author | wenzelm |
Sun, 17 Sep 2000 22:25:18 +0200 | |
changeset 10012 | 4961c73b5f60 |
parent 9853 | 5c6425d83501 |
child 10385 | 22836e4c5f4e |
permissions | -rw-r--r-- |
1465 | 1 |
(* Title: HOL/List |
923 | 2 |
ID: $Id$ |
1465 | 3 |
Author: Tobias Nipkow |
923 | 4 |
Copyright 1994 TU Muenchen |
5 |
||
6 |
List lemmas |
|
7 |
*) |
|
8 |
||
4935 | 9 |
Goal "!x. xs ~= x#xs"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
10 |
by (induct_tac "xs" 1); |
5316 | 11 |
by Auto_tac; |
2608 | 12 |
qed_spec_mp "not_Cons_self"; |
3574 | 13 |
bind_thm("not_Cons_self2",not_Cons_self RS not_sym); |
14 |
Addsimps [not_Cons_self,not_Cons_self2]; |
|
923 | 15 |
|
4935 | 16 |
Goal "(xs ~= []) = (? y ys. xs = y#ys)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
17 |
by (induct_tac "xs" 1); |
5316 | 18 |
by Auto_tac; |
923 | 19 |
qed "neq_Nil_conv"; |
20 |
||
4830 | 21 |
(* Induction over the length of a list: *) |
4935 | 22 |
val [prem] = Goal |
4911 | 23 |
"(!!xs. (!ys. length ys < length xs --> P ys) ==> P xs) ==> P(xs)"; |
5132 | 24 |
by (rtac measure_induct 1 THEN etac prem 1); |
4911 | 25 |
qed "length_induct"; |
26 |
||
923 | 27 |
|
3468 | 28 |
(** "lists": the list-forming operator over sets **) |
3342
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3292
diff
changeset
|
29 |
|
5043 | 30 |
Goalw lists.defs "A<=B ==> lists A <= lists B"; |
3342
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3292
diff
changeset
|
31 |
by (rtac lfp_mono 1); |
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3292
diff
changeset
|
32 |
by (REPEAT (ares_tac basic_monos 1)); |
ec3b55fcb165
New operator "lists" for formalizing sets of lists
paulson
parents:
3292
diff
changeset
|
33 |
qed "lists_mono"; |
3196 | 34 |
|
9108 | 35 |
bind_thm ("listsE", lists.mk_cases "x#l : lists A"); |
3468 | 36 |
AddSEs [listsE]; |
37 |
AddSIs lists.intrs; |
|
38 |
||
5043 | 39 |
Goal "l: lists A ==> l: lists B --> l: lists (A Int B)"; |
3468 | 40 |
by (etac lists.induct 1); |
41 |
by (ALLGOALS Blast_tac); |
|
42 |
qed_spec_mp "lists_IntI"; |
|
43 |
||
4935 | 44 |
Goal "lists (A Int B) = lists A Int lists B"; |
4423 | 45 |
by (rtac (mono_Int RS equalityI) 1); |
4089 | 46 |
by (simp_tac (simpset() addsimps [mono_def, lists_mono]) 1); |
47 |
by (blast_tac (claset() addSIs [lists_IntI]) 1); |
|
3468 | 48 |
qed "lists_Int_eq"; |
49 |
Addsimps [lists_Int_eq]; |
|
50 |
||
9268 | 51 |
Goal "(xs@ys : lists A) = (xs : lists A & ys : lists A)"; |
52 |
by(induct_tac "xs" 1); |
|
53 |
by(Auto_tac); |
|
54 |
qed "append_in_lists_conv"; |
|
55 |
AddIffs [append_in_lists_conv]; |
|
2608 | 56 |
|
3860 | 57 |
(** length **) |
58 |
(* needs to come before "@" because of thm append_eq_append_conv *) |
|
59 |
||
60 |
section "length"; |
|
61 |
||
4935 | 62 |
Goal "length(xs@ys) = length(xs)+length(ys)"; |
3860 | 63 |
by (induct_tac "xs" 1); |
5316 | 64 |
by Auto_tac; |
3860 | 65 |
qed"length_append"; |
66 |
Addsimps [length_append]; |
|
67 |
||
5129 | 68 |
Goal "length (map f xs) = length xs"; |
69 |
by (induct_tac "xs" 1); |
|
5316 | 70 |
by Auto_tac; |
3860 | 71 |
qed "length_map"; |
72 |
Addsimps [length_map]; |
|
73 |
||
4935 | 74 |
Goal "length(rev xs) = length(xs)"; |
3860 | 75 |
by (induct_tac "xs" 1); |
5316 | 76 |
by Auto_tac; |
3860 | 77 |
qed "length_rev"; |
78 |
Addsimps [length_rev]; |
|
79 |
||
7028 | 80 |
Goal "length(tl xs) = (length xs) - 1"; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
81 |
by (case_tac "xs" 1); |
5316 | 82 |
by Auto_tac; |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
83 |
qed "length_tl"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
84 |
Addsimps [length_tl]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
85 |
|
4935 | 86 |
Goal "(length xs = 0) = (xs = [])"; |
3860 | 87 |
by (induct_tac "xs" 1); |
5316 | 88 |
by Auto_tac; |
3860 | 89 |
qed "length_0_conv"; |
90 |
AddIffs [length_0_conv]; |
|
91 |
||
4935 | 92 |
Goal "(0 = length xs) = (xs = [])"; |
3860 | 93 |
by (induct_tac "xs" 1); |
5316 | 94 |
by Auto_tac; |
3860 | 95 |
qed "zero_length_conv"; |
96 |
AddIffs [zero_length_conv]; |
|
97 |
||
4935 | 98 |
Goal "(0 < length xs) = (xs ~= [])"; |
3860 | 99 |
by (induct_tac "xs" 1); |
5316 | 100 |
by Auto_tac; |
3860 | 101 |
qed "length_greater_0_conv"; |
102 |
AddIffs [length_greater_0_conv]; |
|
103 |
||
5296 | 104 |
Goal "(length xs = Suc n) = (? y ys. xs = y#ys & length ys = n)"; |
105 |
by (induct_tac "xs" 1); |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
106 |
by Auto_tac; |
5296 | 107 |
qed "length_Suc_conv"; |
108 |
||
923 | 109 |
(** @ - append **) |
110 |
||
3467 | 111 |
section "@ - append"; |
112 |
||
4935 | 113 |
Goal "(xs@ys)@zs = xs@(ys@zs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
114 |
by (induct_tac "xs" 1); |
5316 | 115 |
by Auto_tac; |
923 | 116 |
qed "append_assoc"; |
2512 | 117 |
Addsimps [append_assoc]; |
923 | 118 |
|
4935 | 119 |
Goal "xs @ [] = xs"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
120 |
by (induct_tac "xs" 1); |
5316 | 121 |
by Auto_tac; |
923 | 122 |
qed "append_Nil2"; |
2512 | 123 |
Addsimps [append_Nil2]; |
923 | 124 |
|
4935 | 125 |
Goal "(xs@ys = []) = (xs=[] & ys=[])"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
126 |
by (induct_tac "xs" 1); |
5316 | 127 |
by Auto_tac; |
2608 | 128 |
qed "append_is_Nil_conv"; |
129 |
AddIffs [append_is_Nil_conv]; |
|
130 |
||
4935 | 131 |
Goal "([] = xs@ys) = (xs=[] & ys=[])"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
132 |
by (induct_tac "xs" 1); |
5316 | 133 |
by Auto_tac; |
2608 | 134 |
qed "Nil_is_append_conv"; |
135 |
AddIffs [Nil_is_append_conv]; |
|
923 | 136 |
|
4935 | 137 |
Goal "(xs @ ys = xs) = (ys=[])"; |
3574 | 138 |
by (induct_tac "xs" 1); |
5316 | 139 |
by Auto_tac; |
3574 | 140 |
qed "append_self_conv"; |
141 |
||
4935 | 142 |
Goal "(xs = xs @ ys) = (ys=[])"; |
3574 | 143 |
by (induct_tac "xs" 1); |
5316 | 144 |
by Auto_tac; |
3574 | 145 |
qed "self_append_conv"; |
146 |
AddIffs [append_self_conv,self_append_conv]; |
|
147 |
||
4935 | 148 |
Goal "!ys. length xs = length ys | length us = length vs \ |
3860 | 149 |
\ --> (xs@us = ys@vs) = (xs=ys & us=vs)"; |
4423 | 150 |
by (induct_tac "xs" 1); |
151 |
by (rtac allI 1); |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
152 |
by (case_tac "ys" 1); |
4423 | 153 |
by (Asm_simp_tac 1); |
5641 | 154 |
by (Force_tac 1); |
4423 | 155 |
by (rtac allI 1); |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
156 |
by (case_tac "ys" 1); |
5641 | 157 |
by (Force_tac 1); |
4423 | 158 |
by (Asm_simp_tac 1); |
3860 | 159 |
qed_spec_mp "append_eq_append_conv"; |
160 |
Addsimps [append_eq_append_conv]; |
|
161 |
||
4935 | 162 |
Goal "(xs @ ys = xs @ zs) = (ys=zs)"; |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
163 |
by (Simp_tac 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
164 |
qed "same_append_eq"; |
3860 | 165 |
|
4935 | 166 |
Goal "(xs @ [x] = ys @ [y]) = (xs = ys & x = y)"; |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
167 |
by (Simp_tac 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
168 |
qed "append1_eq_conv"; |
2608 | 169 |
|
4935 | 170 |
Goal "(ys @ xs = zs @ xs) = (ys=zs)"; |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
171 |
by (Simp_tac 1); |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
172 |
qed "append_same_eq"; |
2608 | 173 |
|
9003 | 174 |
AddIffs [same_append_eq, append1_eq_conv, append_same_eq]; |
3571 | 175 |
|
4935 | 176 |
Goal "(xs @ ys = ys) = (xs=[])"; |
5132 | 177 |
by (cut_inst_tac [("zs","[]")] append_same_eq 1); |
5316 | 178 |
by Auto_tac; |
4647 | 179 |
qed "append_self_conv2"; |
180 |
||
4935 | 181 |
Goal "(ys = xs @ ys) = (xs=[])"; |
5132 | 182 |
by (simp_tac (simpset() addsimps |
4647 | 183 |
[simplify (simpset()) (read_instantiate[("ys","[]")]append_same_eq)]) 1); |
5132 | 184 |
by (Blast_tac 1); |
4647 | 185 |
qed "self_append_conv2"; |
186 |
AddIffs [append_self_conv2,self_append_conv2]; |
|
187 |
||
4935 | 188 |
Goal "xs ~= [] --> hd xs # tl xs = xs"; |
3457 | 189 |
by (induct_tac "xs" 1); |
5316 | 190 |
by Auto_tac; |
2608 | 191 |
qed_spec_mp "hd_Cons_tl"; |
192 |
Addsimps [hd_Cons_tl]; |
|
923 | 193 |
|
4935 | 194 |
Goal "hd(xs@ys) = (if xs=[] then hd ys else hd xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
195 |
by (induct_tac "xs" 1); |
5316 | 196 |
by Auto_tac; |
1327
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
197 |
qed "hd_append"; |
923 | 198 |
|
5043 | 199 |
Goal "xs ~= [] ==> hd(xs @ ys) = hd xs"; |
4089 | 200 |
by (asm_simp_tac (simpset() addsimps [hd_append] |
5183 | 201 |
addsplits [list.split]) 1); |
3571 | 202 |
qed "hd_append2"; |
203 |
Addsimps [hd_append2]; |
|
204 |
||
4935 | 205 |
Goal "tl(xs@ys) = (case xs of [] => tl(ys) | z#zs => zs@ys)"; |
5183 | 206 |
by (simp_tac (simpset() addsplits [list.split]) 1); |
2608 | 207 |
qed "tl_append"; |
208 |
||
5043 | 209 |
Goal "xs ~= [] ==> tl(xs @ ys) = (tl xs) @ ys"; |
4089 | 210 |
