| author | wenzelm | 
| Mon, 29 May 2017 19:34:07 +0200 | |
| changeset 65959 | 47309113ee4d | 
| parent 64438 | f91cae6c1d74 | 
| child 66453 | cc19f7ca2ed6 | 
| permissions | -rw-r--r-- | 
| 62479 | 1 | (* Title: HOL/Nonstandard_Analysis/NSA.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 2 | Author: Jacques D. Fleuriot, University of Cambridge | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32155diff
changeset | 3 | Author: Lawrence C Paulson, University of Cambridge | 
| 27468 | 4 | *) | 
| 5 | ||
| 64435 | 6 | section \<open>Infinite Numbers, Infinitesimals, Infinitely Close Relation\<close> | 
| 27468 | 7 | |
| 8 | theory NSA | |
| 64435 | 9 | imports HyperDef "~~/src/HOL/Library/Lub_Glb" | 
| 27468 | 10 | begin | 
| 11 | ||
| 64435 | 12 | definition hnorm :: "'a::real_normed_vector star \<Rightarrow> real star" | 
| 13 | where [transfer_unfold]: "hnorm = *f* norm" | |
| 27468 | 14 | |
| 64435 | 15 | definition Infinitesimal  :: "('a::real_normed_vector) star set"
 | 
| 16 |   where "Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r \<longrightarrow> hnorm x < r}"
 | |
| 27468 | 17 | |
| 64435 | 18 | definition HFinite :: "('a::real_normed_vector) star set"
 | 
| 19 |   where "HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}"
 | |
| 27468 | 20 | |
| 64435 | 21 | definition HInfinite :: "('a::real_normed_vector) star set"
 | 
| 22 |   where "HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}"
 | |
| 27468 | 23 | |
| 64435 | 24 | definition approx :: "'a::real_normed_vector star \<Rightarrow> 'a star \<Rightarrow> bool" (infixl "\<approx>" 50) | 
| 25 | where "x \<approx> y \<longleftrightarrow> x - y \<in> Infinitesimal" | |
| 26 | \<comment> \<open>the ``infinitely close'' relation\<close> | |
| 27468 | 27 | |
| 64435 | 28 | definition st :: "hypreal \<Rightarrow> hypreal" | 
| 29 | where "st = (\<lambda>x. SOME r. x \<in> HFinite \<and> r \<in> \<real> \<and> r \<approx> x)" | |
| 30 | \<comment> \<open>the standard part of a hyperreal\<close> | |
| 27468 | 31 | |
| 64435 | 32 | definition monad :: "'a::real_normed_vector star \<Rightarrow> 'a star set" | 
| 33 |   where "monad x = {y. x \<approx> y}"
 | |
| 27468 | 34 | |
| 64435 | 35 | definition galaxy :: "'a::real_normed_vector star \<Rightarrow> 'a star set" | 
| 36 |   where "galaxy x = {y. (x + -y) \<in> HFinite}"
 | |
| 27468 | 37 | |
| 64435 | 38 | lemma SReal_def: "\<real> \<equiv> {x. \<exists>r. x = hypreal_of_real r}"
 | 
| 39 | by (simp add: Reals_def image_def) | |
| 40 | ||
| 27468 | 41 | |
| 61975 | 42 | subsection \<open>Nonstandard Extension of the Norm Function\<close> | 
| 27468 | 43 | |
| 64435 | 44 | definition scaleHR :: "real star \<Rightarrow> 'a star \<Rightarrow> 'a::real_normed_vector star" | 
| 45 | where [transfer_unfold]: "scaleHR = starfun2 scaleR" | |
| 27468 | 46 | |
| 47 | lemma Standard_hnorm [simp]: "x \<in> Standard \<Longrightarrow> hnorm x \<in> Standard" | |
| 64435 | 48 | by (simp add: hnorm_def) | 
| 27468 | 49 | |
| 50 | lemma star_of_norm [simp]: "star_of (norm x) = hnorm (star_of x)" | |
| 64435 | 51 | by transfer (rule refl) | 
| 27468 | 52 | |
| 64435 | 53 | lemma hnorm_ge_zero [simp]: "\<And>x::'a::real_normed_vector star. 0 \<le> hnorm x" | 
| 54 | by transfer (rule norm_ge_zero) | |
| 27468 | 55 | |
| 64435 | 56 | lemma hnorm_eq_zero [simp]: "\<And>x::'a::real_normed_vector star. hnorm x = 0 \<longleftrightarrow> x = 0" | 
| 57 | by transfer (rule norm_eq_zero) | |
| 27468 | 58 | |
| 64435 | 59 | lemma hnorm_triangle_ineq: "\<And>x y::'a::real_normed_vector star. hnorm (x + y) \<le> hnorm x + hnorm y" | 
| 60 | by transfer (rule norm_triangle_ineq) | |
| 27468 | 61 | |
| 64435 | 62 | lemma hnorm_triangle_ineq3: "\<And>x y::'a::real_normed_vector star. \<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" | 
| 63 | by transfer (rule norm_triangle_ineq3) | |
| 64 | ||
| 65 | lemma hnorm_scaleR: "\<And>x::'a::real_normed_vector star. hnorm (a *\<^sub>R x) = \<bar>star_of a\<bar> * hnorm x" | |
| 66 | by transfer (rule norm_scaleR) | |
| 27468 | 67 | |
| 64435 | 68 | lemma hnorm_scaleHR: "\<And>a (x::'a::real_normed_vector star). hnorm (scaleHR a x) = \<bar>a\<bar> * hnorm x" | 
| 69 | by transfer (rule norm_scaleR) | |
| 27468 | 70 | |
| 64435 | 71 | lemma hnorm_mult_ineq: "\<And>x y::'a::real_normed_algebra star. hnorm (x * y) \<le> hnorm x * hnorm y" | 
| 72 | by transfer (rule norm_mult_ineq) | |
| 27468 | 73 | |
| 64435 | 74 | lemma hnorm_mult: "\<And>x y::'a::real_normed_div_algebra star. hnorm (x * y) = hnorm x * hnorm y" | 
| 75 | by transfer (rule norm_mult) | |
| 27468 | 76 | |
| 64435 | 77 | lemma hnorm_hyperpow: "\<And>(x::'a::{real_normed_div_algebra} star) n. hnorm (x pow n) = hnorm x pow n"
 | 
| 78 | by transfer (rule norm_power) | |
| 79 | ||
| 80 | lemma hnorm_one [simp]: "hnorm (1::'a::real_normed_div_algebra star) = 1" | |
| 81 | by transfer (rule norm_one) | |
| 27468 | 82 | |
| 64435 | 83 | lemma hnorm_zero [simp]: "hnorm (0::'a::real_normed_vector star) = 0" | 
| 84 | by transfer (rule norm_zero) | |
| 27468 | 85 | |
| 64435 | 86 | lemma zero_less_hnorm_iff [simp]: "\<And>x::'a::real_normed_vector star. 0 < hnorm x \<longleftrightarrow> x \<noteq> 0" | 
| 87 | by transfer (rule zero_less_norm_iff) | |
| 27468 | 88 | |
| 64435 | 89 | lemma hnorm_minus_cancel [simp]: "\<And>x::'a::real_normed_vector star. hnorm (- x) = hnorm x" | 
| 90 | by transfer (rule norm_minus_cancel) | |
| 27468 | 91 | |
| 64435 | 92 | lemma hnorm_minus_commute: "\<And>a b::'a::real_normed_vector star. hnorm (a - b) = hnorm (b - a)" | 
| 93 | by transfer (rule norm_minus_commute) | |
| 27468 | 94 | |
| 64435 | 95 | lemma hnorm_triangle_ineq2: "\<And>a b::'a::real_normed_vector star. hnorm a - hnorm b \<le> hnorm (a - b)" | 
| 96 | by transfer (rule norm_triangle_ineq2) | |
| 27468 | 97 | |
| 64435 | 98 | lemma hnorm_triangle_ineq4: "\<And>a b::'a::real_normed_vector star. hnorm (a - b) \<le> hnorm a + hnorm b" | 
| 99 | by transfer (rule norm_triangle_ineq4) | |
| 27468 | 100 | |
| 64435 | 101 | lemma abs_hnorm_cancel [simp]: "\<And>a::'a::real_normed_vector star. \<bar>hnorm a\<bar> = hnorm a" | 
| 102 | by transfer (rule abs_norm_cancel) | |
| 27468 | 103 | |
| 64435 | 104 | lemma hnorm_of_hypreal [simp]: "\<And>r. hnorm (of_hypreal r::'a::real_normed_algebra_1 star) = \<bar>r\<bar>" | 
| 105 | by transfer (rule norm_of_real) | |
| 27468 | 106 | |
| 107 | lemma nonzero_hnorm_inverse: | |
| 64435 | 108 | "\<And>a::'a::real_normed_div_algebra star. a \<noteq> 0 \<Longrightarrow> hnorm (inverse a) = inverse (hnorm a)" | 
| 109 | by transfer (rule nonzero_norm_inverse) | |
| 27468 | 110 | |
| 111 | lemma hnorm_inverse: | |
| 64435 | 112 |   "\<And>a::'a::{real_normed_div_algebra, division_ring} star. hnorm (inverse a) = inverse (hnorm a)"
 | 
| 113 | by transfer (rule norm_inverse) | |
| 27468 | 114 | |
| 64435 | 115 | lemma hnorm_divide: "\<And>a b::'a::{real_normed_field, field} star. hnorm (a / b) = hnorm a / hnorm b"
 | 
| 116 | by transfer (rule norm_divide) | |
| 27468 | 117 | |
| 64435 | 118 | lemma hypreal_hnorm_def [simp]: "\<And>r::hypreal. hnorm r = \<bar>r\<bar>" | 
| 119 | by transfer (rule real_norm_def) | |
| 27468 | 120 | |
| 121 | lemma hnorm_add_less: | |
| 64435 | 122 | "\<And>(x::'a::real_normed_vector star) y r s. hnorm x < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (x + y) < r + s" | 
| 123 | by transfer (rule norm_add_less) | |
| 27468 | 124 | |
| 125 | lemma hnorm_mult_less: | |
| 64435 | 126 | "\<And>(x::'a::real_normed_algebra star) y r s. hnorm x < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (x * y) < r * s" | 
| 127 | by transfer (rule norm_mult_less) | |
| 27468 | 128 | |
| 64435 | 129 | lemma hnorm_scaleHR_less: "\<bar>x\<bar> < r \<Longrightarrow> hnorm y < s \<Longrightarrow> hnorm (scaleHR x y) < r * s" | 
| 130 | by (simp only: hnorm_scaleHR) (simp add: mult_strict_mono') | |
| 131 | ||
| 132 | ||
| 133 | subsection \<open>Closure Laws for the Standard Reals\<close> | |
| 27468 | 134 | |
| 64435 | 135 | lemma Reals_minus_iff [simp]: "- x \<in> \<real> \<longleftrightarrow> x \<in> \<real>" | 
| 136 | apply auto | |
| 137 | apply (drule Reals_minus) | |
| 138 | apply auto | |
| 139 | done | |
| 27468 | 140 | |
| 64435 | 141 | lemma Reals_add_cancel: "x + y \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x \<in> \<real>" | 
| 142 | by (drule (1) Reals_diff) simp | |
| 27468 | 143 | |
| 64435 | 144 | lemma SReal_hrabs: "x \<in> \<real> \<Longrightarrow> \<bar>x\<bar> \<in> \<real>" | 
| 145 | for x :: hypreal | |
| 146 | by (simp add: Reals_eq_Standard) | |
| 27468 | 147 | |
| 61070 | 148 | lemma SReal_hypreal_of_real [simp]: "hypreal_of_real x \<in> \<real>" | 
| 64435 | 149 | by (simp add: Reals_eq_Standard) | 
| 27468 | 150 | |
| 64435 | 151 | lemma SReal_divide_numeral: "r \<in> \<real> \<Longrightarrow> r / (numeral w::hypreal) \<in> \<real>" | 
| 152 | by simp | |
| 27468 | 153 | |
| 61981 | 154 | text \<open>\<open>\<epsilon>\<close> is not in Reals because it is an infinitesimal\<close> | 
| 155 | lemma SReal_epsilon_not_mem: "\<epsilon> \<notin> \<real>" | |
| 64435 | 156 | by (auto simp: SReal_def hypreal_of_real_not_eq_epsilon [symmetric]) | 
| 27468 | 157 | |
| 61981 | 158 | lemma SReal_omega_not_mem: "\<omega> \<notin> \<real>" | 
| 64435 | 159 | by (auto simp: SReal_def hypreal_of_real_not_eq_omega [symmetric]) | 
| 27468 | 160 | |
| 61070 | 161 | lemma SReal_UNIV_real: "{x. hypreal_of_real x \<in> \<real>} = (UNIV::real set)"
 | 
| 64435 | 162 | by simp | 
| 27468 | 163 | |
| 64435 | 164 | lemma SReal_iff: "x \<in> \<real> \<longleftrightarrow> (\<exists>y. x = hypreal_of_real y)" | 
| 165 | by (simp add: SReal_def) | |
| 27468 | 166 | |
| 61070 | 167 | lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = \<real>" | 
| 64435 | 168 | by (simp add: Reals_eq_Standard Standard_def) | 
| 27468 | 169 | |
| 61070 | 170 | lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` \<real> = UNIV" | 
| 64435 | 171 | apply (auto simp add: SReal_def) | 
| 172 | apply (rule inj_star_of [THEN inv_f_f, THEN subst], blast) | |
| 173 | done | |
| 27468 | 174 | |
| 64435 | 175 | lemma SReal_hypreal_of_real_image: "\<exists>x. x \<in> P \<Longrightarrow> P \<subseteq> \<real> \<Longrightarrow> \<exists>Q. P = hypreal_of_real ` Q" | 
| 176 | unfolding SReal_def image_def by blast | |
| 27468 | 177 | |
| 64435 | 178 | lemma SReal_dense: "x \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x < y \<Longrightarrow> \<exists>r \<in> Reals. x < r \<and> r < y" | 
| 179 | for x y :: hypreal | |
| 180 | apply (auto simp: SReal_def) | |
| 181 | apply (drule dense) | |
| 182 | apply auto | |
| 183 | done | |
| 27468 | 184 | |
| 64435 | 185 | |
| 186 | text \<open>Completeness of Reals, but both lemmas are unused.\<close> | |
| 27468 | 187 | |
| 188 | lemma SReal_sup_lemma: | |
| 64435 | 189 | "P \<subseteq> \<real> \<Longrightarrow> (\<exists>x \<in> P. y < x) = (\<exists>X. hypreal_of_real X \<in> P \<and> y < hypreal_of_real X)" | 
| 190 | by (blast dest!: SReal_iff [THEN iffD1]) | |
| 27468 | 191 | |
| 192 | lemma SReal_sup_lemma2: | |
| 64435 | 193 | "P \<subseteq> \<real> \<Longrightarrow> \<exists>x. x \<in> P \<Longrightarrow> \<exists>y \<in> Reals. \<forall>x \<in> P. x < y \<Longrightarrow> | 
| 194 |     (\<exists>X. X \<in> {w. hypreal_of_real w \<in> P}) \<and>
 | |
| 195 |     (\<exists>Y. \<forall>X \<in> {w. hypreal_of_real w \<in> P}. X < Y)"
 | |
| 196 | apply (rule conjI) | |
| 197 | apply (fast dest!: SReal_iff [THEN iffD1]) | |
| 198 | apply (auto, frule subsetD, assumption) | |
| 199 | apply (drule SReal_iff [THEN iffD1]) | |
| 200 | apply (auto, rule_tac x = ya in exI, auto) | |
| 201 | done | |
| 27468 | 202 | |
| 203 | ||
| 64435 | 204 | subsection \<open>Set of Finite Elements is a Subring of the Extended Reals\<close> | 
| 27468 | 205 | |
| 64435 | 206 | lemma HFinite_add: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x + y \<in> HFinite" | 
| 207 | unfolding HFinite_def by (blast intro!: Reals_add hnorm_add_less) | |
| 27468 | 208 | |
| 64435 | 209 | lemma HFinite_mult: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x * y \<in> HFinite" | 
| 210 | for x y :: "'a::real_normed_algebra star" | |
| 211 | unfolding HFinite_def by (blast intro!: Reals_mult hnorm_mult_less) | |
| 27468 | 212 | |
| 64435 | 213 | lemma HFinite_scaleHR: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> scaleHR x y \<in> HFinite" | 
| 214 | by (auto simp: HFinite_def intro!: Reals_mult hnorm_scaleHR_less) | |
| 27468 | 215 | |
| 64435 | 216 | lemma HFinite_minus_iff: "- x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" | 
| 217 | by (simp add: HFinite_def) | |
| 27468 | 218 | |
| 219 | lemma HFinite_star_of [simp]: "star_of x \<in> HFinite" | |
| 64435 | 220 | apply (simp add: HFinite_def) | 
| 221 | apply (rule_tac x="star_of (norm x) + 1" in bexI) | |
| 222 | apply (transfer, simp) | |
| 223 | apply (blast intro: Reals_add SReal_hypreal_of_real Reals_1) | |
| 224 | done | |
| 27468 | 225 | |
| 61070 | 226 | lemma SReal_subset_HFinite: "(\<real>::hypreal set) \<subseteq> HFinite" | 
| 64435 | 227 | by (auto simp add: SReal_def) | 
| 27468 | 228 | |
| 64435 | 229 | lemma HFiniteD: "x \<in> HFinite \<Longrightarrow> \<exists>t \<in> Reals. hnorm x < t" | 
| 230 | by (simp add: HFinite_def) | |
| 27468 | 231 | |
| 64435 | 232 | lemma HFinite_hrabs_iff [iff]: "\<bar>x\<bar> \<in> HFinite \<longleftrightarrow> x \<in> HFinite" | 
| 233 | for x :: hypreal | |
| 234 | by (simp add: HFinite_def) | |
| 27468 | 235 | |
| 64435 | 236 | lemma HFinite_hnorm_iff [iff]: "hnorm x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" | 
| 237 | for x :: hypreal | |
| 238 | by (simp add: HFinite_def) | |
| 27468 | 239 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 240 | lemma HFinite_numeral [simp]: "numeral w \<in> HFinite" | 
| 64435 | 241 | unfolding star_numeral_def by (rule HFinite_star_of) | 
| 27468 | 242 | |
| 64435 | 243 | text \<open>As always with numerals, \<open>0\<close> and \<open>1\<close> are special cases.\<close> | 
| 27468 | 244 | |
| 245 | lemma HFinite_0 [simp]: "0 \<in> HFinite" | |
| 64435 | 246 | unfolding star_zero_def by (rule HFinite_star_of) | 
| 27468 | 247 | |
| 248 | lemma HFinite_1 [simp]: "1 \<in> HFinite" | |
| 64435 | 249 | unfolding star_one_def by (rule HFinite_star_of) | 
| 27468 | 250 | |
| 64435 | 251 | lemma hrealpow_HFinite: "x \<in> HFinite \<Longrightarrow> x ^ n \<in> HFinite" | 
| 252 |   for x :: "'a::{real_normed_algebra,monoid_mult} star"
 | |
| 253 | by (induct n) (auto simp add: power_Suc intro: HFinite_mult) | |
| 27468 | 254 | |
| 64435 | 255 | lemma HFinite_bounded: "x \<in> HFinite \<Longrightarrow> y \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<in> HFinite" | 
