |
|
568 |
apply (drule lepoll_trans, assumption) |
|
569 |
apply (erule succ_lepoll_natE, assumption) |
|
570 |
done |
|
571 |
||
572 |
lemma lesspoll_succ_imp_lepoll: |
|
573 |
"[| A \<prec> succ(m); m:nat |] ==> A \<lesssim> m" |
|
574 |
apply (unfold lesspoll_def lepoll_def eqpoll_def bij_def, clarify) |
|
575 |
apply (blast intro!: inj_not_surj_succ) |
|
576 |
done |
|
577 |
||
578 |
lemma lesspoll_succ_iff: "m:nat ==> A \<prec> succ(m) <-> A \<lesssim> m" |
|
579 |
by (blast intro!: lepoll_imp_lesspoll_succ lesspoll_succ_imp_lepoll) |
|
580 |
||
581 |
lemma lepoll_succ_disj: "[| A \<lesssim> succ(m); m:nat |] ==> A \<lesssim> m | A \<approx> succ(m)" |
|
582 |
apply (rule disjCI) |
|
583 |
apply (rule lesspoll_succ_imp_lepoll) |
|
584 |
prefer 2 apply assumption |
|
585 |
apply (simp (no_asm_simp) add: lesspoll_def) |
|
586 |
done |
|
587 |
||
588 |
lemma lesspoll_cardinal_lt: "[| A \<prec> i; Ord(i) |] ==> |A| < i" |
|
589 |
apply (unfold lesspoll_def, clarify) |
|
590 |
apply (frule lepoll_cardinal_le, assumption) |
|
591 |
apply (blast intro: well_ord_Memrel well_ord_cardinal_eqpoll [THEN eqpoll_sym] |
|
592 |
dest: lepoll_well_ord elim!: leE) |
|
593 |
done |
|
594 |
||
595 |
||
13356 | 596 |
subsection{*The first infinite cardinal: Omega, or nat *} |
13221 | 597 |
|
598 |
(*This implies Kunen's Lemma 10.6*) |
|
599 |
lemma lt_not_lepoll: "[| n<i; n:nat |] ==> ~ i \<lesssim> n" |
|
600 |
apply (rule notI) |
|
601 |
apply (rule succ_lepoll_natE [of n]) |
|
602 |
apply (rule lepoll_trans [of _ i]) |
|
603 |
apply (erule ltE) |
|
604 |
apply (rule Ord_succ_subsetI [THEN subset_imp_lepoll], assumption+) |
|
605 |
done |
|
606 |
||
607 |
lemma Ord_nat_eqpoll_iff: "[| Ord(i); n:nat |] ==> i \<approx> n <-> i=n" |
|
608 |
apply (rule iffI) |
|
609 |
prefer 2 apply (simp add: eqpoll_refl) |
|
610 |
apply (rule Ord_linear_lt [of i n]) |
|
611 |
apply (simp_all add: nat_into_Ord) |
|
612 |
apply (erule lt_nat_in_nat [THEN nat_eqpoll_iff, THEN iffD1], assumption+) |
|
613 |
apply (rule lt_not_lepoll [THEN notE], assumption+) |
|
614 |
apply (erule eqpoll_imp_lepoll) |
|
615 |
done |
|
616 |
||
617 |
lemma Card_nat: "Card(nat)" |
|
618 |
apply (unfold Card_def cardinal_def) |
|
619 |
apply (subst Least_equality) |
|
620 |
apply (rule eqpoll_refl) |
|
621 |
apply (rule Ord_nat) |
|
622 |
apply (erule ltE) |
|
623 |
apply (simp_all add: eqpoll_iff lt_not_lepoll ltI) |
|
624 |
done |
|
625 |
||
626 |
(*Allows showing that |i| is a limit cardinal*) |
|
627 |
lemma nat_le_cardinal: "nat le i ==> nat le |i|" |
|
628 |
apply (rule Card_nat [THEN Card_cardinal_eq, THEN subst]) |
|
629 |
apply (erule cardinal_mono) |
|
630 |
done |
|
631 |
||
632 |
||
13356 | 633 |
subsection{*Towards Cardinal Arithmetic *} |
13221 | 634 |
(** Congruence laws for successor, cardinal addition and multiplication **) |
635 |
||
636 |
(*Congruence law for cons under equipollence*) |
|
637 |
lemma cons_lepoll_cong: |
|
638 |
"[| A \<lesssim> B; b ~: B |] ==> cons(a,A) \<lesssim> cons(b,B)" |
|
639 |
apply (unfold lepoll_def, safe) |
|
640 |
apply (rule_tac x = "lam y: cons (a,A) . if y=a then b else f`y" in exI) |
|
641 |
apply (rule_tac d = "%z. if z:B then converse (f) `z else a" in lam_injective) |
|
642 |
apply (safe elim!: consE') |
|
643 |
apply simp_all |
|
644 |
apply (blast intro: inj_is_fun [THEN apply_type])+ |
|
645 |
done |
|
646 |
||
647 |
lemma cons_eqpoll_cong: |
|
648 |
"[| A \<approx> B; a ~: A; b ~: B |] ==> cons(a,A) \<approx> cons(b,B)" |
