author | wenzelm |
Wed, 26 Oct 2016 15:14:17 +0200 | |
changeset 64406 | 492de9062cd2 |
parent 63579 | 73939a9b70a3 |
child 64435 | c93b0e6131c3 |
permissions | -rw-r--r-- |
62479 | 1 |
(* Title: HOL/Nonstandard_Analysis/HLim.thy |
41589 | 2 |
Author: Jacques D. Fleuriot, University of Cambridge |
3 |
Author: Lawrence C Paulson |
|
27468 | 4 |
*) |
5 |
||
61975 | 6 |
section\<open>Limits and Continuity (Nonstandard)\<close> |
27468 | 7 |
|
8 |
theory HLim |
|
63579 | 9 |
imports Star |
10 |
abbrevs "--->" = "\<midarrow>\<rightarrow>\<^sub>N\<^sub>S" |
|
27468 | 11 |
begin |
12 |
||
61975 | 13 |
text\<open>Nonstandard Definitions\<close> |
27468 | 14 |
|
15 |
definition |
|
16 |
NSLIM :: "['a::real_normed_vector => 'b::real_normed_vector, 'a, 'b] => bool" |
|
61971 | 17 |
("((_)/ \<midarrow>(_)/\<rightarrow>\<^sub>N\<^sub>S (_))" [60, 0, 60] 60) where |
18 |
"f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L = |
|
61982 | 19 |
(\<forall>x. (x \<noteq> star_of a & x \<approx> star_of a --> ( *f* f) x \<approx> star_of L))" |
27468 | 20 |
|
21 |
definition |
|
22 |
isNSCont :: "['a::real_normed_vector => 'b::real_normed_vector, 'a] => bool" where |
|
61975 | 23 |
\<comment>\<open>NS definition dispenses with limit notions\<close> |
61982 | 24 |
"isNSCont f a = (\<forall>y. y \<approx> star_of a --> |
25 |
( *f* f) y \<approx> star_of (f a))" |
|
27468 | 26 |
|
27 |
definition |
|
28 |
isNSUCont :: "['a::real_normed_vector => 'b::real_normed_vector] => bool" where |
|
61982 | 29 |
"isNSUCont f = (\<forall>x y. x \<approx> y --> ( *f* f) x \<approx> ( *f* f) y)" |
27468 | 30 |
|
31 |
||
61975 | 32 |
subsection \<open>Limits of Functions\<close> |
27468 | 33 |
|
34 |
lemma NSLIM_I: |
|
35 |
"(\<And>x. \<lbrakk>x \<noteq> star_of a; x \<approx> star_of a\<rbrakk> \<Longrightarrow> starfun f x \<approx> star_of L) |
|
61971 | 36 |
\<Longrightarrow> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" |
27468 | 37 |
by (simp add: NSLIM_def) |
38 |
||
39 |
lemma NSLIM_D: |
|
61971 | 40 |
"\<lbrakk>f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L; x \<noteq> star_of a; x \<approx> star_of a\<rbrakk> |
27468 | 41 |
\<Longrightarrow> starfun f x \<approx> star_of L" |
42 |
by (simp add: NSLIM_def) |
|
43 |
||
61975 | 44 |
text\<open>Proving properties of limits using nonstandard definition. |
45 |
The properties hold for standard limits as well!\<close> |
|
27468 | 46 |
|
47 |
lemma NSLIM_mult: |
|
48 |
fixes l m :: "'a::real_normed_algebra" |
|
61971 | 49 |
shows "[| f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m |] |
50 |
==> (%x. f(x) * g(x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l * m)" |
|
27468 | 51 |
by (auto simp add: NSLIM_def intro!: approx_mult_HFinite) |
52 |
||
53 |
lemma starfun_scaleR [simp]: |
|
54 |
"starfun (\<lambda>x. f x *\<^sub>R g x) = (\<lambda>x. scaleHR (starfun f x) (starfun g x))" |
|
55 |
by transfer (rule refl) |
|
56 |
||
57 |
lemma NSLIM_scaleR: |
|
61971 | 58 |
"[| f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m |] |
59 |
==> (%x. f(x) *\<^sub>R g(x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l *\<^sub>R m)" |
|
27468 | 60 |
by (auto simp add: NSLIM_def intro!: approx_scaleR_HFinite) |
61 |
||
62 |
lemma NSLIM_add: |
|
61971 | 63 |
"[| f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m |] |
64 |
==> (%x. f(x) + g(x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l + m)" |
|
27468 | 65 |
by (auto simp add: NSLIM_def intro!: approx_add) |
66 |
||