| 256 | for x y :: hypreal | |
| 257 | apply (cases "x \<le> 0") | |
| 258 | apply (drule_tac y = x in order_trans) | |
| 259 | apply (drule_tac [2] order_antisym) | |
| 260 | apply (auto simp add: linorder_not_le) | |
| 261 | apply (auto intro: order_le_less_trans simp add: abs_if HFinite_def) | |
| 262 | done | |
| 27468 | 263 | |
| 264 | ||
| 64435 | 265 | subsection \<open>Set of Infinitesimals is a Subring of the Hyperreals\<close> | 
| 27468 | 266 | |
| 64435 | 267 | lemma InfinitesimalI: "(\<And>r. r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> hnorm x < r) \<Longrightarrow> x \<in> Infinitesimal" | 
| 268 | by (simp add: Infinitesimal_def) | |
| 27468 | 269 | |
| 64435 | 270 | lemma InfinitesimalD: "x \<in> Infinitesimal \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> hnorm x < r" | 
| 271 | by (simp add: Infinitesimal_def) | |
| 27468 | 272 | |
| 64435 | 273 | lemma InfinitesimalI2: "(\<And>r. 0 < r \<Longrightarrow> hnorm x < star_of r) \<Longrightarrow> x \<in> Infinitesimal" | 
| 274 | by (auto simp add: Infinitesimal_def SReal_def) | |
| 27468 | 275 | |
| 64435 | 276 | lemma InfinitesimalD2: "x \<in> Infinitesimal \<Longrightarrow> 0 < r \<Longrightarrow> hnorm x < star_of r" | 
| 277 | by (auto simp add: Infinitesimal_def SReal_def) | |
| 27468 | 278 | |
| 279 | lemma Infinitesimal_zero [iff]: "0 \<in> Infinitesimal" | |
| 64435 | 280 | by (simp add: Infinitesimal_def) | 
| 27468 | 281 | |
| 64435 | 282 | lemma hypreal_sum_of_halves: "x / 2 + x / 2 = x" | 
| 283 | for x :: hypreal | |
| 284 | by auto | |
| 27468 | 285 | |
| 64435 | 286 | lemma Infinitesimal_add: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x + y \<in> Infinitesimal" | 
| 287 | apply (rule InfinitesimalI) | |
| 288 | apply (rule hypreal_sum_of_halves [THEN subst]) | |
| 289 | apply (drule half_gt_zero) | |
| 290 | apply (blast intro: hnorm_add_less SReal_divide_numeral dest: InfinitesimalD) | |
| 291 | done | |
| 27468 | 292 | |
| 64435 | 293 | lemma Infinitesimal_minus_iff [simp]: "- x \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" | 
| 294 | by (simp add: Infinitesimal_def) | |
| 27468 | 295 | |
| 64435 | 296 | lemma Infinitesimal_hnorm_iff: "hnorm x \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" | 
| 297 | by (simp add: Infinitesimal_def) | |
| 27468 | 298 | |
| 64435 | 299 | lemma Infinitesimal_hrabs_iff [iff]: "\<bar>x\<bar> \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" | 
| 300 | for x :: hypreal | |
| 301 | by (simp add: abs_if) | |
| 27468 | 302 | |
| 303 | lemma Infinitesimal_of_hypreal_iff [simp]: | |
| 64435 | 304 | "(of_hypreal x::'a::real_normed_algebra_1 star) \<in> Infinitesimal \<longleftrightarrow> x \<in> Infinitesimal" | 
| 305 | by (subst Infinitesimal_hnorm_iff [symmetric]) simp | |
| 27468 | 306 | |
| 64435 | 307 | lemma Infinitesimal_diff: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x - y \<in> Infinitesimal" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 308 | using Infinitesimal_add [of x "- y"] by simp | 
| 27468 | 309 | |
| 64435 | 310 | lemma Infinitesimal_mult: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x * y \<in> Infinitesimal" | 
| 311 | for x y :: "'a::real_normed_algebra star" | |
| 312 | apply (rule InfinitesimalI) | |
| 313 | apply (subgoal_tac "hnorm (x * y) < 1 * r") | |
| 314 | apply (simp only: mult_1) | |
| 315 | apply (rule hnorm_mult_less) | |
| 316 | apply (simp_all add: InfinitesimalD) | |
| 317 | done | |
| 27468 | 318 | |
| 64435 | 319 | lemma Infinitesimal_HFinite_mult: "x \<in> Infinitesimal \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x * y \<in> Infinitesimal" | 
| 320 | for x y :: "'a::real_normed_algebra star" | |
| 321 | apply (rule InfinitesimalI) | |
| 322 | apply (drule HFiniteD, clarify) | |
| 323 | apply (subgoal_tac "0 < t") | |
| 324 | apply (subgoal_tac "hnorm (x * y) < (r / t) * t", simp) | |
| 325 | apply (subgoal_tac "0 < r / t") | |
| 326 | apply (rule hnorm_mult_less) | |
| 327 | apply (simp add: InfinitesimalD) | |
| 328 | apply assumption | |
| 329 | apply simp | |
| 330 | apply (erule order_le_less_trans [OF hnorm_ge_zero]) | |
| 331 | done | |
| 27468 | 332 | |
| 333 | lemma Infinitesimal_HFinite_scaleHR: | |
| 64435 | 334 | "x \<in> Infinitesimal \<Longrightarrow> y \<in> HFinite \<Longrightarrow> scaleHR x y \<in> Infinitesimal" | 
| 335 | apply (rule InfinitesimalI) | |
| 336 | apply (drule HFiniteD, clarify) | |
| 337 | apply (drule InfinitesimalD) | |
| 338 | apply (simp add: hnorm_scaleHR) | |
| 339 | apply (subgoal_tac "0 < t") | |
| 340 | apply (subgoal_tac "\<bar>x\<bar> * hnorm y < (r / t) * t", simp) | |
| 341 | apply (subgoal_tac "0 < r / t") | |
| 342 | apply (rule mult_strict_mono', simp_all) | |
| 343 | apply (erule order_le_less_trans [OF hnorm_ge_zero]) | |
| 344 | done | |
| 27468 | 345 | |
| 346 | lemma Infinitesimal_HFinite_mult2: | |
| 64435 | 347 | "x \<in> Infinitesimal \<Longrightarrow> y \<in> HFinite \<Longrightarrow> y * x \<in> Infinitesimal" | 
| 348 | for x y :: "'a::real_normed_algebra star" | |
| 349 | apply (rule InfinitesimalI) | |
| 350 | apply (drule HFiniteD, clarify) | |
| 351 | apply (subgoal_tac "0 < t") | |
| 352 | apply (subgoal_tac "hnorm (y * x) < t * (r / t)", simp) | |
| 353 | apply (subgoal_tac "0 < r / t") | |
| 354 | apply (rule hnorm_mult_less) | |
| 355 | apply assumption | |
| 356 | apply (simp add: InfinitesimalD) | |
| 357 | apply simp | |
| 358 | apply (erule order_le_less_trans [OF hnorm_ge_zero]) | |
| 359 | done | |
| 27468 | 360 | |
| 64435 | 361 | lemma Infinitesimal_scaleR2: "x \<in> Infinitesimal \<Longrightarrow> a *\<^sub>R x \<in> Infinitesimal" | 
| 362 | apply (case_tac "a = 0", simp) | |
| 363 | apply (rule InfinitesimalI) | |
| 364 | apply (drule InfinitesimalD) | |
| 365 | apply (drule_tac x="r / \<bar>star_of a\<bar>" in bspec) | |
| 366 | apply (simp add: Reals_eq_Standard) | |
| 367 | apply simp | |
| 368 | apply (simp add: hnorm_scaleR pos_less_divide_eq mult.commute) | |
| 369 | done | |
| 27468 | 370 | |
| 371 | lemma Compl_HFinite: "- HFinite = HInfinite" | |
| 64435 | 372 | apply (auto simp add: HInfinite_def HFinite_def linorder_not_less) | 
| 373 | apply (rule_tac y="r + 1" in order_less_le_trans, simp) | |
| 374 | apply simp | |
| 375 | done | |
| 27468 | 376 | |
| 64435 | 377 | lemma HInfinite_inverse_Infinitesimal: "x \<in> HInfinite \<Longrightarrow> inverse x \<in> Infinitesimal" | 
| 378 | for x :: "'a::real_normed_div_algebra star" | |
| 379 | apply (rule InfinitesimalI) | |
| 380 | apply (subgoal_tac "x \<noteq> 0") | |
| 381 | apply (rule inverse_less_imp_less) | |
| 382 | apply (simp add: nonzero_hnorm_inverse) | |
| 383 | apply (simp add: HInfinite_def Reals_inverse) | |
| 384 | apply assumption | |
| 385 | apply (clarify, simp add: Compl_HFinite [symmetric]) | |
| 386 | done | |
| 27468 | 387 | |
| 388 | lemma HInfiniteI: "(\<And>r. r \<in> \<real> \<Longrightarrow> r < hnorm x) \<Longrightarrow> x \<in> HInfinite" | |
| 64435 | 389 | by (simp add: HInfinite_def) | 
| 27468 | 390 | |
| 64435 | 391 | lemma HInfiniteD: "x \<in> HInfinite \<Longrightarrow> r \<in> \<real> \<Longrightarrow> r < hnorm x" | 
| 392 | by (simp add: HInfinite_def) | |
| 27468 | 393 | |
| 64435 | 394 | lemma HInfinite_mult: "x \<in> HInfinite \<Longrightarrow> y \<in> HInfinite \<Longrightarrow> x * y \<in> HInfinite" | 
| 395 | for x y :: "'a::real_normed_div_algebra star" | |
| 396 | apply (rule HInfiniteI, simp only: hnorm_mult) | |
| 397 | apply (subgoal_tac "r * 1 < hnorm x * hnorm y", simp only: mult_1) | |
| 398 | apply (case_tac "x = 0", simp add: HInfinite_def) | |
| 399 | apply (rule mult_strict_mono) | |
| 400 | apply (simp_all add: HInfiniteD) | |
| 401 | done | |
| 27468 | 402 | |
| 64435 | 403 | lemma hypreal_add_zero_less_le_mono: "r < x \<Longrightarrow> 0 \<le> y \<Longrightarrow> r < x + y" | 
| 404 | for r x y :: hypreal | |
| 405 | by (auto dest: add_less_le_mono) | |
| 27468 | 406 | |
| 64435 | 407 | lemma HInfinite_add_ge_zero: "x \<in> HInfinite \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> x + y \<in> HInfinite" | 
| 408 | for x y :: hypreal | |
| 409 | by (auto simp: abs_if add.commute HInfinite_def) | |
| 27468 | 410 | |
| 64435 | 411 | lemma HInfinite_add_ge_zero2: "x \<in> HInfinite \<Longrightarrow> 0 \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> y + x \<in> HInfinite" | 
| 412 | for x y :: hypreal | |
| 413 | by (auto intro!: HInfinite_add_ge_zero simp add: add.commute) | |
| 27468 | 414 | |
| 64435 | 415 | lemma HInfinite_add_gt_zero: "x \<in> HInfinite \<Longrightarrow> 0 < y \<Longrightarrow> 0 < x \<Longrightarrow> x + y \<in> HInfinite" | 
| 416 | for x y :: hypreal | |
| 417 | by (blast intro: HInfinite_add_ge_zero order_less_imp_le) | |
| 27468 | 418 | |
| 64435 | 419 | lemma HInfinite_minus_iff: "- x \<in> HInfinite \<longleftrightarrow> x \<in> HInfinite" | 
| 420 | by (simp add: HInfinite_def) | |
| 27468 | 421 | |
| 64435 | 422 | lemma HInfinite_add_le_zero: "x \<in> HInfinite \<Longrightarrow> y \<le> 0 \<Longrightarrow> x \<le> 0 \<Longrightarrow> x + y \<in> HInfinite" | 
| 423 | for x y :: hypreal | |
| 424 | apply (drule HInfinite_minus_iff [THEN iffD2]) | |
| 425 | apply (rule HInfinite_minus_iff [THEN iffD1]) | |
| 426 | apply (simp only: minus_add add.commute) | |
| 427 | apply (rule HInfinite_add_ge_zero) | |
| 428 | apply simp_all | |
| 429 | done | |
| 27468 | 430 | |
| 64435 | 431 | lemma HInfinite_add_lt_zero: "x \<in> HInfinite \<Longrightarrow> y < 0 \<Longrightarrow> x < 0 \<Longrightarrow> x + y \<in> HInfinite" | 
| 432 | for x y :: hypreal | |
| 433 | by (blast intro: HInfinite_add_le_zero order_less_imp_le) | |
| 27468 | 434 | |
| 435 | lemma HFinite_sum_squares: | |
| 64435 | 436 | "a \<in> HFinite \<Longrightarrow> b \<in> HFinite \<Longrightarrow> c \<in> HFinite \<Longrightarrow> a * a + b * b + c * c \<in> HFinite" | 
| 437 | for a b c :: "'a::real_normed_algebra star" | |
| 438 | by (auto intro: HFinite_mult HFinite_add) | |
| 27468 | 439 | |
| 64435 | 440 | lemma not_Infinitesimal_not_zero: "x \<notin> Infinitesimal \<Longrightarrow> x \<noteq> 0" | 
| 441 | by auto | |
| 27468 | 442 | |
| 64435 | 443 | lemma not_Infinitesimal_not_zero2: "x \<in> HFinite - Infinitesimal \<Longrightarrow> x \<noteq> 0" | 
| 444 | by auto | |
| 27468 | 445 | |
| 446 | lemma HFinite_diff_Infinitesimal_hrabs: | |
| 64435 | 447 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<in> HFinite - Infinitesimal" | 
| 448 | for x :: hypreal | |
| 449 | by blast | |
| 27468 | 450 | |
| 64435 | 451 | lemma hnorm_le_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> hnorm x \<le> e \<Longrightarrow> x \<in> Infinitesimal" | 
| 452 | by (auto simp: Infinitesimal_def abs_less_iff) | |
| 27468 | 453 | |
| 64435 | 454 | lemma hnorm_less_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> hnorm x < e \<Longrightarrow> x \<in> Infinitesimal" | 
| 455 | by (erule hnorm_le_Infinitesimal, erule order_less_imp_le) | |
| 27468 | 456 | |
| 64435 | 457 | lemma hrabs_le_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<le> e \<Longrightarrow> x \<in> Infinitesimal" | 
| 458 | for x :: hypreal | |
| 459 | by (erule hnorm_le_Infinitesimal) simp | |
| 27468 | 460 | |
| 64435 | 461 | lemma hrabs_less_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> < e \<Longrightarrow> x \<in> Infinitesimal" | 
| 462 | for x :: hypreal | |
| 463 | by (erule hnorm_less_Infinitesimal) simp | |
| 27468 | 464 | |
| 465 | lemma Infinitesimal_interval: | |
| 64435 | 466 | "e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> e' < x \<Longrightarrow> x < e \<Longrightarrow> x \<in> Infinitesimal" | 
| 467 | for x :: hypreal | |
| 468 | by (auto simp add: Infinitesimal_def abs_less_iff) | |
| 27468 | 469 | |
| 470 | lemma Infinitesimal_interval2: | |
| 64435 | 471 | "e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> e' \<le> x \<Longrightarrow> x \<le> e \<Longrightarrow> x \<in> Infinitesimal" | 
| 472 | for x :: hypreal | |
| 473 | by (auto intro: Infinitesimal_interval simp add: order_le_less) | |
| 27468 | 474 | |
| 475 | ||
| 64435 | 476 | lemma lemma_Infinitesimal_hyperpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < N \<Longrightarrow> \<bar>x pow N\<bar> \<le> \<bar>x\<bar>" | 
| 477 | for x :: hypreal | |
| 478 | apply (unfold Infinitesimal_def) | |
| 479 | apply (auto intro!: hyperpow_Suc_le_self2 | |
| 480 | simp: hyperpow_hrabs [symmetric] hypnat_gt_zero_iff2 abs_ge_zero) | |
| 481 | done | |
| 27468 | 482 | |
| 64435 | 483 | lemma Infinitesimal_hyperpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < N \<Longrightarrow> x pow N \<in> Infinitesimal" | 
| 484 | for x :: hypreal | |
| 485 | apply (rule hrabs_le_Infinitesimal) | |
| 486 | apply (rule_tac [2] lemma_Infinitesimal_hyperpow) | |
| 487 | apply auto | |
| 488 | done | |
| 27468 | 489 | |
| 490 | lemma hrealpow_hyperpow_Infinitesimal_iff: | |
| 64435 | 491 | "(x ^ n \<in> Infinitesimal) \<longleftrightarrow> x pow (hypnat_of_nat n) \<in> Infinitesimal" | 
| 492 | by (simp only: hyperpow_hypnat_of_nat) | |
| 27468 | 493 | |
| 64435 | 494 | lemma Infinitesimal_hrealpow: "x \<in> Infinitesimal \<Longrightarrow> 0 < n \<Longrightarrow> x ^ n \<in> Infinitesimal" | 
| 495 | for x :: hypreal | |
| 496 | by (simp add: hrealpow_hyperpow_Infinitesimal_iff Infinitesimal_hyperpow) | |
| 27468 | 497 | |
| 498 | lemma not_Infinitesimal_mult: | |
| 64435 | 499 | "x \<notin> Infinitesimal \<Longrightarrow> y \<notin> Infinitesimal \<Longrightarrow> x * y \<notin> Infinitesimal" | 
| 500 | for x y :: "'a::real_normed_div_algebra star" | |
| 501 | apply (unfold Infinitesimal_def, clarify, rename_tac r s) | |
| 502 | apply (simp only: linorder_not_less hnorm_mult) | |
| 503 | apply (drule_tac x = "r * s" in bspec) | |
| 504 | apply (fast intro: Reals_mult) | |
| 505 | apply simp | |
| 506 | apply (drule_tac c = s and d = "hnorm y" and a = r and b = "hnorm x" in mult_mono) | |
| 507 | apply simp_all | |
| 508 | done | |
| 27468 | 509 | |
| 64435 | 510 | lemma Infinitesimal_mult_disj: "x * y \<in> Infinitesimal \<Longrightarrow> x \<in> Infinitesimal \<or> y \<in> Infinitesimal" | 
| 511 | for x y :: "'a::real_normed_div_algebra star" | |
| 512 | apply (rule ccontr) | |
| 513 | apply (drule de_Morgan_disj [THEN iffD1]) | |
| 514 | apply (fast dest: not_Infinitesimal_mult) | |
| 515 | done | |
| 27468 | 516 | |
| 64435 | 517 | lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal \<Longrightarrow> x \<noteq> 0" | 
| 518 | by blast | |
| 27468 | 519 | |
| 520 | lemma HFinite_Infinitesimal_diff_mult: | |
| 64435 | 521 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x * y \<in> HFinite - Infinitesimal" | 
| 522 | for x y :: "'a::real_normed_div_algebra star" | |