|
649 |
by (simp add: eqpoll_iff cons_lepoll_cong) |
|
650 |
||
651 |
lemma cons_lepoll_cons_iff: |
|
652 |
"[| a ~: A; b ~: B |] ==> cons(a,A) \<lesssim> cons(b,B) <-> A \<lesssim> B" |
|
653 |
by (blast intro: cons_lepoll_cong cons_lepoll_consD) |
|
654 |
||
655 |
lemma cons_eqpoll_cons_iff: |
|
656 |
"[| a ~: A; b ~: B |] ==> cons(a,A) \<approx> cons(b,B) <-> A \<approx> B" |
|
657 |
by (blast intro: cons_eqpoll_cong cons_eqpoll_consD) |
|
658 |
||
659 |
lemma singleton_eqpoll_1: "{a} \<approx> 1" |
|
660 |
apply (unfold succ_def) |
|
661 |
apply (blast intro!: eqpoll_refl [THEN cons_eqpoll_cong]) |
|
662 |
done |
|
663 |
||
664 |
lemma cardinal_singleton: "|{a}| = 1" |
|
665 |
apply (rule singleton_eqpoll_1 [THEN cardinal_cong, THEN trans]) |
|
666 |
apply (simp (no_asm) add: nat_into_Card [THEN Card_cardinal_eq]) |
|
667 |
done |
|
668 |
||
669 |
lemma not_0_is_lepoll_1: "A ~= 0 ==> 1 \<lesssim> A" |
|
670 |
apply (erule not_emptyE) |
|
671 |
apply (rule_tac a = "cons (x, A-{x}) " in subst) |
|
672 |
apply (rule_tac [2] a = "cons(0,0)" and P= "%y. y \<lesssim> cons (x, A-{x})" in subst) |
|
673 |
prefer 3 apply (blast intro: cons_lepoll_cong subset_imp_lepoll, auto) |
|
674 |
done |
|
675 |
||
676 |
(*Congruence law for succ under equipollence*) |
|
677 |
lemma succ_eqpoll_cong: "A \<approx> B ==> succ(A) \<approx> succ(B)" |
|
678 |
apply (unfold succ_def) |
|
679 |
apply (simp add: cons_eqpoll_cong mem_not_refl) |
|
680 |
done |
|
681 |
||
682 |
(*Congruence law for + under equipollence*) |
|
683 |
lemma sum_eqpoll_cong: "[| A \<approx> C; B \<approx> D |] ==> A+B \<approx> C+D" |
|
684 |
apply (unfold eqpoll_def) |
|
685 |
apply (blast intro!: sum_bij) |
|
686 |
done |
|
687 |
||
688 |
(*Congruence law for * under equipollence*) |
|
689 |
lemma prod_eqpoll_cong: |
|
690 |
"[| A \<approx> C; B \<approx> D |] ==> A*B \<approx> C*D" |
|
691 |
apply (unfold eqpoll_def) |
|
692 |
apply (blast intro!: prod_bij) |
|
693 |
done |
|
694 |
||
695 |
lemma inj_disjoint_eqpoll: |
|
696 |
"[| f: inj(A,B); A Int B = 0 |] ==> A Un (B - range(f)) \<approx> B" |
|
697 |
apply (unfold eqpoll_def) |
|
698 |
apply (rule exI) |
|
699 |
apply (rule_tac c = "%x. if x:A then f`x else x" |
|
700 |
and d = "%y. if y: range (f) then converse (f) `y else y" |
|
701 |
in lam_bijective) |
|
702 |
apply (blast intro!: if_type inj_is_fun [THEN apply_type]) |
|
703 |
apply (simp (no_asm_simp) add: inj_converse_fun [THEN apply_funtype]) |
|
704 |
apply (safe elim!: UnE') |
|
705 |
apply (simp_all add: inj_is_fun [THEN apply_rangeI]) |
|
706 |
apply (blast intro: inj_converse_fun [THEN apply_type])+ |
|
707 |
done |
|
708 |
||
709 |
||
13356 | 710 |
subsection{*Lemmas by Krzysztof Grabczewski*} |
711 |
||
712 |
(*New proofs using cons_lepoll_cons. Could generalise from succ to cons.*) |
|
13221 | 713 |
|
714 |
(*If A has at most n+1 elements and a:A then A-{a} has at most n.*) |
|
715 |
lemma Diff_sing_lepoll: |
|
716 |
"[| a:A; A \<lesssim> succ(n) |] ==> A - {a} \<lesssim> n" |
|
717 |
apply (unfold succ_def) |
|
718 |
apply (rule cons_lepoll_consD) |
|
719 |
apply (rule_tac [3] mem_not_refl) |
|
720 |
apply (erule cons_Diff [THEN ssubst], safe) |
|
721 |
done |
|
722 |
||
723 |
(*If A has at least n+1 elements then A-{a} has at least n.*) |
|
724 |
lemma lepoll_Diff_sing: |
|
725 |
"[| succ(n) \<lesssim> A |] ==> n \<lesssim> A - {a}" |
|
726 |
apply (unfold succ_def) |
|
727 |
apply (rule cons_lepoll_consD) |
|
728 |
