| author | haftmann | 
| Wed, 11 Aug 2010 14:45:38 +0200 | |
| changeset 38350 | 480b2de9927c | 
| parent 36571 | 16ec4fe058cb | 
| child 38991 | 0e2798f30087 | 
| permissions | -rw-r--r-- | 
| 33027 | 1  | 
(* Title: HOL/Metis_Examples/Abstraction.thy  | 
| 23449 | 2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
3  | 
||
| 33027 | 4  | 
Testing the metis method.  | 
| 23449 | 5  | 
*)  | 
6  | 
||
| 27368 | 7  | 
theory Abstraction  | 
8  | 
imports Main FuncSet  | 
|
| 23449 | 9  | 
begin  | 
10  | 
||
11  | 
(*For Christoph Benzmueller*)  | 
|
12  | 
lemma "x<1 & ((op=) = (op=)) ==> ((op=) = (op=)) & (x<(2::nat))";  | 
|
13  | 
by (metis One_nat_def less_Suc0 not_less0 not_less_eq numeral_2_eq_2)  | 
|
14  | 
||
15  | 
(*this is a theorem, but we can't prove it unless ext is applied explicitly  | 
|
16  | 
lemma "(op=) = (%x y. y=x)"  | 
|
17  | 
*)  | 
|
18  | 
||
19  | 
consts  | 
|
20  | 
  monotone :: "['a => 'a, 'a set, ('a *'a)set] => bool"
 | 
|
21  | 
pset :: "'a set => 'a set"  | 
|
22  | 
  order :: "'a set => ('a * 'a) set"
 | 
|
23  | 
||
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
24  | 
declare [[ atp_problem_prefix = "Abstraction__Collect_triv" ]]  | 
| 23449 | 25  | 
lemma (*Collect_triv:*) "a \<in> {x. P x} ==> P a"
 | 
| 36566 | 26  | 
proof -  | 
27  | 
  assume "a \<in> {x. P x}"
 | 
|
28  | 
hence "a \<in> P" by (metis Collect_def)  | 
|
29  | 
hence "P a" by (metis mem_def)  | 
|
30  | 
thus "P a" by metis  | 
|
| 23449 | 31  | 
qed  | 
32  | 
||
33  | 
lemma Collect_triv: "a \<in> {x. P x} ==> P a"
 | 
|
| 23756 | 34  | 
by (metis mem_Collect_eq)  | 
| 23449 | 35  | 
|
36  | 
||
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
37  | 
declare [[ atp_problem_prefix = "Abstraction__Collect_mp" ]]  | 
| 23449 | 38  | 
lemma "a \<in> {x. P x --> Q x} ==> a \<in> {x. P x} ==> a \<in> {x. Q x}"
 | 
| 36566 | 39  | 
by (metis Collect_imp_eq ComplD UnE)  | 
| 23449 | 40  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
41  | 
declare [[ atp_problem_prefix = "Abstraction__Sigma_triv" ]]  | 
| 23449 | 42  | 
lemma "(a,b) \<in> Sigma A B ==> a \<in> A & b \<in> B a"  | 
| 36566 | 43  | 
proof -  | 
44  | 
assume A1: "(a, b) \<in> Sigma A B"  | 
|
45  | 
hence F1: "b \<in> B a" by (metis mem_Sigma_iff)  | 
|
46  | 
have F2: "a \<in> A" by (metis A1 mem_Sigma_iff)  | 
|
47  | 
have "b \<in> B a" by (metis F1)  | 
|
48  | 
thus "a \<in> A \<and> b \<in> B a" by (metis F2)  | 
|
| 23449 | 49  | 
qed  | 
50  | 
||
51  | 
lemma Sigma_triv: "(a,b) \<in> Sigma A B ==> a \<in> A & b \<in> B a"  | 
|
52  | 
by (metis SigmaD1 SigmaD2)  | 
|
53  | 
||
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
54  | 
declare [[ atp_problem_prefix = "Abstraction__Sigma_Collect" ]]  | 
| 36566 | 55  | 