| 523 | apply clarify | |
| 524 | apply (blast dest: HFinite_mult not_Infinitesimal_mult) | |
| 525 | done | |
| 27468 | 526 | |
| 64435 | 527 | lemma Infinitesimal_subset_HFinite: "Infinitesimal \<subseteq> HFinite" | 
| 528 | apply (simp add: Infinitesimal_def HFinite_def) | |
| 529 | apply auto | |
| 530 | apply (rule_tac x = 1 in bexI) | |
| 531 | apply auto | |
| 532 | done | |
| 27468 | 533 | |
| 64435 | 534 | lemma Infinitesimal_star_of_mult: "x \<in> Infinitesimal \<Longrightarrow> x * star_of r \<in> Infinitesimal" | 
| 535 | for x :: "'a::real_normed_algebra star" | |
| 536 | by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult]) | |
| 27468 | 537 | |
| 64435 | 538 | lemma Infinitesimal_star_of_mult2: "x \<in> Infinitesimal \<Longrightarrow> star_of r * x \<in> Infinitesimal" | 
| 539 | for x :: "'a::real_normed_algebra star" | |
| 540 | by (erule HFinite_star_of [THEN [2] Infinitesimal_HFinite_mult2]) | |
| 27468 | 541 | |
| 542 | ||
| 64435 | 543 | subsection \<open>The Infinitely Close Relation\<close> | 
| 27468 | 544 | |
| 64435 | 545 | lemma mem_infmal_iff: "x \<in> Infinitesimal \<longleftrightarrow> x \<approx> 0" | 
| 546 | by (simp add: Infinitesimal_def approx_def) | |
| 27468 | 547 | |
| 64435 | 548 | lemma approx_minus_iff: "x \<approx> y \<longleftrightarrow> x - y \<approx> 0" | 
| 549 | by (simp add: approx_def) | |
| 27468 | 550 | |
| 64435 | 551 | lemma approx_minus_iff2: "x \<approx> y \<longleftrightarrow> - y + x \<approx> 0" | 
| 552 | by (simp add: approx_def add.commute) | |
| 27468 | 553 | |
| 61982 | 554 | lemma approx_refl [iff]: "x \<approx> x" | 
| 64435 | 555 | by (simp add: approx_def Infinitesimal_def) | 
| 27468 | 556 | |
| 64435 | 557 | lemma hypreal_minus_distrib1: "- (y + - x) = x + -y" | 
| 558 | for x y :: "'a::ab_group_add" | |
| 559 | by (simp add: add.commute) | |
| 27468 | 560 | |
| 64435 | 561 | lemma approx_sym: "x \<approx> y \<Longrightarrow> y \<approx> x" | 
| 562 | apply (simp add: approx_def) | |
| 563 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 564 | apply simp | |
| 565 | done | |
| 27468 | 566 | |
| 64435 | 567 | lemma approx_trans: "x \<approx> y \<Longrightarrow> y \<approx> z \<Longrightarrow> x \<approx> z" | 
| 568 | apply (simp add: approx_def) | |
| 569 | apply (drule (1) Infinitesimal_add) | |
| 570 | apply simp | |
| 571 | done | |
| 27468 | 572 | |
| 64435 | 573 | lemma approx_trans2: "r \<approx> x \<Longrightarrow> s \<approx> x \<Longrightarrow> r \<approx> s" | 
| 574 | by (blast intro: approx_sym approx_trans) | |
| 27468 | 575 | |
| 64435 | 576 | lemma approx_trans3: "x \<approx> r \<Longrightarrow> x \<approx> s \<Longrightarrow> r \<approx> s" | 
| 577 | by (blast intro: approx_sym approx_trans) | |
| 27468 | 578 | |
| 64435 | 579 | lemma approx_reorient: "x \<approx> y \<longleftrightarrow> y \<approx> x" | 
| 580 | by (blast intro: approx_sym) | |
| 27468 | 581 | |
| 64435 | 582 | text \<open>Reorientation simplification procedure: reorients (polymorphic) | 
| 583 | \<open>0 = x\<close>, \<open>1 = x\<close>, \<open>nnn = x\<close> provided \<open>x\<close> isn't \<open>0\<close>, \<open>1\<close> or a numeral.\<close> | |
| 45541 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 584 | simproc_setup approx_reorient_simproc | 
| 61982 | 585 |   ("0 \<approx> x" | "1 \<approx> y" | "numeral w \<approx> z" | "- 1 \<approx> y" | "- numeral w \<approx> r") =
 | 
| 61975 | 586 | \<open> | 
| 45541 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 587 |   let val rule = @{thm approx_reorient} RS eq_reflection
 | 
| 59582 | 588 | fun proc phi ss ct = | 
| 589 | case Thm.term_of ct of | |
| 45541 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 590 | _ $ t $ u => if can HOLogic.dest_number u then NONE | 
| 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 591 | else if can HOLogic.dest_number t then SOME rule else NONE | 
| 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 592 | | _ => NONE | 
| 
934866fc776c
simplify implementation of approx_reorient_simproc
 huffman parents: 
45540diff
changeset | 593 | in proc end | 
| 61975 | 594 | \<close> | 
| 27468 | 595 | |
| 64435 | 596 | lemma Infinitesimal_approx_minus: "x - y \<in> Infinitesimal \<longleftrightarrow> x \<approx> y" | 
| 597 | by (simp add: approx_minus_iff [symmetric] mem_infmal_iff) | |
| 27468 | 598 | |
| 64435 | 599 | lemma approx_monad_iff: "x \<approx> y \<longleftrightarrow> monad x = monad y" | 
| 600 | by (auto simp add: monad_def dest: approx_sym elim!: approx_trans equalityCE) | |
| 27468 | 601 | |
| 64435 | 602 | lemma Infinitesimal_approx: "x \<in> Infinitesimal \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x \<approx> y" | 
| 603 | apply (simp add: mem_infmal_iff) | |
| 604 | apply (blast intro: approx_trans approx_sym) | |
| 605 | done | |
| 27468 | 606 | |
| 64435 | 607 | lemma approx_add: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a + c \<approx> b + d" | 
| 27468 | 608 | proof (unfold approx_def) | 
| 609 | assume inf: "a - b \<in> Infinitesimal" "c - d \<in> Infinitesimal" | |
| 610 | have "a + c - (b + d) = (a - b) + (c - d)" by simp | |
| 64435 | 611 | also have "... \<in> Infinitesimal" | 
| 612 | using inf by (rule Infinitesimal_add) | |
| 27468 | 613 | finally show "a + c - (b + d) \<in> Infinitesimal" . | 
| 614 | qed | |
| 615 | ||
| 64435 | 616 | lemma approx_minus: "a \<approx> b \<Longrightarrow> - a \<approx> - b" | 
| 617 | apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym]) | |
| 618 | apply (drule approx_minus_iff [THEN iffD1]) | |
| 619 | apply (simp add: add.commute) | |
| 620 | done | |
| 27468 | 621 | |
| 64435 | 622 | lemma approx_minus2: "- a \<approx> - b \<Longrightarrow> a \<approx> b" | 
| 623 | by (auto dest: approx_minus) | |
| 27468 | 624 | |
| 64435 | 625 | lemma approx_minus_cancel [simp]: "- a \<approx> - b \<longleftrightarrow> a \<approx> b" | 
| 626 | by (blast intro: approx_minus approx_minus2) | |
| 27468 | 627 | |
| 64435 | 628 | lemma approx_add_minus: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a + - c \<approx> b + - d" | 
| 629 | by (blast intro!: approx_add approx_minus) | |
| 27468 | 630 | |
| 64435 | 631 | lemma approx_diff: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> a - c \<approx> b - d" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
51521diff
changeset | 632 | using approx_add [of a b "- c" "- d"] by simp | 
| 27468 | 633 | |
| 64435 | 634 | lemma approx_mult1: "a \<approx> b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> a * c \<approx> b * c" | 
| 635 | for a b c :: "'a::real_normed_algebra star" | |
| 636 | by (simp add: approx_def Infinitesimal_HFinite_mult left_diff_distrib [symmetric]) | |
| 637 | ||
| 638 | lemma approx_mult2: "a \<approx> b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> c * a \<approx> c * b" | |
| 639 | for a b c :: "'a::real_normed_algebra star" | |
| 640 | by (simp add: approx_def Infinitesimal_HFinite_mult2 right_diff_distrib [symmetric]) | |
| 27468 | 641 | |
| 64435 | 642 | lemma approx_mult_subst: "u \<approx> v * x \<Longrightarrow> x \<approx> y \<Longrightarrow> v \<in> HFinite \<Longrightarrow> u \<approx> v * y" | 
| 643 | for u v x y :: "'a::real_normed_algebra star" | |
| 644 | by (blast intro: approx_mult2 approx_trans) | |
| 27468 | 645 | |
| 64435 | 646 | lemma approx_mult_subst2: "u \<approx> x * v \<Longrightarrow> x \<approx> y \<Longrightarrow> v \<in> HFinite \<Longrightarrow> u \<approx> y * v" | 
| 647 | for u v x y :: "'a::real_normed_algebra star" | |
| 648 | by (blast intro: approx_mult1 approx_trans) | |
| 27468 | 649 | |
| 64435 | 650 | lemma approx_mult_subst_star_of: "u \<approx> x * star_of v \<Longrightarrow> x \<approx> y \<Longrightarrow> u \<approx> y * star_of v" | 
| 651 | for u x y :: "'a::real_normed_algebra star" | |
| 652 | by (auto intro: approx_mult_subst2) | |
| 27468 | 653 | |
| 64435 | 654 | lemma approx_eq_imp: "a = b \<Longrightarrow> a \<approx> b" | 
| 655 | by (simp add: approx_def) | |
| 27468 | 656 | |
| 64435 | 657 | lemma Infinitesimal_minus_approx: "x \<in> Infinitesimal \<Longrightarrow> - x \<approx> x" | 
| 658 | by (blast intro: Infinitesimal_minus_iff [THEN iffD2] mem_infmal_iff [THEN iffD1] approx_trans2) | |
| 27468 | 659 | |
| 64435 | 660 | lemma bex_Infinitesimal_iff: "(\<exists>y \<in> Infinitesimal. x - z = y) \<longleftrightarrow> x \<approx> z" | 
| 661 | by (simp add: approx_def) | |
| 27468 | 662 | |
| 64435 | 663 | lemma bex_Infinitesimal_iff2: "(\<exists>y \<in> Infinitesimal. x = z + y) \<longleftrightarrow> x \<approx> z" | 
| 664 | by (force simp add: bex_Infinitesimal_iff [symmetric]) | |
| 27468 | 665 | |
| 64435 | 666 | lemma Infinitesimal_add_approx: "y \<in> Infinitesimal \<Longrightarrow> x + y = z \<Longrightarrow> x \<approx> z" | 
| 667 | apply (rule bex_Infinitesimal_iff [THEN iffD1]) | |
| 668 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 669 | apply (auto simp add: add.assoc [symmetric]) | |
| 670 | done | |
| 27468 | 671 | |
| 64435 | 672 | lemma Infinitesimal_add_approx_self: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> x + y" | 
| 673 | apply (rule bex_Infinitesimal_iff [THEN iffD1]) | |
| 674 | apply (drule Infinitesimal_minus_iff [THEN iffD2]) | |
| 675 | apply (auto simp add: add.assoc [symmetric]) | |
| 676 | done | |
| 27468 | 677 | |
| 64435 | 678 | lemma Infinitesimal_add_approx_self2: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> y + x" | 
| 679 | by (auto dest: Infinitesimal_add_approx_self simp add: add.commute) | |
| 27468 | 680 | |
| 64435 | 681 | lemma Infinitesimal_add_minus_approx_self: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> x + - y" | 
| 682 | by (blast intro!: Infinitesimal_add_approx_self Infinitesimal_minus_iff [THEN iffD2]) | |
| 27468 | 683 | |
| 64435 | 684 | lemma Infinitesimal_add_cancel: "y \<in> Infinitesimal \<Longrightarrow> x + y \<approx> z \<Longrightarrow> x \<approx> z" | 
| 685 | apply (drule_tac x = x in Infinitesimal_add_approx_self [THEN approx_sym]) | |
| 686 | apply (erule approx_trans3 [THEN approx_sym], assumption) | |
| 687 | done | |
| 27468 | 688 | |
| 64435 | 689 | lemma Infinitesimal_add_right_cancel: "y \<in> Infinitesimal \<Longrightarrow> x \<approx> z + y \<Longrightarrow> x \<approx> z" | 
| 690 | apply (drule_tac x = z in Infinitesimal_add_approx_self2 [THEN approx_sym]) | |
| 691 | apply (erule approx_trans3 [THEN approx_sym]) | |
| 692 | apply (simp add: add.commute) | |
| 693 | apply (erule approx_sym) | |
| 694 | done | |
| 27468 | 695 | |
| 64435 | 696 | lemma approx_add_left_cancel: "d + b \<approx> d + c \<Longrightarrow> b \<approx> c" | 
| 697 | apply (drule approx_minus_iff [THEN iffD1]) | |
| 698 | apply (simp add: approx_minus_iff [symmetric] ac_simps) | |
| 699 | done | |
| 27468 | 700 | |
| 64435 | 701 | lemma approx_add_right_cancel: "b + d \<approx> c + d \<Longrightarrow> b \<approx> c" | 
| 702 | apply (rule approx_add_left_cancel) | |
| 703 | apply (simp add: add.commute) | |
| 704 | done | |
| 27468 | 705 | |
| 64435 | 706 | lemma approx_add_mono1: "b \<approx> c \<Longrightarrow> d + b \<approx> d + c" | 
| 707 | apply (rule approx_minus_iff [THEN iffD2]) | |
| 708 | apply (simp add: approx_minus_iff [symmetric] ac_simps) | |
| 709 | done | |
| 27468 | 710 | |
| 64435 | 711 | lemma approx_add_mono2: "b \<approx> c \<Longrightarrow> b + a \<approx> c + a" | 
| 712 | by (simp add: add.commute approx_add_mono1) | |
| 27468 | 713 | |
| 64435 | 714 | lemma approx_add_left_iff [simp]: "a + b \<approx> a + c \<longleftrightarrow> b \<approx> c" | 
| 715 | by (fast elim: approx_add_left_cancel approx_add_mono1) | |
| 27468 | 716 | |
| 64435 | 717 | lemma approx_add_right_iff [simp]: "b + a \<approx> c + a \<longleftrightarrow> b \<approx> c" | 
| 718 | by (simp add: add.commute) | |
| 27468 | 719 | |
| 64435 | 720 | lemma approx_HFinite: "x \<in> HFinite \<Longrightarrow> x \<approx> y \<Longrightarrow> y \<in> HFinite" | 
| 721 | apply (drule bex_Infinitesimal_iff2 [THEN iffD2], safe) | |
| 722 | apply (drule Infinitesimal_subset_HFinite [THEN subsetD, THEN HFinite_minus_iff [THEN iffD2]]) | |
| 723 | apply (drule HFinite_add) | |
| 724 | apply (auto simp add: add.assoc) | |
| 725 | done | |
| 27468 | 726 | |
| 64435 | 727 | lemma approx_star_of_HFinite: "x \<approx> star_of D \<Longrightarrow> x \<in> HFinite" | 
| 728 | by (rule approx_sym [THEN [2] approx_HFinite], auto) | |
| 27468 | 729 | |
| 64435 | 730 | lemma approx_mult_HFinite: "a \<approx> b \<Longrightarrow> c \<approx> d \<Longrightarrow> b \<in> HFinite \<Longrightarrow> d \<in> HFinite \<Longrightarrow> a * c \<approx> b * d" | 
| 731 | for a b c d :: "'a::real_normed_algebra star" | |
| 732 | apply (rule approx_trans) | |
| 733 | apply (rule_tac [2] approx_mult2) | |
| 734 | apply (rule approx_mult1) | |
| 735 | prefer 2 apply (blast intro: approx_HFinite approx_sym, auto) | |
| 736 | done | |
| 27468 | 737 | |
| 64435 | 738 | lemma scaleHR_left_diff_distrib: "\<And>a b x. scaleHR (a - b) x = scaleHR a x - scaleHR b x" | 
| 739 | by transfer (rule scaleR_left_diff_distrib) | |
| 27468 | 740 | |
| 64435 | 741 | lemma approx_scaleR1: "a \<approx> star_of b \<Longrightarrow> c \<in> HFinite \<Longrightarrow> scaleHR a c \<approx> b *\<^sub>R c" | 
| 742 | apply (unfold approx_def) | |
| 743 | apply (drule (1) Infinitesimal_HFinite_scaleHR) | |
| 744 | apply (simp only: scaleHR_left_diff_distrib) | |
| 745 | apply (simp add: scaleHR_def star_scaleR_def [symmetric]) | |
| 746 | done | |
| 27468 | 747 | |
| 64435 | 748 | lemma approx_scaleR2: "a \<approx> b \<Longrightarrow> c *\<^sub>R a \<approx> c *\<^sub>R b" | 
| 749 | by (simp add: approx_def Infinitesimal_scaleR2 scaleR_right_diff_distrib [symmetric]) | |
| 750 | ||
| 751 | lemma approx_scaleR_HFinite: "a \<approx> star_of b \<Longrightarrow> c \<approx> d \<Longrightarrow> d \<in> HFinite \<Longrightarrow> scaleHR a c \<approx> b *\<^sub>R d" | |
| 752 | apply (rule approx_trans) | |
| 753 | apply (rule_tac [2] approx_scaleR2) | |
| 754 | apply (rule approx_scaleR1) | |
| 755 | prefer 2 apply (blast intro: approx_HFinite approx_sym, auto) | |
| 756 | done | |
| 27468 | 757 | |
| 64435 | 758 | lemma approx_mult_star_of: "a \<approx> star_of b \<Longrightarrow> c \<approx> star_of d \<Longrightarrow> a * c \<approx> star_of b * star_of d" | 
| 759 | for a c :: "'a::real_normed_algebra star" | |
| 760 | by (blast intro!: approx_mult_HFinite approx_star_of_HFinite HFinite_star_of) | |
| 761 | ||
| 762 | lemma approx_SReal_mult_cancel_zero: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * x \<approx> 0 \<Longrightarrow> x \<approx> 0" | |
| 763 | for a x :: hypreal | |
