author | huffman |
Sun, 17 Sep 2006 16:42:38 +0200 | |
changeset 20560 | 49996715bc6e |
parent 20557 | 81dd3679f92c |
child 20725 | 72e20198f834 |
permissions | -rw-r--r-- |
13957 | 1 |
(* Title: Complex.thy |
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
2 |
ID: $Id$ |
13957 | 3 |
Author: Jacques D. Fleuriot |
4 |
Copyright: 2001 University of Edinburgh |
|
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
5 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2003/4 |
13957 | 6 |
*) |
7 |
||
14377 | 8 |
header {* Complex Numbers: Rectangular and Polar Representations *} |
14373 | 9 |
|
15131 | 10 |
theory Complex |
15140 | 11 |
imports "../Hyperreal/HLog" |
15131 | 12 |
begin |
13957 | 13 |
|
14373 | 14 |
datatype complex = Complex real real |
13957 | 15 |
|
14691 | 16 |
instance complex :: "{zero, one, plus, times, minus, inverse, power}" .. |
13957 | 17 |
|
18 |
consts |
|
14373 | 19 |
"ii" :: complex ("\<i>") |
20 |
||
21 |
consts Re :: "complex => real" |
|
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
22 |
primrec Re: "Re (Complex x y) = x" |
14373 | 23 |
|
24 |
consts Im :: "complex => real" |
|
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
25 |
primrec Im: "Im (Complex x y) = y" |
14373 | 26 |
|
27 |
lemma complex_surj [simp]: "Complex (Re z) (Im z) = z" |
|
28 |
by (induct z) simp |
|
13957 | 29 |
|
14323 | 30 |
defs (overloaded) |
31 |
||
32 |
complex_zero_def: |
|
14373 | 33 |
"0 == Complex 0 0" |
13957 | 34 |
|
14323 | 35 |
complex_one_def: |
14373 | 36 |
"1 == Complex 1 0" |
14323 | 37 |
|
14373 | 38 |
i_def: "ii == Complex 0 1" |
14323 | 39 |
|
14373 | 40 |
complex_minus_def: "- z == Complex (- Re z) (- Im z)" |
14323 | 41 |
|
42 |
complex_inverse_def: |
|
14373 | 43 |
"inverse z == |
44 |
Complex (Re z / ((Re z)\<twosuperior> + (Im z)\<twosuperior>)) (- Im z / ((Re z)\<twosuperior> + (Im z)\<twosuperior>))" |
|
13957 | 45 |
|
14323 | 46 |
complex_add_def: |
14373 | 47 |
"z + w == Complex (Re z + Re w) (Im z + Im w)" |
13957 | 48 |
|
14323 | 49 |
complex_diff_def: |
14373 | 50 |
"z - w == z + - (w::complex)" |
13957 | 51 |
|
14374 | 52 |
complex_mult_def: |
14373 | 53 |
"z * w == Complex (Re z * Re w - Im z * Im w) (Re z * Im w + Im z * Re w)" |
13957 | 54 |
|
14373 | 55 |
complex_divide_def: "w / (z::complex) == w * inverse z" |
14323 | 56 |
|
13957 | 57 |
|
14373 | 58 |
lemma complex_equality [intro?]: "Re z = Re w ==> Im z = Im w ==> z = w" |
59 |
by (induct z, induct w) simp |
|
14323 | 60 |
|
61 |
lemma complex_Re_Im_cancel_iff: "(w=z) = (Re(w) = Re(z) & Im(w) = Im(z))" |
|
14373 | 62 |
by (induct w, induct z, simp) |
14323 | 63 |
|
14374 | 64 |
lemma complex_Re_zero [simp]: "Re 0 = 0" |
65 |
by (simp add: complex_zero_def) |
|
66 |
||
67 |
lemma complex_Im_zero [simp]: "Im 0 = 0" |
|
14373 | 68 |
by (simp add: complex_zero_def) |
14323 | 69 |
|
14374 | 70 |
lemma complex_Re_one [simp]: "Re 1 = 1" |
71 |
by (simp add: complex_one_def) |
|
14323 | 72 |
|
14374 | 73 |
lemma complex_Im_one [simp]: "Im 1 = 0" |
14373 | 74 |
by (simp add: complex_one_def) |
14323 | 75 |
|
14374 | 76 |
lemma complex_Re_i [simp]: "Re(ii) = 0" |
14373 | 77 |
by (simp add: i_def) |
14323 | 78 |
|
14374 | 79 |
lemma complex_Im_i [simp]: "Im(ii) = 1" |
14373 | 80 |
by (simp add: i_def) |
14323 | 81 |
|
82 |
||
14374 | 83 |
subsection{*Unary Minus*} |
14323 | 84 |
|
14377 | 85 |
lemma complex_minus [simp]: "- (Complex x y) = Complex (-x) (-y)" |
14373 | 86 |
by (simp add: complex_minus_def) |
14323 | 87 |
|
14374 | 88 |
lemma complex_Re_minus [simp]: "Re (-z) = - Re z" |