by (asm_simp_tac (simpset() addsimps [tl_append] |
5183 | 211 |
addsplits [list.split]) 1); |
3571 | 212 |
qed "tl_append2"; |
213 |
Addsimps [tl_append2]; |
|
214 |
||
5272 | 215 |
(* trivial rules for solving @-equations automatically *) |
216 |
||
217 |
Goal "xs = ys ==> xs = [] @ ys"; |
|
5318 | 218 |
by (Asm_simp_tac 1); |
5272 | 219 |
qed "eq_Nil_appendI"; |
220 |
||
221 |
Goal "[| x#xs1 = ys; xs = xs1 @ zs |] ==> x#xs = ys@zs"; |
|
5318 | 222 |
by (dtac sym 1); |
223 |
by (Asm_simp_tac 1); |
|
5272 | 224 |
qed "Cons_eq_appendI"; |
225 |
||
226 |
Goal "[| xs@xs1 = zs; ys = xs1 @ us |] ==> xs@ys = zs@us"; |
|
5318 | 227 |
by (dtac sym 1); |
228 |
by (Asm_simp_tac 1); |
|
5272 | 229 |
qed "append_eq_appendI"; |
230 |
||
4830 | 231 |
|
5427 | 232 |
(*** |
233 |
Simplification procedure for all list equalities. |
|
234 |
Currently only tries to rearranges @ to see if |
|
235 |
- both lists end in a singleton list, |
|
236 |
- or both lists end in the same list. |
|
237 |
***) |
|
238 |
local |
|
239 |
||
240 |
val list_eq_pattern = |
|
9423 | 241 |
Thm.read_cterm (Theory.sign_of (the_context ())) ("(xs::'a list) = ys",HOLogic.boolT); |
5427 | 242 |
|
7224 | 243 |
fun last (cons as Const("List.list.Cons",_) $ _ $ xs) = |
244 |
(case xs of Const("List.list.Nil",_) => cons | _ => last xs) |
|
5427 | 245 |
| last (Const("List.op @",_) $ _ $ ys) = last ys |
246 |
| last t = t; |
|
247 |
||
7224 | 248 |
fun list1 (Const("List.list.Cons",_) $ _ $ Const("List.list.Nil",_)) = true |
5427 | 249 |
| list1 _ = false; |
250 |
||
7224 | 251 |
fun butlast ((cons as Const("List.list.Cons",_) $ x) $ xs) = |
252 |
(case xs of Const("List.list.Nil",_) => xs | _ => cons $ butlast xs) |
|
5427 | 253 |
| butlast ((app as Const("List.op @",_) $ xs) $ ys) = app $ butlast ys |
7224 | 254 |
| butlast xs = Const("List.list.Nil",fastype_of xs); |
5427 | 255 |
|
256 |
val rearr_tac = |
|
257 |
simp_tac (HOL_basic_ss addsimps [append_assoc,append_Nil,append_Cons]); |
|
258 |
||
259 |
fun list_eq sg _ (F as (eq as Const(_,eqT)) $ lhs $ rhs) = |
|
260 |
let |
|
261 |
val lastl = last lhs and lastr = last rhs |
|
262 |
fun rearr conv = |
|
263 |
let val lhs1 = butlast lhs and rhs1 = butlast rhs |
|
264 |
val Type(_,listT::_) = eqT |
|
265 |
val appT = [listT,listT] ---> listT |
|
266 |
val app = Const("List.op @",appT) |
|
267 |
val F2 = eq $ (app$lhs1$lastl) $ (app$rhs1$lastr) |
|
268 |
val ct = cterm_of sg (HOLogic.mk_Trueprop(HOLogic.mk_eq(F,F2))) |
|
269 |
val thm = prove_goalw_cterm [] ct (K [rearr_tac 1]) |
|
270 |
handle ERROR => |
|
271 |
error("The error(s) above occurred while trying to prove " ^ |
|
272 |
string_of_cterm ct) |
|
273 |
in Some((conv RS (thm RS trans)) RS eq_reflection) end |
|
274 |
||
275 |
in if list1 lastl andalso list1 lastr |
|
276 |
then rearr append1_eq_conv |
|
277 |
else |
|
278 |
if lastl aconv lastr |
|
279 |
then rearr append_same_eq |
|
280 |
else None |
|
281 |
end; |
|
282 |
in |
|
283 |
val list_eq_simproc = mk_simproc "list_eq" [list_eq_pattern] list_eq; |
|
284 |
end; |
|
285 |
||
286 |
Addsimprocs [list_eq_simproc]; |
|
287 |
||
288 |
||
2608 | 289 |
(** map **) |
290 |
||
3467 | 291 |
section "map"; |
292 |
||
5278 | 293 |
Goal "(!x. x : set xs --> f x = g x) --> map f xs = map g xs"; |
3457 | 294 |
by (induct_tac "xs" 1); |
5316 | 295 |
by Auto_tac; |
2608 | 296 |
bind_thm("map_ext", impI RS (allI RS (result() RS mp))); |
297 |
||
4935 | 298 |
Goal "map (%x. x) = (%xs. xs)"; |
2608 | 299 |
by (rtac ext 1); |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
300 |
by (induct_tac "xs" 1); |
5316 | 301 |
by Auto_tac; |
2608 | 302 |
qed "map_ident"; |
303 |
Addsimps[map_ident]; |
|
304 |
||
4935 | 305 |
Goal "map f (xs@ys) = map f xs @ map f ys"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
306 |
by (induct_tac "xs" 1); |
5316 | 307 |
by Auto_tac; |
2608 | 308 |
qed "map_append"; |
309 |
Addsimps[map_append]; |
|
310 |
||
4935 | 311 |
Goalw [o_def] "map (f o g) xs = map f (map g xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
312 |
by (induct_tac "xs" 1); |
5316 | 313 |
by Auto_tac; |
2608 | 314 |
qed "map_compose"; |
9700 | 315 |
(*Addsimps[map_compose];*) |
2608 | 316 |
|
4935 | 317 |
Goal "rev(map f xs) = map f (rev xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
318 |
by (induct_tac "xs" 1); |
5316 | 319 |
by Auto_tac; |
2608 | 320 |
qed "rev_map"; |
321 |
||
3589
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
322 |
(* a congruence rule for map: *) |
6451 | 323 |
Goal "xs=ys ==> (!x. x : set ys --> f x = g x) --> map f xs = map g ys"; |
4423 | 324 |
by (hyp_subst_tac 1); |
325 |
by (induct_tac "ys" 1); |
|
5316 | 326 |
by Auto_tac; |
6451 | 327 |
bind_thm("map_cong", impI RSN (2,allI RSN (2, result() RS mp))); |
3589
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
328 |
|
4935 | 329 |
Goal "(map f xs = []) = (xs = [])"; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
330 |
by (case_tac "xs" 1); |
5316 | 331 |
by Auto_tac; |
3860 | 332 |
qed "map_is_Nil_conv"; |
333 |
AddIffs [map_is_Nil_conv]; |
|
334 |
||
4935 | 335 |
Goal "([] = map f xs) = (xs = [])"; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
336 |
by (case_tac "xs" 1); |
5316 | 337 |
by Auto_tac; |
3860 | 338 |
qed "Nil_is_map_conv"; |
339 |
AddIffs [Nil_is_map_conv]; |
|
340 |
||
8009 | 341 |
Goal "(map f xs = y#ys) = (? x xs'. xs = x#xs' & f x = y & map f xs' = ys)"; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
342 |
by (case_tac "xs" 1); |
8009 | 343 |
by (ALLGOALS Asm_simp_tac); |
344 |
qed "map_eq_Cons"; |
|
345 |
||
346 |
Goal "!xs. map f xs = map f ys --> (!x y. f x = f y --> x=y) --> xs=ys"; |
|
347 |
by (induct_tac "ys" 1); |
|
348 |
by (Asm_simp_tac 1); |
|
349 |
by (fast_tac (claset() addss (simpset() addsimps [map_eq_Cons])) 1); |
|
350 |
qed_spec_mp "map_injective"; |
|
351 |
||
352 |
Goal "inj f ==> inj (map f)"; |
|
8064 | 353 |
by (blast_tac (claset() addDs [map_injective,injD] addIs [injI]) 1); |
8009 | 354 |
qed "inj_mapI"; |
355 |
||
356 |
Goalw [inj_on_def] "inj (map f) ==> inj f"; |
|
8064 | 357 |
by (Clarify_tac 1); |
358 |
by (eres_inst_tac [("x","[x]")] ballE 1); |
|
359 |
by (eres_inst_tac [("x","[y]")] ballE 1); |
|
360 |
by (Asm_full_simp_tac 1); |
|
361 |
by (Blast_tac 1); |
|
362 |
by (Blast_tac 1); |
|
8009 | 363 |
qed "inj_mapD"; |
364 |
||
365 |
Goal "inj (map f) = inj f"; |
|
8064 | 366 |
by (blast_tac (claset() addDs [inj_mapD] addIs [inj_mapI]) 1); |
8009 | 367 |
qed "inj_map"; |
3860 | 368 |
|
1169 | 369 |
(** rev **) |
370 |
||
3467 | 371 |
section "rev"; |
372 |
||
4935 | 373 |
Goal "rev(xs@ys) = rev(ys) @ rev(xs)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
374 |
by (induct_tac "xs" 1); |
5316 | 375 |
by Auto_tac; |
1169 | 376 |
qed "rev_append"; |
2512 | 377 |
Addsimps[rev_append]; |
1169 | 378 |
|
4935 | 379 |
Goal "rev(rev l) = l"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
380 |
by (induct_tac "l" 1); |
5316 | 381 |
by Auto_tac; |
1169 | 382 |
qed "rev_rev_ident"; |
2512 | 383 |
Addsimps[rev_rev_ident]; |
1169 | 384 |
|
4935 | 385 |
Goal "(rev xs = []) = (xs = [])"; |
4423 | 386 |
by (induct_tac "xs" 1); |
5316 | 387 |
by Auto_tac; |
3860 | 388 |
qed "rev_is_Nil_conv"; |
389 |
AddIffs [rev_is_Nil_conv]; |
|
390 |
||
4935 | 391 |
Goal "([] = rev xs) = (xs = [])"; |
4423 | 392 |
by (induct_tac "xs" 1); |
5316 | 393 |
by Auto_tac; |
3860 | 394 |
qed "Nil_is_rev_conv"; |
395 |
AddIffs [Nil_is_rev_conv]; |
|
396 |
||
6820 | 397 |
Goal "!ys. (rev xs = rev ys) = (xs = ys)"; |
6831 | 398 |
by (induct_tac "xs" 1); |
6820 | 399 |
by (Force_tac 1); |
6831 | 400 |
by (rtac allI 1); |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
401 |
by (case_tac "ys" 1); |
6820 | 402 |
by (Asm_simp_tac 1); |
403 |
by (Force_tac 1); |
|
404 |
qed_spec_mp "rev_is_rev_conv"; |
|
405 |
AddIffs [rev_is_rev_conv]; |
|
406 |
||
4935 | 407 |
val prems = Goal "[| P []; !!x xs. P xs ==> P(xs@[x]) |] ==> P xs"; |
5132 | 408 |
by (stac (rev_rev_ident RS sym) 1); |
6162 | 409 |
by (res_inst_tac [("list", "rev xs")] list.induct 1); |
5132 | 410 |
by (ALLGOALS Simp_tac); |
411 |
by (resolve_tac prems 1); |
|
412 |
by (eresolve_tac prems 1); |
|
4935 | 413 |
qed "rev_induct"; |
414 |
||
9747 | 415 |
val rev_induct_tac = induct_thm_tac rev_induct; |
5272 | 416 |
|
4935 | 417 |
Goal "(xs = [] --> P) --> (!ys y. xs = ys@[y] --> P) --> P"; |
9747 | 418 |
by (rev_induct_tac "xs" 1); |
5316 | 419 |
by Auto_tac; |
4935 | 420 |
bind_thm ("rev_exhaust", |
421 |
impI RSN (2,allI RSN (2,allI RSN (2,impI RS (result() RS mp RS mp))))); |
|
422 |
||
2608 | 423 |
|
3465 | 424 |
(** set **) |
1812 | 425 |
|
3467 | 426 |
section "set"; |
427 |
||
7032 | 428 |
Goal "finite (set xs)"; |
429 |
by (induct_tac "xs" 1); |
|
430 |
by Auto_tac; |
|
431 |
qed "finite_set"; |
|
432 |
AddIffs [finite_set]; |
|
5296 | 433 |
|
4935 | 434 |
Goal "set (xs@ys) = (set xs Un set ys)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