| 764 | apply (drule Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 765 | apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) | |
| 766 | done | |
| 27468 | 767 | |
| 64435 | 768 | lemma approx_mult_SReal1: "a \<in> \<real> \<Longrightarrow> x \<approx> 0 \<Longrightarrow> x * a \<approx> 0" | 
| 769 | for a x :: hypreal | |
| 770 | by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult1) | |
| 27468 | 771 | |
| 64435 | 772 | lemma approx_mult_SReal2: "a \<in> \<real> \<Longrightarrow> x \<approx> 0 \<Longrightarrow> a * x \<approx> 0" | 
| 773 | for a x :: hypreal | |
| 774 | by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult2) | |
| 27468 | 775 | |
| 64435 | 776 | lemma approx_mult_SReal_zero_cancel_iff [simp]: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * x \<approx> 0 \<longleftrightarrow> x \<approx> 0" | 
| 777 | for a x :: hypreal | |
| 778 | by (blast intro: approx_SReal_mult_cancel_zero approx_mult_SReal2) | |
| 27468 | 779 | |
| 64435 | 780 | lemma approx_SReal_mult_cancel: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * w \<approx> a * z \<Longrightarrow> w \<approx> z" | 
| 781 | for a w z :: hypreal | |
| 782 | apply (drule Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 783 | apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) | |
| 784 | done | |
| 27468 | 785 | |
| 64435 | 786 | lemma approx_SReal_mult_cancel_iff1 [simp]: "a \<in> \<real> \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> a * w \<approx> a * z \<longleftrightarrow> w \<approx> z" | 
| 787 | for a w z :: hypreal | |
| 788 | by (auto intro!: approx_mult2 SReal_subset_HFinite [THEN subsetD] | |
| 789 | intro: approx_SReal_mult_cancel) | |
| 27468 | 790 | |
| 64435 | 791 | lemma approx_le_bound: "z \<le> f \<Longrightarrow> f \<approx> g \<Longrightarrow> g \<le> z ==> f \<approx> z" | 
| 792 | for z :: hypreal | |
| 793 | apply (simp add: bex_Infinitesimal_iff2 [symmetric], auto) | |
| 794 | apply (rule_tac x = "g + y - z" in bexI) | |
| 795 | apply simp | |
| 796 | apply (rule Infinitesimal_interval2) | |
| 797 | apply (rule_tac [2] Infinitesimal_zero, auto) | |
| 798 | done | |
| 27468 | 799 | |
| 64435 | 800 | lemma approx_hnorm: "x \<approx> y \<Longrightarrow> hnorm x \<approx> hnorm y" | 
| 801 | for x y :: "'a::real_normed_vector star" | |
| 27468 | 802 | proof (unfold approx_def) | 
| 803 | assume "x - y \<in> Infinitesimal" | |
| 64435 | 804 | then have "hnorm (x - y) \<in> Infinitesimal" | 
| 27468 | 805 | by (simp only: Infinitesimal_hnorm_iff) | 
| 64435 | 806 | moreover have "(0::real star) \<in> Infinitesimal" | 
| 27468 | 807 | by (rule Infinitesimal_zero) | 
| 64435 | 808 | moreover have "0 \<le> \<bar>hnorm x - hnorm y\<bar>" | 
| 27468 | 809 | by (rule abs_ge_zero) | 
| 64435 | 810 | moreover have "\<bar>hnorm x - hnorm y\<bar> \<le> hnorm (x - y)" | 
| 27468 | 811 | by (rule hnorm_triangle_ineq3) | 
| 812 | ultimately have "\<bar>hnorm x - hnorm y\<bar> \<in> Infinitesimal" | |
| 813 | by (rule Infinitesimal_interval2) | |
| 64435 | 814 | then show "hnorm x - hnorm y \<in> Infinitesimal" | 
| 27468 | 815 | by (simp only: Infinitesimal_hrabs_iff) | 
| 816 | qed | |
| 817 | ||
| 818 | ||
| 64435 | 819 | subsection \<open>Zero is the Only Infinitesimal that is also a Real\<close> | 
| 27468 | 820 | |
| 64435 | 821 | lemma Infinitesimal_less_SReal: "x \<in> \<real> \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> 0 < x \<Longrightarrow> y < x" | 
| 822 | for x y :: hypreal | |
| 823 | apply (simp add: Infinitesimal_def) | |
| 824 | apply (rule abs_ge_self [THEN order_le_less_trans], auto) | |
| 825 | done | |
| 27468 | 826 | |
| 64435 | 827 | lemma Infinitesimal_less_SReal2: "y \<in> Infinitesimal \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> y < r" | 
| 828 | for y :: hypreal | |
| 829 | by (blast intro: Infinitesimal_less_SReal) | |
| 27468 | 830 | |
| 64435 | 831 | lemma SReal_not_Infinitesimal: "0 < y \<Longrightarrow> y \<in> \<real> ==> y \<notin> Infinitesimal" | 
| 832 | for y :: hypreal | |
| 833 | apply (simp add: Infinitesimal_def) | |
| 834 | apply (auto simp add: abs_if) | |
| 835 | done | |
| 27468 | 836 | |
| 64435 | 837 | lemma SReal_minus_not_Infinitesimal: "y < 0 \<Longrightarrow> y \<in> \<real> \<Longrightarrow> y \<notin> Infinitesimal" | 
| 838 | for y :: hypreal | |
| 839 | apply (subst Infinitesimal_minus_iff [symmetric]) | |
| 840 | apply (rule SReal_not_Infinitesimal, auto) | |
| 841 | done | |
| 27468 | 842 | |
| 61070 | 843 | lemma SReal_Int_Infinitesimal_zero: "\<real> Int Infinitesimal = {0::hypreal}"
 | 
| 64435 | 844 | apply auto | 
| 845 | apply (cut_tac x = x and y = 0 in linorder_less_linear) | |
| 846 | apply (blast dest: SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) | |
| 847 | done | |
| 27468 | 848 | |
| 64435 | 849 | lemma SReal_Infinitesimal_zero: "x \<in> \<real> \<Longrightarrow> x \<in> Infinitesimal \<Longrightarrow> x = 0" | 
| 850 | for x :: hypreal | |
| 851 | using SReal_Int_Infinitesimal_zero by blast | |
| 27468 | 852 | |
| 64435 | 853 | lemma SReal_HFinite_diff_Infinitesimal: "x \<in> \<real> \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> x \<in> HFinite - Infinitesimal" | 
| 854 | for x :: hypreal | |
| 855 | by (auto dest: SReal_Infinitesimal_zero SReal_subset_HFinite [THEN subsetD]) | |
| 27468 | 856 | |
| 857 | lemma hypreal_of_real_HFinite_diff_Infinitesimal: | |
| 64435 | 858 | "hypreal_of_real x \<noteq> 0 \<Longrightarrow> hypreal_of_real x \<in> HFinite - Infinitesimal" | 
| 859 | by (rule SReal_HFinite_diff_Infinitesimal) auto | |
| 27468 | 860 | |
| 64435 | 861 | lemma star_of_Infinitesimal_iff_0 [iff]: "star_of x \<in> Infinitesimal \<longleftrightarrow> x = 0" | 
| 862 | apply (auto simp add: Infinitesimal_def) | |
| 863 | apply (drule_tac x="hnorm (star_of x)" in bspec) | |
| 864 | apply (simp add: SReal_def) | |
| 865 | apply (rule_tac x="norm x" in exI, simp) | |
| 866 | apply simp | |
| 867 | done | |
| 27468 | 868 | |
| 64435 | 869 | lemma star_of_HFinite_diff_Infinitesimal: "x \<noteq> 0 \<Longrightarrow> star_of x \<in> HFinite - Infinitesimal" | 
| 870 | by simp | |
| 27468 | 871 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 872 | lemma numeral_not_Infinitesimal [simp]: | 
| 64435 | 873 | "numeral w \<noteq> (0::hypreal) \<Longrightarrow> (numeral w :: hypreal) \<notin> Infinitesimal" | 
| 874 | by (fast dest: Reals_numeral [THEN SReal_Infinitesimal_zero]) | |
| 27468 | 875 | |
| 64435 | 876 | text \<open>Again: \<open>1\<close> is a special case, but not \<open>0\<close> this time.\<close> | 
| 27468 | 877 | lemma one_not_Infinitesimal [simp]: | 
| 878 |   "(1::'a::{real_normed_vector,zero_neq_one} star) \<notin> Infinitesimal"
 | |
| 64435 | 879 | apply (simp only: star_one_def star_of_Infinitesimal_iff_0) | 
| 880 | apply simp | |
| 881 | done | |
| 27468 | 882 | |
| 64435 | 883 | lemma approx_SReal_not_zero: "y \<in> \<real> \<Longrightarrow> x \<approx> y \<Longrightarrow> y \<noteq> 0 \<Longrightarrow> x \<noteq> 0" | 
| 884 | for x y :: hypreal | |
| 885 | apply (cut_tac x = 0 and y = y in linorder_less_linear, simp) | |
| 886 | apply (blast dest: approx_sym [THEN mem_infmal_iff [THEN iffD2]] | |
| 887 | SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) | |
| 888 | done | |
| 27468 | 889 | |
| 890 | lemma HFinite_diff_Infinitesimal_approx: | |
| 64435 | 891 | "x \<approx> y \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x \<in> HFinite - Infinitesimal" | 
| 892 | apply (auto intro: approx_sym [THEN [2] approx_HFinite] simp: mem_infmal_iff) | |
| 893 | apply (drule approx_trans3, assumption) | |
| 894 | apply (blast dest: approx_sym) | |
| 895 | done | |
| 27468 | 896 | |
| 64435 | 897 | text \<open>The premise \<open>y \<noteq> 0\<close> is essential; otherwise \<open>x / y = 0\<close> and we lose the | 
| 898 | \<open>HFinite\<close> premise.\<close> | |
| 27468 | 899 | lemma Infinitesimal_ratio: | 
| 64435 | 900 | "y \<noteq> 0 \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> x / y \<in> HFinite \<Longrightarrow> x \<in> Infinitesimal" | 
| 901 |   for x y :: "'a::{real_normed_div_algebra,field} star"
 | |
| 902 | apply (drule Infinitesimal_HFinite_mult2, assumption) | |
| 903 | apply (simp add: divide_inverse mult.assoc) | |
| 904 | done | |
| 905 | ||
| 906 | lemma Infinitesimal_SReal_divide: "x \<in> Infinitesimal \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x / y \<in> Infinitesimal" | |
| 907 | for x y :: hypreal | |
| 908 | apply (simp add: divide_inverse) | |
| 909 | apply (auto intro!: Infinitesimal_HFinite_mult | |
| 910 | dest!: Reals_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 911 | done | |
| 912 | ||
| 913 | ||
| 914 | section \<open>Standard Part Theorem\<close> | |
| 27468 | 915 | |
| 64435 | 916 | text \<open> | 
| 917 | Every finite \<open>x \<in> R*\<close> is infinitely close to a unique real number | |
| 918 | (i.e. a member of \<open>Reals\<close>). | |
| 919 | \<close> | |
| 27468 | 920 | |
| 921 | ||
| 64435 | 922 | subsection \<open>Uniqueness: Two Infinitely Close Reals are Equal\<close> | 
| 27468 | 923 | |
| 64435 | 924 | lemma star_of_approx_iff [simp]: "star_of x \<approx> star_of y \<longleftrightarrow> x = y" | 
| 925 | apply safe | |
| 926 | apply (simp add: approx_def) | |
| 927 | apply (simp only: star_of_diff [symmetric]) | |
| 928 | apply (simp only: star_of_Infinitesimal_iff_0) | |
| 929 | apply simp | |
| 930 | done | |
| 27468 | 931 | |
| 64435 | 932 | lemma SReal_approx_iff: "x \<in> \<real> \<Longrightarrow> y \<in> \<real> \<Longrightarrow> x \<approx> y \<longleftrightarrow> x = y" | 
| 933 | for x y :: hypreal | |
| 934 | apply auto | |
| 935 | apply (simp add: approx_def) | |
| 936 | apply (drule (1) Reals_diff) | |
| 937 | apply (drule (1) SReal_Infinitesimal_zero) | |
| 938 | apply simp | |
| 939 | done | |
| 27468 | 940 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 941 | lemma numeral_approx_iff [simp]: | 
| 64435 | 942 |   "(numeral v \<approx> (numeral w :: 'a::{numeral,real_normed_vector} star)) =
 | 
| 943 | (numeral v = (numeral w :: 'a))" | |
| 944 | apply (unfold star_numeral_def) | |
| 945 | apply (rule star_of_approx_iff) | |
| 946 | done | |
| 27468 | 947 | |
| 64435 | 948 | text \<open>And also for \<open>0 \<approx> #nn\<close> and \<open>1 \<approx> #nn\<close>, \<open>#nn \<approx> 0\<close> and \<open>#nn \<approx> 1\<close>.\<close> | 
| 27468 | 949 | lemma [simp]: | 
| 64435 | 950 |   "(numeral w \<approx> (0::'a::{numeral,real_normed_vector} star)) = (numeral w = (0::'a))"
 | 
| 951 |   "((0::'a::{numeral,real_normed_vector} star) \<approx> numeral w) = (numeral w = (0::'a))"
 | |
| 952 |   "(numeral w \<approx> (1::'b::{numeral,one,real_normed_vector} star)) = (numeral w = (1::'b))"
 | |
| 953 |   "((1::'b::{numeral,one,real_normed_vector} star) \<approx> numeral w) = (numeral w = (1::'b))"
 | |
| 954 |   "\<not> (0 \<approx> (1::'c::{zero_neq_one,real_normed_vector} star))"
 | |
| 955 |   "\<not> (1 \<approx> (0::'c::{zero_neq_one,real_normed_vector} star))"
 | |
| 956 | apply (unfold star_numeral_def star_zero_def star_one_def) | |
| 957 | apply (unfold star_of_approx_iff) | |
| 958 | apply (auto intro: sym) | |
| 959 | done | |
| 27468 | 960 | |
| 64435 | 961 | lemma star_of_approx_numeral_iff [simp]: "star_of k \<approx> numeral w \<longleftrightarrow> k = numeral w" | 
| 962 | by (subst star_of_approx_iff [symmetric]) auto | |
| 27468 | 963 | |
| 64435 | 964 | lemma star_of_approx_zero_iff [simp]: "star_of k \<approx> 0 \<longleftrightarrow> k = 0" | 
| 965 | by (simp_all add: star_of_approx_iff [symmetric]) | |
| 27468 | 966 | |
| 64435 | 967 | lemma star_of_approx_one_iff [simp]: "star_of k \<approx> 1 \<longleftrightarrow> k = 1" | 
| 968 | by (simp_all add: star_of_approx_iff [symmetric]) | |
| 27468 | 969 | |
| 64435 | 970 | lemma approx_unique_real: "r \<in> \<real> \<Longrightarrow> s \<in> \<real> \<Longrightarrow> r \<approx> x \<Longrightarrow> s \<approx> x \<Longrightarrow> r = s" | 
| 971 | for r s :: hypreal | |
| 972 | by (blast intro: SReal_approx_iff [THEN iffD1] approx_trans2) | |
| 27468 | 973 | |
| 974 | ||
| 64435 | 975 | subsection \<open>Existence of Unique Real Infinitely Close\<close> | 
| 27468 | 976 | |
| 64435 | 977 | subsubsection \<open>Lifting of the Ub and Lub Properties\<close> | 
| 27468 | 978 | |
| 64435 | 979 | lemma hypreal_of_real_isUb_iff: "isUb \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) = isUb UNIV Q Y" | 
| 980 | for Q :: "real set" and Y :: real | |
| 981 | by (simp add: isUb_def setle_def) | |
| 27468 | 982 | |
| 64435 | 983 | lemma hypreal_of_real_isLub1: "isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) \<Longrightarrow> isLub UNIV Q Y" | 
| 984 | for Q :: "real set" and Y :: real | |
| 985 | apply (simp add: isLub_def leastP_def) | |
| 986 | apply (auto intro: hypreal_of_real_isUb_iff [THEN iffD2] | |
| 987 | simp add: hypreal_of_real_isUb_iff setge_def) | |
| 988 | done | |
| 27468 | 989 | |
| 64435 | 990 | lemma hypreal_of_real_isLub2: "isLub UNIV Q Y \<Longrightarrow> isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y)" | 
| 991 | for Q :: "real set" and Y :: real | |
| 992 | apply (auto simp add: isLub_def leastP_def hypreal_of_real_isUb_iff setge_def) | |
| 993 | apply (metis SReal_iff hypreal_of_real_isUb_iff isUbD2a star_of_le) | |
| 994 | done | |
| 27468 | 995 | |
| 996 | lemma hypreal_of_real_isLub_iff: | |
| 64435 | 997 | "isLub \<real> (hypreal_of_real ` Q) (hypreal_of_real Y) = isLub (UNIV :: real set) Q Y" | 
| 998 | for Q :: "real set" and Y :: real | |
| 999 | by (blast intro: hypreal_of_real_isLub1 hypreal_of_real_isLub2) | |
| 27468 | 1000 | |
| 64435 | 1001 | lemma lemma_isUb_hypreal_of_real: "isUb \<real> P Y \<Longrightarrow> \<exists>Yo. isUb \<real> P (hypreal_of_real Yo)" | 
| 1002 | by (auto simp add: SReal_iff isUb_def) | |
| 1003 | ||
| 1004 | lemma lemma_isLub_hypreal_of_real: "isLub \<real> P Y \<Longrightarrow> \<exists>Yo. isLub \<real> P (hypreal_of_real Yo)" | |
| 1005 | by (auto simp add: isLub_def leastP_def isUb_def SReal_iff) | |
| 27468 | 1006 | |
| 64435 | 1007 | lemma lemma_isLub_hypreal_of_real2: "\<exists>Yo. isLub \<real> P (hypreal_of_real Yo) \<Longrightarrow> \<exists>Y. isLub \<real> P Y" | 
| 1008 | by (auto simp add: isLub_def leastP_def isUb_def) | |
| 27468 | 1009 | |
| 64435 | 1010 | lemma SReal_complete: "P \<subseteq> \<real> \<Longrightarrow> \<exists>x. x \<in> P \<Longrightarrow> \<exists>Y. isUb \<real> P Y \<Longrightarrow> \<exists>t::hypreal. isLub \<real> P t" | 
| 1011 | apply (frule SReal_hypreal_of_real_image) | |
| 1012 | apply (auto, drule lemma_isUb_hypreal_of_real) | |
| 1013 | apply (auto intro!: reals_complete lemma_isLub_hypreal_of_real2 | |
| 1014 | simp add: hypreal_of_real_isLub_iff hypreal_of_real_isUb_iff) | |