lemma "(a, b) \<in> (SIGMA x:A. {y. x = f y}) \<Longrightarrow> a \<in> A \<and> a = f b"
 | 
56  | 
(* Metis says this is satisfiable!  | 
|
| 29676 | 57  | 
by (metis CollectD SigmaD1 SigmaD2)  | 
58  | 
*)  | 
|
| 23449 | 59  | 
by (meson CollectD SigmaD1 SigmaD2)  | 
60  | 
||
61  | 
||
| 36566 | 62  | 
lemma "(a, b) \<in> (SIGMA x:A. {y. x = f y}) \<Longrightarrow> a \<in> A \<and> a = f b"
 | 
63  | 
by (metis mem_Sigma_iff singleton_conv2 vimage_Collect_eq vimage_singleton_eq)  | 
|
| 24827 | 64  | 
|
| 36566 | 65  | 
lemma "(a, b) \<in> (SIGMA x:A. {y. x = f y}) \<Longrightarrow> a \<in> A \<and> a = f b"
 | 
66  | 
proof -  | 
|
67  | 
  assume A1: "(a, b) \<in> (SIGMA x:A. {y. x = f y})"
 | 
|
68  | 
  have F1: "\<forall>u. {u} = op = u" by (metis singleton_conv2 Collect_def)
 | 
|
| 36571 | 69  | 
have F2: "\<forall>y w v. v \<in> w -` op = y \<longrightarrow> w v = y"  | 
70  | 
by (metis F1 vimage_singleton_eq)  | 
|
71  | 
have F3: "\<forall>x w. (\<lambda>R. w (x R)) = x -` w"  | 
|
72  | 
by (metis vimage_Collect_eq Collect_def)  | 
|
73  | 
show "a \<in> A \<and> a = f b" by (metis A1 F2 F3 mem_Sigma_iff Collect_def)  | 
|
| 24827 | 74  | 
qed  | 
75  | 
||
| 36566 | 76  | 
(* Alternative structured proof *)  | 
77  | 
lemma "(a, b) \<in> (SIGMA x:A. {y. x = f y}) \<Longrightarrow> a \<in> A \<and> a = f b"
 | 
|
78  | 
proof -  | 
|
79  | 
  assume A1: "(a, b) \<in> (SIGMA x:A. {y. x = f y})"
 | 
|
80  | 
hence F1: "a \<in> A" by (metis mem_Sigma_iff)  | 
|
81  | 
  have "b \<in> {R. a = f R}" by (metis A1 mem_Sigma_iff)
 | 
|
82  | 
hence F2: "b \<in> (\<lambda>R. a = f R)" by (metis Collect_def)  | 
|
83  | 
hence "a = f b" by (unfold mem_def)  | 
|
84  | 
thus "a \<in> A \<and> a = f b" by (metis F1)  | 
|
| 24827 | 85  | 
qed  | 
| 23449 | 86  | 
|
87  | 
||
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
88  | 
declare [[ atp_problem_prefix = "Abstraction__CLF_eq_in_pp" ]]  | 
| 23449 | 89  | 
lemma "(cl,f) \<in> CLF ==> CLF = (SIGMA cl: CL.{f. f \<in> pset cl}) ==> f \<in> pset cl"
 | 
| 24827 | 90  | 
by (metis Collect_mem_eq SigmaD2)  | 
| 23449 | 91  | 
|
| 
24742
 
73b8b42a36b6
removal of some "ref"s from res_axioms.ML; a side-effect is that the ordering
 
paulson 
parents: 
24632 
diff
changeset
 | 
92  | 
lemma "(cl,f) \<in> CLF ==> CLF = (SIGMA cl: CL.{f. f \<in> pset cl}) ==> f \<in> pset cl"
 | 
| 36566 | 93  | 
proof -  | 
94  | 
assume A1: "(cl, f) \<in> CLF"  | 
|
95  | 
  assume A2: "CLF = (SIGMA cl:CL. {f. f \<in> pset cl})"
 | 
|
96  | 
have F1: "\<forall>v. (\<lambda>R. R \<in> v) = v" by (metis Collect_mem_eq Collect_def)  | 
|
97  | 
  have "\<forall>v u. (u, v) \<in> CLF \<longrightarrow> v \<in> {R. R \<in> pset u}" by (metis A2 mem_Sigma_iff)
 | 
|
98  | 
hence "\<forall>v u. (u, v) \<in> CLF \<longrightarrow> v \<in> pset u" by (metis F1 Collect_def)  | 