apply (rule_tac [2] mem_not_refl) |
|
729 |
prefer 2 apply blast |
|
730 |
apply (blast intro: subset_imp_lepoll [THEN [2] lepoll_trans]) |
|
731 |
done |
|
732 |
||
733 |
lemma Diff_sing_eqpoll: "[| a:A; A \<approx> succ(n) |] ==> A - {a} \<approx> n" |
|
734 |
by (blast intro!: eqpollI |
|
735 |
elim!: eqpollE |
|
736 |
intro: Diff_sing_lepoll lepoll_Diff_sing) |
|
737 |
||
738 |
lemma lepoll_1_is_sing: "[| A \<lesssim> 1; a:A |] ==> A = {a}" |
|
739 |
apply (frule Diff_sing_lepoll, assumption) |
|
740 |
apply (drule lepoll_0_is_0) |
|
741 |
apply (blast elim: equalityE) |
|
742 |
done |
|
743 |
||
744 |
lemma Un_lepoll_sum: "A Un B \<lesssim> A+B" |
|
745 |
apply (unfold lepoll_def) |
|
746 |
apply (rule_tac x = "lam x: A Un B. if x:A then Inl (x) else Inr (x) " in exI) |
|
747 |
apply (rule_tac d = "%z. snd (z) " in lam_injective) |
|
748 |
apply force |
|
749 |
apply (simp add: Inl_def Inr_def) |
|
750 |
done |
|
751 |
||
752 |
lemma well_ord_Un: |
|
753 |
"[| well_ord(X,R); well_ord(Y,S) |] ==> EX T. well_ord(X Un Y, T)" |
|
754 |
by (erule well_ord_radd [THEN Un_lepoll_sum [THEN lepoll_well_ord]], |
|
755 |
assumption) |
|
756 |
||
757 |
(*Krzysztof Grabczewski*) |
|
758 |
lemma disj_Un_eqpoll_sum: "A Int B = 0 ==> A Un B \<approx> A + B" |
|
759 |
apply (unfold eqpoll_def) |
|
760 |
apply (rule_tac x = "lam a:A Un B. if a:A then Inl (a) else Inr (a) " in exI) |
|
761 |
apply (rule_tac d = "%z. case (%x. x, %x. x, z) " in lam_bijective) |
|
762 |
apply auto |
|
763 |
done |
|
764 |
||
765 |
||
13244 | 766 |
subsection {*Finite and infinite sets*} |
13221 | 767 |
|
13244 | 768 |
lemma Finite_0 [simp]: "Finite(0)" |
13221 | 769 |
apply (unfold Finite_def) |
770 |
apply (blast intro!: eqpoll_refl nat_0I) |
|
771 |
done |
|
772 |
||
773 |
lemma lepoll_nat_imp_Finite: "[| A \<lesssim> n; n:nat |] ==> Finite(A)" |
|
774 |
apply (unfold Finite_def) |
|
775 |
apply (erule rev_mp) |
|
776 |
apply (erule nat_induct) |
|
777 |
apply (blast dest!: lepoll_0_is_0 intro!: eqpoll_refl nat_0I) |
|
778 |
apply (blast dest!: lepoll_succ_disj) |
|
779 |
done |
|
780 |
||
781 |
lemma lesspoll_nat_is_Finite: |
|
782 |
"A \<prec> nat ==> Finite(A)" |
|
783 |
apply (unfold Finite_def) |
|
784 |
apply (blast dest: ltD lesspoll_cardinal_lt |
|
785 |
lesspoll_imp_eqpoll [THEN eqpoll_sym]) |
|
786 |
done |
|
787 |
||
788 |
lemma lepoll_Finite: |
|
789 |
"[| Y \<lesssim> X; Finite(X) |] ==> Finite(Y)" |
|
790 |
apply (unfold Finite_def) |
|
791 |
apply (blast elim!: eqpollE |
|
792 |
intro: lepoll_trans [THEN lepoll_nat_imp_Finite |
|
793 |
[unfolded Finite_def]]) |
|
794 |
done |
|
795 |
||
796 |
lemmas subset_Finite = subset_imp_lepoll [THEN lepoll_Finite, standard] |
|
797 |
||
14883 | 798 |
lemma Finite_Int: "Finite(A) | Finite(B) ==> Finite(A Int B)" |
799 |
by (blast intro: subset_Finite) |
|
800 |
||
13221 | 801 |
lemmas Finite_Diff = Diff_subset [THEN subset_Finite, standard] |
802 |
||
803 |
lemma Finite_cons: "Finite(x) ==> Finite(cons(y,x))" |
|
804 |
apply (unfold Finite_def) |
|
14153 | 805 |
apply (case_tac "y:x") |
13221 | 806 |
apply (simp add: cons_absorb) |
807 |
apply (erule bexE) |
|
808 |
apply (rule bexI) |
|
809 |
apply (erule_tac [2] nat_succI) |
|
810 |
apply (simp (no_asm_simp) add: succ_def cons_eqpoll_cong mem_not_refl) |
|
811 |
done |
|
812 |
||
813 |
lemma Finite_succ: "Finite(x) ==> Finite(succ(x))" |
|
814 |
apply (unfold succ_def) |
|
815 |
apply (erule Finite_cons) |
|
816 |
done |
|
817 |
||
13269 | 818 |