| 1015 | done | |
| 1016 | ||
| 27468 | 1017 | |
| 64435 | 1018 | text \<open>Lemmas about lubs.\<close> | 
| 27468 | 1019 | |
| 64435 | 1020 | lemma lemma_st_part_ub: "x \<in> HFinite \<Longrightarrow> \<exists>u. isUb \<real> {s. s \<in> \<real> \<and> s < x} u"
 | 
| 1021 | for x :: hypreal | |
| 1022 | apply (drule HFiniteD, safe) | |
| 1023 | apply (rule exI, rule isUbI) | |
| 1024 | apply (auto intro: setleI isUbI simp add: abs_less_iff) | |
| 1025 | done | |
| 27468 | 1026 | |
| 64435 | 1027 | lemma lemma_st_part_nonempty: "x \<in> HFinite \<Longrightarrow> \<exists>y. y \<in> {s. s \<in> \<real> \<and> s < x}"
 | 
| 1028 | for x :: hypreal | |
| 1029 | apply (drule HFiniteD, safe) | |
| 1030 | apply (drule Reals_minus) | |
| 1031 | apply (rule_tac x = "-t" in exI) | |
| 1032 | apply (auto simp add: abs_less_iff) | |
| 1033 | done | |
| 27468 | 1034 | |
| 64435 | 1035 | lemma lemma_st_part_lub: "x \<in> HFinite \<Longrightarrow> \<exists>t. isLub \<real> {s. s \<in> \<real> \<and> s < x} t"
 | 
| 1036 | for x :: hypreal | |
| 1037 | by (blast intro!: SReal_complete lemma_st_part_ub lemma_st_part_nonempty Collect_restrict) | |
| 27468 | 1038 | |
| 1039 | lemma lemma_st_part_le1: | |
| 64435 | 1040 |   "x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> x \<le> t + r"
 | 
| 1041 | for x r t :: hypreal | |
| 1042 | apply (frule isLubD1a) | |
| 1043 | apply (rule ccontr, drule linorder_not_le [THEN iffD2]) | |
| 1044 | apply (drule (1) Reals_add) | |
| 1045 | apply (drule_tac y = "r + t" in isLubD1 [THEN setleD], auto) | |
| 1046 | done | |
| 27468 | 1047 | |
| 64435 | 1048 | lemma hypreal_setle_less_trans: "S *<= x \<Longrightarrow> x < y \<Longrightarrow> S *<= y" | 
| 1049 | for x y :: hypreal | |
| 1050 | apply (simp add: setle_def) | |
| 1051 | apply (auto dest!: bspec order_le_less_trans intro: order_less_imp_le) | |
| 1052 | done | |
| 27468 | 1053 | |
| 64435 | 1054 | lemma hypreal_gt_isUb: "isUb R S x \<Longrightarrow> x < y \<Longrightarrow> y \<in> R \<Longrightarrow> isUb R S y" | 
| 1055 | for x y :: hypreal | |
| 1056 | apply (simp add: isUb_def) | |
| 1057 | apply (blast intro: hypreal_setle_less_trans) | |
| 1058 | done | |
| 27468 | 1059 | |
| 64435 | 1060 | lemma lemma_st_part_gt_ub: "x \<in> HFinite \<Longrightarrow> x < y \<Longrightarrow> y \<in> \<real> \<Longrightarrow> isUb \<real> {s. s \<in> \<real> \<and> s < x} y"
 | 
| 1061 | for x y :: hypreal | |
| 1062 | by (auto dest: order_less_trans intro: order_less_imp_le intro!: isUbI setleI) | |
| 27468 | 1063 | |
| 64435 | 1064 | lemma lemma_minus_le_zero: "t \<le> t + -r \<Longrightarrow> r \<le> 0" | 
| 1065 | for r t :: hypreal | |
| 1066 | apply (drule_tac c = "-t" in add_left_mono) | |
| 1067 | apply (auto simp add: add.assoc [symmetric]) | |
| 1068 | done | |
| 27468 | 1069 | |
| 1070 | lemma lemma_st_part_le2: | |
| 64435 | 1071 |   "x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> t + -r \<le> x"
 | 
| 1072 | for x r t :: hypreal | |
| 1073 | apply (frule isLubD1a) | |
| 1074 | apply (rule ccontr, drule linorder_not_le [THEN iffD1]) | |
| 1075 | apply (drule Reals_minus, drule_tac a = t in Reals_add, assumption) | |
| 1076 | apply (drule lemma_st_part_gt_ub, assumption+) | |
| 1077 | apply (drule isLub_le_isUb, assumption) | |
| 1078 | apply (drule lemma_minus_le_zero) | |
| 1079 | apply (auto dest: order_less_le_trans) | |
| 1080 | done | |
| 27468 | 1081 | |
| 1082 | lemma lemma_st_part1a: | |
| 64435 | 1083 |   "x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> x + -t \<le> r"
 | 
| 1084 | for x r t :: hypreal | |
| 1085 | apply (subgoal_tac "x \<le> t + r") | |
| 1086 | apply (auto intro: lemma_st_part_le1) | |
| 1087 | done | |
| 27468 | 1088 | |
| 1089 | lemma lemma_st_part2a: | |
| 64435 | 1090 |   "x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> - (x + -t) \<le> r"
 | 
| 1091 | for x r t :: hypreal | |
| 1092 | apply (subgoal_tac "(t + -r \<le> x)") | |
| 1093 | apply simp | |
| 1094 | apply (rule lemma_st_part_le2) | |
| 1095 | apply auto | |
| 1096 | done | |
| 27468 | 1097 | |
| 64435 | 1098 | lemma lemma_SReal_ub: "x \<in> \<real> \<Longrightarrow> isUb \<real> {s. s \<in> \<real> \<and> s < x} x"
 | 
| 1099 | for x :: hypreal | |
| 1100 | by (auto intro: isUbI setleI order_less_imp_le) | |
| 27468 | 1101 | |
| 64435 | 1102 | lemma lemma_SReal_lub: "x \<in> \<real> \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} x"
 | 
| 1103 | for x :: hypreal | |
| 1104 | apply (auto intro!: isLubI2 lemma_SReal_ub setgeI) | |
| 1105 | apply (frule isUbD2a) | |
| 1106 | apply (rule_tac x = x and y = y in linorder_cases) | |
| 1107 | apply (auto intro!: order_less_imp_le) | |
| 1108 | apply (drule SReal_dense, assumption, assumption, safe) | |
| 1109 | apply (drule_tac y = r in isUbD) | |
| 1110 | apply (auto dest: order_less_le_trans) | |
| 1111 | done | |
| 27468 | 1112 | |
| 1113 | lemma lemma_st_part_not_eq1: | |
| 64435 | 1114 |   "x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> x + - t \<noteq> r"
 | 
| 1115 | for x r t :: hypreal | |
| 1116 | apply auto | |
| 1117 | apply (frule isLubD1a [THEN Reals_minus]) | |
| 1118 | using Reals_add_cancel [of x "- t"] apply simp | |
| 1119 | apply (drule_tac x = x in lemma_SReal_lub) | |
| 1120 | apply (drule isLub_unique, assumption, auto) | |
| 1121 | done | |
| 27468 | 1122 | |
| 1123 | lemma lemma_st_part_not_eq2: | |
| 64435 | 1124 |   "x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> - (x + -t) \<noteq> r"
 | 
| 1125 | for x r t :: hypreal | |
| 1126 | apply (auto) | |
| 1127 | apply (frule isLubD1a) | |
| 1128 | using Reals_add_cancel [of "- x" t] apply simp | |
| 1129 | apply (drule_tac x = x in lemma_SReal_lub) | |
| 1130 | apply (drule isLub_unique, assumption, auto) | |
| 1131 | done | |
| 27468 | 1132 | |
| 1133 | lemma lemma_st_part_major: | |
| 64435 | 1134 |   "x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> r \<in> \<real> \<Longrightarrow> 0 < r \<Longrightarrow> \<bar>x - t\<bar> < r"
 | 
| 1135 | for x r t :: hypreal | |
| 1136 | apply (frule lemma_st_part1a) | |
| 1137 | apply (frule_tac [4] lemma_st_part2a, auto) | |
| 1138 | apply (drule order_le_imp_less_or_eq)+ | |
| 1139 | apply auto | |
| 1140 | using lemma_st_part_not_eq2 apply fastforce | |
| 1141 | using lemma_st_part_not_eq1 apply fastforce | |
| 1142 | done | |
| 27468 | 1143 | |
| 1144 | lemma lemma_st_part_major2: | |
| 64435 | 1145 |   "x \<in> HFinite \<Longrightarrow> isLub \<real> {s. s \<in> \<real> \<and> s < x} t \<Longrightarrow> \<forall>r \<in> Reals. 0 < r \<longrightarrow> \<bar>x - t\<bar> < r"
 | 
| 1146 | for x t :: hypreal | |
| 1147 | by (blast dest!: lemma_st_part_major) | |
| 27468 | 1148 | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1149 | |
| 64435 | 1150 | text\<open>Existence of real and Standard Part Theorem.\<close> | 
| 1151 | ||
| 1152 | lemma lemma_st_part_Ex: "x \<in> HFinite \<Longrightarrow> \<exists>t\<in>Reals. \<forall>r \<in> Reals. 0 < r \<longrightarrow> \<bar>x - t\<bar> < r" | |
| 1153 | for x :: hypreal | |
| 1154 | apply (frule lemma_st_part_lub, safe) | |
| 1155 | apply (frule isLubD1a) | |
| 1156 | apply (blast dest: lemma_st_part_major2) | |
| 1157 | done | |
| 27468 | 1158 | |
| 64435 | 1159 | lemma st_part_Ex: "x \<in> HFinite \<Longrightarrow> \<exists>t\<in>Reals. x \<approx> t" | 
| 1160 | for x :: hypreal | |
| 1161 | apply (simp add: approx_def Infinitesimal_def) | |
| 1162 | apply (drule lemma_st_part_Ex, auto) | |
| 1163 | done | |
| 27468 | 1164 | |
| 64435 | 1165 | text \<open>There is a unique real infinitely close.\<close> | 
| 1166 | lemma st_part_Ex1: "x \<in> HFinite \<Longrightarrow> \<exists>!t::hypreal. t \<in> \<real> \<and> x \<approx> t" | |
| 1167 | apply (drule st_part_Ex, safe) | |
| 1168 | apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym) | |
| 1169 | apply (auto intro!: approx_unique_real) | |
| 1170 | done | |
| 27468 | 1171 | |
| 64435 | 1172 | |
| 1173 | subsection \<open>Finite, Infinite and Infinitesimal\<close> | |
| 27468 | 1174 | |
| 1175 | lemma HFinite_Int_HInfinite_empty [simp]: "HFinite Int HInfinite = {}"
 | |
| 64435 | 1176 | apply (simp add: HFinite_def HInfinite_def) | 
| 1177 | apply (auto dest: order_less_trans) | |
| 1178 | done | |
| 27468 | 1179 | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1180 | lemma HFinite_not_HInfinite: | 
| 64435 | 1181 | assumes x: "x \<in> HFinite" | 
| 1182 | shows "x \<notin> HInfinite" | |
| 27468 | 1183 | proof | 
| 1184 | assume x': "x \<in> HInfinite" | |
| 1185 | with x have "x \<in> HFinite \<inter> HInfinite" by blast | |
| 64435 | 1186 | then show False by auto | 
| 27468 | 1187 | qed | 
| 1188 | ||
| 64435 | 1189 | lemma not_HFinite_HInfinite: "x \<notin> HFinite \<Longrightarrow> x \<in> HInfinite" | 
| 1190 | apply (simp add: HInfinite_def HFinite_def, auto) | |
| 1191 | apply (drule_tac x = "r + 1" in bspec) | |
| 1192 | apply (auto) | |
| 1193 | done | |
| 27468 | 1194 | |
| 64435 | 1195 | lemma HInfinite_HFinite_disj: "x \<in> HInfinite \<or> x \<in> HFinite" | 
| 1196 | by (blast intro: not_HFinite_HInfinite) | |
| 27468 | 1197 | |
| 64435 | 1198 | lemma HInfinite_HFinite_iff: "x \<in> HInfinite \<longleftrightarrow> x \<notin> HFinite" | 
| 1199 | by (blast dest: HFinite_not_HInfinite not_HFinite_HInfinite) | |
| 27468 | 1200 | |
| 64435 | 1201 | lemma HFinite_HInfinite_iff: "x \<in> HFinite \<longleftrightarrow> x \<notin> HInfinite" | 
| 1202 | by (simp add: HInfinite_HFinite_iff) | |
| 27468 | 1203 | |
| 1204 | ||
| 1205 | lemma HInfinite_diff_HFinite_Infinitesimal_disj: | |
| 64435 | 1206 | "x \<notin> Infinitesimal \<Longrightarrow> x \<in> HInfinite \<or> x \<in> HFinite - Infinitesimal" | 
| 1207 | by (fast intro: not_HFinite_HInfinite) | |
| 27468 | 1208 | |
| 64435 | 1209 | lemma HFinite_inverse: "x \<in> HFinite \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" | 
| 1210 | for x :: "'a::real_normed_div_algebra star" | |
| 1211 | apply (subgoal_tac "x \<noteq> 0") | |
| 1212 | apply (cut_tac x = "inverse x" in HInfinite_HFinite_disj) | |
| 1213 | apply (auto dest!: HInfinite_inverse_Infinitesimal simp: nonzero_inverse_inverse_eq) | |
| 1214 | done | |
| 27468 | 1215 | |
| 64435 | 1216 | lemma HFinite_inverse2: "x \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" | 
| 1217 | for x :: "'a::real_normed_div_algebra star" | |
| 1218 | by (blast intro: HFinite_inverse) | |
| 27468 | 1219 | |
| 64435 | 1220 | text \<open>Stronger statement possible in fact.\<close> | 
| 1221 | lemma Infinitesimal_inverse_HFinite: "x \<notin> Infinitesimal \<Longrightarrow> inverse x \<in> HFinite" | |
| 1222 | for x :: "'a::real_normed_div_algebra star" | |
| 1223 | apply (drule HInfinite_diff_HFinite_Infinitesimal_disj) | |
| 1224 | apply (blast intro: HFinite_inverse HInfinite_inverse_Infinitesimal Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 1225 | done | |
| 27468 | 1226 | |
| 1227 | lemma HFinite_not_Infinitesimal_inverse: | |
| 64435 | 1228 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<in> HFinite - Infinitesimal" | 
| 1229 | for x :: "'a::real_normed_div_algebra star" | |
| 1230 | apply (auto intro: Infinitesimal_inverse_HFinite) | |
| 1231 | apply (drule Infinitesimal_HFinite_mult2, assumption) | |
| 1232 | apply (simp add: not_Infinitesimal_not_zero) | |
| 1233 | done | |
| 27468 | 1234 | |
| 64435 | 1235 | lemma approx_inverse: "x \<approx> y \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> inverse x \<approx> inverse y" | 
| 1236 | for x y :: "'a::real_normed_div_algebra star" | |
| 1237 | apply (frule HFinite_diff_Infinitesimal_approx, assumption) | |
| 1238 | apply (frule not_Infinitesimal_not_zero2) | |
| 1239 | apply (frule_tac x = x in not_Infinitesimal_not_zero2) | |
| 1240 | apply (drule HFinite_inverse2)+ | |
| 1241 | apply (drule approx_mult2, assumption, auto) | |
| 1242 | apply (drule_tac c = "inverse x" in approx_mult1, assumption) | |
| 1243 | apply (auto intro: approx_sym simp add: mult.assoc) | |
| 1244 | done | |
| 27468 | 1245 | |
| 1246 | (*Used for NSLIM_inverse, NSLIMSEQ_inverse*) | |
| 1247 | lemmas star_of_approx_inverse = star_of_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] | |
| 1248 | lemmas hypreal_of_real_approx_inverse = hypreal_of_real_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] | |
| 1249 | ||
| 1250 | lemma inverse_add_Infinitesimal_approx: | |
| 64435 | 1251 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (x + h) \<approx> inverse x" | 
| 1252 | for x h :: "'a::real_normed_div_algebra star" | |
| 1253 | by (auto intro: approx_inverse approx_sym Infinitesimal_add_approx_self) | |
| 27468 | 1254 | |
| 1255 | lemma inverse_add_Infinitesimal_approx2: | |
| 64435 | 1256 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (h + x) \<approx> inverse x" | 
| 1257 | for x h :: "'a::real_normed_div_algebra star" | |
| 1258 | apply (rule add.commute [THEN subst]) | |
| 1259 | apply (blast intro: inverse_add_Infinitesimal_approx) | |
| 1260 | done | |
| 27468 | 1261 | |
| 1262 | lemma inverse_add_Infinitesimal_approx_Infinitesimal: | |
| 64435 | 1263 | "x \<in> HFinite - Infinitesimal \<Longrightarrow> h \<in> Infinitesimal \<Longrightarrow> inverse (x + h) - inverse x \<approx> h" | 
| 1264 | for x h :: "'a::real_normed_div_algebra star" | |
| 1265 | apply (rule approx_trans2) | |
| 1266 | apply (auto intro: inverse_add_Infinitesimal_approx | |
| 1267 | simp add: mem_infmal_iff approx_minus_iff [symmetric]) | |
| 1268 | done | |
| 27468 | 1269 | |
| 64435 | 1270 | lemma Infinitesimal_square_iff: "x \<in> Infinitesimal \<longleftrightarrow> x * x \<in> Infinitesimal" | 
| 1271 | for x :: "'a::real_normed_div_algebra star" | |
| 1272 | apply (auto intro: Infinitesimal_mult) | |
| 1273 | apply (rule ccontr, frule Infinitesimal_inverse_HFinite) | |
| 1274 | apply (frule not_Infinitesimal_not_zero) | |
| 1275 | apply (auto dest: Infinitesimal_HFinite_mult simp add: mult.assoc) | |
| 1276 | done | |
| 27468 | 1277 | declare Infinitesimal_square_iff [symmetric, simp] | 
| 1278 | ||
| 64435 | 1279 | lemma HFinite_square_iff [simp]: "x * x \<in> HFinite \<longleftrightarrow> x \<in> HFinite" | 
| 1280 | for x :: "'a::real_normed_div_algebra star" | |
| 1281 | apply (auto intro: HFinite_mult) | |
| 1282 | apply (auto dest: HInfinite_mult simp add: HFinite_HInfinite_iff) | |
| 1283 | done | |
| 27468 | 1284 | |
| 64435 | 1285 | lemma HInfinite_square_iff [simp]: "x * x \<in> HInfinite \<longleftrightarrow> x \<in> HInfinite" | 
| 1286 | for x :: "'a::real_normed_div_algebra star" | |
| 1287 | by (auto simp add: HInfinite_HFinite_iff) | |
| 27468 | 1288 | |
| 64435 | 1289 | lemma approx_HFinite_mult_cancel: "a \<in> HFinite - Infinitesimal \<Longrightarrow> a * w \<approx> a * z \<Longrightarrow> w \<approx> z" | 