14373 | 89 |
by (simp add: complex_minus_def) |
14323 | 90 |
|
14374 | 91 |
lemma complex_Im_minus [simp]: "Im (-z) = - Im z" |
92 |
by (simp add: complex_minus_def) |
|
14323 | 93 |
|
94 |
||
95 |
subsection{*Addition*} |
|
96 |
||
14377 | 97 |
lemma complex_add [simp]: |
98 |
"Complex x1 y1 + Complex x2 y2 = Complex (x1+x2) (y1+y2)" |
|
14373 | 99 |
by (simp add: complex_add_def) |
14323 | 100 |
|
14374 | 101 |
lemma complex_Re_add [simp]: "Re(x + y) = Re(x) + Re(y)" |
14373 | 102 |
by (simp add: complex_add_def) |
14323 | 103 |
|
14374 | 104 |
lemma complex_Im_add [simp]: "Im(x + y) = Im(x) + Im(y)" |
14373 | 105 |
by (simp add: complex_add_def) |
14323 | 106 |
|
107 |
lemma complex_add_commute: "(u::complex) + v = v + u" |
|
14373 | 108 |
by (simp add: complex_add_def add_commute) |
14323 | 109 |
|
110 |
lemma complex_add_assoc: "((u::complex) + v) + w = u + (v + w)" |
|
14373 | 111 |
by (simp add: complex_add_def add_assoc) |
14323 | 112 |
|
113 |
lemma complex_add_zero_left: "(0::complex) + z = z" |
|
14373 | 114 |
by (simp add: complex_add_def complex_zero_def) |
14323 | 115 |
|
116 |
lemma complex_add_zero_right: "z + (0::complex) = z" |
|
14373 | 117 |
by (simp add: complex_add_def complex_zero_def) |
14323 | 118 |
|
14373 | 119 |
lemma complex_add_minus_left: "-z + z = (0::complex)" |
120 |
by (simp add: complex_add_def complex_minus_def complex_zero_def) |
|
14323 | 121 |
|
122 |
lemma complex_diff: |
|
14373 | 123 |
"Complex x1 y1 - Complex x2 y2 = Complex (x1-x2) (y1-y2)" |
124 |
by (simp add: complex_add_def complex_minus_def complex_diff_def) |
|
14323 | 125 |
|
14374 | 126 |
lemma complex_Re_diff [simp]: "Re(x - y) = Re(x) - Re(y)" |
127 |
by (simp add: complex_diff_def) |
|
128 |
||
129 |
lemma complex_Im_diff [simp]: "Im(x - y) = Im(x) - Im(y)" |
|
130 |
by (simp add: complex_diff_def) |
|
131 |
||
132 |
||
14323 | 133 |
subsection{*Multiplication*} |
134 |
||
14377 | 135 |
lemma complex_mult [simp]: |
14373 | 136 |
"Complex x1 y1 * Complex x2 y2 = Complex (x1*x2 - y1*y2) (x1*y2 + y1*x2)" |
137 |
by (simp add: complex_mult_def) |
|
14323 | 138 |
|
139 |
lemma complex_mult_commute: "(w::complex) * z = z * w" |
|
14373 | 140 |
by (simp add: complex_mult_def mult_commute add_commute) |
14323 | 141 |
|
142 |
lemma complex_mult_assoc: "((u::complex) * v) * w = u * (v * w)" |
|
14374 | 143 |
by (simp add: complex_mult_def mult_ac add_ac |
14373 | 144 |
right_diff_distrib right_distrib left_diff_distrib left_distrib) |
14323 | 145 |
|
146 |
lemma complex_mult_one_left: "(1::complex) * z = z" |
|
14373 | 147 |
by (simp add: complex_mult_def complex_one_def) |
14323 | 148 |
|
149 |
lemma complex_mult_one_right: "z * (1::complex) = z" |
|
14373 | 150 |
by (simp add: complex_mult_def complex_one_def) |
14323 | 151 |
|
152 |
||
153 |
subsection{*Inverse*} |
|
154 |
||
14377 | 155 |
lemma complex_inverse [simp]: |
14373 | 156 |
"inverse (Complex x y) = Complex (x/(x ^ 2 + y ^ 2)) (-y/(x ^ 2 + y ^ 2))" |
157 |
by (simp add: complex_inverse_def) |
|
14335 | 158 |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
159 |
lemma complex_mult_inv_left: "z \<noteq> (0::complex) ==> inverse(z) * z = 1" |
14374 | 160 |
apply (induct z) |
161 |
apply (rename_tac x y) |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15140
diff
changeset
|
162 |
apply (auto simp add: times_divide_eq complex_mult complex_inverse |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15140
diff
changeset
|
163 |
complex_one_def complex_zero_def add_divide_distrib [symmetric] |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15140