lemma Finite_cons_iff [iff]: "Finite(cons(y,x)) <-> Finite(x)" |
13244 | 819 |
by (blast intro: Finite_cons subset_Finite) |
820 |
||
13269 | 821 |
lemma Finite_succ_iff [iff]: "Finite(succ(x)) <-> Finite(x)" |
13244 | 822 |
by (simp add: succ_def) |
823 |
||
13221 | 824 |
lemma nat_le_infinite_Ord: |
825 |
"[| Ord(i); ~ Finite(i) |] ==> nat le i" |
|
826 |
apply (unfold Finite_def) |
|
827 |
apply (erule Ord_nat [THEN [2] Ord_linear2]) |
|
828 |
prefer 2 apply assumption |
|
829 |
apply (blast intro!: eqpoll_refl elim!: ltE) |
|
830 |
done |
|
831 |
||
832 |
lemma Finite_imp_well_ord: |
|
833 |
"Finite(A) ==> EX r. well_ord(A,r)" |
|
834 |
apply (unfold Finite_def eqpoll_def) |
|
835 |
apply (blast intro: well_ord_rvimage bij_is_inj well_ord_Memrel nat_into_Ord) |
|
836 |
done |
|
837 |
||
13244 | 838 |
lemma succ_lepoll_imp_not_empty: "succ(x) \<lesssim> y ==> y \<noteq> 0" |
839 |
by (fast dest!: lepoll_0_is_0) |
|
840 |
||
841 |
lemma eqpoll_succ_imp_not_empty: "x \<approx> succ(n) ==> x \<noteq> 0" |
|
842 |
by (fast elim!: eqpoll_sym [THEN eqpoll_0_is_0, THEN succ_neq_0]) |
|
843 |
||
844 |
lemma Finite_Fin_lemma [rule_format]: |
|
845 |
"n \<in> nat ==> \<forall>A. (A\<approx>n & A \<subseteq> X) --> A \<in> Fin(X)" |
|
846 |
apply (induct_tac n) |
|
847 |
apply (rule allI) |
|
848 |
apply (fast intro!: Fin.emptyI dest!: eqpoll_imp_lepoll [THEN lepoll_0_is_0]) |
|
849 |
apply (rule allI) |
|
850 |
apply (rule impI) |
|
851 |
apply (erule conjE) |
|
852 |
apply (rule eqpoll_succ_imp_not_empty [THEN not_emptyE], assumption) |
|
853 |
apply (frule Diff_sing_eqpoll, assumption) |
|
854 |
apply (erule allE) |
|
855 |
apply (erule impE, fast) |
|
856 |
apply (drule subsetD, assumption) |
|
857 |
apply (drule Fin.consI, assumption) |
|
858 |
apply (simp add: cons_Diff) |
|
859 |
done |
|
860 |
||
861 |
lemma Finite_Fin: "[| Finite(A); A \<subseteq> X |] ==> A \<in> Fin(X)" |
|
862 |
by (unfold Finite_def, blast intro: Finite_Fin_lemma) |
|
863 |
||
864 |
lemma eqpoll_imp_Finite_iff: "A \<approx> B ==> Finite(A) <-> Finite(B)" |
|
865 |
apply (unfold Finite_def) |
|
866 |
apply (blast intro: eqpoll_trans eqpoll_sym) |
|
867 |
done |
|
868 |
||
869 |
lemma Fin_lemma [rule_format]: "n: nat ==> ALL A. A \<approx> n --> A : Fin(A)" |
|
870 |
apply (induct_tac n) |
|
871 |
apply (simp add: eqpoll_0_iff, clarify) |
|
872 |
apply (subgoal_tac "EX u. u:A") |
|
873 |
apply (erule exE) |
|
874 |
apply (rule Diff_sing_eqpoll [THEN revcut_rl]) |
|
875 |
prefer 2 apply assumption |
|
876 |
apply assumption |
|
13784 | 877 |
apply (rule_tac b = A in cons_Diff [THEN subst], assumption) |
13244 | 878 |
apply (rule Fin.consI, blast) |
879 |
apply (blast intro: subset_consI [THEN Fin_mono, THEN subsetD]) |
|
880 |
(*Now for the lemma assumed above*) |
|
881 |
apply (unfold eqpoll_def) |
|
882 |
apply (blast intro: bij_converse_bij [THEN bij_is_fun, THEN apply_type]) |
|
883 |
done |
|
884 |
||
885 |
lemma Finite_into_Fin: "Finite(A) ==> A : Fin(A)" |
|
886 |
apply (unfold Finite_def) |
|
887 |
apply (blast intro: Fin_lemma) |
|
888 |
done |
|
889 |
||
890 |
lemma Fin_into_Finite: "A : Fin(U) ==> Finite(A)" |
|
891 |
by (fast intro!: Finite_0 Finite_cons elim: Fin_induct) |
|
892 |
||
893 |
lemma Finite_Fin_iff: "Finite(A) <-> A : Fin(A)" |
|
894 |
by (blast intro: Finite_into_Fin Fin_into_Finite) |
|
895 |
||
896 |
lemma Finite_Un: "[| Finite(A); Finite(B) |] ==> Finite(A Un B)" |
|
897 |
by (blast intro!: Fin_into_Finite Fin_UnI |
|
898 |