61971 | 67 |
lemma NSLIM_const [simp]: "(%x. k) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S k" |
27468 | 68 |
by (simp add: NSLIM_def) |
69 |
||
61971 | 70 |
lemma NSLIM_minus: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L ==> (%x. -f(x)) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S -L" |
27468 | 71 |
by (simp add: NSLIM_def) |
72 |
||
73 |
lemma NSLIM_diff: |
|
61971 | 74 |
"\<lbrakk>f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m\<rbrakk> \<Longrightarrow> (\<lambda>x. f x - g x) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l - m)" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
51525
diff
changeset
|
75 |
by (simp only: NSLIM_add NSLIM_minus diff_conv_add_uminus) |
27468 | 76 |
|
61971 | 77 |
lemma NSLIM_add_minus: "[| f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S m |] ==> (%x. f(x) + -g(x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S (l + -m)" |
27468 | 78 |
by (simp only: NSLIM_add NSLIM_minus) |
79 |
||
80 |
lemma NSLIM_inverse: |
|
81 |
fixes L :: "'a::real_normed_div_algebra" |
|
61971 | 82 |
shows "[| f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L; L \<noteq> 0 |] |
83 |
==> (%x. inverse(f(x))) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (inverse L)" |
|
27468 | 84 |
apply (simp add: NSLIM_def, clarify) |
85 |
apply (drule spec) |
|
86 |
apply (auto simp add: star_of_approx_inverse) |
|
87 |
done |
|
88 |
||
89 |
lemma NSLIM_zero: |
|
61971 | 90 |
assumes f: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l" shows "(%x. f(x) - l) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S 0" |
27468 | 91 |
proof - |
61971 | 92 |
have "(\<lambda>x. f x - l) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S l - l" |
27468 | 93 |
by (rule NSLIM_diff [OF f NSLIM_const]) |
94 |
thus ?thesis by simp |
|
95 |
qed |
|
96 |
||
61971 | 97 |
lemma NSLIM_zero_cancel: "(%x. f(x) - l) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 ==> f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S l" |
27468 | 98 |
apply (drule_tac g = "%x. l" and m = l in NSLIM_add) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
54230
diff
changeset
|
99 |
apply (auto simp add: add.assoc) |
27468 | 100 |
done |
101 |
||
102 |
lemma NSLIM_const_not_eq: |
|
103 |
fixes a :: "'a::real_normed_algebra_1" |
|
61971 | 104 |
shows "k \<noteq> L \<Longrightarrow> \<not> (\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" |
27468 | 105 |
apply (simp add: NSLIM_def) |
61981 | 106 |
apply (rule_tac x="star_of a + of_hypreal \<epsilon>" in exI) |
27468 | 107 |
apply (simp add: hypreal_epsilon_not_zero approx_def) |
108 |
done |
|
109 |
||
110 |
lemma NSLIM_not_zero: |
|
111 |
fixes a :: "'a::real_normed_algebra_1" |
|
61971 | 112 |
shows "k \<noteq> 0 \<Longrightarrow> \<not> (\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S 0" |
27468 | 113 |
by (rule NSLIM_const_not_eq) |
114 |
||
115 |
lemma NSLIM_const_eq: |
|
116 |
fixes a :: "'a::real_normed_algebra_1" |
|
61971 | 117 |
shows "(\<lambda>x. k) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L \<Longrightarrow> k = L" |
27468 | 118 |
apply (rule ccontr) |
119 |
apply (blast dest: NSLIM_const_not_eq) |
|
120 |
done |
|
121 |
||
122 |
lemma NSLIM_unique: |
|
123 |
fixes a :: "'a::real_normed_algebra_1" |
|
61971 | 124 |
shows "\<lbrakk>f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L; f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S M\<rbrakk> \<Longrightarrow> L = M" |
27468 | 125 |