diff
changeset
|
164 |
power2_eq_square mult_ac) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15140
diff
changeset
|
165 |
apply (simp_all add: real_sum_squares_not_zero real_sum_squares_not_zero2) |
14323 | 166 |
done |
167 |
||
14335 | 168 |
|
169 |
subsection {* The field of complex numbers *} |
|
170 |
||
171 |
instance complex :: field |
|
172 |
proof |
|
173 |
fix z u v w :: complex |
|
174 |
show "(u + v) + w = u + (v + w)" |
|
14374 | 175 |
by (rule complex_add_assoc) |
14335 | 176 |
show "z + w = w + z" |
14374 | 177 |
by (rule complex_add_commute) |
14335 | 178 |
show "0 + z = z" |
14374 | 179 |
by (rule complex_add_zero_left) |
14335 | 180 |
show "-z + z = 0" |
14374 | 181 |
by (rule complex_add_minus_left) |
14335 | 182 |
show "z - w = z + -w" |
183 |
by (simp add: complex_diff_def) |
|
184 |
show "(u * v) * w = u * (v * w)" |
|
14374 | 185 |
by (rule complex_mult_assoc) |
14335 | 186 |
show "z * w = w * z" |
14374 | 187 |
by (rule complex_mult_commute) |
14335 | 188 |
show "1 * z = z" |
14374 | 189 |
by (rule complex_mult_one_left) |
14341
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
paulson
parents:
14335
diff
changeset
|
190 |
show "0 \<noteq> (1::complex)" |
14373 | 191 |
by (simp add: complex_zero_def complex_one_def) |
14335 | 192 |
show "(u + v) * w = u * w + v * w" |
14421
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents:
14387
diff
changeset
|
193 |
by (simp add: complex_mult_def complex_add_def left_distrib |
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
paulson
parents:
14387
diff
changeset
|
194 |
diff_minus add_ac) |
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
195 |
show "z / w = z * inverse w" |
14335 | 196 |
by (simp add: complex_divide_def) |
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
197 |
assume "w \<noteq> 0" |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
198 |
thus "inverse w * w = 1" |
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
199 |
by (simp add: complex_mult_inv_left) |
14335 | 200 |
qed |
201 |
||
14373 | 202 |
instance complex :: division_by_zero |
203 |
proof |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
204 |
show "inverse 0 = (0::complex)" |
14373 | 205 |
by (simp add: complex_inverse_def complex_zero_def) |
206 |
qed |
|
14335 | 207 |
|
14323 | 208 |
|
20556
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
209 |
subsection{*The real algebra of complex numbers*} |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
210 |
|
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
211 |
instance complex :: scaleR .. |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
212 |
|
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
213 |
defs (overloaded) |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
214 |
complex_scaleR_def: "r *# x == Complex r 0 * x" |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
215 |
|
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
216 |
instance complex :: real_algebra_1 |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
217 |
proof |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
218 |
fix a b :: real |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
219 |
fix x y :: complex |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
220 |
show "a *# (x + y) = a *# x + a *# y" |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
221 |
by (simp add: complex_scaleR_def right_distrib) |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
222 |
show "(a + b) *# x = a *# x + b *# x" |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