|
99  | 
hence "f \<in> pset cl" by (metis A1)  | 
|
100  | 
thus "f \<in> pset cl" by metis  | 
|
| 24827 | 101  | 
qed  | 
| 23449 | 102  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
103  | 
declare [[ atp_problem_prefix = "Abstraction__Sigma_Collect_Pi" ]]  | 
| 23449 | 104  | 
lemma  | 
105  | 
    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl}) ==> 
 | 
|
106  | 
f \<in> pset cl \<rightarrow> pset cl"  | 
|
| 36566 | 107  | 
proof -  | 
108  | 
  assume A1: "(cl, f) \<in> (SIGMA cl:CL. {f. f \<in> pset cl \<rightarrow> pset cl})"
 | 
|
109  | 
have F1: "\<forall>v. (\<lambda>R. R \<in> v) = v" by (metis Collect_mem_eq Collect_def)  | 
|
110  | 
  have "f \<in> {R. R \<in> pset cl \<rightarrow> pset cl}" using A1 by simp
 | 
|
111  | 
hence "f \<in> pset cl \<rightarrow> pset cl" by (metis F1 Collect_def)  | 
|
112  | 
thus "f \<in> pset cl \<rightarrow> pset cl" by metis  | 
|
| 24827 | 113  | 
qed  | 
| 23449 | 114  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
115  | 
declare [[ atp_problem_prefix = "Abstraction__Sigma_Collect_Int" ]]  | 
| 23449 | 116  | 
lemma  | 
117  | 
    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<inter> cl}) ==>
 | 
|
118  | 
f \<in> pset cl \<inter> cl"  | 
|
| 36566 | 119  | 
proof -  | 
120  | 
  assume A1: "(cl, f) \<in> (SIGMA cl:CL. {f. f \<in> pset cl \<inter> cl})"
 | 
|
121  | 
have F1: "\<forall>v. (\<lambda>R. R \<in> v) = v" by (metis Collect_mem_eq Collect_def)  | 
|
122  | 
  have "f \<in> {R. R \<in> pset cl \<inter> cl}" using A1 by simp
 | 
|
123  | 
hence "f \<in> Id_on cl `` pset cl" by (metis F1 Int_commute Image_Id_on Collect_def)  | 
|
124  | 
hence "f \<in> Id_on cl `` pset cl" by metis  | 
|
125  | 
hence "f \<in> cl \<inter> pset cl" by (metis Image_Id_on)  | 
|
126  | 
thus "f \<in> pset cl \<inter> cl" by (metis Int_commute)  | 
|
| 24827 | 127  | 
qed  | 
128  | 
||
| 23449 | 129  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
130  | 
declare [[ atp_problem_prefix = "Abstraction__Sigma_Collect_Pi_mono" ]]  | 
| 23449 | 131  | 
lemma  | 
132  | 
    "(cl,f) \<in> (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl & monotone f (pset cl) (order cl)}) ==>
 | 
|
133  | 
(f \<in> pset cl \<rightarrow> pset cl) & (monotone f (pset cl) (order cl))"  | 
|
134  | 
by auto  | 
|
135  | 
||
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
136  | 
declare [[ atp_problem_prefix = "Abstraction__CLF_subset_Collect_Int" ]]  | 
| 23449 | 137  | 
lemma "(cl,f) \<in> CLF ==>  | 
138  | 
   CLF \<subseteq> (SIGMA cl: CL. {f. f \<in> pset cl \<inter> cl}) ==>
 | 
|
139  | 
f \<in> pset cl \<inter> cl"  | 
|
| 24827 | 140  | 
by auto  | 
| 27368 | 141  | 
|
| 23449 | 142  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
143  | 