435 |
by (induct_tac "xs" 1); |
5316 | 436 |
by Auto_tac; |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
437 |
qed "set_append"; |
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
438 |
Addsimps[set_append]; |
1812 | 439 |
|
4935 | 440 |
Goal "set l <= set (x#l)"; |
5316 | 441 |
by Auto_tac; |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
442 |
qed "set_subset_Cons"; |
1936 | 443 |
|
4935 | 444 |
Goal "(set xs = {}) = (xs = [])"; |
3457 | 445 |
by (induct_tac "xs" 1); |
5316 | 446 |
by Auto_tac; |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
447 |
qed "set_empty"; |
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
448 |
Addsimps [set_empty]; |
2608 | 449 |
|
4935 | 450 |
Goal "set(rev xs) = set(xs)"; |
3457 | 451 |
by (induct_tac "xs" 1); |
5316 | 452 |
by Auto_tac; |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
453 |
qed "set_rev"; |
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
454 |
Addsimps [set_rev]; |
2608 | 455 |
|
4935 | 456 |
Goal "set(map f xs) = f``(set xs)"; |
3457 | 457 |
by (induct_tac "xs" 1); |
5316 | 458 |
by Auto_tac; |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
459 |
qed "set_map"; |
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
460 |
Addsimps [set_map]; |
2608 | 461 |
|
6433 | 462 |
Goal "set(filter P xs) = {x. x : set xs & P x}"; |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
463 |
by (induct_tac "xs" 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
464 |
by Auto_tac; |
6433 | 465 |
qed "set_filter"; |
466 |
Addsimps [set_filter]; |
|
8009 | 467 |
|
6433 | 468 |
Goal "set[i..j(] = {k. i <= k & k < j}"; |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
469 |
by (induct_tac "j" 1); |
9187
68ecc04785f1
fixed proof to cope with the default of equalityCE instead of equalityE
paulson
parents:
9108
diff
changeset
|
470 |
by (ALLGOALS Asm_simp_tac); |
68ecc04785f1
fixed proof to cope with the default of equalityCE instead of equalityE
paulson
parents:
9108
diff
changeset
|
471 |
by (etac ssubst 1); |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
472 |
by Auto_tac; |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
473 |
by (arith_tac 1); |
6433 | 474 |
qed "set_upt"; |
475 |
Addsimps [set_upt]; |
|
476 |
||
5272 | 477 |
Goal "(x : set xs) = (? ys zs. xs = ys@x#zs)"; |
5318 | 478 |
by (induct_tac "xs" 1); |
479 |
by (Simp_tac 1); |
|
480 |
by (Asm_simp_tac 1); |
|
481 |
by (rtac iffI 1); |
|
482 |
by (blast_tac (claset() addIs [eq_Nil_appendI,Cons_eq_appendI]) 1); |
|
483 |
by (REPEAT(etac exE 1)); |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
484 |
by (case_tac "ys" 1); |
5316 | 485 |
by Auto_tac; |
5272 | 486 |
qed "in_set_conv_decomp"; |
487 |
||
8009 | 488 |
|
5272 | 489 |
(* eliminate `lists' in favour of `set' *) |
490 |
||
491 |
Goal "(xs : lists A) = (!x : set xs. x : A)"; |
|
5318 | 492 |
by (induct_tac "xs" 1); |
5316 | 493 |
by Auto_tac; |
5272 | 494 |
qed "in_lists_conv_set"; |
495 |
||
496 |
bind_thm("in_listsD",in_lists_conv_set RS iffD1); |
|
497 |
AddSDs [in_listsD]; |
|
498 |
bind_thm("in_listsI",in_lists_conv_set RS iffD2); |
|
499 |
AddSIs [in_listsI]; |
|
1812 | 500 |
|
5518 | 501 |
(** mem **) |
502 |
||
503 |
section "mem"; |
|
504 |
||
505 |
Goal "(x mem xs) = (x: set xs)"; |
|
506 |
by (induct_tac "xs" 1); |
|
507 |
by Auto_tac; |
|
508 |
qed "set_mem_eq"; |
|
509 |
||
510 |
||
923 | 511 |
(** list_all **) |
512 |
||
3467 | 513 |
section "list_all"; |
514 |
||
5518 | 515 |
Goal "list_all P xs = (!x:set xs. P x)"; |
516 |
by (induct_tac "xs" 1); |
|
517 |
by Auto_tac; |
|
518 |
qed "list_all_conv"; |
|
519 |
||
5443
e2459d18ff47
changed constants mem and list_all to mere translations
oheimb
parents:
5427
diff
changeset
|
520 |
Goal "list_all P (xs@ys) = (list_all P xs & list_all P ys)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
521 |
by (induct_tac "xs" 1); |
5316 | 522 |
by Auto_tac; |
2512 | 523 |
qed "list_all_append"; |
524 |
Addsimps [list_all_append]; |
|
923 | 525 |
|
526 |
||
2608 | 527 |
(** filter **) |
923 | 528 |
|
3467 | 529 |
section "filter"; |
530 |
||
4935 | 531 |
Goal "filter P (xs@ys) = filter P xs @ filter P ys"; |
3457 | 532 |
by (induct_tac "xs" 1); |
5316 | 533 |
by Auto_tac; |
2608 | 534 |
qed "filter_append"; |
535 |
Addsimps [filter_append]; |
|
536 |
||
4935 | 537 |
Goal "filter (%x. True) xs = xs"; |
4605 | 538 |
by (induct_tac "xs" 1); |
5316 | 539 |
by Auto_tac; |
4605 | 540 |
qed "filter_True"; |
541 |
Addsimps [filter_True]; |
|
542 |
||
4935 | 543 |
Goal "filter (%x. False) xs = []"; |
4605 | 544 |
by (induct_tac "xs" 1); |
5316 | 545 |
by Auto_tac; |
4605 | 546 |
qed "filter_False"; |
547 |
Addsimps [filter_False]; |
|
548 |
||
4935 | 549 |
Goal "length (filter P xs) <= length xs"; |
3457 | 550 |
by (induct_tac "xs" 1); |
5316 | 551 |
by Auto_tac; |
8741
61bc5ed22b62
removal of less_SucI, le_SucI from default simpset
paulson
parents:
8442
diff
changeset
|
552 |
by (asm_simp_tac (simpset() addsimps [le_SucI]) 1); |
4605 | 553 |
qed "length_filter"; |
5443
e2459d18ff47
changed constants mem and list_all to mere translations
oheimb
parents:
5427
diff
changeset
|
554 |
Addsimps[length_filter]; |
2608 | 555 |
|
5443
e2459d18ff47
changed constants mem and list_all to mere translations
oheimb
parents:
5427
diff
changeset
|
556 |
Goal "set (filter P xs) <= set xs"; |
e2459d18ff47
changed constants mem and list_all to mere translations
oheimb
parents:
5427
diff
changeset
|
557 |
by Auto_tac; |
e2459d18ff47
changed constants mem and list_all to mere translations
oheimb
parents:
5427
diff
changeset
|
558 |
qed "filter_is_subset"; |
e2459d18ff47
changed constants mem and list_all to mere translations
oheimb
parents:
5427
diff
changeset
|
559 |
Addsimps [filter_is_subset]; |
e2459d18ff47
changed constants mem and list_all to mere translations
oheimb
parents:
5427
diff
changeset
|
560 |
|
2608 | 561 |
|
3467 | 562 |
section "concat"; |
563 |
||
4935 | 564 |
Goal "concat(xs@ys) = concat(xs)@concat(ys)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
565 |
by (induct_tac "xs" 1); |
5316 | 566 |
by Auto_tac; |
2608 | 567 |
qed"concat_append"; |
568 |
Addsimps [concat_append]; |
|
2512 | 569 |
|
4935 | 570 |
Goal "(concat xss = []) = (!xs:set xss. xs=[])"; |
4423 | 571 |
by (induct_tac "xss" 1); |
5316 | 572 |
by Auto_tac; |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
573 |
qed "concat_eq_Nil_conv"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
574 |
AddIffs [concat_eq_Nil_conv]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
575 |
|
4935 | 576 |
Goal "([] = concat xss) = (!xs:set xss. xs=[])"; |
4423 | 577 |
by (induct_tac "xss" 1); |
5316 | 578 |
by Auto_tac; |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
579 |
qed "Nil_eq_concat_conv"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
580 |
AddIffs [Nil_eq_concat_conv]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
581 |
|
4935 | 582 |
Goal "set(concat xs) = Union(set `` set xs)"; |
3467 | 583 |
by (induct_tac "xs" 1); |
5316 | 584 |
by Auto_tac; |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
585 |
qed"set_concat"; |
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
586 |
Addsimps [set_concat]; |
3467 | 587 |
|
4935 | 588 |
Goal "map f (concat xs) = concat (map (map f) xs)"; |
3467 | 589 |
by (induct_tac "xs" 1); |
5316 | 590 |
by Auto_tac; |
3467 | 591 |
qed "map_concat"; |
592 |
||
4935 | 593 |
Goal "filter p (concat xs) = concat (map (filter p) xs)"; |
3467 | 594 |
by (induct_tac "xs" 1); |
5316 | 595 |
by Auto_tac; |
3467 | 596 |
qed"filter_concat"; |
597 |
||
4935 | 598 |
Goal "rev(concat xs) = concat (map rev (rev xs))"; |
3467 | 599 |
by (induct_tac "xs" 1); |
5316 | 600 |
by Auto_tac; |
2608 | 601 |
qed "rev_concat"; |
923 | 602 |
|
603 |
(** nth **) |
|
604 |
||
3467 | 605 |
section "nth"; |
606 |
||
6408 | 607 |
Goal "(x#xs)!0 = x"; |
608 |
by Auto_tac; |
|
609 |
qed "nth_Cons_0"; |
|
610 |
Addsimps [nth_Cons_0]; |
|
5644 | 611 |
|
6408 | 612 |
Goal "(x#xs)!(Suc n) = xs!n"; |
613 |
by Auto_tac; |
|
614 |
qed "nth_Cons_Suc"; |
|
615 |
Addsimps [nth_Cons_Suc]; |
|
616 |
||
617 |
Delsimps (thms "nth.simps"); |
|
618 |
||
619 |
Goal "!n. (xs@ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"; |
|
620 |
by (induct_tac "xs" 1); |
|
3457 | 621 |
by (Asm_simp_tac 1); |
622 |
by (rtac allI 1); |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
623 |
by (case_tac "n" 1); |
5316 | 624 |
by Auto_tac; |
2608 | 625 |
qed_spec_mp "nth_append"; |
626 |
||
4935 | 627 |
Goal "!n. n < length xs --> (map f xs)!n = f(xs!n)"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
628 |
by (induct_tac "xs" 1); |
8118 | 629 |
by (Asm_full_simp_tac 1); |
1301 | 630 |
by (rtac allI 1); |
5183 | 631 |
by (induct_tac "n" 1); |
5316 | 632 |
by Auto_tac; |
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
633 |
qed_spec_mp "nth_map"; |
1301 | 634 |
Addsimps [nth_map]; |