| 1290 | for a w z :: "'a::real_normed_div_algebra star" | |
| 1291 | apply safe | |
| 1292 | apply (frule HFinite_inverse, assumption) | |
| 1293 | apply (drule not_Infinitesimal_not_zero) | |
| 1294 | apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) | |
| 1295 | done | |
| 27468 | 1296 | |
| 64435 | 1297 | lemma approx_HFinite_mult_cancel_iff1: "a \<in> HFinite - Infinitesimal \<Longrightarrow> a * w \<approx> a * z \<longleftrightarrow> w \<approx> z" | 
| 1298 | for a w z :: "'a::real_normed_div_algebra star" | |
| 1299 | by (auto intro: approx_mult2 approx_HFinite_mult_cancel) | |
| 27468 | 1300 | |
| 64435 | 1301 | lemma HInfinite_HFinite_add_cancel: "x + y \<in> HInfinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<in> HInfinite" | 
| 1302 | apply (rule ccontr) | |
| 1303 | apply (drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1304 | apply (auto dest: HFinite_add simp add: HInfinite_HFinite_iff) | |
| 1305 | done | |
| 27468 | 1306 | |
| 64435 | 1307 | lemma HInfinite_HFinite_add: "x \<in> HInfinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x + y \<in> HInfinite" | 
| 1308 | apply (rule_tac y = "-y" in HInfinite_HFinite_add_cancel) | |
| 1309 | apply (auto simp add: add.assoc HFinite_minus_iff) | |
| 1310 | done | |
| 27468 | 1311 | |
| 64435 | 1312 | lemma HInfinite_ge_HInfinite: "x \<in> HInfinite \<Longrightarrow> x \<le> y \<Longrightarrow> 0 \<le> x \<Longrightarrow> y \<in> HInfinite" | 
| 1313 | for x y :: hypreal | |
| 1314 | by (auto intro: HFinite_bounded simp add: HInfinite_HFinite_iff) | |
| 27468 | 1315 | |
| 64435 | 1316 | lemma Infinitesimal_inverse_HInfinite: "x \<in> Infinitesimal \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> inverse x \<in> HInfinite" | 
| 1317 | for x :: "'a::real_normed_div_algebra star" | |
| 1318 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1319 | apply (auto dest: Infinitesimal_HFinite_mult2) | |
| 1320 | done | |
| 27468 | 1321 | |
| 1322 | lemma HInfinite_HFinite_not_Infinitesimal_mult: | |
| 64435 | 1323 | "x \<in> HInfinite \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> x * y \<in> HInfinite" | 
| 1324 | for x y :: "'a::real_normed_div_algebra star" | |
| 1325 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1326 | apply (frule HFinite_Infinitesimal_not_zero) | |
| 1327 | apply (drule HFinite_not_Infinitesimal_inverse) | |
| 1328 | apply (safe, drule HFinite_mult) | |
| 1329 | apply (auto simp add: mult.assoc HFinite_HInfinite_iff) | |
| 1330 | done | |
| 27468 | 1331 | |
| 1332 | lemma HInfinite_HFinite_not_Infinitesimal_mult2: | |
| 64435 | 1333 | "x \<in> HInfinite \<Longrightarrow> y \<in> HFinite - Infinitesimal \<Longrightarrow> y * x \<in> HInfinite" | 
| 1334 | for x y :: "'a::real_normed_div_algebra star" | |
| 1335 | apply (rule ccontr, drule HFinite_HInfinite_iff [THEN iffD2]) | |
| 1336 | apply (frule HFinite_Infinitesimal_not_zero) | |
| 1337 | apply (drule HFinite_not_Infinitesimal_inverse) | |
| 1338 | apply (safe, drule_tac x="inverse y" in HFinite_mult) | |
| 1339 | apply assumption | |
| 1340 | apply (auto simp add: mult.assoc [symmetric] HFinite_HInfinite_iff) | |
| 1341 | done | |
| 27468 | 1342 | |
| 64435 | 1343 | lemma HInfinite_gt_SReal: "x \<in> HInfinite \<Longrightarrow> 0 < x \<Longrightarrow> y \<in> \<real> \<Longrightarrow> y < x" | 
| 1344 | for x y :: hypreal | |
| 1345 | by (auto dest!: bspec simp add: HInfinite_def abs_if order_less_imp_le) | |
| 27468 | 1346 | |
| 64435 | 1347 | lemma HInfinite_gt_zero_gt_one: "x \<in> HInfinite \<Longrightarrow> 0 < x \<Longrightarrow> 1 < x" | 
| 1348 | for x :: hypreal | |
| 1349 | by (auto intro: HInfinite_gt_SReal) | |
| 27468 | 1350 | |
| 1351 | ||
| 1352 | lemma not_HInfinite_one [simp]: "1 \<notin> HInfinite" | |
| 64435 | 1353 | by (simp add: HInfinite_HFinite_iff) | 
| 27468 | 1354 | |
| 64435 | 1355 | lemma approx_hrabs_disj: "\<bar>x\<bar> \<approx> x \<or> \<bar>x\<bar> \<approx> -x" | 
| 1356 | for x :: hypreal | |
| 1357 | using hrabs_disj [of x] by auto | |
| 27468 | 1358 | |
| 1359 | ||
| 64435 | 1360 | subsection \<open>Theorems about Monads\<close> | 
| 27468 | 1361 | |
| 64435 | 1362 | lemma monad_hrabs_Un_subset: "monad \<bar>x\<bar> \<le> monad x \<union> monad (- x)" | 
| 1363 | for x :: hypreal | |
| 1364 | by (rule hrabs_disj [of x, THEN disjE]) auto | |
| 27468 | 1365 | |
| 64435 | 1366 | lemma Infinitesimal_monad_eq: "e \<in> Infinitesimal \<Longrightarrow> monad (x + e) = monad x" | 
| 1367 | by (fast intro!: Infinitesimal_add_approx_self [THEN approx_sym] approx_monad_iff [THEN iffD1]) | |
| 27468 | 1368 | |
| 64435 | 1369 | lemma mem_monad_iff: "u \<in> monad x \<longleftrightarrow> - u \<in> monad (- x)" | 
| 1370 | by (simp add: monad_def) | |
| 1371 | ||
| 1372 | lemma Infinitesimal_monad_zero_iff: "x \<in> Infinitesimal \<longleftrightarrow> x \<in> monad 0" | |
| 1373 | by (auto intro: approx_sym simp add: monad_def mem_infmal_iff) | |
| 27468 | 1374 | |
| 64435 | 1375 | lemma monad_zero_minus_iff: "x \<in> monad 0 \<longleftrightarrow> - x \<in> monad 0" | 
| 1376 | by (simp add: Infinitesimal_monad_zero_iff [symmetric]) | |
| 27468 | 1377 | |
| 64435 | 1378 | lemma monad_zero_hrabs_iff: "x \<in> monad 0 \<longleftrightarrow> \<bar>x\<bar> \<in> monad 0" | 
| 1379 | for x :: hypreal | |
| 1380 | by (rule hrabs_disj [of x, THEN disjE]) (auto simp: monad_zero_minus_iff [symmetric]) | |
| 27468 | 1381 | |
| 1382 | lemma mem_monad_self [simp]: "x \<in> monad x" | |
| 64435 | 1383 | by (simp add: monad_def) | 
| 27468 | 1384 | |
| 1385 | ||
| 64435 | 1386 | subsection \<open>Proof that @{term "x \<approx> y"} implies @{term"\<bar>x\<bar> \<approx> \<bar>y\<bar>"}\<close>
 | 
| 27468 | 1387 | |
| 64435 | 1388 | lemma approx_subset_monad: "x \<approx> y \<Longrightarrow> {x, y} \<le> monad x"
 | 
| 1389 | by (simp (no_asm)) (simp add: approx_monad_iff) | |
| 27468 | 1390 | |
| 64435 | 1391 | lemma approx_subset_monad2: "x \<approx> y \<Longrightarrow> {x, y} \<le> monad y"
 | 
| 1392 | apply (drule approx_sym) | |
| 1393 | apply (fast dest: approx_subset_monad) | |
| 1394 | done | |
| 27468 | 1395 | |
| 64435 | 1396 | lemma mem_monad_approx: "u \<in> monad x \<Longrightarrow> x \<approx> u" | 
| 1397 | by (simp add: monad_def) | |
| 1398 | ||
| 1399 | lemma approx_mem_monad: "x \<approx> u \<Longrightarrow> u \<in> monad x" | |
| 1400 | by (simp add: monad_def) | |
| 27468 | 1401 | |
| 64435 | 1402 | lemma approx_mem_monad2: "x \<approx> u \<Longrightarrow> x \<in> monad u" | 
| 1403 | apply (simp add: monad_def) | |
| 1404 | apply (blast intro!: approx_sym) | |
| 1405 | done | |
| 27468 | 1406 | |
| 64435 | 1407 | lemma approx_mem_monad_zero: "x \<approx> y \<Longrightarrow> x \<in> monad 0 \<Longrightarrow> y \<in> monad 0" | 
| 1408 | apply (drule mem_monad_approx) | |
| 1409 | apply (fast intro: approx_mem_monad approx_trans) | |
| 1410 | done | |
| 27468 | 1411 | |
| 64435 | 1412 | lemma Infinitesimal_approx_hrabs: "x \<approx> y \<Longrightarrow> x \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" | 
| 1413 | for x y :: hypreal | |
| 1414 | apply (drule Infinitesimal_monad_zero_iff [THEN iffD1]) | |
| 1415 | apply (blast intro: approx_mem_monad_zero monad_zero_hrabs_iff [THEN iffD1] | |
| 1416 | mem_monad_approx approx_trans3) | |
| 1417 | done | |
| 27468 | 1418 | |
| 64435 | 1419 | lemma less_Infinitesimal_less: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> e < x" | 
| 1420 | for x :: hypreal | |
| 1421 | apply (rule ccontr) | |
| 1422 | apply (auto intro: Infinitesimal_zero [THEN [2] Infinitesimal_interval] | |
| 1423 | dest!: order_le_imp_less_or_eq simp add: linorder_not_less) | |
| 1424 | done | |
| 27468 | 1425 | |
| 64435 | 1426 | lemma Ball_mem_monad_gt_zero: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> u \<in> monad x \<Longrightarrow> 0 < u" | 
| 1427 | for u x :: hypreal | |
| 1428 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1429 | apply (erule bex_Infinitesimal_iff2 [THEN iffD2, THEN bexE]) | |
| 1430 | apply (drule_tac e = "-xa" in less_Infinitesimal_less, auto) | |
| 1431 | done | |
| 27468 | 1432 | |
| 64435 | 1433 | lemma Ball_mem_monad_less_zero: "x < 0 \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> u \<in> monad x \<Longrightarrow> u < 0" | 
| 1434 | for u x :: hypreal | |
| 1435 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1436 | apply (erule bex_Infinitesimal_iff [THEN iffD2, THEN bexE]) | |
| 1437 | apply (cut_tac x = "-x" and e = xa in less_Infinitesimal_less, auto) | |
| 1438 | done | |
| 27468 | 1439 | |
| 64435 | 1440 | lemma lemma_approx_gt_zero: "0 < x \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> x \<approx> y \<Longrightarrow> 0 < y" | 
| 1441 | for x y :: hypreal | |
| 1442 | by (blast dest: Ball_mem_monad_gt_zero approx_subset_monad) | |
| 27468 | 1443 | |
| 64435 | 1444 | lemma lemma_approx_less_zero: "x < 0 \<Longrightarrow> x \<notin> Infinitesimal \<Longrightarrow> x \<approx> y \<Longrightarrow> y < 0" | 
| 1445 | for x y :: hypreal | |
| 1446 | by (blast dest: Ball_mem_monad_less_zero approx_subset_monad) | |
| 27468 | 1447 | |
| 64435 | 1448 | lemma approx_hrabs: "x \<approx> y \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" | 
| 1449 | for x y :: hypreal | |
| 1450 | by (drule approx_hnorm) simp | |
| 27468 | 1451 | |
| 64435 | 1452 | lemma approx_hrabs_zero_cancel: "\<bar>x\<bar> \<approx> 0 \<Longrightarrow> x \<approx> 0" | 
| 1453 | for x :: hypreal | |
| 1454 | using hrabs_disj [of x] by (auto dest: approx_minus) | |
| 27468 | 1455 | |
| 64435 | 1456 | lemma approx_hrabs_add_Infinitesimal: "e \<in> Infinitesimal \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>x + e\<bar>" | 
| 1457 | for e x :: hypreal | |
| 1458 | by (fast intro: approx_hrabs Infinitesimal_add_approx_self) | |
| 27468 | 1459 | |
| 64435 | 1460 | lemma approx_hrabs_add_minus_Infinitesimal: "e \<in> Infinitesimal ==> \<bar>x\<bar> \<approx> \<bar>x + -e\<bar>" | 
| 1461 | for e x :: hypreal | |
| 1462 | by (fast intro: approx_hrabs Infinitesimal_add_minus_approx_self) | |
| 27468 | 1463 | |
| 1464 | lemma hrabs_add_Infinitesimal_cancel: | |
| 64435 | 1465 | "e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> \<bar>x + e\<bar> = \<bar>y + e'\<bar> \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" | 
| 1466 | for e e' x y :: hypreal | |
| 1467 | apply (drule_tac x = x in approx_hrabs_add_Infinitesimal) | |
| 1468 | apply (drule_tac x = y in approx_hrabs_add_Infinitesimal) | |
| 1469 | apply (auto intro: approx_trans2) | |
| 1470 | done | |
| 27468 | 1471 | |
| 1472 | lemma hrabs_add_minus_Infinitesimal_cancel: | |
| 64435 | 1473 | "e \<in> Infinitesimal \<Longrightarrow> e' \<in> Infinitesimal \<Longrightarrow> \<bar>x + -e\<bar> = \<bar>y + -e'\<bar> \<Longrightarrow> \<bar>x\<bar> \<approx> \<bar>y\<bar>" | 
| 1474 | for e e' x y :: hypreal | |
| 1475 | apply (drule_tac x = x in approx_hrabs_add_minus_Infinitesimal) | |
| 1476 | apply (drule_tac x = y in approx_hrabs_add_minus_Infinitesimal) | |
| 1477 | apply (auto intro: approx_trans2) | |
| 1478 | done | |
| 1479 | ||
| 27468 | 1480 | |
| 61975 | 1481 | subsection \<open>More @{term HFinite} and @{term Infinitesimal} Theorems\<close>
 | 
| 27468 | 1482 | |
| 64435 | 1483 | text \<open> | 
| 1484 | Interesting slightly counterintuitive theorem: necessary | |
| 1485 | for proving that an open interval is an NS open set. | |
| 1486 | \<close> | |
| 27468 | 1487 | lemma Infinitesimal_add_hypreal_of_real_less: | 
| 64435 | 1488 | "x < y \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> hypreal_of_real x + u < hypreal_of_real y" | 
| 1489 | apply (simp add: Infinitesimal_def) | |
| 1490 | apply (drule_tac x = "hypreal_of_real y + -hypreal_of_real x" in bspec, simp) | |
| 1491 | apply (simp add: abs_less_iff) | |
| 1492 | done | |
| 27468 | 1493 | |
| 1494 | lemma Infinitesimal_add_hrabs_hypreal_of_real_less: | |
| 64435 | 1495 | "x \<in> Infinitesimal \<Longrightarrow> \<bar>hypreal_of_real r\<bar> < hypreal_of_real y \<Longrightarrow> | 
| 1496 | \<bar>hypreal_of_real r + x\<bar> < hypreal_of_real y" | |
| 1497 | apply (drule_tac x = "hypreal_of_real r" in approx_hrabs_add_Infinitesimal) | |
| 1498 | apply (drule approx_sym [THEN bex_Infinitesimal_iff2 [THEN iffD2]]) | |
| 1499 | apply (auto intro!: Infinitesimal_add_hypreal_of_real_less | |
| 1500 | simp del: star_of_abs simp add: star_of_abs [symmetric]) | |
| 1501 | done | |
| 27468 | 1502 | |
| 1503 | lemma Infinitesimal_add_hrabs_hypreal_of_real_less2: | |
| 64435 | 1504 | "x \<in> Infinitesimal \<Longrightarrow> \<bar>hypreal_of_real r\<bar> < hypreal_of_real y \<Longrightarrow> | 
| 1505 | \<bar>x + hypreal_of_real r\<bar> < hypreal_of_real y" | |
| 1506 | apply (rule add.commute [THEN subst]) | |
| 1507 | apply (erule Infinitesimal_add_hrabs_hypreal_of_real_less, assumption) | |
| 1508 | done | |
| 27468 | 1509 | |
| 1510 | lemma hypreal_of_real_le_add_Infininitesimal_cancel: | |
| 64435 | 1511 | "u \<in> Infinitesimal \<Longrightarrow> v \<in> Infinitesimal \<Longrightarrow> | 
| 1512 | hypreal_of_real x + u \<le> hypreal_of_real y + v \<Longrightarrow> | |
| 1513 | hypreal_of_real x \<le> hypreal_of_real y" | |
| 1514 | apply (simp add: linorder_not_less [symmetric], auto) | |
| 1515 | apply (drule_tac u = "v-u" in Infinitesimal_add_hypreal_of_real_less) | |
| 1516 | apply (auto simp add: Infinitesimal_diff) | |
| 1517 | done | |
| 27468 | 1518 | |
| 1519 | lemma hypreal_of_real_le_add_Infininitesimal_cancel2: | |
| 64435 | 1520 | "u \<in> Infinitesimal \<Longrightarrow> v \<in> Infinitesimal \<Longrightarrow> | 
| 1521 | hypreal_of_real x + u \<le> hypreal_of_real y + v \<Longrightarrow> x \<le> y" | |
| 1522 | by (blast intro: star_of_le [THEN iffD1] intro!: hypreal_of_real_le_add_Infininitesimal_cancel) | |
| 27468 | 1523 | |
| 1524 | lemma hypreal_of_real_less_Infinitesimal_le_zero: | |
| 64435 | 1525 | "hypreal_of_real x < e \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> hypreal_of_real x \<le> 0" | 
| 1526 | apply (rule linorder_not_less [THEN iffD1], safe) | |
| 1527 | apply (drule Infinitesimal_interval) | |
| 1528 | apply (drule_tac [4] SReal_hypreal_of_real [THEN SReal_Infinitesimal_zero], auto) | |
| 1529 | done | |
| 27468 | 1530 | |
| 1531 | (*used once, in Lim/NSDERIV_inverse*) | |
| 64435 | 1532 | lemma Infinitesimal_add_not_zero: "h \<in> Infinitesimal \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> star_of x + h \<noteq> 0" | 
| 1533 | apply auto | |
| 1534 | apply (subgoal_tac "h = - star_of x") | |
| 1535 | apply (auto intro: minus_unique [symmetric]) | |
| 1536 | done | |
| 27468 | 1537 | |
| 64435 | 1538 | lemma Infinitesimal_square_cancel [simp]: "x * x + y * y \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" | 