dest!: Finite_into_Fin |
|
899 |
intro: Un_upper1 [THEN Fin_mono, THEN subsetD] |
|
900 |
Un_upper2 [THEN Fin_mono, THEN subsetD]) |
|
901 |
||
14883 | 902 |
lemma Finite_Un_iff [simp]: "Finite(A Un B) <-> (Finite(A) & Finite(B))" |
903 |
by (blast intro: subset_Finite Finite_Un) |
|
904 |
||
905 |
text{*The converse must hold too.*} |
|
13244 | 906 |
lemma Finite_Union: "[| ALL y:X. Finite(y); Finite(X) |] ==> Finite(Union(X))" |
907 |
apply (simp add: Finite_Fin_iff) |
|
908 |
apply (rule Fin_UnionI) |
|
909 |
apply (erule Fin_induct, simp) |
|
910 |
apply (blast intro: Fin.consI Fin_mono [THEN [2] rev_subsetD]) |
|
911 |
done |
|
912 |
||
913 |
(* Induction principle for Finite(A), by Sidi Ehmety *) |
|
13524 | 914 |
lemma Finite_induct [case_names 0 cons, induct set: Finite]: |
13244 | 915 |
"[| Finite(A); P(0); |
916 |
!! x B. [| Finite(B); x ~: B; P(B) |] ==> P(cons(x, B)) |] |
|
917 |
==> P(A)" |
|
918 |
apply (erule Finite_into_Fin [THEN Fin_induct]) |
|
919 |
apply (blast intro: Fin_into_Finite)+ |
|
920 |
done |
|
921 |
||
922 |
(*Sidi Ehmety. The contrapositive says ~Finite(A) ==> ~Finite(A-{a}) *) |
|
923 |
lemma Diff_sing_Finite: "Finite(A - {a}) ==> Finite(A)" |
|
924 |
apply (unfold Finite_def) |
|
925 |
apply (case_tac "a:A") |
|
926 |
apply (subgoal_tac [2] "A-{a}=A", auto) |
|
927 |
apply (rule_tac x = "succ (n) " in bexI) |
|
928 |
apply (subgoal_tac "cons (a, A - {a}) = A & cons (n, n) = succ (n) ") |
|
13784 | 929 |
apply (drule_tac a = a and b = n in cons_eqpoll_cong) |
13244 | 930 |
apply (auto dest: mem_irrefl) |
931 |
done |
|
932 |
||
933 |
(*Sidi Ehmety. And the contrapositive of this says |
|
934 |
[| ~Finite(A); Finite(B) |] ==> ~Finite(A-B) *) |
|
935 |
lemma Diff_Finite [rule_format]: "Finite(B) ==> Finite(A-B) --> Finite(A)" |
|
936 |
apply (erule Finite_induct, auto) |
|
937 |
apply (case_tac "x:A") |
|
938 |
apply (subgoal_tac [2] "A-cons (x, B) = A - B") |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13524
diff
changeset
|
939 |
apply (subgoal_tac "A - cons (x, B) = (A - B) - {x}", simp) |
13244 | 940 |
apply (drule Diff_sing_Finite, auto) |
941 |
done |
|
942 |
||
943 |
lemma Finite_RepFun: "Finite(A) ==> Finite(RepFun(A,f))" |
|
944 |
by (erule Finite_induct, simp_all) |
|
945 |
||
946 |
lemma Finite_RepFun_iff_lemma [rule_format]: |
|
947 |
"[|Finite(x); !!x y. f(x)=f(y) ==> x=y|] |
|
948 |
==> \<forall>A. x = RepFun(A,f) --> Finite(A)" |
|
949 |
apply (erule Finite_induct) |
|
950 |
apply clarify |
|
951 |
apply (case_tac "A=0", simp) |
|
952 |
apply (blast del: allE, clarify) |
|
953 |
apply (subgoal_tac "\<exists>z\<in>A. x = f(z)") |
|
954 |
prefer 2 apply (blast del: allE elim: equalityE, clarify) |
|
955 |
apply (subgoal_tac "B = {f(u) . u \<in> A - {z}}") |
|
956 |
apply (blast intro: Diff_sing_Finite) |
|
957 |
apply (thin_tac "\<forall>A. ?P(A) --> Finite(A)") |
|
958 |
apply (rule equalityI) |
|
959 |
apply (blast intro: elim: equalityE) |
|
960 |
apply (blast intro: elim: equalityCE) |
|
961 |
done |
|
962 |
||
963 |
text{*I don't know why, but if the premise is expressed using meta-connectives |
|
964 |
then the simplifier cannot prove it automatically in conditional rewriting.*} |
|
965 |
lemma Finite_RepFun_iff: |
|
966 |
"(\<forall>x y. f(x)=f(y) --> x=y) ==> Finite(RepFun(A,f)) <-> Finite(A)" |
|
967 |
by (blast intro: Finite_RepFun Finite_RepFun_iff_lemma [of _ f]) |
|
968 |
||
969 |
lemma Finite_Pow: "Finite(A) ==> Finite(Pow(A))" |
|
970 |
apply (erule Finite_induct) |