635 |
||
8118 | 636 |
Goal "set xs = {xs!i |i. i < length xs}"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
637 |
by (induct_tac "xs" 1); |
8118 | 638 |
by (Simp_tac 1); |
8254 | 639 |
by (Asm_simp_tac 1); |
640 |
by Safe_tac; |
|
641 |
by (res_inst_tac [("x","0")] exI 1); |
|
8118 | 642 |
by (Simp_tac 1); |
8254 | 643 |
by (res_inst_tac [("x","Suc i")] exI 1); |
644 |
by (Asm_simp_tac 1); |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
645 |
by (case_tac "i" 1); |
8254 | 646 |
by (Asm_full_simp_tac 1); |
647 |
by (rename_tac "j" 1); |
|
648 |
by (res_inst_tac [("x","j")] exI 1); |
|
649 |
by (Asm_simp_tac 1); |
|
8118 | 650 |
qed "set_conv_nth"; |
651 |
||
652 |
Goal "n < length xs ==> Ball (set xs) P --> P(xs!n)"; |
|
653 |
by (simp_tac (simpset() addsimps [set_conv_nth]) 1); |
|
8254 | 654 |
by (Blast_tac 1); |
5518 | 655 |
qed_spec_mp "list_ball_nth"; |
1301 | 656 |
|
8118 | 657 |
Goal "n < length xs ==> xs!n : set xs"; |
658 |
by (simp_tac (simpset() addsimps [set_conv_nth]) 1); |
|
8254 | 659 |
by (Blast_tac 1); |
1485
240cc98b94a7
Added qed_spec_mp to avoid renaming of bound vars in 'th RS spec'
nipkow
parents:
1465
diff
changeset
|
660 |
qed_spec_mp "nth_mem"; |
1301 | 661 |
Addsimps [nth_mem]; |
662 |
||
8009 | 663 |
Goal "(!i. i < length xs --> P(xs!i)) --> (!x : set xs. P x)"; |
8118 | 664 |
by (simp_tac (simpset() addsimps [set_conv_nth]) 1); |
8254 | 665 |
by (Blast_tac 1); |
8009 | 666 |
qed_spec_mp "all_nth_imp_all_set"; |
667 |
||
668 |
Goal "(!x : set xs. P x) = (!i. i<length xs --> P (xs ! i))"; |
|
8118 | 669 |
by (simp_tac (simpset() addsimps [set_conv_nth]) 1); |
8254 | 670 |
by (Blast_tac 1); |
8009 | 671 |
qed_spec_mp "all_set_conv_all_nth"; |
672 |
||
673 |
||
5077
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
674 |
(** list update **) |
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
675 |
|
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
676 |
section "list update"; |
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
677 |
|
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
678 |
Goal "!i. length(xs[i:=x]) = length xs"; |
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
679 |
by (induct_tac "xs" 1); |
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
680 |
by (Simp_tac 1); |
5183 | 681 |
by (asm_full_simp_tac (simpset() addsplits [nat.split]) 1); |
5077
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
682 |
qed_spec_mp "length_list_update"; |
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
683 |
Addsimps [length_list_update]; |
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
684 |
|
5644 | 685 |
Goal "!i j. i < length xs --> (xs[i:=x])!j = (if i=j then x else xs!j)"; |
6162 | 686 |
by (induct_tac "xs" 1); |
687 |
by (Simp_tac 1); |
|
688 |
by (auto_tac (claset(), simpset() addsimps [nth_Cons] addsplits [nat.split])); |
|
5644 | 689 |
qed_spec_mp "nth_list_update"; |
690 |
||
8144 | 691 |
Goal "i < length xs ==> (xs[i:=x])!i = x"; |
692 |
by (asm_simp_tac (simpset() addsimps [nth_list_update]) 1); |
|
693 |
qed "nth_list_update_eq"; |
|
694 |
Addsimps [nth_list_update_eq]; |
|
695 |
||
696 |
Goal "!i j. i ~= j --> xs[i:=x]!j = xs!j"; |
|
697 |
by (induct_tac "xs" 1); |
|
698 |
by (Simp_tac 1); |
|
699 |
by (auto_tac (claset(), simpset() addsimps [nth_Cons] addsplits [nat.split])); |
|
700 |
qed_spec_mp "nth_list_update_neq"; |
|
701 |
Addsimps [nth_list_update_neq]; |
|
702 |
||
6433 | 703 |
Goal "!i. i < size xs --> xs[i:=x, i:=y] = xs[i:=y]"; |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
704 |
by (induct_tac "xs" 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
705 |
by (Simp_tac 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
706 |
by (asm_simp_tac (simpset() addsplits [nat.split]) 1); |
6433 | 707 |
qed_spec_mp "list_update_overwrite"; |
708 |
Addsimps [list_update_overwrite]; |
|
709 |
||
710 |
Goal "!i < length xs. (xs[i := x] = xs) = (xs!i = x)"; |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
711 |
by (induct_tac "xs" 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
712 |
by (Simp_tac 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
713 |
by (simp_tac (simpset() addsplits [nat.split]) 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
714 |
by (Blast_tac 1); |
6433 | 715 |
qed_spec_mp "list_update_same_conv"; |
716 |
||
8009 | 717 |
Goal "!i xy xs. length xs = length ys --> \ |
718 |
\ (zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"; |
|
719 |
by (induct_tac "ys" 1); |
|
720 |
by Auto_tac; |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
721 |
by (case_tac "xs" 1); |
8009 | 722 |
by (auto_tac (claset(), simpset() addsplits [nat.split])); |
723 |
qed_spec_mp "update_zip"; |
|
724 |
||
725 |
Goal "!i. set(xs[i:=x]) <= insert x (set xs)"; |
|
726 |
by (induct_tac "xs" 1); |
|
727 |
by (asm_full_simp_tac (simpset() addsimps []) 1); |
|
728 |
by (asm_full_simp_tac (simpset() addsplits [nat.split]) 1); |
|
729 |
by (Fast_tac 1); |
|
8287 | 730 |
qed_spec_mp "set_update_subset_insert"; |
8009 | 731 |
|
8287 | 732 |
Goal "[| set xs <= A; x:A |] ==> set(xs[i := x]) <= A"; |
733 |
by(fast_tac (claset() addSDs [set_update_subset_insert RS subsetD]) 1); |
|
734 |
qed "set_update_subsetI"; |
|
5077
71043526295f
* HOL/List: new function list_update written xs[i:=v] that updates the i-th
nipkow
parents:
5043
diff
changeset
|
735 |
|
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
736 |
(** last & butlast **) |
1327
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
737 |
|
5644 | 738 |
section "last / butlast"; |
739 |
||
4935 | 740 |
Goal "last(xs@[x]) = x"; |
4423 | 741 |
by (induct_tac "xs" 1); |
5316 | 742 |
by Auto_tac; |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
743 |
qed "last_snoc"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
744 |
Addsimps [last_snoc]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
745 |
|
4935 | 746 |
Goal "butlast(xs@[x]) = xs"; |
4423 | 747 |
by (induct_tac "xs" 1); |
5316 | 748 |
by Auto_tac; |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
749 |
qed "butlast_snoc"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
750 |
Addsimps [butlast_snoc]; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
751 |
|
4935 | 752 |
Goal "length(butlast xs) = length xs - 1"; |
9747 | 753 |
by (rev_induct_tac "xs" 1); |
5316 | 754 |
by Auto_tac; |
4643 | 755 |
qed "length_butlast"; |
756 |
Addsimps [length_butlast]; |
|
757 |
||
5278 | 758 |
Goal "!ys. butlast (xs@ys) = (if ys=[] then butlast xs else xs@butlast ys)"; |
4423 | 759 |
by (induct_tac "xs" 1); |
5316 | 760 |
by Auto_tac; |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
761 |
qed_spec_mp "butlast_append"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
762 |
|
8118 | 763 |
Goal "xs ~= [] --> butlast xs @ [last xs] = xs"; |
8254 | 764 |
by (induct_tac "xs" 1); |
765 |
by (ALLGOALS Asm_simp_tac); |
|
8118 | 766 |
qed_spec_mp "append_butlast_last_id"; |
767 |
Addsimps [append_butlast_last_id]; |
|
768 |
||
4935 | 769 |
Goal "x:set(butlast xs) --> x:set xs"; |
4423 | 770 |
by (induct_tac "xs" 1); |
5316 | 771 |
by Auto_tac; |
3896
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
772 |
qed_spec_mp "in_set_butlastD"; |
ee8ebb74ec00
Various new lemmas. Improved conversion of equations to rewrite rules:
nipkow
parents:
3860
diff
changeset
|
773 |
|
5448
40a09282ba14
in_set_butlast_appendI supersedes in_set_butlast_appendI1,2
paulson
parents:
5443
diff
changeset
|
774 |
Goal "x:set(butlast xs) | x:set(butlast ys) ==> x:set(butlast(xs@ys))"; |
40a09282ba14
in_set_butlast_appendI supersedes in_set_butlast_appendI1,2
paulson
parents:
5443
diff
changeset
|
775 |
by (auto_tac (claset() addDs [in_set_butlastD], |
40a09282ba14
in_set_butlast_appendI supersedes in_set_butlast_appendI1,2
paulson
parents:
5443
diff
changeset
|
776 |
simpset() addsimps [butlast_append])); |
40a09282ba14
in_set_butlast_appendI supersedes in_set_butlast_appendI1,2
paulson
parents:
5443
diff
changeset
|
777 |
qed "in_set_butlast_appendI"; |
3902 | 778 |
|
2608 | 779 |
(** take & drop **) |
780 |
section "take & drop"; |
|
1327
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
781 |
|
4935 | 782 |
Goal "take 0 xs = []"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
783 |
by (induct_tac "xs" 1); |
5316 | 784 |
by Auto_tac; |
1327
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
785 |
qed "take_0"; |
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
786 |
|
4935 | 787 |
Goal "drop 0 xs = xs"; |
3040
7d48671753da
Introduced a generic "induct_tac" which picks up the right induction scheme
nipkow
parents:
3011
diff
changeset
|
788 |
by (induct_tac "xs" 1); |
5316 | 789 |
by Auto_tac; |
2608 | 790 |
qed "drop_0"; |
791 |
||
4935 | 792 |
Goal "take (Suc n) (x#xs) = x # take n xs"; |
1552 | 793 |
by (Simp_tac 1); |
1419
a6a034a47a71
defined take/drop by induction over list rather than nat.