223 |
by (simp add: complex_scaleR_def left_distrib [symmetric]) |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
224 |
show "(a * b) *# x = a *# b *# x" |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
225 |
by (simp add: complex_scaleR_def mult_assoc [symmetric]) |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
226 |
show "1 *# x = x" |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
227 |
by (simp add: complex_scaleR_def complex_one_def [symmetric]) |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
228 |
show "a *# x * y = a *# (x * y)" |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
229 |
by (simp add: complex_scaleR_def mult_assoc) |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
230 |
show "x * a *# y = a *# (x * y)" |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
231 |
by (simp add: complex_scaleR_def mult_left_commute) |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
232 |
qed |
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
233 |
|
2e8227b81bf1
add instance for real_algebra_1 and real_normed_div_algebra
huffman
parents:
20485
diff
changeset
|
234 |
|
14323 | 235 |
subsection{*Embedding Properties for @{term complex_of_real} Map*} |
236 |
||
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
237 |
abbreviation |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
238 |
complex_of_real :: "real => complex" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
239 |
"complex_of_real == of_real" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
240 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
241 |
lemma complex_of_real_def: "complex_of_real r = Complex r 0" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
242 |
by (simp add: of_real_def complex_scaleR_def) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
243 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
244 |
lemma Re_complex_of_real [simp]: "Re (complex_of_real z) = z" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
245 |
by (simp add: complex_of_real_def) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
246 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
247 |
lemma Im_complex_of_real [simp]: "Im (complex_of_real z) = 0" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
248 |
by (simp add: complex_of_real_def) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
249 |
|
14377 | 250 |
lemma Complex_add_complex_of_real [simp]: |
251 |
"Complex x y + complex_of_real r = Complex (x+r) y" |
|
252 |
by (simp add: complex_of_real_def) |
|
253 |
||
254 |
lemma complex_of_real_add_Complex [simp]: |
|
255 |
"complex_of_real r + Complex x y = Complex (r+x) y" |
|
256 |
by (simp add: i_def complex_of_real_def) |
|
257 |
||
258 |
lemma Complex_mult_complex_of_real: |
|
259 |
"Complex x y * complex_of_real r = Complex (x*r) (y*r)" |
|
260 |
by (simp add: complex_of_real_def) |
|
261 |
||
262 |
lemma complex_of_real_mult_Complex: |
|
263 |
"complex_of_real r * Complex x y = Complex (r*x) (r*y)" |
|
264 |
by (simp add: i_def complex_of_real_def) |
|
265 |
||
266 |
lemma i_complex_of_real [simp]: "ii * complex_of_real r = Complex 0 r" |
|
267 |
by (simp add: i_def complex_of_real_def) |
|
268 |
||
269 |
lemma complex_of_real_i [simp]: "complex_of_real r * ii = Complex 0 r" |
|
270 |
by (simp add: i_def complex_of_real_def) |
|
271 |
||
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
272 |
(* TODO: generalize and move to Real/RealVector.thy *) |
15013 | 273 |
lemma complex_of_real_inverse [simp]: |