|
971 |
apply (simp_all add: Pow_insert Finite_Un Finite_RepFun) |
|
972 |
done |
|
973 |
||
974 |
lemma Finite_Pow_imp_Finite: "Finite(Pow(A)) ==> Finite(A)" |
|
975 |
apply (subgoal_tac "Finite({{x} . x \<in> A})") |
|
976 |
apply (simp add: Finite_RepFun_iff ) |
|
977 |
apply (blast intro: subset_Finite) |
|
978 |
done |
|
979 |
||
980 |
lemma Finite_Pow_iff [iff]: "Finite(Pow(A)) <-> Finite(A)" |
|
981 |
by (blast intro: Finite_Pow Finite_Pow_imp_Finite) |
|
982 |
||
983 |
||
13221 | 984 |
|
985 |
(*Krzysztof Grabczewski's proof that the converse of a finite, well-ordered |
|
986 |
set is well-ordered. Proofs simplified by lcp. *) |
|
987 |
||
988 |
lemma nat_wf_on_converse_Memrel: "n:nat ==> wf[n](converse(Memrel(n)))" |
|
989 |
apply (erule nat_induct) |
|
990 |
apply (blast intro: wf_onI) |
|
991 |
apply (rule wf_onI) |
|
992 |
apply (simp add: wf_on_def wf_def) |
|
14153 | 993 |
apply (case_tac "x:Z") |
13221 | 994 |
txt{*x:Z case*} |
995 |
apply (drule_tac x = x in bspec, assumption) |
|
996 |
apply (blast elim: mem_irrefl mem_asym) |
|
997 |
txt{*other case*} |
|
13784 | 998 |
apply (drule_tac x = Z in spec, blast) |
13221 | 999 |
done |
1000 |
||
1001 |
lemma nat_well_ord_converse_Memrel: "n:nat ==> well_ord(n,converse(Memrel(n)))" |
|
1002 |
apply (frule Ord_nat [THEN Ord_in_Ord, THEN well_ord_Memrel]) |
|
1003 |
apply (unfold well_ord_def) |
|
1004 |
apply (blast intro!: tot_ord_converse nat_wf_on_converse_Memrel) |
|
1005 |
done |
|
1006 |
||
1007 |
lemma well_ord_converse: |
|
1008 |
"[|well_ord(A,r); |
|
1009 |
well_ord(ordertype(A,r), converse(Memrel(ordertype(A, r)))) |] |
|
1010 |
==> well_ord(A,converse(r))" |
|
1011 |
apply (rule well_ord_Int_iff [THEN iffD1]) |
|
1012 |
apply (frule ordermap_bij [THEN bij_is_inj, THEN well_ord_rvimage], assumption) |
|
1013 |
apply (simp add: rvimage_converse converse_Int converse_prod |
|
1014 |
ordertype_ord_iso [THEN ord_iso_rvimage_eq]) |
|
1015 |
done |
|
1016 |
||
1017 |
lemma ordertype_eq_n: |
|
1018 |
"[| well_ord(A,r); A \<approx> n; n:nat |] ==> ordertype(A,r)=n" |
|
1019 |
apply (rule Ord_ordertype [THEN Ord_nat_eqpoll_iff, THEN iffD1], assumption+) |
|
1020 |
apply (rule eqpoll_trans) |
|
1021 |
prefer 2 apply assumption |
|
1022 |
apply (unfold eqpoll_def) |
|
1023 |
apply (blast intro!: ordermap_bij [THEN bij_converse_bij]) |
|
1024 |
done |
|
1025 |
||
1026 |
lemma Finite_well_ord_converse: |
|
1027 |
"[| Finite(A); well_ord(A,r) |] ==> well_ord(A,converse(r))" |
|
1028 |
apply (unfold Finite_def) |
|
1029 |
apply (rule well_ord_converse, assumption) |
|
1030 |
apply (blast dest: ordertype_eq_n intro!: nat_well_ord_converse_Memrel) |
|
1031 |
done |
|
1032 |
||
1033 |
lemma nat_into_Finite: "n:nat ==> Finite(n)" |
|
1034 |
apply (unfold Finite_def) |
|
1035 |
apply (fast intro!: eqpoll_refl) |
|
1036 |
done |
|
1037 |
||
14076 | 1038 |
lemma nat_not_Finite: "~Finite(nat)" |
1039 |
apply (unfold Finite_def, clarify) |
|
1040 |
apply (drule eqpoll_imp_lepoll [THEN lepoll_cardinal_le], simp) |
|
1041 |
apply (insert Card_nat) |
|
1042 |
apply (simp add: Card_def) |
|
1043 |
apply (drule le_imp_subset) |
|
1044 |
apply (blast elim: mem_irrefl) |
|
1045 |
done |
|
1046 |
||
13221 | 1047 |
ML |
1048 |
{* |
|
1049 |
val Least_def = thm "Least_def"; |
|
1050 |
val eqpoll_def = thm "eqpoll_def"; |
|
1051 |
val lepoll_def = thm "lepoll_def"; |
|
1052 |
val lesspoll_def = thm "lesspoll_def"; |
|
1053 |
val cardinal_def = thm "cardinal_def"; |
|
1054 |