nipkow
parents:
1327
diff
changeset
|
794 |
qed "take_Suc_Cons"; |
1327
6c29cfab679c
added new arithmetic lemmas and the functions take and drop.
nipkow
parents:
1301
diff
changeset
|
795 |
|
4935 | 796 |
Goal "drop (Suc n) (x#xs) = drop n xs"; |
2608 | 797 |
by (Simp_tac 1); |
798 |
qed "drop_Suc_Cons"; |
|
799 |
||
800 |
Delsimps [take_Cons,drop_Cons]; |
|
801 |
Addsimps [take_0,take_Suc_Cons,drop_0,drop_Suc_Cons]; |
|
802 |
||
4935 | 803 |
Goal "!xs. length(take n xs) = min (length xs) n"; |
5183 | 804 |
by (induct_tac "n" 1); |
5316 | 805 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
806 |
by (case_tac "xs" 1); |
5316 | 807 |
by Auto_tac; |
2608 | 808 |
qed_spec_mp "length_take"; |
809 |
Addsimps [length_take]; |
|
923 | 810 |
|
4935 | 811 |
Goal "!xs. length(drop n xs) = (length xs - n)"; |
5183 | 812 |
by (induct_tac "n" 1); |
5316 | 813 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
814 |
by (case_tac "xs" 1); |
5316 | 815 |
by Auto_tac; |
2608 | 816 |
qed_spec_mp "length_drop"; |
817 |
Addsimps [length_drop]; |
|
818 |
||
4935 | 819 |
Goal "!xs. length xs <= n --> take n xs = xs"; |
5183 | 820 |
by (induct_tac "n" 1); |
5316 | 821 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
822 |
by (case_tac "xs" 1); |
5316 | 823 |
by Auto_tac; |
2608 | 824 |
qed_spec_mp "take_all"; |
7246 | 825 |
Addsimps [take_all]; |
923 | 826 |
|
4935 | 827 |
Goal "!xs. length xs <= n --> drop n xs = []"; |
5183 | 828 |
by (induct_tac "n" 1); |
5316 | 829 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
830 |
by (case_tac "xs" 1); |
5316 | 831 |
by Auto_tac; |
2608 | 832 |
qed_spec_mp "drop_all"; |
7246 | 833 |
Addsimps [drop_all]; |
2608 | 834 |
|
5278 | 835 |
Goal "!xs. take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"; |
5183 | 836 |
by (induct_tac "n" 1); |
5316 | 837 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
838 |
by (case_tac "xs" 1); |
5316 | 839 |
by Auto_tac; |
2608 | 840 |
qed_spec_mp "take_append"; |
841 |
Addsimps [take_append]; |
|
842 |
||
4935 | 843 |
Goal "!xs. drop n (xs@ys) = drop n xs @ drop (n - length xs) ys"; |
5183 | 844 |
by (induct_tac "n" 1); |
5316 | 845 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
846 |
by (case_tac "xs" 1); |
5316 | 847 |
by Auto_tac; |
2608 | 848 |
qed_spec_mp "drop_append"; |
849 |
Addsimps [drop_append]; |
|
850 |
||
4935 | 851 |
Goal "!xs n. take n (take m xs) = take (min n m) xs"; |
5183 | 852 |
by (induct_tac "m" 1); |
5316 | 853 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
854 |
by (case_tac "xs" 1); |
5316 | 855 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
856 |
by (case_tac "na" 1); |
5316 | 857 |
by Auto_tac; |
2608 | 858 |
qed_spec_mp "take_take"; |
7570 | 859 |
Addsimps [take_take]; |
2608 | 860 |
|
4935 | 861 |
Goal "!xs. drop n (drop m xs) = drop (n + m) xs"; |
5183 | 862 |
by (induct_tac "m" 1); |
5316 | 863 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
864 |
by (case_tac "xs" 1); |
5316 | 865 |
by Auto_tac; |
2608 | 866 |
qed_spec_mp "drop_drop"; |
7570 | 867 |
Addsimps [drop_drop]; |
923 | 868 |
|
4935 | 869 |
Goal "!xs n. take n (drop m xs) = drop m (take (n + m) xs)"; |
5183 | 870 |
by (induct_tac "m" 1); |
5316 | 871 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
872 |
by (case_tac "xs" 1); |
5316 | 873 |
by Auto_tac; |
2608 | 874 |
qed_spec_mp "take_drop"; |
875 |
||
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
876 |
Goal "!xs. take n xs @ drop n xs = xs"; |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
877 |
by (induct_tac "n" 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
878 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
879 |
by (case_tac "xs" 1); |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
880 |
by Auto_tac; |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
881 |
qed_spec_mp "append_take_drop_id"; |
8118 | 882 |
Addsimps [append_take_drop_id]; |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
883 |
|
4935 | 884 |
Goal "!xs. take n (map f xs) = map f (take n xs)"; |
5183 | 885 |
by (induct_tac "n" 1); |
5316 | 886 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
887 |
by (case_tac "xs" 1); |
5316 | 888 |
by Auto_tac; |
2608 | 889 |
qed_spec_mp "take_map"; |
890 |
||
4935 | 891 |
Goal "!xs. drop n (map f xs) = map f (drop n xs)"; |
5183 | 892 |
by (induct_tac "n" 1); |
5316 | 893 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
894 |
by (case_tac "xs" 1); |
5316 | 895 |
by Auto_tac; |
2608 | 896 |
qed_spec_mp "drop_map"; |
897 |
||
4935 | 898 |
Goal "!n i. i < n --> (take n xs)!i = xs!i"; |
3457 | 899 |
by (induct_tac "xs" 1); |
5316 | 900 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
901 |
by (case_tac "n" 1); |
3457 | 902 |
by (Blast_tac 1); |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
903 |
by (case_tac "i" 1); |
5316 | 904 |
by Auto_tac; |
2608 | 905 |
qed_spec_mp "nth_take"; |
906 |
Addsimps [nth_take]; |
|
923 | 907 |
|
4935 | 908 |
Goal "!xs i. n + i <= length xs --> (drop n xs)!i = xs!(n+i)"; |
5183 | 909 |
by (induct_tac "n" 1); |
5316 | 910 |
by Auto_tac; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
911 |
by (case_tac "xs" 1); |
5316 | 912 |
by Auto_tac; |
2608 | 913 |
qed_spec_mp "nth_drop"; |
914 |
Addsimps [nth_drop]; |
|
915 |
||
8118 | 916 |
|
917 |
Goal |
|
918 |
"!zs. (xs@ys = zs) = (xs = take (length xs) zs & ys = drop (length xs) zs)"; |
|
8254 | 919 |
by (induct_tac "xs" 1); |
920 |
by (Simp_tac 1); |
|
921 |
by (Asm_full_simp_tac 1); |
|
922 |
by (Clarify_tac 1); |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
923 |
by (case_tac "zs" 1); |
8254 | 924 |
by (Auto_tac); |
8118 | 925 |
qed_spec_mp "append_eq_conv_conj"; |
926 |
||
2608 | 927 |
(** takeWhile & dropWhile **) |
928 |
||
3467 | 929 |
section "takeWhile & dropWhile"; |
930 |
||
4935 | 931 |
Goal "takeWhile P xs @ dropWhile P xs = xs"; |
3586 | 932 |
by (induct_tac "xs" 1); |
5316 | 933 |
by Auto_tac; |
3586 | 934 |
qed "takeWhile_dropWhile_id"; |
935 |
Addsimps [takeWhile_dropWhile_id]; |
|
936 |
||
4935 | 937 |
Goal "x:set xs & ~P(x) --> takeWhile P (xs @ ys) = takeWhile P xs"; |
3457 | 938 |
by (induct_tac "xs" 1); |
5316 | 939 |
by Auto_tac; |
2608 | 940 |
bind_thm("takeWhile_append1", conjI RS (result() RS mp)); |
941 |
Addsimps [takeWhile_append1]; |
|
923 | 942 |
|
4935 | 943 |
Goal "(!x:set xs. P(x)) --> takeWhile P (xs @ ys) = xs @ takeWhile P ys"; |
3457 | 944 |
by (induct_tac "xs" 1); |
5316 | 945 |
by Auto_tac; |
2608 | 946 |
bind_thm("takeWhile_append2", ballI RS (result() RS mp)); |
947 |
Addsimps [takeWhile_append2]; |
|
1169 | 948 |
|
4935 | 949 |
Goal "x:set xs & ~P(x) --> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"; |
3457 | 950 |
by (induct_tac "xs" 1); |
5316 | 951 |
by Auto_tac; |
2608 | 952 |
bind_thm("dropWhile_append1", conjI RS (result() RS mp)); |
953 |
Addsimps [dropWhile_append1]; |
|
954 |
||
4935 | 955 |
Goal "(!x:set xs. P(x)) --> dropWhile P (xs @ ys) = dropWhile P ys"; |
3457 | 956 |
by (induct_tac "xs" 1); |
5316 | 957 |
by Auto_tac; |
2608 | 958 |
bind_thm("dropWhile_append2", ballI RS (result() RS mp)); |
959 |
Addsimps [dropWhile_append2]; |
|
960 |
||
4935 | 961 |
Goal "x:set(takeWhile P xs) --> x:set xs & P x"; |
3457 | 962 |
by (induct_tac "xs" 1); |
5316 | 963 |
by Auto_tac; |
3647
a64c8fbcd98f
Renamed theorems of the form set_of_list_XXX to set_XXX
paulson
parents:
3589
diff
changeset
|
964 |
qed_spec_mp"set_take_whileD"; |
2608 | 965 |
|
6306 | 966 |
(** zip **) |
967 |
section "zip"; |
|
968 |
||
969 |
Goal "zip [] ys = []"; |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
970 |
by (induct_tac "ys" 1); |
6306 | 971 |
by Auto_tac; |
972 |
qed "zip_Nil"; |
|
973 |
Addsimps [zip_Nil]; |
|
974 |
||
975 |
Goal "zip (x#xs) (y#ys) = (x,y)#zip xs ys"; |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
976 |
by (Simp_tac 1); |
6306 | 977 |
qed "zip_Cons_Cons"; |
978 |
Addsimps [zip_Cons_Cons]; |
|
979 |
||
980 |
Delsimps(tl (thms"zip.simps")); |
|
4605 | 981 |
|
8118 | 982 |
Goal "!xs. length (zip xs ys) = min (length xs) (length ys)"; |
8009 | 983 |
by (induct_tac "ys" 1); |
984 |
by (Simp_tac 1); |
|
985 |
by (Clarify_tac 1); |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
986 |
by (case_tac "xs" 1); |
8064 | 987 |
by (Auto_tac); |
8009 | 988 |
qed_spec_mp "length_zip"; |
989 |
Addsimps [length_zip]; |
|
990 |
||
991 |
Goal |
|
8118 | 992 |
"!xs. zip (xs@ys) zs = \ |
993 |
\ zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"; |
|
8254 | 994 |
by (induct_tac "zs" 1); |
995 |
by (Simp_tac 1); |
|
8064 | 996 |
by (Clarify_tac 1); |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