declare [[ atp_problem_prefix = "Abstraction__CLF_eq_Collect_Int" ]]  | 
| 23449 | 144  | 
lemma "(cl,f) \<in> CLF ==>  | 
145  | 
   CLF = (SIGMA cl: CL. {f. f \<in> pset cl \<inter> cl}) ==>
 | 
|
146  | 
f \<in> pset cl \<inter> cl"  | 
|
| 24827 | 147  | 
by auto  | 
| 36566 | 148  | 
|
| 23449 | 149  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
150  | 
declare [[ atp_problem_prefix = "Abstraction__CLF_subset_Collect_Pi" ]]  | 
| 23449 | 151  | 
lemma  | 
152  | 
"(cl,f) \<in> CLF ==>  | 
|
153  | 
    CLF \<subseteq> (SIGMA cl': CL. {f. f \<in> pset cl' \<rightarrow> pset cl'}) ==> 
 | 
|
154  | 
f \<in> pset cl \<rightarrow> pset cl"  | 
|
| 31754 | 155  | 
by fast  | 
| 36566 | 156  | 
|
| 23449 | 157  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
158  | 
declare [[ atp_problem_prefix = "Abstraction__CLF_eq_Collect_Pi" ]]  | 
| 23449 | 159  | 
lemma  | 
160  | 
"(cl,f) \<in> CLF ==>  | 
|
161  | 
   CLF = (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl}) ==> 
 | 
|
162  | 
f \<in> pset cl \<rightarrow> pset cl"  | 
|
| 24827 | 163  | 
by auto  | 
| 36566 | 164  | 
|
| 23449 | 165  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
166  | 
declare [[ atp_problem_prefix = "Abstraction__CLF_eq_Collect_Pi_mono" ]]  | 
| 23449 | 167  | 
lemma  | 
168  | 
"(cl,f) \<in> CLF ==>  | 
|
169  | 
   CLF = (SIGMA cl: CL. {f. f \<in> pset cl \<rightarrow> pset cl & monotone f (pset cl) (order cl)}) ==>
 | 
|
170  | 
(f \<in> pset cl \<rightarrow> pset cl) & (monotone f (pset cl) (order cl))"  | 
|
171  | 
by auto  | 
|
172  | 
||
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
173  | 
declare [[ atp_problem_prefix = "Abstraction__map_eq_zipA" ]]  | 
| 23449 | 174  | 
lemma "map (%x. (f x, g x)) xs = zip (map f xs) (map g xs)"  | 
175  | 
apply (induct xs)  | 
|
| 36566 | 176  | 
apply (metis map_is_Nil_conv zip.simps(1))  | 
177  | 
by auto  | 
|
| 23449 | 178  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
179  | 
declare [[ atp_problem_prefix = "Abstraction__map_eq_zipB" ]]  | 
| 23449 | 180  | 
lemma "map (%w. (w -> w, w \<times> w)) xs =  | 
181  | 
zip (map (%w. w -> w) xs) (map (%w. w \<times> w) xs)"  | 
|
182  | 
apply (induct xs)  | 
|
| 36566 | 183  | 
apply (metis Nil_is_map_conv zip_Nil)  | 
184  | 
by auto  | 
|
| 23449 | 185  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
186  | 
declare [[ atp_problem_prefix = "Abstraction__image_evenA" ]]  | 
| 36566 | 187  | 
lemma "(%x. Suc(f x)) ` {x. even x} <= A ==> (\<forall>x. even x --> Suc(f x) \<in> A)"
 | 
188  | 
by (metis Collect_def image_subset_iff mem_def)  | 
|
| 23449 | 189  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
190  | 
declare [[ atp_problem_prefix = "Abstraction__image_evenB" ]]  | 
| 23449 | 191  | 
lemma "(%x. f (f x)) ` ((%x. Suc(f x)) ` {x. even x}) <= A 