apply (drule (1) NSLIM_diff) |
126 |
apply (auto dest!: NSLIM_const_eq) |
|
127 |
done |
|
128 |
||
129 |
lemma NSLIM_mult_zero: |
|
130 |
fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra" |
|
61971 | 131 |
shows "[| f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0; g \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0 |] ==> (%x. f(x)*g(x)) \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S 0" |
27468 | 132 |
by (drule NSLIM_mult, auto) |
133 |
||
61971 | 134 |
lemma NSLIM_self: "(%x. x) \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S a" |
27468 | 135 |
by (simp add: NSLIM_def) |
136 |
||
61975 | 137 |
subsubsection \<open>Equivalence of @{term filterlim} and @{term NSLIM}\<close> |
27468 | 138 |
|
139 |
lemma LIM_NSLIM: |
|
61976 | 140 |
assumes f: "f \<midarrow>a\<rightarrow> L" shows "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" |
27468 | 141 |
proof (rule NSLIM_I) |
142 |
fix x |
|
143 |
assume neq: "x \<noteq> star_of a" |
|
144 |
assume approx: "x \<approx> star_of a" |
|
145 |
have "starfun f x - star_of L \<in> Infinitesimal" |
|
146 |
proof (rule InfinitesimalI2) |
|
147 |
fix r::real assume r: "0 < r" |
|
148 |
from LIM_D [OF f r] |
|
149 |
obtain s where s: "0 < s" and |
|
150 |
less_r: "\<And>x. \<lbrakk>x \<noteq> a; norm (x - a) < s\<rbrakk> \<Longrightarrow> norm (f x - L) < r" |
|
151 |
by fast |
|
152 |
from less_r have less_r': |
|
153 |
"\<And>x. \<lbrakk>x \<noteq> star_of a; hnorm (x - star_of a) < star_of s\<rbrakk> |
|
154 |
\<Longrightarrow> hnorm (starfun f x - star_of L) < star_of r" |
|
155 |
by transfer |
|
156 |
from approx have "x - star_of a \<in> Infinitesimal" |
|
157 |
by (unfold approx_def) |
|
158 |
hence "hnorm (x - star_of a) < star_of s" |
|
159 |
using s by (rule InfinitesimalD2) |
|
160 |
with neq show "hnorm (starfun f x - star_of L) < star_of r" |
|
161 |
by (rule less_r') |
|
162 |
qed |
|
163 |
thus "starfun f x \<approx> star_of L" |
|
164 |
by (unfold approx_def) |
|
165 |
qed |
|
166 |
||
167 |
lemma NSLIM_LIM: |
|
61976 | 168 |
assumes f: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L" shows "f \<midarrow>a\<rightarrow> L" |
27468 | 169 |
proof (rule LIM_I) |
170 |
fix r::real assume r: "0 < r" |
|
171 |
have "\<exists>s>0. \<forall>x. x \<noteq> star_of a \<and> hnorm (x - star_of a) < s |
|
172 |
\<longrightarrow> hnorm (starfun f x - star_of L) < star_of r" |
|
173 |
proof (rule exI, safe) |
|
61981 | 174 |
show "0 < \<epsilon>" by (rule hypreal_epsilon_gt_zero) |
27468 | 175 |
next |
176 |
fix x assume neq: "x \<noteq> star_of a" |
|
61981 | 177 |
assume "hnorm (x - star_of a) < \<epsilon>" |
27468 | 178 |
with Infinitesimal_epsilon |
179 |
have "x - star_of a \<in> Infinitesimal" |
|
180 |
by (rule hnorm_less_Infinitesimal) |
|
181 |
hence "x \<approx> star_of a" |
|
182 |
by (unfold approx_def) |
|
183 |
with f neq have "starfun f x \<approx> star_of L" |
|
184 |
by (rule NSLIM_D) |
|
185 |
hence "starfun f x - star_of L \<in> Infinitesimal" |
|
186 |
by (unfold approx_def) |
|
187 |
thus "hnorm (starfun f x - star_of L) < star_of r" |
|
188 |
using r by (rule InfinitesimalD2) |
|
189 |
qed |
|
190 |
thus "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r" |
|
191 |
by transfer |
|
192 |
qed |
|
193 |
||
61976 | 194 |
theorem LIM_NSLIM_iff: "(f \<midarrow>x\<rightarrow> L) = (f \<midarrow>x\<rightarrow>\<^sub>N\<^sub>S L)" |
27468 | 195 |
by (blast intro: LIM_NSLIM NSLIM_LIM) |
196 |
||
197 |
||
61975 | 198 |
subsection \<open>Continuity\<close> |