997 |
by (case_tac "xs" 1); |
8254 | 998 |
by (Asm_simp_tac 1); |
999 |
by (Asm_simp_tac 1); |
|
8118 | 1000 |
qed_spec_mp "zip_append1"; |
1001 |
||
1002 |
Goal |
|
1003 |
"!ys. zip xs (ys@zs) = \ |
|
1004 |
\ zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"; |
|
8254 | 1005 |
by (induct_tac "xs" 1); |
1006 |
by (Simp_tac 1); |
|
8118 | 1007 |
by (Clarify_tac 1); |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1008 |
by (case_tac "ys" 1); |
8254 | 1009 |
by (Asm_simp_tac 1); |
1010 |
by (Asm_simp_tac 1); |
|
8118 | 1011 |
qed_spec_mp "zip_append2"; |
1012 |
||
1013 |
Goal |
|
1014 |
"[| length xs = length us; length ys = length vs |] ==> \ |
|
1015 |
\ zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"; |
|
8254 | 1016 |
by (asm_simp_tac (simpset() addsimps [zip_append1]) 1); |
8009 | 1017 |
qed_spec_mp "zip_append"; |
8118 | 1018 |
Addsimps [zip_append]; |
8009 | 1019 |
|
1020 |
Goal "!xs. length xs = length ys --> zip (rev xs) (rev ys) = rev (zip xs ys)"; |
|
8064 | 1021 |
by (induct_tac "ys" 1); |
1022 |
by (Asm_full_simp_tac 1); |
|
1023 |
by (Asm_full_simp_tac 1); |
|
1024 |
by (Clarify_tac 1); |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1025 |
by (case_tac "xs" 1); |
8064 | 1026 |
by (Auto_tac); |
8009 | 1027 |
qed_spec_mp "zip_rev"; |
1028 |
||
8115 | 1029 |
|
1030 |
Goal |
|
8009 | 1031 |
"!i xs. i < length xs --> i < length ys --> (zip xs ys)!i = (xs!i, ys!i)"; |
1032 |
by (induct_tac "ys" 1); |
|
1033 |
by (Simp_tac 1); |
|
1034 |
by (Clarify_tac 1); |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1035 |
by (case_tac "xs" 1); |
8064 | 1036 |
by (Auto_tac); |
8009 | 1037 |
by (asm_full_simp_tac (simpset() addsimps (thms"nth.simps") addsplits [nat.split]) 1); |
1038 |
qed_spec_mp "nth_zip"; |
|
1039 |
Addsimps [nth_zip]; |
|
1040 |
||
8118 | 1041 |
Goal "set(zip xs ys) = {(xs!i,ys!i) |i. i < min (length xs) (length ys)}"; |
1042 |
by (simp_tac (simpset() addsimps [set_conv_nth]addcongs [rev_conj_cong]) 1); |
|
1043 |
qed_spec_mp "set_zip"; |
|
1044 |
||
8009 | 1045 |
Goal |
1046 |
"length xs = length ys ==> zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"; |
|
8064 | 1047 |
by (rtac sym 1); |
1048 |
by (asm_simp_tac (simpset() addsimps [update_zip]) 1); |
|
8009 | 1049 |
qed_spec_mp "zip_update"; |
1050 |
||
1051 |
Goal "!j. zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"; |
|
1052 |
by (induct_tac "i" 1); |
|
8064 | 1053 |
by (Auto_tac); |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1054 |
by (case_tac "j" 1); |
8064 | 1055 |
by (Auto_tac); |
8009 | 1056 |
qed "zip_replicate"; |
1057 |
Addsimps [zip_replicate]; |
|
1058 |
||
8115 | 1059 |
(** list_all2 **) |
1060 |
section "list_all2"; |
|
1061 |
||
1062 |
Goalw [list_all2_def] "list_all2 P xs ys ==> length xs = length ys"; |
|
8254 | 1063 |
by (Asm_simp_tac 1); |
8115 | 1064 |
qed "list_all2_lengthD"; |
1065 |
||
1066 |
Goalw [list_all2_def] "list_all2 P [] ys = (ys=[])"; |
|
1067 |
by (Simp_tac 1); |
|
1068 |
qed "list_all2_Nil"; |
|
1069 |
AddIffs [list_all2_Nil]; |
|
1070 |
||
1071 |
Goalw [list_all2_def] "list_all2 P xs [] = (xs=[])"; |
|
1072 |
by (Simp_tac 1); |
|
1073 |
qed "list_all2_Nil2"; |
|
1074 |
AddIffs [list_all2_Nil2]; |
|
1075 |
||
1076 |
Goalw [list_all2_def] |
|
1077 |
"list_all2 P (x#xs) (y#ys) = (P x y & list_all2 P xs ys)"; |
|
1078 |
by (Auto_tac); |
|
1079 |
qed "list_all2_Cons"; |
|
1080 |
AddIffs[list_all2_Cons]; |
|
1081 |
||
1082 |
Goalw [list_all2_def] |
|
8118 | 1083 |
"list_all2 P (x#xs) ys = (? z zs. ys = z#zs & P x z & list_all2 P xs zs)"; |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1084 |
by (case_tac "ys" 1); |
8254 | 1085 |
by (Auto_tac); |
8118 | 1086 |
qed "list_all2_Cons1"; |
1087 |
||
1088 |
Goalw [list_all2_def] |
|
1089 |
"list_all2 P xs (y#ys) = (? z zs. xs = z#zs & P z y & list_all2 P zs ys)"; |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1090 |
by (case_tac "xs" 1); |
8254 | 1091 |
by (Auto_tac); |
8118 | 1092 |
qed "list_all2_Cons2"; |
1093 |
||
1094 |
Goalw [list_all2_def] |
|
1095 |
"list_all2 P (xs@ys) zs = \ |
|
1096 |
\ (EX us vs. zs = us@vs & length us = length xs & length vs = length ys & \ |
|
1097 |
\ list_all2 P xs us & list_all2 P ys vs)"; |
|
8254 | 1098 |
by (simp_tac (simpset() addsimps [zip_append1]) 1); |
1099 |
by (rtac iffI 1); |
|
1100 |
by (res_inst_tac [("x","take (length xs) zs")] exI 1); |
|
1101 |
by (res_inst_tac [("x","drop (length xs) zs")] exI 1); |
|
1102 |
by (asm_full_simp_tac (simpset() addsimps [min_def,eq_sym_conv]) 1); |
|
8118 | 1103 |
by (Clarify_tac 1); |
8254 | 1104 |
by (asm_full_simp_tac (simpset() addsimps [ball_Un]) 1); |
8118 | 1105 |
qed "list_all2_append1"; |
1106 |
||
1107 |
Goalw [list_all2_def] |
|
1108 |
"list_all2 P xs (ys@zs) = \ |
|
1109 |
\ (EX us vs. xs = us@vs & length us = length ys & length vs = length zs & \ |
|
1110 |
\ list_all2 P us ys & list_all2 P vs zs)"; |
|
8254 | 1111 |
by (simp_tac (simpset() addsimps [zip_append2]) 1); |
1112 |
by (rtac iffI 1); |
|
1113 |
by (res_inst_tac [("x","take (length ys) xs")] exI 1); |
|
1114 |
by (res_inst_tac [("x","drop (length ys) xs")] exI 1); |
|
1115 |
by (asm_full_simp_tac (simpset() addsimps [min_def,eq_sym_conv]) 1); |
|
8118 | 1116 |
by (Clarify_tac 1); |
8254 | 1117 |
by (asm_full_simp_tac (simpset() addsimps [ball_Un]) 1); |
8118 | 1118 |
qed "list_all2_append2"; |
1119 |
||
1120 |
Goalw [list_all2_def] |
|
8115 | 1121 |
"list_all2 P xs ys = \ |
1122 |
\ (length xs = length ys & (!i<length xs. P (xs!i) (ys!i)))"; |
|
8254 | 1123 |
by (force_tac (claset(), simpset() addsimps [set_zip]) 1); |
8115 | 1124 |
qed "list_all2_conv_all_nth"; |
5272 | 1125 |
|
1126 |
(** foldl **) |
|
1127 |
section "foldl"; |
|
1128 |
||
1129 |
Goal "!a. foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"; |
|
5318 | 1130 |
by (induct_tac "xs" 1); |
5316 | 1131 |
by Auto_tac; |
5272 | 1132 |
qed_spec_mp "foldl_append"; |
1133 |
Addsimps [foldl_append]; |
|
1134 |
||
1135 |
(* Note: `n <= foldl op+ n ns' looks simpler, but is more difficult to use |
|
1136 |
because it requires an additional transitivity step |
|
1137 |
*) |
|
1138 |
Goal "!n::nat. m <= n --> m <= foldl op+ n ns"; |
|
5318 | 1139 |
by (induct_tac "ns" 1); |
6058 | 1140 |
by Auto_tac; |
5272 | 1141 |
qed_spec_mp "start_le_sum"; |
1142 |
||
8935
548901d05a0e
added type constraint ::nat because 0 is now overloaded
paulson
parents:
8741
diff
changeset
|
1143 |
Goal "!!n::nat. n : set ns ==> n <= foldl op+ 0 ns"; |
5758
27a2b36efd95
corrected auto_tac (applications of unsafe wrappers)
oheimb
parents:
5644
diff
changeset
|
1144 |
by (force_tac (claset() addIs [start_le_sum], |
27a2b36efd95
corrected auto_tac (applications of unsafe wrappers)
oheimb
parents:
5644
diff
changeset
|
1145 |
simpset() addsimps [in_set_conv_decomp]) 1); |
5272 | 1146 |
qed "elem_le_sum"; |
1147 |
||
8935
548901d05a0e
added type constraint ::nat because 0 is now overloaded
paulson
parents:
8741
diff
changeset
|
1148 |
Goal "!m::nat. (foldl op+ m ns = 0) = (m=0 & (!n : set ns. n=0))"; |
5318 | 1149 |
by (induct_tac "ns" 1); |
5316 | 1150 |
by Auto_tac; |
5272 | 1151 |
qed_spec_mp "sum_eq_0_conv"; |
1152 |
AddIffs [sum_eq_0_conv]; |
|
1153 |
||
5425 | 1154 |
(** upto **) |
1155 |
||
5427 | 1156 |
(* Does not terminate! *) |
1157 |
Goal "[i..j(] = (if i<j then i#[Suc i..j(] else [])"; |
|
6162 | 1158 |
by (induct_tac "j" 1); |
5427 | 1159 |
by Auto_tac; |
1160 |
qed "upt_rec"; |
|
5425 | 1161 |
|
5427 | 1162 |
Goal "j<=i ==> [i..j(] = []"; |
6162 | 1163 |
by (stac upt_rec 1); |
1164 |
by (Asm_simp_tac 1); |
|
5427 | 1165 |
qed "upt_conv_Nil"; |
1166 |
Addsimps [upt_conv_Nil]; |
|
1167 |
||
8982
4cb682fc083d
renamed upt_Suc, since that name is needed for its primrec rule
paulson
parents:
8935
diff
changeset
|
1168 |
(*Only needed if upt_Suc is deleted from the simpset*) |
5427 | 1169 |
Goal "i<=j ==> [i..(Suc j)(] = [i..j(]@[j]"; |
1170 |
by (Asm_simp_tac 1); |
|
8982
4cb682fc083d
renamed upt_Suc, since that name is needed for its primrec rule
paulson
parents:
8935
diff
changeset
|
1171 |
qed "upt_Suc_append"; |
5427 | 1172 |
|
1173 |
Goal "i<j ==> [i..j(] = i#[Suc i..j(]"; |
|
6162 | 1174 |
by (rtac trans 1); |
1175 |
by (stac upt_rec 1); |
|
1176 |
by (rtac refl 2); |
|
5427 | 1177 |
by (Asm_simp_tac 1); |
1178 |
qed "upt_conv_Cons"; |
|
1179 |
||
9003 | 1180 |
(*LOOPS as a simprule, since j<=j*) |
1181 |
Goal "i<=j ==> [i..j+k(] = [i..j(]@[j..j+k(]"; |
|
1182 |
by (induct_tac "k" 1); |
|
1183 |
by Auto_tac; |
|
1184 |
qed "upt_add_eq_append"; |
|
1185 |
||
5427 | 1186 |
Goal "length [i..j(] = j-i"; |
6162 | 1187 |
by (induct_tac "j" 1); |
5427 | 1188 |