val Finite_def = thm "Finite_def"; |
|
1055 |
val Card_def = thm "Card_def"; |
|
1056 |
val eq_imp_not_mem = thm "eq_imp_not_mem"; |
|
1057 |
val decomp_bnd_mono = thm "decomp_bnd_mono"; |
|
1058 |
val Banach_last_equation = thm "Banach_last_equation"; |
|
1059 |
val decomposition = thm "decomposition"; |
|
1060 |
val schroeder_bernstein = thm "schroeder_bernstein"; |
|
1061 |
val bij_imp_eqpoll = thm "bij_imp_eqpoll"; |
|
1062 |
val eqpoll_refl = thm "eqpoll_refl"; |
|
1063 |
val eqpoll_sym = thm "eqpoll_sym"; |
|
1064 |
val eqpoll_trans = thm "eqpoll_trans"; |
|
1065 |
val subset_imp_lepoll = thm "subset_imp_lepoll"; |
|
1066 |
val lepoll_refl = thm "lepoll_refl"; |
|
1067 |
val le_imp_lepoll = thm "le_imp_lepoll"; |
|
1068 |
val eqpoll_imp_lepoll = thm "eqpoll_imp_lepoll"; |
|
1069 |
val lepoll_trans = thm "lepoll_trans"; |
|
1070 |
val eqpollI = thm "eqpollI"; |
|
1071 |
val eqpollE = thm "eqpollE"; |
|
1072 |
val eqpoll_iff = thm "eqpoll_iff"; |
|
1073 |
val lepoll_0_is_0 = thm "lepoll_0_is_0"; |
|
1074 |
val empty_lepollI = thm "empty_lepollI"; |
|
1075 |
val lepoll_0_iff = thm "lepoll_0_iff"; |
|
1076 |
val Un_lepoll_Un = thm "Un_lepoll_Un"; |
|
1077 |
val eqpoll_0_is_0 = thm "eqpoll_0_is_0"; |
|
1078 |
val eqpoll_0_iff = thm "eqpoll_0_iff"; |
|
1079 |
val eqpoll_disjoint_Un = thm "eqpoll_disjoint_Un"; |
|
1080 |
val lesspoll_not_refl = thm "lesspoll_not_refl"; |
|
1081 |
val lesspoll_irrefl = thm "lesspoll_irrefl"; |
|
1082 |
val lesspoll_imp_lepoll = thm "lesspoll_imp_lepoll"; |
|
1083 |
val lepoll_well_ord = thm "lepoll_well_ord"; |
|
1084 |
val lepoll_iff_leqpoll = thm "lepoll_iff_leqpoll"; |
|
1085 |
val inj_not_surj_succ = thm "inj_not_surj_succ"; |
|
1086 |
val lesspoll_trans = thm "lesspoll_trans"; |
|
1087 |
val lesspoll_trans1 = thm "lesspoll_trans1"; |
|
1088 |
val lesspoll_trans2 = thm "lesspoll_trans2"; |
|
1089 |
val Least_equality = thm "Least_equality"; |
|
1090 |
val LeastI = thm "LeastI"; |
|
1091 |
val Least_le = thm "Least_le"; |
|
1092 |
val less_LeastE = thm "less_LeastE"; |
|
1093 |
val LeastI2 = thm "LeastI2"; |
|
1094 |
val Least_0 = thm "Least_0"; |
|
1095 |
val Ord_Least = thm "Ord_Least"; |
|
1096 |
val Least_cong = thm "Least_cong"; |
|
1097 |
val cardinal_cong = thm "cardinal_cong"; |
|
1098 |
val well_ord_cardinal_eqpoll = thm "well_ord_cardinal_eqpoll"; |
|
1099 |
val Ord_cardinal_eqpoll = thm "Ord_cardinal_eqpoll"; |
|
1100 |
val well_ord_cardinal_eqE = thm "well_ord_cardinal_eqE"; |
|
1101 |
val well_ord_cardinal_eqpoll_iff = thm "well_ord_cardinal_eqpoll_iff"; |
|
1102 |
val Ord_cardinal_le = thm "Ord_cardinal_le"; |
|
1103 |
val Card_cardinal_eq = thm "Card_cardinal_eq"; |
|
1104 |
val CardI = thm "CardI"; |
|
1105 |
val Card_is_Ord = thm "Card_is_Ord"; |
|
1106 |
val Card_cardinal_le = thm "Card_cardinal_le"; |
|
1107 |
val Ord_cardinal = thm "Ord_cardinal"; |
|
1108 |
val Card_iff_initial = thm "Card_iff_initial"; |
|
1109 |
val lt_Card_imp_lesspoll = thm "lt_Card_imp_lesspoll"; |
|
1110 |
val Card_0 = thm "Card_0"; |
|
1111 |
val Card_Un = thm "Card_Un"; |
|
1112 |
val Card_cardinal = thm "Card_cardinal"; |
|
1113 |
val cardinal_mono = thm "cardinal_mono"; |
|
1114 |
val cardinal_lt_imp_lt = thm "cardinal_lt_imp_lt"; |
|
1115 |
val Card_lt_imp_lt = thm "Card_lt_imp_lt"; |
|
1116 |
val Card_lt_iff = thm "Card_lt_iff"; |
|
1117 |
val Card_le_iff = thm "Card_le_iff"; |
|
1118 |
val well_ord_lepoll_imp_Card_le = thm "well_ord_lepoll_imp_Card_le"; |
|
1119 |