| 1539 | for x y :: hypreal | |
| 1540 | apply (rule Infinitesimal_interval2) | |
| 1541 | apply (rule_tac [3] zero_le_square, assumption) | |
| 1542 | apply auto | |
| 1543 | done | |
| 27468 | 1544 | |
| 64435 | 1545 | lemma HFinite_square_cancel [simp]: "x * x + y * y \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" | 
| 1546 | for x y :: hypreal | |
| 1547 | apply (rule HFinite_bounded, assumption) | |
| 1548 | apply auto | |
| 1549 | done | |
| 27468 | 1550 | |
| 64435 | 1551 | lemma Infinitesimal_square_cancel2 [simp]: "x * x + y * y \<in> Infinitesimal \<Longrightarrow> y * y \<in> Infinitesimal" | 
| 1552 | for x y :: hypreal | |
| 1553 | apply (rule Infinitesimal_square_cancel) | |
| 1554 | apply (rule add.commute [THEN subst]) | |
| 1555 | apply simp | |
| 1556 | done | |
| 27468 | 1557 | |
| 64435 | 1558 | lemma HFinite_square_cancel2 [simp]: "x * x + y * y \<in> HFinite \<Longrightarrow> y * y \<in> HFinite" | 
| 1559 | for x y :: hypreal | |
| 1560 | apply (rule HFinite_square_cancel) | |
| 1561 | apply (rule add.commute [THEN subst]) | |
| 1562 | apply simp | |
| 1563 | done | |
| 27468 | 1564 | |
| 1565 | lemma Infinitesimal_sum_square_cancel [simp]: | |
| 64435 | 1566 | "x * x + y * y + z * z \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" | 
| 1567 | for x y z :: hypreal | |
| 1568 | apply (rule Infinitesimal_interval2, assumption) | |
| 1569 | apply (rule_tac [2] zero_le_square, simp) | |
| 1570 | apply (insert zero_le_square [of y]) | |
| 1571 | apply (insert zero_le_square [of z], simp del:zero_le_square) | |
| 1572 | done | |
| 27468 | 1573 | |
| 64435 | 1574 | lemma HFinite_sum_square_cancel [simp]: "x * x + y * y + z * z \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" | 
| 1575 | for x y z :: hypreal | |
| 1576 | apply (rule HFinite_bounded, assumption) | |
| 1577 | apply (rule_tac [2] zero_le_square) | |
| 1578 | apply (insert zero_le_square [of y]) | |
| 1579 | apply (insert zero_le_square [of z], simp del:zero_le_square) | |
| 1580 | done | |
| 27468 | 1581 | |
| 1582 | lemma Infinitesimal_sum_square_cancel2 [simp]: | |
| 64435 | 1583 | "y * y + x * x + z * z \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" | 
| 1584 | for x y z :: hypreal | |
| 1585 | apply (rule Infinitesimal_sum_square_cancel) | |
| 1586 | apply (simp add: ac_simps) | |
| 1587 | done | |
| 27468 | 1588 | |
| 64435 | 1589 | lemma HFinite_sum_square_cancel2 [simp]: "y * y + x * x + z * z \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" | 
| 1590 | for x y z :: hypreal | |
| 1591 | apply (rule HFinite_sum_square_cancel) | |
| 1592 | apply (simp add: ac_simps) | |
| 1593 | done | |
| 27468 | 1594 | |
| 1595 | lemma Infinitesimal_sum_square_cancel3 [simp]: | |
| 64435 | 1596 | "z * z + y * y + x * x \<in> Infinitesimal \<Longrightarrow> x * x \<in> Infinitesimal" | 
| 1597 | for x y z :: hypreal | |
| 1598 | apply (rule Infinitesimal_sum_square_cancel) | |
| 1599 | apply (simp add: ac_simps) | |
| 1600 | done | |
| 27468 | 1601 | |
| 64435 | 1602 | lemma HFinite_sum_square_cancel3 [simp]: "z * z + y * y + x * x \<in> HFinite \<Longrightarrow> x * x \<in> HFinite" | 
| 1603 | for x y z :: hypreal | |
| 1604 | apply (rule HFinite_sum_square_cancel) | |
| 1605 | apply (simp add: ac_simps) | |
| 1606 | done | |
| 27468 | 1607 | |
| 64435 | 1608 | lemma monad_hrabs_less: "y \<in> monad x \<Longrightarrow> 0 < hypreal_of_real e \<Longrightarrow> \<bar>y - x\<bar> < hypreal_of_real e" | 
| 1609 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1610 | apply (drule bex_Infinitesimal_iff [THEN iffD2]) | |
| 1611 | apply (auto dest!: InfinitesimalD) | |
| 1612 | done | |
| 27468 | 1613 | |
| 64435 | 1614 | lemma mem_monad_SReal_HFinite: "x \<in> monad (hypreal_of_real a) \<Longrightarrow> x \<in> HFinite" | 
| 1615 | apply (drule mem_monad_approx [THEN approx_sym]) | |
| 1616 | apply (drule bex_Infinitesimal_iff2 [THEN iffD2]) | |
| 1617 | apply (safe dest!: Infinitesimal_subset_HFinite [THEN subsetD]) | |
| 1618 | apply (erule SReal_hypreal_of_real [THEN SReal_subset_HFinite [THEN subsetD], THEN HFinite_add]) | |
| 1619 | done | |
| 27468 | 1620 | |
| 1621 | ||
| 64435 | 1622 | subsection \<open>Theorems about Standard Part\<close> | 
| 27468 | 1623 | |
| 64435 | 1624 | lemma st_approx_self: "x \<in> HFinite \<Longrightarrow> st x \<approx> x" | 
| 1625 | apply (simp add: st_def) | |
| 1626 | apply (frule st_part_Ex, safe) | |
| 1627 | apply (rule someI2) | |
| 1628 | apply (auto intro: approx_sym) | |
| 1629 | done | |
| 27468 | 1630 | |
| 64435 | 1631 | lemma st_SReal: "x \<in> HFinite \<Longrightarrow> st x \<in> \<real>" | 
| 1632 | apply (simp add: st_def) | |
| 1633 | apply (frule st_part_Ex, safe) | |
| 1634 | apply (rule someI2) | |
| 1635 | apply (auto intro: approx_sym) | |
| 1636 | done | |
| 27468 | 1637 | |
| 64435 | 1638 | lemma st_HFinite: "x \<in> HFinite \<Longrightarrow> st x \<in> HFinite" | 
| 1639 | by (erule st_SReal [THEN SReal_subset_HFinite [THEN subsetD]]) | |
| 27468 | 1640 | |
| 64435 | 1641 | lemma st_unique: "r \<in> \<real> \<Longrightarrow> r \<approx> x \<Longrightarrow> st x = r" | 
| 1642 | apply (frule SReal_subset_HFinite [THEN subsetD]) | |
| 1643 | apply (drule (1) approx_HFinite) | |
| 1644 | apply (unfold st_def) | |
| 1645 | apply (rule some_equality) | |
| 1646 | apply (auto intro: approx_unique_real) | |
| 1647 | done | |
| 27468 | 1648 | |
| 64435 | 1649 | lemma st_SReal_eq: "x \<in> \<real> \<Longrightarrow> st x = x" | 
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1650 | by (metis approx_refl st_unique) | 
| 27468 | 1651 | |
| 1652 | lemma st_hypreal_of_real [simp]: "st (hypreal_of_real x) = hypreal_of_real x" | |
| 64435 | 1653 | by (rule SReal_hypreal_of_real [THEN st_SReal_eq]) | 
| 27468 | 1654 | |
| 64435 | 1655 | lemma st_eq_approx: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st x = st y \<Longrightarrow> x \<approx> y" | 
| 1656 | by (auto dest!: st_approx_self elim!: approx_trans3) | |
| 27468 | 1657 | |
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
54489diff
changeset | 1658 | lemma approx_st_eq: | 
| 61982 | 1659 | assumes x: "x \<in> HFinite" and y: "y \<in> HFinite" and xy: "x \<approx> y" | 
| 27468 | 1660 | shows "st x = st y" | 
| 1661 | proof - | |
| 61982 | 1662 | have "st x \<approx> x" "st y \<approx> y" "st x \<in> \<real>" "st y \<in> \<real>" | 
| 41541 | 1663 | by (simp_all add: st_approx_self st_SReal x y) | 
| 1664 | with xy show ?thesis | |
| 27468 | 1665 | by (fast elim: approx_trans approx_trans2 SReal_approx_iff [THEN iffD1]) | 
| 1666 | qed | |
| 1667 | ||
| 64435 | 1668 | lemma st_eq_approx_iff: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<approx> y \<longleftrightarrow> st x = st y" | 
| 1669 | by (blast intro: approx_st_eq st_eq_approx) | |
| 27468 | 1670 | |
| 64435 | 1671 | lemma st_Infinitesimal_add_SReal: "x \<in> \<real> \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> st (x + e) = x" | 
| 1672 | apply (erule st_unique) | |
| 1673 | apply (erule Infinitesimal_add_approx_self) | |
| 1674 | done | |
| 27468 | 1675 | |
| 64435 | 1676 | lemma st_Infinitesimal_add_SReal2: "x \<in> \<real> \<Longrightarrow> e \<in> Infinitesimal \<Longrightarrow> st (e + x) = x" | 
| 1677 | apply (erule st_unique) | |
| 1678 | apply (erule Infinitesimal_add_approx_self2) | |
| 1679 | done | |
| 27468 | 1680 | |
| 64435 | 1681 | lemma HFinite_st_Infinitesimal_add: "x \<in> HFinite \<Longrightarrow> \<exists>e \<in> Infinitesimal. x = st(x) + e" | 
| 1682 | by (blast dest!: st_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2]) | |
| 27468 | 1683 | |
| 64435 | 1684 | lemma st_add: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st (x + y) = st x + st y" | 
| 1685 | by (simp add: st_unique st_SReal st_approx_self approx_add) | |
| 27468 | 1686 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1687 | lemma st_numeral [simp]: "st (numeral w) = numeral w" | 
| 64435 | 1688 | by (rule Reals_numeral [THEN st_SReal_eq]) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
45541diff
changeset | 1689 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1690 | lemma st_neg_numeral [simp]: "st (- numeral w) = - numeral w" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1691 | proof - | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1692 | from Reals_numeral have "numeral w \<in> \<real>" . | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1693 | then have "- numeral w \<in> \<real>" by simp | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1694 | with st_SReal_eq show ?thesis . | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1695 | qed | 
| 27468 | 1696 | |
| 45540 | 1697 | lemma st_0 [simp]: "st 0 = 0" | 
| 64435 | 1698 | by (simp add: st_SReal_eq) | 
| 45540 | 1699 | |
| 1700 | lemma st_1 [simp]: "st 1 = 1" | |
| 64435 | 1701 | by (simp add: st_SReal_eq) | 
| 27468 | 1702 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1703 | lemma st_neg_1 [simp]: "st (- 1) = - 1" | 
| 64435 | 1704 | by (simp add: st_SReal_eq) | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54263diff
changeset | 1705 | |
| 27468 | 1706 | lemma st_minus: "x \<in> HFinite \<Longrightarrow> st (- x) = - st x" | 
| 64435 | 1707 | by (simp add: st_unique st_SReal st_approx_self approx_minus) | 
| 27468 | 1708 | |
| 1709 | lemma st_diff: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x - y) = st x - st y" | |
| 64435 | 1710 | by (simp add: st_unique st_SReal st_approx_self approx_diff) | 
| 27468 | 1711 | |
| 1712 | lemma st_mult: "\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> st (x * y) = st x * st y" | |
| 64435 | 1713 | by (simp add: st_unique st_SReal st_approx_self approx_mult_HFinite) | 
| 27468 | 1714 | |
| 64435 | 1715 | lemma st_Infinitesimal: "x \<in> Infinitesimal \<Longrightarrow> st x = 0" | 
| 1716 | by (simp add: st_unique mem_infmal_iff) | |
| 27468 | 1717 | |
| 64435 | 1718 | lemma st_not_Infinitesimal: "st(x) \<noteq> 0 \<Longrightarrow> x \<notin> Infinitesimal" | 
| 27468 | 1719 | by (fast intro: st_Infinitesimal) | 
| 1720 | ||
| 64435 | 1721 | lemma st_inverse: "x \<in> HFinite \<Longrightarrow> st x \<noteq> 0 \<Longrightarrow> st (inverse x) = inverse (st x)" | 
| 1722 | apply (rule_tac c1 = "st x" in mult_left_cancel [THEN iffD1]) | |
| 1723 | apply (auto simp add: st_mult [symmetric] st_not_Infinitesimal HFinite_inverse) | |
| 1724 | apply (subst right_inverse, auto) | |
| 1725 | done | |
| 27468 | 1726 | |
| 64435 | 1727 | lemma st_divide [simp]: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> st y \<noteq> 0 \<Longrightarrow> st (x / y) = st x / st y" | 
| 1728 | by (simp add: divide_inverse st_mult st_not_Infinitesimal HFinite_inverse st_inverse) | |
| 27468 | 1729 | |
| 64435 | 1730 | lemma st_idempotent [simp]: "x \<in> HFinite \<Longrightarrow> st (st x) = st x" | 
| 1731 | by (blast intro: st_HFinite st_approx_self approx_st_eq) | |
| 27468 | 1732 | |
| 1733 | lemma Infinitesimal_add_st_less: | |
| 64435 | 1734 | "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> st x < st y \<Longrightarrow> st x + u < st y" | 
| 1735 | apply (drule st_SReal)+ | |
| 1736 | apply (auto intro!: Infinitesimal_add_hypreal_of_real_less simp add: SReal_iff) | |
| 1737 | done | |
| 27468 | 1738 | |
| 1739 | lemma Infinitesimal_add_st_le_cancel: | |
| 64435 | 1740 | "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> u \<in> Infinitesimal \<Longrightarrow> | 
| 1741 | st x \<le> st y + u \<Longrightarrow> st x \<le> st y" | |
| 1742 | apply (simp add: linorder_not_less [symmetric]) | |
| 1743 | apply (auto dest: Infinitesimal_add_st_less) | |
| 1744 | done | |
| 27468 | 1745 | |
| 64435 | 1746 | lemma st_le: "x \<in> HFinite \<Longrightarrow> y \<in> HFinite \<Longrightarrow> x \<le> y \<Longrightarrow> st x \<le> st y" | 
| 1747 | by (metis approx_le_bound approx_sym linear st_SReal st_approx_self st_part_Ex1) | |
| 27468 | 1748 | |
| 64435 | 1749 | lemma st_zero_le: "0 \<le> x \<Longrightarrow> x \<in> HFinite \<Longrightarrow> 0 \<le> st x" | 
| 1750 | apply (subst st_0 [symmetric]) | |
| 1751 | apply (rule st_le, auto) | |
| 1752 | done | |
| 27468 | 1753 | |
| 64435 | 1754 | lemma st_zero_ge: "x \<le> 0 \<Longrightarrow> x \<in> HFinite \<Longrightarrow> st x \<le> 0" | 
| 1755 | apply (subst st_0 [symmetric]) | |
| 1756 | apply (rule st_le, auto) | |
| 1757 | done | |
| 27468 | 1758 | |
| 64435 | 1759 | lemma st_hrabs: "x \<in> HFinite \<Longrightarrow> \<bar>st x\<bar> = st \<bar>x\<bar>" | 
| 1760 | apply (simp add: linorder_not_le st_zero_le abs_if st_minus linorder_not_less) | |
| 1761 | apply (auto dest!: st_zero_ge [OF order_less_imp_le]) | |
| 1762 | done | |
| 27468 | 1763 | |
| 1764 | ||
| 61975 | 1765 | subsection \<open>Alternative Definitions using Free Ultrafilter\<close> | 
| 27468 | 1766 | |
| 61975 | 1767 | subsubsection \<open>@{term HFinite}\<close>
 | 
| 27468 | 1768 | |
| 1769 | lemma HFinite_FreeUltrafilterNat: | |
| 64438 | 1770 | "star_n X \<in> HFinite \<Longrightarrow> \<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U>" | 
| 64435 | 1771 | apply (auto simp add: HFinite_def SReal_def) | 
| 1772 | apply (rule_tac x=r in exI) | |
| 1773 | apply (simp add: hnorm_def star_of_def starfun_star_n) | |
| 1774 | apply (simp add: star_less_def starP2_star_n) | |
| 1775 | done | |
| 27468 | 1776 | |
| 1777 | lemma FreeUltrafilterNat_HFinite: | |
| 64438 | 1778 | "\<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U> \<Longrightarrow> star_n X \<in> HFinite" | 
| 64435 | 1779 | apply (auto simp add: HFinite_def mem_Rep_star_iff) | 
| 1780 | apply (rule_tac x="star_of u" in bexI) | |
| 1781 | apply (simp add: hnorm_def starfun_star_n star_of_def) | |
| 1782 | apply (simp add: star_less_def starP2_star_n) | |
| 1783 | apply (simp add: SReal_def) | |
| 1784 | done | |
| 27468 | 1785 | |
| 1786 | lemma HFinite_FreeUltrafilterNat_iff: | |
| 64438 | 1787 | "star_n X \<in> HFinite \<longleftrightarrow> (\<exists>u. eventually (\<lambda>n. norm (X n) < u) \<U>)" | 
| 64435 | 1788 | by (blast intro!: HFinite_FreeUltrafilterNat FreeUltrafilterNat_HFinite) | 
| 1789 | ||
| 27468 | 1790 | |
| 61975 | 1791 | subsubsection \<open>@{term HInfinite}\<close>
 | 
| 27468 | 1792 | |
| 56225 | 1793 | lemma lemma_Compl_eq: "- {n. u < norm (f n)} = {n. norm (f n) \<le> u}"
 | 
| 64435 | 1794 | by auto | 
| 27468 | 1795 | |
| 56225 | 1796 | lemma lemma_Compl_eq2: "- {n. norm (f n) < u} = {n. u \<le> norm (f n)}"
 | 
| 64435 | 1797 | by auto | 
| 27468 | 1798 | |
| 64435 | 1799 | lemma lemma_Int_eq1: "{n. norm (f n) \<le> u} Int {n. u \<le> norm (f n)} = {n. norm(f n) = u}"
 | 
| 1800 | by auto | |
| 27468 | 1801 | |
| 64435 | 1802 | lemma lemma_FreeUltrafilterNat_one: "{n. norm (f n) = u} \<le> {n. norm (f n) < u + (1::real)}"