 | 
192  | 
==> (\<forall>x. even x --> f (f (Suc(f x))) \<in> A)";  | 
|
| 36566 | 193  | 
by (metis Collect_def imageI image_image image_subset_iff mem_def)  | 
| 23449 | 194  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
195  | 
declare [[ atp_problem_prefix = "Abstraction__image_curry" ]]  | 
| 23449 | 196  | 
lemma "f \<in> (%u v. b \<times> u \<times> v) ` A ==> \<forall>u v. P (b \<times> u \<times> v) ==> P(f y)"  | 
| 36566 | 197  | 
(*sledgehammer*)  | 
| 23449 | 198  | 
by auto  | 
199  | 
||
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
200  | 
declare [[ atp_problem_prefix = "Abstraction__image_TimesA" ]]  | 
| 23449 | 201  | 
lemma image_TimesA: "(%(x,y). (f x, g y)) ` (A \<times> B) = (f`A) \<times> (g`B)"  | 
| 36566 | 202  | 
(*sledgehammer*)  | 
| 23449 | 203  | 
apply (rule equalityI)  | 
204  | 
(***Even the two inclusions are far too difficult  | 
|
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
205  | 
using [[ atp_problem_prefix = "Abstraction__image_TimesA_simpler"]]  | 
| 23449 | 206  | 
***)  | 
207  | 
apply (rule subsetI)  | 
|
208  | 
apply (erule imageE)  | 
|
209  | 
(*V manages from here with help: Abstraction__image_TimesA_simpler_1_b.p*)  | 
|
210  | 
apply (erule ssubst)  | 
|
211  | 
apply (erule SigmaE)  | 
|
212  | 
(*V manages from here: Abstraction__image_TimesA_simpler_1_a.p*)  | 
|
213  | 
apply (erule ssubst)  | 
|
214  | 
apply (subst split_conv)  | 
|
215  | 
apply (rule SigmaI)  | 
|
216  | 
apply (erule imageI) +  | 
|
217  | 
txt{*subgoal 2*}
 | 
|
218  | 
apply (clarify );  | 
|
219  | 
apply (simp add: );  | 
|
220  | 
apply (rule rev_image_eqI)  | 
|
221  | 
apply (blast intro: elim:);  | 
|
222  | 
apply (simp add: );  | 
|
223  | 
done  | 
|
224  | 
||
225  | 
(*Given the difficulty of the previous problem, these two are probably  | 
|
226  | 
impossible*)  | 
|
227  | 
||
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
228  | 
declare [[ atp_problem_prefix = "Abstraction__image_TimesB" ]]  | 
| 23449 | 229  | 
lemma image_TimesB:  | 
| 36566 | 230  | 
"(%(x,y,z). (f x, g y, h z)) ` (A \<times> B \<times> C) = (f`A) \<times> (g`B) \<times> (h`C)"  | 
231  | 
(*sledgehammer*)  | 
|
| 23449 | 232  | 
by force  | 
233  | 
||
| 
32864
 
a226f29d4bdc
re-organized signature of AtpWrapper structure: records instead of unnamed parameters and return values,
 
boehmes 
parents: 
31754 
diff
changeset
 | 
234  | 
declare [[ atp_problem_prefix = "Abstraction__image_TimesC" ]]  | 
| 23449 | 235  | 
lemma image_TimesC:  | 
236  | 
"(%(x,y). (x \<rightarrow> x, y \<times> y)) ` (A \<times> B) =  | 
|
237  | 
((%x. x \<rightarrow> x) ` A) \<times> ((%y. y \<times> y) ` B)"  | 
|
| 36566 | 238  | 
(*sledgehammer*)  | 
| 23449 | 239  | 
by auto  | 
240  | 
||
241  | 
end  |