doc-src/TutorialI/CTL/PDL.thy
author nipkow
Wed, 11 Oct 2000 09:09:06 +0200
changeset 10186 499637e8f2c6
parent 10178 aecb5bf6f76f
child 10210 e8aa81362f41
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10122
194c7349b6c0 *** empty log message ***
nipkow
parents: 9958
diff changeset
     1
(*<*)theory PDL = Base:(*>*)
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     2
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
     3
subsection{*Propositional dynamic logic---PDL*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
     4
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
     5
text{*\index{PDL|(}
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
     6
The formulae of PDL are built up from atomic propositions via the customary
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
     7
propositional connectives of negation and conjunction and the two temporal
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
     8
connectives @{text AX} and @{text EF}. Since formulae are essentially
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
     9
(syntax) trees, they are naturally modelled as a datatype:
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    10
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    11
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    12
datatype formula = Atom atom
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    13
                  | Neg formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    14
                  | And formula formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    15
                  | AX formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    16
                  | EF formula
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    17
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    18
text{*\noindent
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    19
This is almost the same as in the boolean expression case study in
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    20
\S\ref{sec:boolex}, except that what used to be called @{text Var} is now
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    21
called @{term Atom}.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    22
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    23
The meaning of these formulae is given by saying which formula is true in
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    24
which state:
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    25
*}
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    26
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    27
consts valid :: "state \<Rightarrow> formula \<Rightarrow> bool"   ("(_ \<Turnstile> _)" [80,80] 80)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    28
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    29
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    30
The concrete syntax annotation allows us to write @{term"s \<Turnstile> f"} instead of
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    31
@{text"valid s f"}.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    32
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    33
The definition of @{text"\<Turnstile>"} is by recursion over the syntax:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    34
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    35
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    36
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    37
"s \<Turnstile> Atom a  = (a \<in> L s)"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    38
"s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    39
"s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    40
"s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    41
"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M^* \<and> t \<Turnstile> f)";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    42
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    43
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    44
The first three equations should be self-explanatory. The temporal formula
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    45
@{term"AX f"} means that @{term f} is true in all next states whereas
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    46
@{term"EF f"} means that there exists some future state in which @{term f} is
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    47
true. The future is expressed via @{text"^*"}, the transitive reflexive
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    48
closure. Because of reflexivity, the future includes the present.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    49
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    50
Now we come to the model checker itself. It maps a formula into the set of
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    51
states where the formula is true and is defined by recursion over the syntax,
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    52
too:
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    53
*}
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    54
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    55
consts mc :: "formula \<Rightarrow> state set";
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    56
primrec
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    57
"mc(Atom a)  = {s. a \<in> L s}"
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    58
"mc(Neg f)   = -mc f"
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    59
"mc(And f g) = mc f \<inter> mc g"
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    60
"mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    61
"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M^-1 ^^ T)"
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    62
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    63
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    64
Only the equation for @{term EF} deserves some comments. Remember that the
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    65
postfix @{text"^-1"} and the infix @{text"^^"} are predefined and denote the
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    66
converse of a relation and the application of a relation to a set. Thus
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    67
@{term "M^-1 ^^ T"} is the set of all predecessors of @{term T} and the least
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    68
fixpoint (@{term lfp}) of @{term"\<lambda>T. mc f \<union> M^-1 ^^ T"} is the least set
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    69
@{term T} containing @{term"mc f"} and all predecessors of @{term T}. If you
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    70
find it hard to see that @{term"mc(EF f)"} contains exactly those states from
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    71
which there is a path to a state where @{term f} is true, do not worry---that
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    72
will be proved in a moment.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    73
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    74
First we prove monotonicity of the function inside @{term lfp}
10133
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    75
*}
e187dacd248f *** empty log message ***
nipkow
parents: 10122
diff changeset
    76
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    77
lemma mono_ef: "mono(\<lambda>T. A \<union> M^-1 ^^ T)"
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    78
apply(rule monoI)
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    79
apply blast
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
    80
done
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    81
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    82
text{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    83
in order to make sure it really has a least fixpoint.