27468 | 199 |
|
200 |
lemma isNSContD: |
|
201 |
"\<lbrakk>isNSCont f a; y \<approx> star_of a\<rbrakk> \<Longrightarrow> ( *f* f) y \<approx> star_of (f a)" |
|
202 |
by (simp add: isNSCont_def) |
|
203 |
||
61971 | 204 |
lemma isNSCont_NSLIM: "isNSCont f a ==> f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a) " |
27468 | 205 |
by (simp add: isNSCont_def NSLIM_def) |
206 |
||
61971 | 207 |
lemma NSLIM_isNSCont: "f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a) ==> isNSCont f a" |
27468 | 208 |
apply (simp add: isNSCont_def NSLIM_def, auto) |
209 |
apply (case_tac "y = star_of a", auto) |
|
210 |
done |
|
211 |
||
61975 | 212 |
text\<open>NS continuity can be defined using NS Limit in |
63040 | 213 |
similar fashion to standard definition of continuity\<close> |
61971 | 214 |
lemma isNSCont_NSLIM_iff: "(isNSCont f a) = (f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S (f a))" |
27468 | 215 |
by (blast intro: isNSCont_NSLIM NSLIM_isNSCont) |
216 |
||
61975 | 217 |
text\<open>Hence, NS continuity can be given |
218 |
in terms of standard limit\<close> |
|
61976 | 219 |
lemma isNSCont_LIM_iff: "(isNSCont f a) = (f \<midarrow>a\<rightarrow> (f a))" |
27468 | 220 |
by (simp add: LIM_NSLIM_iff isNSCont_NSLIM_iff) |
221 |
||
61975 | 222 |
text\<open>Moreover, it's trivial now that NS continuity |
223 |
is equivalent to standard continuity\<close> |
|
27468 | 224 |
lemma isNSCont_isCont_iff: "(isNSCont f a) = (isCont f a)" |
225 |
apply (simp add: isCont_def) |
|
226 |
apply (rule isNSCont_LIM_iff) |
|
227 |
done |
|
228 |
||
61975 | 229 |
text\<open>Standard continuity ==> NS continuity\<close> |
27468 | 230 |
lemma isCont_isNSCont: "isCont f a ==> isNSCont f a" |
231 |
by (erule isNSCont_isCont_iff [THEN iffD2]) |
|
232 |
||
61975 | 233 |
text\<open>NS continuity ==> Standard continuity\<close> |
27468 | 234 |
lemma isNSCont_isCont: "isNSCont f a ==> isCont f a" |
235 |
by (erule isNSCont_isCont_iff [THEN iffD1]) |
|
236 |
||
61975 | 237 |
text\<open>Alternative definition of continuity\<close> |
27468 | 238 |
|
239 |
(* Prove equivalence between NS limits - *) |
|
63040 | 240 |
(* seems easier than using standard definition *) |
61971 | 241 |
lemma NSLIM_h_iff: "(f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S L) = ((%h. f(a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S L)" |
27468 | 242 |
apply (simp add: NSLIM_def, auto) |
243 |
apply (drule_tac x = "star_of a + x" in spec) |
|
244 |
apply (drule_tac [2] x = "- star_of a + x" in spec, safe, simp) |
|
245 |
apply (erule mem_infmal_iff [THEN iffD2, THEN Infinitesimal_add_approx_self [THEN approx_sym]]) |
|
246 |
apply (erule_tac [3] approx_minus_iff2 [THEN iffD1]) |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
54230
diff
changeset
|
247 |
prefer 2 apply (simp add: add.commute) |
27468 | 248 |
apply (rule_tac x = x in star_cases) |
249 |
apply (rule_tac [2] x = x in star_cases) |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
54230
diff
changeset
|
250 |
apply (auto simp add: starfun star_of_def star_n_minus star_n_add add.assoc star_n_zero_num) |
27468 | 251 |
done |
252 |
||
61971 | 253 |
lemma NSLIM_isCont_iff: "(f \<midarrow>a\<rightarrow>\<^sub>N\<^sub>S f a) = ((%h. f(a + h)) \<midarrow>0\<rightarrow>\<^sub>N\<^sub>S f a)" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
51525
diff
changeset
|
254 |
by (fact NSLIM_h_iff) |
27468 | 255 |
|
256 |
lemma isNSCont_minus: "isNSCont f a ==> isNSCont (%x. - f x) a" |