14374 | 274 |
"complex_of_real(inverse x) = inverse(complex_of_real x)" |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
275 |
apply (case_tac "x=0", simp) |
15013 | 276 |
apply (simp add: complex_of_real_def divide_inverse power2_eq_square) |
14323 | 277 |
done |
278 |
||
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
279 |
(* TODO: generalize and move to Real/RealVector.thy *) |
15013 | 280 |
lemma complex_of_real_divide [simp]: |
281 |
"complex_of_real(x/y) = complex_of_real x / complex_of_real y" |
|
14373 | 282 |
apply (simp add: complex_divide_def) |
283 |
apply (case_tac "y=0", simp) |
|
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
284 |
apply (simp add: divide_inverse) |
14323 | 285 |
done |
286 |
||
287 |
||
14377 | 288 |
subsection{*The Functions @{term Re} and @{term Im}*} |
289 |
||
290 |
lemma complex_Re_mult_eq: "Re (w * z) = Re w * Re z - Im w * Im z" |
|
291 |
by (induct z, induct w, simp add: complex_mult) |
|
292 |
||
293 |
lemma complex_Im_mult_eq: "Im (w * z) = Re w * Im z + Im w * Re z" |
|
294 |
by (induct z, induct w, simp add: complex_mult) |
|
295 |
||
296 |
lemma Re_i_times [simp]: "Re(ii * z) = - Im z" |
|
297 |
by (simp add: complex_Re_mult_eq) |
|
298 |
||
299 |
lemma Re_times_i [simp]: "Re(z * ii) = - Im z" |
|
300 |
by (simp add: complex_Re_mult_eq) |
|
301 |
||
302 |
lemma Im_i_times [simp]: "Im(ii * z) = Re z" |
|
303 |
by (simp add: complex_Im_mult_eq) |
|
304 |
||
305 |
lemma Im_times_i [simp]: "Im(z * ii) = Re z" |
|
306 |
by (simp add: complex_Im_mult_eq) |
|
307 |
||
308 |
lemma complex_Re_mult: "[| Im w = 0; Im z = 0 |] ==> Re(w * z) = Re(w) * Re(z)" |
|
309 |
by (simp add: complex_Re_mult_eq) |
|
310 |
||
311 |
lemma complex_Re_mult_complex_of_real [simp]: |
|
312 |
"Re (z * complex_of_real c) = Re(z) * c" |
|
313 |
by (simp add: complex_Re_mult_eq) |
|
314 |
||
315 |
lemma complex_Im_mult_complex_of_real [simp]: |
|
316 |
"Im (z * complex_of_real c) = Im(z) * c" |
|
317 |
by (simp add: complex_Im_mult_eq) |
|
318 |
||
319 |
lemma complex_Re_mult_complex_of_real2 [simp]: |
|
320 |
"Re (complex_of_real c * z) = c * Re(z)" |
|
321 |
by (simp add: complex_Re_mult_eq) |
|
322 |
||
323 |
lemma complex_Im_mult_complex_of_real2 [simp]: |
|
324 |
"Im (complex_of_real c * z) = c * Im(z)" |
|
325 |
by (simp add: complex_Im_mult_eq) |
|
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
326 |
|
14377 | 327 |
|
14323 | 328 |
subsection{*Conjugation is an Automorphism*} |
329 |
||
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
330 |
definition |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
331 |
cnj :: "complex => complex" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
332 |
"cnj z = Complex (Re z) (-Im z)" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
333 |
|
14373 | 334 |
lemma complex_cnj: "cnj (Complex x y) = Complex x (-y)" |
335 |
by (simp add: cnj_def) |
|
14323 | 336 |
|
14374 | 337 |
lemma complex_cnj_cancel_iff [simp]: "(cnj x = cnj y) = (x = y)" |
14373 | 338 |
by (simp add: cnj_def complex_Re_Im_cancel_iff) |
14323 | 339 |
|
14374 | 340 |
lemma complex_cnj_cnj [simp]: "cnj (cnj z) = z" |
14373 | 341 |
by (simp add: cnj_def) |
14323 | 342 |
|
14374 | 343 |
lemma complex_cnj_complex_of_real [simp]: |
14373 | 344 |
"cnj (complex_of_real x) = complex_of_real x" |
345 |
by (simp add: complex_of_real_def complex_cnj) |
|
14323 | 346 |
|
347 |
lemma complex_cnj_minus: "cnj (-z) = - cnj z" |
|
14373 | 348 |
by (simp add: cnj_def complex_minus complex_Re_minus complex_Im_minus) |
14323 | 349 |
|
350 |