 | 
| 1803 | by auto | |
| 27468 | 1804 | |
| 64435 | 1805 | text \<open>Exclude this type of sets from free ultrafilter for Infinite numbers!\<close> | 
| 27468 | 1806 | lemma FreeUltrafilterNat_const_Finite: | 
| 64438 | 1807 | "eventually (\<lambda>n. norm (X n) = u) \<U> \<Longrightarrow> star_n X \<in> HFinite" | 
| 64435 | 1808 | apply (rule FreeUltrafilterNat_HFinite) | 
| 1809 | apply (rule_tac x = "u + 1" in exI) | |
| 1810 | apply (auto elim: eventually_mono) | |
| 1811 | done | |
| 27468 | 1812 | |
| 1813 | lemma HInfinite_FreeUltrafilterNat: | |
| 64438 | 1814 | "star_n X \<in> HInfinite \<Longrightarrow> \<forall>u. eventually (\<lambda>n. u < norm (X n)) \<U>" | 
| 64435 | 1815 | apply (drule HInfinite_HFinite_iff [THEN iffD1]) | 
| 1816 | apply (simp add: HFinite_FreeUltrafilterNat_iff) | |
| 1817 | apply (rule allI, drule_tac x="u + 1" in spec) | |
| 1818 | apply (simp add: FreeUltrafilterNat.eventually_not_iff[symmetric]) | |
| 1819 | apply (auto elim: eventually_mono) | |
| 1820 | done | |
| 27468 | 1821 | |
| 64435 | 1822 | lemma lemma_Int_HI: "{n. norm (Xa n) < u} \<inter> {n. X n = Xa n} \<subseteq> {n. norm (X n) < u}"
 | 
| 1823 | for u :: real | |
| 1824 | by auto | |
| 27468 | 1825 | |
| 64435 | 1826 | lemma lemma_Int_HIa: "{n. u < norm (X n)} \<inter> {n. norm (X n) < u} = {}"
 | 
| 1827 | by (auto intro: order_less_asym) | |
| 27468 | 1828 | |
| 1829 | lemma FreeUltrafilterNat_HInfinite: | |
| 64438 | 1830 | "\<forall>u. eventually (\<lambda>n. u < norm (X n)) \<U> \<Longrightarrow> star_n X \<in> HInfinite" | 
| 64435 | 1831 | apply (rule HInfinite_HFinite_iff [THEN iffD2]) | 
| 1832 | apply (safe, drule HFinite_FreeUltrafilterNat, safe) | |
| 1833 | apply (drule_tac x = u in spec) | |
| 60041 | 1834 | proof - | 
| 64435 | 1835 | fix u | 
| 1836 | assume "\<forall>\<^sub>Fn in \<U>. norm (X n) < u" "\<forall>\<^sub>Fn in \<U>. u < norm (X n)" | |
| 60041 | 1837 | then have "\<forall>\<^sub>F x in \<U>. False" | 
| 1838 | by eventually_elim auto | |
| 1839 | then show False | |
| 1840 | by (simp add: eventually_False FreeUltrafilterNat.proper) | |
| 1841 | qed | |
| 27468 | 1842 | |
| 1843 | lemma HInfinite_FreeUltrafilterNat_iff: | |
| 64438 | 1844 | "star_n X \<in> HInfinite \<longleftrightarrow> (\<forall>u. eventually (\<lambda>n. u < norm (X n)) \<U>)" | 
| 64435 | 1845 | by (blast intro!: HInfinite_FreeUltrafilterNat FreeUltrafilterNat_HInfinite) | 
| 1846 | ||
| 27468 | 1847 | |
| 61975 | 1848 | subsubsection \<open>@{term Infinitesimal}\<close>
 | 
| 27468 | 1849 | |
| 64435 | 1850 | lemma ball_SReal_eq: "(\<forall>x::hypreal \<in> Reals. P x) \<longleftrightarrow> (\<forall>x::real. P (star_of x))" | 
| 1851 | by (auto simp: SReal_def) | |
| 27468 | 1852 | |
| 1853 | lemma Infinitesimal_FreeUltrafilterNat: | |
| 64435 | 1854 | "star_n X \<in> Infinitesimal \<Longrightarrow> \<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>" | 
| 1855 | apply (simp add: Infinitesimal_def ball_SReal_eq) | |
| 1856 | apply (simp add: hnorm_def starfun_star_n star_of_def) | |
| 1857 | apply (simp add: star_less_def starP2_star_n) | |
| 1858 | done | |
| 27468 | 1859 | |
| 1860 | lemma FreeUltrafilterNat_Infinitesimal: | |
| 64435 | 1861 | "\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U> \<Longrightarrow> star_n X \<in> Infinitesimal" | 
| 1862 | apply (simp add: Infinitesimal_def ball_SReal_eq) | |
| 1863 | apply (simp add: hnorm_def starfun_star_n star_of_def) | |
| 1864 | apply (simp add: star_less_def starP2_star_n) | |
| 1865 | done | |
| 27468 | 1866 | |
| 1867 | lemma Infinitesimal_FreeUltrafilterNat_iff: | |
| 64435 | 1868 | "(star_n X \<in> Infinitesimal) = (\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>)" | 
| 1869 | by (blast intro!: Infinitesimal_FreeUltrafilterNat FreeUltrafilterNat_Infinitesimal) | |
| 1870 | ||
| 27468 | 1871 | |
| 64435 | 1872 | text \<open>Infinitesimals as smaller than \<open>1/n\<close> for all \<open>n::nat (> 0)\<close>.\<close> | 
| 27468 | 1873 | |
| 64435 | 1874 | lemma lemma_Infinitesimal: "(\<forall>r. 0 < r \<longrightarrow> x < r) \<longleftrightarrow> (\<forall>n. x < inverse (real (Suc n)))" | 
| 1875 | apply (auto simp del: of_nat_Suc) | |
| 1876 | apply (blast dest!: reals_Archimedean intro: order_less_trans) | |
| 1877 | done | |
| 27468 | 1878 | |
| 1879 | lemma lemma_Infinitesimal2: | |
| 64435 | 1880 | "(\<forall>r \<in> Reals. 0 < r \<longrightarrow> x < r) \<longleftrightarrow> (\<forall>n. x < inverse(hypreal_of_nat (Suc n)))" | 
| 1881 | apply safe | |
| 1882 | apply (drule_tac x = "inverse (hypreal_of_real (real (Suc n))) " in bspec) | |
| 1883 | apply simp_all | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 1884 | using less_imp_of_nat_less apply fastforce | 
| 64435 | 1885 | apply (auto dest!: reals_Archimedean simp add: SReal_iff simp del: of_nat_Suc) | 
| 1886 | apply (drule star_of_less [THEN iffD2]) | |
| 1887 | apply simp | |
| 1888 | apply (blast intro: order_less_trans) | |
| 1889 | done | |
| 27468 | 1890 | |
| 1891 | ||
| 1892 | lemma Infinitesimal_hypreal_of_nat_iff: | |
| 64435 | 1893 |   "Infinitesimal = {x. \<forall>n. hnorm x < inverse (hypreal_of_nat (Suc n))}"
 | 
| 1894 | apply (simp add: Infinitesimal_def) | |
| 1895 | apply (auto simp add: lemma_Infinitesimal2) | |
| 1896 | done | |
| 27468 | 1897 | |
| 1898 | ||
| 64435 | 1899 | subsection \<open>Proof that \<open>\<omega>\<close> is an infinite number\<close> | 
| 27468 | 1900 | |
| 64435 | 1901 | text \<open>It will follow that \<open>\<epsilon>\<close> is an infinitesimal number.\<close> | 
| 27468 | 1902 | |
| 1903 | lemma Suc_Un_eq: "{n. n < Suc m} = {n. n < m} Un {n. n = m}"
 | |
| 64435 | 1904 | by (auto simp add: less_Suc_eq) | 
| 27468 | 1905 | |
| 64435 | 1906 | |
| 64438 | 1907 | text \<open>Prove that any segment is finite and hence cannot belong to \<open>\<U>\<close>.\<close> | 
| 27468 | 1908 | |
| 1909 | lemma finite_real_of_nat_segment: "finite {n::nat. real n < real (m::nat)}"
 | |
| 64435 | 1910 | by auto | 
| 27468 | 1911 | |
| 1912 | lemma finite_real_of_nat_less_real: "finite {n::nat. real n < u}"
 | |
| 64435 | 1913 | apply (cut_tac x = u in reals_Archimedean2, safe) | 
| 1914 | apply (rule finite_real_of_nat_segment [THEN [2] finite_subset]) | |
| 1915 | apply (auto dest: order_less_trans) | |
| 1916 | done | |
| 27468 | 1917 | |
| 64435 | 1918 | lemma lemma_real_le_Un_eq: "{n. f n \<le> u} = {n. f n < u} \<union> {n. u = (f n :: real)}"
 | 
| 1919 | by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) | |
| 27468 | 1920 | |
| 1921 | lemma finite_real_of_nat_le_real: "finite {n::nat. real n \<le> u}"
 | |
| 64435 | 1922 | by (auto simp add: lemma_real_le_Un_eq lemma_finite_omega_set finite_real_of_nat_less_real) | 
| 27468 | 1923 | |
| 61945 | 1924 | lemma finite_rabs_real_of_nat_le_real: "finite {n::nat. \<bar>real n\<bar> \<le> u}"
 | 
| 64435 | 1925 | by (simp add: finite_real_of_nat_le_real) | 
| 27468 | 1926 | |
| 1927 | lemma rabs_real_of_nat_le_real_FreeUltrafilterNat: | |
| 64438 | 1928 | "\<not> eventually (\<lambda>n. \<bar>real n\<bar> \<le> u) \<U>" | 
| 64435 | 1929 | by (blast intro!: FreeUltrafilterNat.finite finite_rabs_real_of_nat_le_real) | 
| 27468 | 1930 | |
| 64438 | 1931 | lemma FreeUltrafilterNat_nat_gt_real: "eventually (\<lambda>n. u < real n) \<U>" | 
| 64435 | 1932 | apply (rule FreeUltrafilterNat.finite') | 
| 1933 |   apply (subgoal_tac "{n::nat. \<not> u < real n} = {n. real n \<le> u}")
 | |
| 1934 | apply (auto simp add: finite_real_of_nat_le_real) | |
| 1935 | done | |
| 27468 | 1936 | |
| 64435 | 1937 | text \<open>The complement of \<open>{n. \<bar>real n\<bar> \<le> u} = {n. u < \<bar>real n\<bar>}\<close> is in
 | 
| 64438 | 1938 | \<open>\<U>\<close> by property of (free) ultrafilters.\<close> | 
| 27468 | 1939 | |
| 1940 | lemma Compl_real_le_eq: "- {n::nat. real n \<le> u} = {n. u < real n}"
 | |
| 64435 | 1941 | by (auto dest!: order_le_less_trans simp add: linorder_not_le) | 
| 27468 | 1942 | |
| 64435 | 1943 | text \<open>@{term \<omega>} is a member of @{term HInfinite}.\<close>
 | 
| 61981 | 1944 | theorem HInfinite_omega [simp]: "\<omega> \<in> HInfinite" | 
| 64435 | 1945 | apply (simp add: omega_def) | 
| 1946 | apply (rule FreeUltrafilterNat_HInfinite) | |
| 1947 | apply clarify | |
| 1948 | apply (rule_tac u1 = "u-1" in eventually_mono [OF FreeUltrafilterNat_nat_gt_real]) | |
| 1949 | apply auto | |
| 1950 | done | |
| 27468 | 1951 | |
| 64435 | 1952 | |
| 1953 | text \<open>Epsilon is a member of Infinitesimal.\<close> | |
| 27468 | 1954 | |
| 61981 | 1955 | lemma Infinitesimal_epsilon [simp]: "\<epsilon> \<in> Infinitesimal" | 
| 64435 | 1956 | by (auto intro!: HInfinite_inverse_Infinitesimal HInfinite_omega | 
| 1957 | simp add: hypreal_epsilon_inverse_omega) | |
| 27468 | 1958 | |
| 61981 | 1959 | lemma HFinite_epsilon [simp]: "\<epsilon> \<in> HFinite" | 
| 64435 | 1960 | by (auto intro: Infinitesimal_subset_HFinite [THEN subsetD]) | 
| 27468 | 1961 | |
| 61982 | 1962 | lemma epsilon_approx_zero [simp]: "\<epsilon> \<approx> 0" | 
| 64435 | 1963 | by (simp add: mem_infmal_iff [symmetric]) | 
| 27468 | 1964 | |
| 64435 | 1965 | text \<open>Needed for proof that we define a hyperreal \<open>[<X(n)] \<approx> hypreal_of_real a\<close> given | 
| 1966 | that \<open>\<forall>n. |X n - a| < 1/n\<close>. Used in proof of \<open>NSLIM \<Rightarrow> LIM\<close>.\<close> | |
| 1967 | lemma real_of_nat_less_inverse_iff: "0 < u \<Longrightarrow> u < inverse (real(Suc n)) \<longleftrightarrow> real(Suc n) < inverse u" | |
| 1968 | apply (simp add: inverse_eq_divide) | |
| 1969 | apply (subst pos_less_divide_eq, assumption) | |
| 1970 | apply (subst pos_less_divide_eq) | |
| 1971 | apply simp | |
| 1972 | apply (simp add: mult.commute) | |
| 1973 | done | |
| 27468 | 1974 | |
| 64435 | 1975 | lemma finite_inverse_real_of_posnat_gt_real: "0 < u \<Longrightarrow> finite {n. u < inverse (real (Suc n))}"
 | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 1976 | proof (simp only: real_of_nat_less_inverse_iff) | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 1977 |   have "{n. 1 + real n < inverse u} = {n. real n < inverse u - 1}"
 | 
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 1978 | by fastforce | 
| 64435 | 1979 |   then show "finite {n. real (Suc n) < inverse u}"
 | 
| 1980 | using finite_real_of_nat_less_real [of "inverse u - 1"] | |
| 1981 | by auto | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61378diff
changeset | 1982 | qed | 
| 27468 | 1983 | |
| 1984 | lemma lemma_real_le_Un_eq2: | |
| 64435 | 1985 |   "{n. u \<le> inverse(real(Suc n))} =
 | 
| 1986 |     {n. u < inverse(real(Suc n))} \<union> {n. u = inverse(real(Suc n))}"
 | |
| 1987 | by (auto dest: order_le_imp_less_or_eq simp add: order_less_imp_le) | |
| 27468 | 1988 | |
| 64435 | 1989 | lemma finite_inverse_real_of_posnat_ge_real: "0 < u \<Longrightarrow> finite {n. u \<le> inverse (real (Suc n))}"
 | 
| 1990 | by (auto simp add: lemma_real_le_Un_eq2 lemma_finite_epsilon_set finite_inverse_real_of_posnat_gt_real | |
| 1991 | simp del: of_nat_Suc) | |
| 27468 | 1992 | |
| 1993 | lemma inverse_real_of_posnat_ge_real_FreeUltrafilterNat: | |
| 64438 | 1994 | "0 < u \<Longrightarrow> \<not> eventually (\<lambda>n. u \<le> inverse(real(Suc n))) \<U>" | 
| 64435 | 1995 | by (blast intro!: FreeUltrafilterNat.finite finite_inverse_real_of_posnat_ge_real) | 
| 27468 | 1996 | |
| 64435 | 1997 | text \<open>The complement of \<open>{n. u \<le> inverse(real(Suc n))} = {n. inverse (real (Suc n)) < u}\<close>
 | 
| 64438 | 1998 | is in \<open>\<U>\<close> by property of (free) ultrafilters.\<close> | 
| 64435 | 1999 | lemma Compl_le_inverse_eq: "- {n. u \<le> inverse(real(Suc n))} = {n. inverse(real(Suc n)) < u}"
 | 
| 2000 | by (auto dest!: order_le_less_trans simp add: linorder_not_le) | |
| 56225 | 2001 | |
| 27468 | 2002 | |
| 2003 | lemma FreeUltrafilterNat_inverse_real_of_posnat: | |
| 64438 | 2004 | "0 < u \<Longrightarrow> eventually (\<lambda>n. inverse(real(Suc n)) < u) \<U>" | 
| 64435 | 2005 | by (drule inverse_real_of_posnat_ge_real_FreeUltrafilterNat) | 
| 2006 | (simp add: FreeUltrafilterNat.eventually_not_iff not_le[symmetric]) | |
| 27468 | 2007 | |
| 64435 | 2008 | text \<open>Example of an hypersequence (i.e. an extended standard sequence) | 
| 2009 | whose term with an hypernatural suffix is an infinitesimal i.e. | |
| 2010 | the whn'nth term of the hypersequence is a member of Infinitesimal\<close> | |
| 27468 | 2011 | |
| 64435 | 2012 | lemma SEQ_Infinitesimal: "( *f* (\<lambda>n::nat. inverse(real(Suc n)))) whn \<in> Infinitesimal" | 
| 2013 | by (simp add: hypnat_omega_def starfun_star_n star_n_inverse Infinitesimal_FreeUltrafilterNat_iff | |
| 2014 | FreeUltrafilterNat_inverse_real_of_posnat del: of_nat_Suc) | |
| 27468 | 2015 | |
| 64435 | 2016 | text \<open>Example where we get a hyperreal from a real sequence | 
| 2017 | for which a particular property holds. The theorem is | |
| 2018 | used in proofs about equivalence of nonstandard and | |
| 2019 | standard neighbourhoods. Also used for equivalence of | |
| 2020 | nonstandard ans standard definitions of pointwise | |
| 2021 | limit.\<close> | |
| 27468 | 2022 | |
| 64435 | 2023 | text \<open>\<open>|X(n) - x| < 1/n \<Longrightarrow> [<X n>] - hypreal_of_real x| \<in> Infinitesimal\<close>\<close> | 
| 27468 | 2024 | lemma real_seq_to_hypreal_Infinitesimal: | 
| 64435 | 2025 | "\<forall>n. norm (X n - x) < inverse (real (Suc n)) \<Longrightarrow> star_n X - star_of x \<in> Infinitesimal" | 
| 2026 | unfolding star_n_diff star_of_def Infinitesimal_FreeUltrafilterNat_iff star_n_inverse | |
| 2027 | by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat | |
| 2028 | intro: order_less_trans elim!: eventually_mono) | |
| 27468 | 2029 | |
| 2030 | lemma real_seq_to_hypreal_approx: | |
| 64435 | 2031 | "\<forall>n. norm (X n - x) < inverse (real (Suc n)) \<Longrightarrow> star_n X \<approx> star_of x" | 
| 2032 | by (metis bex_Infinitesimal_iff real_seq_to_hypreal_Infinitesimal) | |
| 27468 | 2033 | |
| 2034 | lemma real_seq_to_hypreal_approx2: | |
| 64435 | 2035 | "\<forall>n. norm (x - X n) < inverse(real(Suc n)) \<Longrightarrow> star_n X \<approx> star_of x" | 
| 2036 | by (metis norm_minus_commute real_seq_to_hypreal_approx) | |
| 27468 | 2037 | |
| 2038 | lemma real_seq_to_hypreal_Infinitesimal2: | |
| 64435 | 2039 | "\<forall>n. norm(X n - Y n) < inverse(real(Suc n)) \<Longrightarrow> star_n X - star_n Y \<in> Infinitesimal" | 
| 2040 | unfolding Infinitesimal_FreeUltrafilterNat_iff star_n_diff | |
| 2041 | by (auto dest!: FreeUltrafilterNat_inverse_real_of_posnat | |
| 2042 | intro: order_less_trans elim!: eventually_mono) | |
| 27468 | 2043 | |
| 2044 | end |