|
257 |
by (simp add: isNSCont_def) |
|
258 |
||
259 |
lemma isNSCont_inverse: |
|
260 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_div_algebra" |
|
261 |
shows "[| isNSCont f x; f x \<noteq> 0 |] ==> isNSCont (%x. inverse (f x)) x" |
|
262 |
by (auto intro: isCont_inverse simp add: isNSCont_isCont_iff) |
|
263 |
||
264 |
lemma isNSCont_const [simp]: "isNSCont (%x. k) a" |
|
265 |
by (simp add: isNSCont_def) |
|
266 |
||
267 |
lemma isNSCont_abs [simp]: "isNSCont abs (a::real)" |
|
268 |
apply (simp add: isNSCont_def) |
|
269 |
apply (auto intro: approx_hrabs simp add: starfun_rabs_hrabs) |
|
270 |
done |
|
271 |
||
272 |
||
61975 | 273 |
subsection \<open>Uniform Continuity\<close> |
27468 | 274 |
|
275 |
lemma isNSUContD: "[| isNSUCont f; x \<approx> y|] ==> ( *f* f) x \<approx> ( *f* f) y" |
|
276 |
by (simp add: isNSUCont_def) |
|
277 |
||
278 |
lemma isUCont_isNSUCont: |
|
279 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" |
|
280 |
assumes f: "isUCont f" shows "isNSUCont f" |
|
281 |
proof (unfold isNSUCont_def, safe) |
|
282 |
fix x y :: "'a star" |
|
283 |
assume approx: "x \<approx> y" |
|
284 |
have "starfun f x - starfun f y \<in> Infinitesimal" |
|
285 |
proof (rule InfinitesimalI2) |
|
286 |
fix r::real assume r: "0 < r" |
|
287 |
with f obtain s where s: "0 < s" and |
|
288 |
less_r: "\<And>x y. norm (x - y) < s \<Longrightarrow> norm (f x - f y) < r" |
|
31338
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
huffman
parents:
28562
diff
changeset
|
289 |
by (auto simp add: isUCont_def dist_norm) |
27468 | 290 |
from less_r have less_r': |
291 |
"\<And>x y. hnorm (x - y) < star_of s |
|
292 |
\<Longrightarrow> hnorm (starfun f x - starfun f y) < star_of r" |
|
293 |
by transfer |
|
294 |
from approx have "x - y \<in> Infinitesimal" |
|
295 |
by (unfold approx_def) |
|
296 |
hence "hnorm (x - y) < star_of s" |
|
297 |
using s by (rule InfinitesimalD2) |
|
298 |
thus "hnorm (starfun f x - starfun f y) < star_of r" |
|
299 |
by (rule less_r') |
|
300 |
qed |
|
301 |
thus "starfun f x \<approx> starfun f y" |
|
302 |
by (unfold approx_def) |
|
303 |
qed |
|
304 |
||
305 |
lemma isNSUCont_isUCont: |
|
306 |
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector" |
|
307 |
assumes f: "isNSUCont f" shows "isUCont f" |
|
31338
d41a8ba25b67
generalize constants from Lim.thy to class metric_space
huffman
parents:
28562
diff
changeset
|
308 |
proof (unfold isUCont_def dist_norm, safe) |
27468 | 309 |
fix r::real assume r: "0 < r" |
310 |
have "\<exists>s>0. \<forall>x y. hnorm (x - y) < s |
|
311 |
\<longrightarrow> hnorm (starfun f x - starfun f y) < star_of r" |
|
312 |
proof (rule exI, safe) |
|
61981 | 313 |
show "0 < \<epsilon>" by (rule hypreal_epsilon_gt_zero) |
27468 | 314 |
next |
315 |
fix x y :: "'a star" |
|
61981 | 316 |
assume "hnorm (x - y) < \<epsilon>" |
27468 | 317 |
with Infinitesimal_epsilon |
318 |
have "x - y \<in> Infinitesimal" |
|
319 |
by (rule hnorm_less_Infinitesimal) |
|
320 |
hence "x \<approx> y" |
|
321 |
by (unfold approx_def) |
|
322 |
with f have "starfun f x \<approx> starfun f y" |
|
323 |
by (simp add: isNSUCont_def) |
|
324 |
hence "starfun f x - starfun f y \<in> Infinitesimal" |
|
325 |
by (unfold approx_def) |
|
326 |
thus "hnorm (starfun f x - starfun f y) < star_of r" |
|
327 |
using r by (rule InfinitesimalD2) |
|
328 |
qed |
|
329 |
thus "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r" |
|
330 |
by transfer |
|
331 |
qed |
|
332 |
||
333 |
end |