lemma complex_cnj_inverse: "cnj(inverse z) = inverse(cnj z)" |
|
14373 | 351 |
by (induct z, simp add: complex_cnj complex_inverse power2_eq_square) |
14323 | 352 |
|
353 |
lemma complex_cnj_add: "cnj(w + z) = cnj(w) + cnj(z)" |
|
14373 | 354 |
by (induct w, induct z, simp add: complex_cnj complex_add) |
14323 | 355 |
|
356 |
lemma complex_cnj_diff: "cnj(w - z) = cnj(w) - cnj(z)" |
|
15013 | 357 |
by (simp add: diff_minus complex_cnj_add complex_cnj_minus) |
14323 | 358 |
|
359 |
lemma complex_cnj_mult: "cnj(w * z) = cnj(w) * cnj(z)" |
|
14373 | 360 |
by (induct w, induct z, simp add: complex_cnj complex_mult) |
14323 | 361 |
|
362 |
lemma complex_cnj_divide: "cnj(w / z) = (cnj w)/(cnj z)" |
|
14373 | 363 |
by (simp add: complex_divide_def complex_cnj_mult complex_cnj_inverse) |
14323 | 364 |
|
14374 | 365 |
lemma complex_cnj_one [simp]: "cnj 1 = 1" |
14373 | 366 |
by (simp add: cnj_def complex_one_def) |
14323 | 367 |
|
368 |
lemma complex_add_cnj: "z + cnj z = complex_of_real (2 * Re(z))" |
|
14373 | 369 |
by (induct z, simp add: complex_add complex_cnj complex_of_real_def) |
14323 | 370 |
|
371 |
lemma complex_diff_cnj: "z - cnj z = complex_of_real (2 * Im(z)) * ii" |
|
14373 | 372 |
apply (induct z) |
15013 | 373 |
apply (simp add: complex_add complex_cnj complex_of_real_def diff_minus |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
374 |
complex_minus i_def complex_mult) |
14323 | 375 |
done |
376 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
377 |
lemma complex_cnj_zero [simp]: "cnj 0 = 0" |
14334 | 378 |
by (simp add: cnj_def complex_zero_def) |
14323 | 379 |
|
14374 | 380 |
lemma complex_cnj_zero_iff [iff]: "(cnj z = 0) = (z = 0)" |
14373 | 381 |
by (induct z, simp add: complex_zero_def complex_cnj) |
14323 | 382 |
|
383 |
lemma complex_mult_cnj: "z * cnj z = complex_of_real (Re(z) ^ 2 + Im(z) ^ 2)" |
|
14374 | 384 |
by (induct z, |
385 |
simp add: complex_cnj complex_mult complex_of_real_def power2_eq_square) |
|
14323 | 386 |
|
387 |
||
388 |
subsection{*Modulus*} |
|
389 |
||
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
390 |
instance complex :: norm .. |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
391 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
392 |
defs (overloaded) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
393 |
complex_norm_def: "norm z == sqrt(Re(z) ^ 2 + Im(z) ^ 2)" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
394 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
395 |
abbreviation |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
396 |
cmod :: "complex => real" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
397 |
"cmod == norm" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
398 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
399 |
lemmas cmod_def = complex_norm_def |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
400 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
401 |
lemma complex_mod [simp]: "cmod (Complex x y) = sqrt(x ^ 2 + y ^ 2)" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
402 |
by (simp add: cmod_def) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
403 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
404 |
lemma complex_mod_zero [simp]: "cmod(0) = 0" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
405 |
by (simp add: cmod_def) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
406 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
407 |
lemma complex_mod_one [simp]: "cmod(1) = 1" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
408 |