val lepoll_cardinal_le = thm "lepoll_cardinal_le"; |
|
1120 |
val lepoll_Ord_imp_eqpoll = thm "lepoll_Ord_imp_eqpoll"; |
|
1121 |
val lesspoll_imp_eqpoll = thm "lesspoll_imp_eqpoll"; |
|
14046 | 1122 |
val cardinal_subset_Ord = thm "cardinal_subset_Ord"; |
13221 | 1123 |
val cons_lepoll_consD = thm "cons_lepoll_consD"; |
1124 |
val cons_eqpoll_consD = thm "cons_eqpoll_consD"; |
|
1125 |
val succ_lepoll_succD = thm "succ_lepoll_succD"; |
|
1126 |
val nat_lepoll_imp_le = thm "nat_lepoll_imp_le"; |
|
1127 |
val nat_eqpoll_iff = thm "nat_eqpoll_iff"; |
|
1128 |
val nat_into_Card = thm "nat_into_Card"; |
|
1129 |
val cardinal_0 = thm "cardinal_0"; |
|
1130 |
val cardinal_1 = thm "cardinal_1"; |
|
1131 |
val succ_lepoll_natE = thm "succ_lepoll_natE"; |
|
1132 |
val n_lesspoll_nat = thm "n_lesspoll_nat"; |
|
1133 |
val nat_lepoll_imp_ex_eqpoll_n = thm "nat_lepoll_imp_ex_eqpoll_n"; |
|
1134 |
val lepoll_imp_lesspoll_succ = thm "lepoll_imp_lesspoll_succ"; |
|
1135 |
val lesspoll_succ_imp_lepoll = thm "lesspoll_succ_imp_lepoll"; |
|
1136 |
val lesspoll_succ_iff = thm "lesspoll_succ_iff"; |
|
1137 |
val lepoll_succ_disj = thm "lepoll_succ_disj"; |
|
1138 |
val lesspoll_cardinal_lt = thm "lesspoll_cardinal_lt"; |
|
1139 |
val lt_not_lepoll = thm "lt_not_lepoll"; |
|
1140 |
val Ord_nat_eqpoll_iff = thm "Ord_nat_eqpoll_iff"; |
|
1141 |
val Card_nat = thm "Card_nat"; |
|
1142 |
val nat_le_cardinal = thm "nat_le_cardinal"; |
|
1143 |
val cons_lepoll_cong = thm "cons_lepoll_cong"; |
|
1144 |
val cons_eqpoll_cong = thm "cons_eqpoll_cong"; |
|
1145 |
val cons_lepoll_cons_iff = thm "cons_lepoll_cons_iff"; |
|
1146 |
val cons_eqpoll_cons_iff = thm "cons_eqpoll_cons_iff"; |
|
1147 |
val singleton_eqpoll_1 = thm "singleton_eqpoll_1"; |
|
1148 |
val cardinal_singleton = thm "cardinal_singleton"; |
|
1149 |
val not_0_is_lepoll_1 = thm "not_0_is_lepoll_1"; |
|
1150 |
val succ_eqpoll_cong = thm "succ_eqpoll_cong"; |
|
1151 |
val sum_eqpoll_cong = thm "sum_eqpoll_cong"; |
|
1152 |
val prod_eqpoll_cong = thm "prod_eqpoll_cong"; |
|
1153 |
val inj_disjoint_eqpoll = thm "inj_disjoint_eqpoll"; |
|
1154 |
val Diff_sing_lepoll = thm "Diff_sing_lepoll"; |
|
1155 |
val lepoll_Diff_sing = thm "lepoll_Diff_sing"; |
|
1156 |
val Diff_sing_eqpoll = thm "Diff_sing_eqpoll"; |
|
1157 |
val lepoll_1_is_sing = thm "lepoll_1_is_sing"; |
|
1158 |
val Un_lepoll_sum = thm "Un_lepoll_sum"; |
|
1159 |
val well_ord_Un = thm "well_ord_Un"; |
|
1160 |
val disj_Un_eqpoll_sum = thm "disj_Un_eqpoll_sum"; |
|
1161 |
val Finite_0 = thm "Finite_0"; |
|
1162 |
val lepoll_nat_imp_Finite = thm "lepoll_nat_imp_Finite"; |
|
1163 |
val lesspoll_nat_is_Finite = thm "lesspoll_nat_is_Finite"; |
|
1164 |
val lepoll_Finite = thm "lepoll_Finite"; |
|
1165 |
val subset_Finite = thm "subset_Finite"; |
|
1166 |
val Finite_Diff = thm "Finite_Diff"; |
|
1167 |
val Finite_cons = thm "Finite_cons"; |
|
1168 |
val Finite_succ = thm "Finite_succ"; |
|
1169 |
val nat_le_infinite_Ord = thm "nat_le_infinite_Ord"; |
|
1170 |
val Finite_imp_well_ord = thm "Finite_imp_well_ord"; |
|
1171 |
val nat_wf_on_converse_Memrel = thm "nat_wf_on_converse_Memrel"; |
|
1172 |
val nat_well_ord_converse_Memrel = thm "nat_well_ord_converse_Memrel"; |
|
1173 |
val well_ord_converse = thm "well_ord_converse"; |
|
1174 |
val ordertype_eq_n = thm "ordertype_eq_n"; |
|
1175 |
val Finite_well_ord_converse = thm "Finite_well_ord_converse"; |
|
1176 |
val nat_into_Finite = thm "nat_into_Finite"; |
|
1177 |
*} |
|
9683 | 1178 |
|
435 | 1179 |
end |