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    84
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    85
Now we can relate model checking and semantics. For the @{text EF} case we need
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    86
a separate lemma:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    87
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    88
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    89
lemma EF_lemma:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    90
  "lfp(\<lambda>T. A \<union> M^-1 ^^ T) = {s. \<exists>t. (s,t) \<in> M^* \<and> t \<in> A}"
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    91
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    92
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    93
The equality is proved in the canonical fashion by proving that each set
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    94
contains the other; the containment is shown pointwise:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    95
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    96
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    97
apply(rule equalityI);
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
    98
 apply(rule subsetI);
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
    99
 apply(simp)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   100
(*pr(latex xsymbols symbols);*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   101
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   102
Simplification leaves us with the following first subgoal
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   103
\begin{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   104
\ \isadigit{1}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ T{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   105
\end{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   106
which is proved by @{term lfp}-induction:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   107
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   108
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   109
 apply(erule Lfp.induct)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   110
  apply(rule mono_ef)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   111
 apply(simp)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   112
(*pr(latex xsymbols symbols);*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   113
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   114
Having disposed of the monotonicity subgoal,
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   115
simplification leaves us with the following main goal
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   116
\begin{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   117
\ \isadigit{1}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ A\ {\isasymor}\isanewline
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   118
\ \ \ \ \ \ \ \ \ s\ {\isasymin}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ {\isacharparenleft}lfp\ {\isacharparenleft}{\dots}{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   119
\ \ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   120
\end{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   121
which is proved by @{text blast} with the help of a few lemmas about
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   122
@{text"^*"}:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   123
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   124
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   125
 apply(blast intro: r_into_rtrancl rtrancl_trans);
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   126
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   127
txt{*
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   128
We now return to the second set containment subgoal, which is again proved
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   129
pointwise:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   130
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   131
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   132
apply(rule subsetI)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   133
apply(simp, clarify)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   134
(*pr(latex xsymbols symbols);*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   135
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   136
After simplification and clarification we are left with
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   137
\begin{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   138
\ \isadigit{1}{\isachardot}\ {\isasymAnd}s\ t{\isachardot}\ {\isasymlbrakk}{\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}{\isacharsemicolon}\ t\ {\isasymin}\ A{\isasymrbrakk}\ {\isasymLongrightarrow}\ s\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ T{\isacharparenright}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   139
\end{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   140
This goal is proved by induction on @{term"(s,t)\<in>M^*"}. But since the model
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   141
checker works backwards (from @{term t} to @{term s}), we cannot use the
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   142
induction theorem @{thm[source]rtrancl_induct} because it works in the
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   143
forward direction. Fortunately the converse induction theorem
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   144
@{thm[source]converse_rtrancl_induct} already exists:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   145
@{thm[display,margin=60]converse_rtrancl_induct[no_vars]}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   146
It says that if @{prop"(a,b):r^*"} and we know @{prop"P b"} then we can infer
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   147
@{prop"P a"} provided each step backwards from a predecessor @{term z} of
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   148
@{term b} preserves @{term P}.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   149
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   150
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   151
apply(erule converse_rtrancl_induct)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   152
(*pr(latex xsymbols symbols);*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   153
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   154
The base case
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   155
\begin{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   156
\ \isadigit{1}{\isachardot}\ {\isasymAnd}t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ T{\isacharparenright}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   157
\end{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   158
is solved by unrolling @{term lfp} once
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   159
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   160
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   161
 apply(rule ssubst[OF lfp_unfold[OF mono_ef]])
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   162
(*pr(latex xsymbols symbols);*)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   163
txt{*
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   164
\begin{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   165
\ \isadigit{1}{\isachardot}\ {\isasymAnd}t{\isachardot}\ t\ {\isasymin}\ A\ {\isasymLongrightarrow}\ t\ {\isasymin}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ lfp\ {\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ T{\isacharparenright}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   166
\end{isabelle}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   167
and disposing of the resulting trivial subgoal automatically:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   168
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   169
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   170
 apply(blast)
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   171
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   172
txt{*\noindent
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   173
The proof of the induction step is identical to the one for the base case:
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   174
*}
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   175
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   176
apply(rule ssubst[OF lfp_unfold[OF mono_ef]])
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   177
apply(blast)
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   178
done
10149
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   179
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   180
text{*
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   181
The main theorem is proved in the familiar manner: induction followed by
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   182
@{text auto} augmented with the lemma as a simplification rule.
7cfdf6a330a0 *** empty log message ***
nipkow
parents: 10133
diff changeset
   183
*}
9958
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   184
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   185
theorem "mc f = {s. s \<Turnstile> f}";
67f2920862c7 *** empty log message ***
nipkow
parents:
diff changeset
   186
apply(induct_tac f);
10159
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   187
apply(auto simp add:EF_lemma);
a72ddfdbfca0 *** empty log message ***
nipkow
parents: 10149
diff changeset
   188
done;
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   189
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   190
text{*
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   191
\begin{exercise}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   192
@{term AX} has a dual operator @{term EN}\footnote{We cannot use the customary @{text EX}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   193
as that is the ASCII equivalent of @{text"\<exists>"}}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   194
(``there exists a next state such that'') with the intended semantics
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   195
@{prop[display]"(s \<Turnstile> EN f) = (EX t. (s,t) : M & t \<Turnstile> f)"}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   196
Fortunately, @{term"EN f"} can already be expressed as a PDL formula. How?
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   197
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   198
Show that the semantics for @{term EF} satisfies the following recursion equation:
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   199
@{prop[display]"(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> EN(EF f))"}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   200
\end{exercise}
10178
aecb5bf6f76f *** empty log message ***
nipkow
parents: 10171
diff changeset
   201
\index{PDL|)}
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   202
*}
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   203
(*<*)
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   204
theorem main: "mc f = {s. s \<Turnstile> f}";
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   205
apply(induct_tac f);
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   206
apply(auto simp add:EF_lemma);
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   207
done;
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   208
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   209
lemma aux: "s \<Turnstile> f = (s : mc f)";
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   210
apply(simp add:main);
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   211
done;
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   212
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   213
lemma "(s \<Turnstile> EF f) = (s \<Turnstile> f | s \<Turnstile> Neg(AX(Neg(EF f))))";
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   214
apply(simp only:aux);
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   215
apply(simp);
10186
499637e8f2c6 *** empty log message ***
nipkow
parents: 10178
diff changeset
   216
apply(rule ssubst[OF lfp_unfold[OF mono_ef]], fast);
10171
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   217
done
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   218
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   219
end
59d6633835fa *** empty log message ***
nipkow
parents: 10159
diff changeset
   220
(*>*)