by (simp add: cmod_def power2_eq_square) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
409 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
410 |
lemma complex_mod_complex_of_real [simp]: "cmod(complex_of_real x) = abs x" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
411 |
by (simp add: complex_of_real_def power2_eq_square complex_mod) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
412 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
413 |
lemma complex_of_real_abs: |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
414 |
"complex_of_real (abs x) = complex_of_real(cmod(complex_of_real x))" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
415 |
by simp |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
416 |
|
14374 | 417 |
lemma complex_mod_eq_zero_cancel [simp]: "(cmod x = 0) = (x = 0)" |
14373 | 418 |
apply (induct x) |
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15013
diff
changeset
|
419 |
apply (auto iff: real_0_le_add_iff |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15013
diff
changeset
|
420 |
intro: real_sum_squares_cancel real_sum_squares_cancel2 |
14373 | 421 |
simp add: complex_mod complex_zero_def power2_eq_square) |
14323 | 422 |
done |
423 |
||
14374 | 424 |
lemma complex_mod_complex_of_real_of_nat [simp]: |
14373 | 425 |
"cmod (complex_of_real(real (n::nat))) = real n" |
426 |
by simp |
|
14323 | 427 |
|
14374 | 428 |
lemma complex_mod_minus [simp]: "cmod (-x) = cmod(x)" |
14373 | 429 |
by (induct x, simp add: complex_mod complex_minus power2_eq_square) |
14323 | 430 |
|
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
431 |
lemma complex_mod_cnj [simp]: "cmod (cnj z) = cmod z" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
432 |
by (induct z, simp add: complex_cnj complex_mod power2_eq_square) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
433 |
|
14323 | 434 |
lemma complex_mod_mult_cnj: "cmod(z * cnj(z)) = cmod(z) ^ 2" |
14373 | 435 |
apply (induct z, simp add: complex_mod complex_cnj complex_mult) |
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15013
diff
changeset
|
436 |
apply (simp add: power2_eq_square abs_if linorder_not_less real_0_le_add_iff) |
14323 | 437 |
done |
438 |
||
14373 | 439 |
lemma complex_mod_squared: "cmod(Complex x y) ^ 2 = x ^ 2 + y ^ 2" |
440 |
by (simp add: cmod_def) |
|
14323 | 441 |
|
14374 | 442 |
lemma complex_mod_ge_zero [simp]: "0 \<le> cmod x" |
14373 | 443 |
by (simp add: cmod_def) |
14323 | 444 |
|
14374 | 445 |
lemma abs_cmod_cancel [simp]: "abs(cmod x) = cmod x" |
446 |
by (simp add: abs_if linorder_not_less) |
|
14323 | 447 |
|
448 |
lemma complex_mod_mult: "cmod(x*y) = cmod(x) * cmod(y)" |
|
14373 | 449 |
apply (induct x, induct y) |
14377 | 450 |
apply (auto simp add: complex_mult complex_mod real_sqrt_mult_distrib2[symmetric]) |
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
451 |
apply (rule_tac n = 1 in power_inject_base) |
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14348
diff
changeset
|
452 |
apply (auto simp add: power2_eq_square [symmetric] simp del: realpow_Suc) |
14374 | 453 |
apply (auto simp add: real_diff_def power2_eq_square right_distrib left_distrib |
454 |
add_ac mult_ac) |
|
14323 | 455 |
done |
456 |
||
14377 | 457 |
lemma cmod_unit_one [simp]: "cmod (Complex (cos a) (sin a)) = 1" |
458 |
by (simp add: cmod_def) |
|
459 |
||
460 |
lemma cmod_complex_polar [simp]: |
|
461 |
"cmod (complex_of_real r * Complex (cos a) (sin a)) = abs r" |
|
462 |
by (simp only: cmod_unit_one complex_mod_mult, simp) |
|
463 |
||
14374 | 464 |