by (Simp_tac 1); |
6162 | 1189 |
by (asm_simp_tac (simpset() addsimps [Suc_diff_le]) 1); |
5427 | 1190 |
qed "length_upt"; |
1191 |
Addsimps [length_upt]; |
|
5425 | 1192 |
|
5427 | 1193 |
Goal "i+k < j --> [i..j(] ! k = i+k"; |
6162 | 1194 |
by (induct_tac "j" 1); |
9014 | 1195 |
by (asm_simp_tac (simpset() addsimps [less_Suc_eq, nth_append] |
1196 |
addsplits [nat_diff_split]) 2); |
|
1197 |
by (Simp_tac 1); |
|
5427 | 1198 |
qed_spec_mp "nth_upt"; |
1199 |
Addsimps [nth_upt]; |
|
5425 | 1200 |
|
6433 | 1201 |
Goal "!i. i+m <= n --> take m [i..n(] = [i..i+m(]"; |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1202 |
by (induct_tac "m" 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1203 |
by (Simp_tac 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1204 |
by (Clarify_tac 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1205 |
by (stac upt_rec 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1206 |
by (rtac sym 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1207 |
by (stac upt_rec 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1208 |
by (asm_simp_tac (simpset() delsimps (thms"upt.simps")) 1); |
6433 | 1209 |
qed_spec_mp "take_upt"; |
1210 |
Addsimps [take_upt]; |
|
1211 |
||
9003 | 1212 |
Goal "map Suc [m..n(] = [Suc m..n]"; |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1213 |
by (induct_tac "n" 1); |
9003 | 1214 |
by Auto_tac; |
1215 |
qed "map_Suc_upt"; |
|
1216 |
||
1217 |
Goal "ALL i. i < n-m --> (map f [m..n(]) ! i = f(m+i)"; |
|
9747 | 1218 |
by (induct_thm_tac diff_induct "n m" 1); |
9003 | 1219 |
by (stac (map_Suc_upt RS sym) 3); |
1220 |
by (auto_tac (claset(), simpset() addsimps [less_diff_conv, nth_upt])); |
|
6433 | 1221 |
qed_spec_mp "nth_map_upt"; |
1222 |
||
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1223 |
Goal "ALL xs ys. k <= length xs --> k <= length ys --> \ |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1224 |
\ (ALL i. i < k --> xs!i = ys!i) \ |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1225 |
\ --> take k xs = take k ys"; |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1226 |
by (induct_tac "k" 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1227 |
by (ALLGOALS (asm_simp_tac (simpset() addsimps [less_Suc_eq_0_disj, |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1228 |
all_conj_distrib]))); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1229 |
by (Clarify_tac 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1230 |
(*Both lists must be non-empty*) |
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1231 |
by (case_tac "xs" 1); |
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1232 |
by (case_tac "ys" 2); |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1233 |
by (ALLGOALS Clarify_tac); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1234 |
(*prenexing's needed, not miniscoping*) |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1235 |
by (ALLGOALS (full_simp_tac (simpset() addsimps (all_simps RL [sym]) |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1236 |
delsimps (all_simps)))); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1237 |
by (Blast_tac 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1238 |
qed_spec_mp "nth_take_lemma"; |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1239 |
|
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1240 |
Goal "[| length xs = length ys; \ |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1241 |
\ ALL i. i < length xs --> xs!i = ys!i |] \ |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1242 |
\ ==> xs = ys"; |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1243 |
by (forward_tac [[le_refl, eq_imp_le] MRS nth_take_lemma] 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1244 |
by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [take_all]))); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1245 |
qed_spec_mp "nth_equalityI"; |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1246 |
|
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1247 |
(*The famous take-lemma*) |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1248 |
Goal "(ALL i. take i xs = take i ys) ==> xs = ys"; |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1249 |
by (dres_inst_tac [("x", "max (length xs) (length ys)")] spec 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1250 |
by (full_simp_tac (simpset() addsimps [le_max_iff_disj, take_all]) 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1251 |
qed_spec_mp "take_equalityI"; |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1252 |
|
5272 | 1253 |
|
4605 | 1254 |
(** nodups & remdups **) |
1255 |
section "nodups & remdups"; |
|
1256 |
||
4935 | 1257 |
Goal "set(remdups xs) = set xs"; |
4605 | 1258 |
by (induct_tac "xs" 1); |
1259 |
by (Simp_tac 1); |
|
4686 | 1260 |
by (asm_full_simp_tac (simpset() addsimps [insert_absorb]) 1); |
4605 | 1261 |
qed "set_remdups"; |
1262 |
Addsimps [set_remdups]; |
|
1263 |
||
4935 | 1264 |
Goal "nodups(remdups xs)"; |
4605 | 1265 |
by (induct_tac "xs" 1); |
5316 | 1266 |
by Auto_tac; |
4605 | 1267 |
qed "nodups_remdups"; |
1268 |
||
4935 | 1269 |
Goal "nodups xs --> nodups (filter P xs)"; |
4605 | 1270 |
by (induct_tac "xs" 1); |
5316 | 1271 |
by Auto_tac; |
4605 | 1272 |
qed_spec_mp "nodups_filter"; |
1273 |
||
3589
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
1274 |
(** replicate **) |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
1275 |
section "replicate"; |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
1276 |
|
6794 | 1277 |
Goal "length(replicate n x) = n"; |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1278 |
by (induct_tac "n" 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1279 |
by Auto_tac; |
6794 | 1280 |
qed "length_replicate"; |
1281 |
Addsimps [length_replicate]; |
|
1282 |
||
1283 |
Goal "map f (replicate n x) = replicate n (f x)"; |
|
1284 |
by (induct_tac "n" 1); |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1285 |
by Auto_tac; |
6794 | 1286 |
qed "map_replicate"; |
1287 |
Addsimps [map_replicate]; |
|
1288 |
||
1289 |
Goal "(replicate n x) @ (x#xs) = x # replicate n x @ xs"; |
|
1290 |
by (induct_tac "n" 1); |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1291 |
by Auto_tac; |
6794 | 1292 |
qed "replicate_app_Cons_same"; |
1293 |
||
1294 |
Goal "rev(replicate n x) = replicate n x"; |
|
1295 |
by (induct_tac "n" 1); |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1296 |
by (Simp_tac 1); |
6794 | 1297 |
by (asm_simp_tac (simpset() addsimps [replicate_app_Cons_same]) 1); |
1298 |
qed "rev_replicate"; |
|
1299 |
Addsimps [rev_replicate]; |
|
1300 |
||
8009 | 1301 |
Goal "replicate (n+m) x = replicate n x @ replicate m x"; |
1302 |
by (induct_tac "n" 1); |
|
1303 |
by Auto_tac; |
|
1304 |
qed "replicate_add"; |
|
1305 |
||
6794 | 1306 |
Goal"n ~= 0 --> hd(replicate n x) = x"; |
1307 |
by (induct_tac "n" 1); |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1308 |
by Auto_tac; |
6794 | 1309 |
qed_spec_mp "hd_replicate"; |
1310 |
Addsimps [hd_replicate]; |
|
1311 |
||
1312 |
Goal "n ~= 0 --> tl(replicate n x) = replicate (n-1) x"; |
|
1313 |
by (induct_tac "n" 1); |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1314 |
by Auto_tac; |
6794 | 1315 |
qed_spec_mp "tl_replicate"; |
1316 |
Addsimps [tl_replicate]; |
|
1317 |
||
1318 |
Goal "n ~= 0 --> last(replicate n x) = x"; |
|
1319 |
by (induct_tac "n" 1); |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1320 |
by Auto_tac; |
6794 | 1321 |
qed_spec_mp "last_replicate"; |
1322 |
Addsimps [last_replicate]; |
|
1323 |
||
1324 |
Goal "!i. i<n --> (replicate n x)!i = x"; |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1325 |
by (induct_tac "n" 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1326 |
by (Simp_tac 1); |
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1327 |
by (asm_simp_tac (simpset() addsimps [nth_Cons] addsplits [nat.split]) 1); |
6794 | 1328 |
qed_spec_mp "nth_replicate"; |
1329 |
Addsimps [nth_replicate]; |
|
1330 |
||
4935 | 1331 |
Goal "set(replicate (Suc n) x) = {x}"; |
4423 | 1332 |
by (induct_tac "n" 1); |
5316 | 1333 |
by Auto_tac; |
3589
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
1334 |
val lemma = result(); |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
1335 |
|
5043 | 1336 |
Goal "n ~= 0 ==> set(replicate n x) = {x}"; |
4423 | 1337 |
by (fast_tac (claset() addSDs [not0_implies_Suc] addSIs [lemma]) 1); |
3589
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
1338 |
qed "set_replicate"; |
244daa75f890
Added function `replicate' and lemmas map_cong and set_replicate.
nipkow
parents:
3586
diff
changeset
|
1339 |
Addsimps [set_replicate]; |
5162 | 1340 |
|
8009 | 1341 |
Goal "set(replicate n x) = (if n=0 then {} else {x})"; |
8064 | 1342 |
by (Auto_tac); |
8009 | 1343 |
qed "set_replicate_conv_if"; |
1344 |
||
1345 |
Goal "x : set(replicate n y) --> x=y"; |
|
8064 | 1346 |
by (asm_simp_tac (simpset() addsimps [set_replicate_conv_if]) 1); |
8009 | 1347 |
qed_spec_mp "in_set_replicateD"; |
1348 |
||
5162 | 1349 |
|
5281 | 1350 |
(*** Lexcicographic orderings on lists ***) |
1351 |
section"Lexcicographic orderings on lists"; |
|
1352 |
||
1353 |
Goal "wf r ==> wf(lexn r n)"; |
|
5318 | 1354 |
by (induct_tac "n" 1); |
1355 |
by (Simp_tac 1); |
|
1356 |
by (Simp_tac 1); |
|
1357 |
by (rtac wf_subset 1); |
|
1358 |
by (rtac Int_lower1 2); |
|
1359 |
by (rtac wf_prod_fun_image 1); |
|
1360 |
by (rtac injI 2); |
|
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1361 |
by Auto_tac; |
5281 | 1362 |
qed "wf_lexn"; |
1363 |
||
1364 |
Goal "!xs ys. (xs,ys) : lexn r n --> length xs = n & length ys = n"; |
|
5318 | 1365 |
by (induct_tac "n" 1); |
6813
bf90f86502b2
many new lemmas about take & drop, incl the famous take-lemma
paulson
parents:
6794
diff
changeset
|
1366 |
by Auto_tac; |
5281 | 1367 |
qed_spec_mp "lexn_length"; |
1368 |
||
1369 |
Goalw [lex_def] "wf r ==> wf(lex r)"; |
|
5318 | 1370 |
by (rtac wf_UN 1); |
1371 |
by (blast_tac (claset() addIs [wf_lexn]) 1); |
|
1372 |
by (Clarify_tac 1); |
|
1373 |
by (rename_tac "m n" 1); |
|
1374 |
by (subgoal_tac "m ~= n" 1); |
|
1375 |
by (Blast_tac 2); |
|
1376 |
by (blast_tac (claset() addDs [lexn_length,not_sym]) 1); |
|
5281 | 1377 |
qed "wf_lex"; |
1378 |
AddSIs [wf_lex]; |
|
1379 |
||
1380 |
Goal |
|
1381 |
"lexn r n = \ |
|
1382 |
\ {(xs,ys). length xs = n & length ys = n & \ |
|
1383 |
\ (? xys x y xs' ys'. xs= xys @ x#xs' & ys= xys @ y#ys' & (x,y):r)}"; |
|
5318 | 1384 |
by (induct_tac "n" 1); |
1385 |
by (Simp_tac 1); |
|
1386 |
by (Blast_tac 1); |
|
5641 | 1387 |
by (asm_full_simp_tac (simpset() |
5296 | 1388 |
addsimps [lex_prod_def]) 1); |
5641 | 1389 |
by (auto_tac (claset(), simpset())); |
5318 | 1390 |
by (Blast_tac 1); |
1391 |
by (rename_tac "a xys x xs' y ys'" 1); |
|
1392 |
by (res_inst_tac [("x","a#xys")] exI 1); |
|
1393 |
by (Simp_tac 1); |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1394 |
by (case_tac "xys" 1); |
5641 | 1395 |
by (ALLGOALS (asm_full_simp_tac (simpset()))); |
5318 | 1396 |
by (Blast_tac 1); |
5281 | 1397 |
qed "lexn_conv"; |
1398 |
||
1399 |
Goalw [lex_def] |
|
1400 |
"lex r = \ |
|
1401 |
\ {(xs,ys). length xs = length ys & \ |
|
1402 |
\ (? xys x y xs' ys'. xs= xys @ x#xs' & ys= xys @ y#ys' & (x,y):r)}"; |
|
5641 | 1403 |
by (force_tac (claset(), simpset() addsimps [lexn_conv]) 1); |
5281 | 1404 |
qed "lex_conv"; |
1405 |
||
1406 |
Goalw [lexico_def] "wf r ==> wf(lexico r)"; |
|
5318 | 1407 |
by (Blast_tac 1); |
5281 | 1408 |
qed "wf_lexico"; |
1409 |
AddSIs [wf_lexico]; |
|
1410 |
||
1411 |
Goalw |
|
1412 |
[lexico_def,diag_def,lex_prod_def,measure_def,inv_image_def] |
|
1413 |
"lexico r = {(xs,ys). length xs < length ys | \ |
|
1414 |
\ length xs = length ys & (xs,ys) : lex r}"; |
|
5318 | 1415 |
by (Simp_tac 1); |
5281 | 1416 |
qed "lexico_conv"; |
1417 |
||
5283 | 1418 |
Goal "([],ys) ~: lex r"; |
5318 | 1419 |
by (simp_tac (simpset() addsimps [lex_conv]) 1); |
5283 | 1420 |
qed "Nil_notin_lex"; |
1421 |
||
1422 |
Goal "(xs,[]) ~: lex r"; |
|
5318 | 1423 |
by (simp_tac (simpset() addsimps [lex_conv]) 1); |
5283 | 1424 |
qed "Nil2_notin_lex"; |
1425 |
||
1426 |
AddIffs [Nil_notin_lex,Nil2_notin_lex]; |
|
1427 |
||
1428 |
Goal "((x#xs,y#ys) : lex r) = \ |
|
1429 |
\ ((x,y) : r & length xs = length ys | x=y & (xs,ys) : lex r)"; |
|
5318 | 1430 |
by (simp_tac (simpset() addsimps [lex_conv]) 1); |
1431 |
by (rtac iffI 1); |
|
1432 |
by (blast_tac (claset() addIs [Cons_eq_appendI]) 2); |
|
1433 |
by (REPEAT(eresolve_tac [conjE, exE] 1)); |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1434 |
by (case_tac "xys" 1); |
5318 | 1435 |
by (Asm_full_simp_tac 1); |
1436 |
by (Asm_full_simp_tac 1); |
|
1437 |
by (Blast_tac 1); |
|
5283 | 1438 |
qed "Cons_in_lex"; |
1439 |
AddIffs [Cons_in_lex]; |
|
7032 | 1440 |
|
1441 |
||
9336 | 1442 |
(*** sublist (a generalization of nth to sets) ***) |
1443 |
||
1444 |
Goalw [sublist_def] "sublist l {} = []"; |
|
1445 |
by Auto_tac; |
|
1446 |
qed "sublist_empty"; |
|
1447 |
||
1448 |
Goalw [sublist_def] "sublist [] A = []"; |
|
1449 |
by Auto_tac; |
|
1450 |
qed "sublist_nil"; |
|
1451 |
||
1452 |
Goal "map fst [p:zip xs [i..i + length xs(] . snd p : A] = \ |
|
1453 |
\ map fst [p:zip xs [0..length xs(] . snd p + i : A]"; |
|
9747 | 1454 |
by (rev_induct_tac "xs" 1); |
9336 | 1455 |
by (asm_simp_tac (simpset() addsimps [add_commute]) 2); |
1456 |
by (Simp_tac 1); |
|
1457 |
qed "sublist_shift_lemma"; |
|
1458 |
||
1459 |
Goalw [sublist_def] |
|
1460 |
"sublist (l@l') A = sublist l A @ sublist l' {j. j + length l : A}"; |
|
9747 | 1461 |
by (rev_induct_tac "l'" 1); |
9336 | 1462 |
by (Simp_tac 1); |
1463 |
by (asm_simp_tac (simpset() addsimps [inst "i" "0" upt_add_eq_append, |
|
1464 |
zip_append, sublist_shift_lemma]) 1); |
|
1465 |
by (asm_simp_tac (simpset() addsimps [add_commute]) 1); |
|
1466 |
qed "sublist_append"; |
|
1467 |
||
1468 |
Addsimps [sublist_empty, sublist_nil]; |
|
1469 |
||
1470 |
Goal "sublist (x#l) A = (if 0:A then [x] else []) @ sublist l {j. Suc j : A}"; |
|
9747 | 1471 |
by (rev_induct_tac "l" 1); |
9336 | 1472 |
by (asm_simp_tac (simpset() delsimps [append_Cons] |
1473 |
addsimps [append_Cons RS sym, sublist_append]) 2); |
|
1474 |
by (simp_tac (simpset() addsimps [sublist_def]) 1); |
|
1475 |
qed "sublist_Cons"; |
|
1476 |
||
1477 |
Goal "sublist [x] A = (if 0 : A then [x] else [])"; |
|
1478 |
by (simp_tac (simpset() addsimps [sublist_Cons]) 1); |
|
1479 |
qed "sublist_singleton"; |
|
1480 |
Addsimps [sublist_singleton]; |
|
1481 |
||
1482 |
Goal "sublist l {..n(} = take n l"; |
|
9747 | 1483 |
by (rev_induct_tac "l" 1); |
9336 | 1484 |
by (asm_simp_tac (simpset() addsplits [nat_diff_split] |
1485 |
addsimps [sublist_append]) 2); |
|
1486 |
by (Simp_tac 1); |
|
1487 |
qed "sublist_upt_eq_take"; |
|
1488 |
Addsimps [sublist_upt_eq_take]; |
|
1489 |
||
1490 |
||
7032 | 1491 |
(*** Versions of some theorems above using binary numerals ***) |
1492 |
||
9423 | 1493 |
AddIffs (map rename_numerals |
7032 | 1494 |
[length_0_conv, zero_length_conv, length_greater_0_conv, |
1495 |
sum_eq_0_conv]); |
|
1496 |
||
1497 |
Goal "take n (x#xs) = (if n = #0 then [] else x # take (n-#1) xs)"; |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1498 |
by (case_tac "n" 1); |
7032 | 1499 |
by (ALLGOALS |
1500 |
(asm_simp_tac (simpset() addsimps [numeral_0_eq_0, numeral_1_eq_1]))); |
|
1501 |
qed "take_Cons'"; |
|
1502 |
||
1503 |
Goal "drop n (x#xs) = (if n = #0 then x#xs else drop (n-#1) xs)"; |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1504 |
by (case_tac "n" 1); |
7032 | 1505 |
by (ALLGOALS |
1506 |
(asm_simp_tac (simpset() addsimps [numeral_0_eq_0, numeral_1_eq_1]))); |
|
1507 |
qed "drop_Cons'"; |
|
1508 |
||
1509 |
Goal "(x#xs)!n = (if n = #0 then x else xs!(n-#1))"; |
|
8442
96023903c2df
case_tac now subsumes both boolean and datatype cases;
wenzelm
parents:
8423
diff
changeset
|
1510 |
by (case_tac "n" 1); |
7032 | 1511 |
by (ALLGOALS |
1512 |
(asm_simp_tac (simpset() addsimps [numeral_0_eq_0, numeral_1_eq_1]))); |
|
1513 |
qed "nth_Cons'"; |
|
1514 |
||
1515 |
Addsimps (map (inst "n" "number_of ?v") [take_Cons', drop_Cons', nth_Cons']); |
|
1516 |