lemma complex_mod_add_squared_eq: |
465 |
"cmod(x + y) ^ 2 = cmod(x) ^ 2 + cmod(y) ^ 2 + 2 * Re(x * cnj y)" |
|
14373 | 466 |
apply (induct x, induct y) |
14323 | 467 |
apply (auto simp add: complex_add complex_mod_squared complex_mult complex_cnj real_diff_def simp del: realpow_Suc) |
14353
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
paulson
parents:
14348
diff
changeset
|
468 |
apply (auto simp add: right_distrib left_distrib power2_eq_square mult_ac add_ac) |
14323 | 469 |
done |
470 |
||
14374 | 471 |
lemma complex_Re_mult_cnj_le_cmod [simp]: "Re(x * cnj y) \<le> cmod(x * cnj y)" |
14373 | 472 |
apply (induct x, induct y) |
14323 | 473 |
apply (auto simp add: complex_mod complex_mult complex_cnj real_diff_def simp del: realpow_Suc) |
474 |
done |
|
475 |
||
14374 | 476 |
lemma complex_Re_mult_cnj_le_cmod2 [simp]: "Re(x * cnj y) \<le> cmod(x * y)" |
14373 | 477 |
by (insert complex_Re_mult_cnj_le_cmod [of x y], simp add: complex_mod_mult) |
14323 | 478 |
|
14374 | 479 |
lemma real_sum_squared_expand: |
480 |
"((x::real) + y) ^ 2 = x ^ 2 + y ^ 2 + 2 * x * y" |
|
14373 | 481 |
by (simp add: left_distrib right_distrib power2_eq_square) |
14323 | 482 |
|
14374 | 483 |
lemma complex_mod_triangle_squared [simp]: |
484 |
"cmod (x + y) ^ 2 \<le> (cmod(x) + cmod(y)) ^ 2" |
|
14373 | 485 |
by (simp add: real_sum_squared_expand complex_mod_add_squared_eq real_mult_assoc complex_mod_mult [symmetric]) |
14323 | 486 |
|
14374 | 487 |
lemma complex_mod_minus_le_complex_mod [simp]: "- cmod x \<le> cmod x" |
14373 | 488 |
by (rule order_trans [OF _ complex_mod_ge_zero], simp) |
14323 | 489 |
|
14374 | 490 |
lemma complex_mod_triangle_ineq [simp]: "cmod (x + y) \<le> cmod(x) + cmod(y)" |
14334 | 491 |
apply (rule_tac n = 1 in realpow_increasing) |
14323 | 492 |
apply (auto intro: order_trans [OF _ complex_mod_ge_zero] |
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15013
diff
changeset
|
493 |
simp add: add_increasing power2_eq_square [symmetric]) |
14323 | 494 |
done |
495 |
||
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
496 |
instance complex :: real_normed_div_algebra |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
497 |
proof |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
498 |
fix r :: real |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
499 |
fix x y :: complex |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
500 |
show "0 \<le> cmod x" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
501 |
by (rule complex_mod_ge_zero) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
502 |
show "(cmod x = 0) = (x = 0)" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
503 |
by (rule complex_mod_eq_zero_cancel) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
504 |
show "cmod (x + y) \<le> cmod x + cmod y" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
505 |
by (rule complex_mod_triangle_ineq) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
506 |
show "cmod (of_real r) = abs r" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
507 |
by (rule complex_mod_complex_of_real) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
508 |
show "cmod (x * y) = cmod x * cmod y" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
509 |
by (rule complex_mod_mult) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
510 |
qed |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
511 |
|
14374 | 512 |
lemma complex_mod_triangle_ineq2 [simp]: "cmod(b + a) - cmod b \<le> cmod a" |
14373 | 513 |
by (insert complex_mod_triangle_ineq [THEN add_right_mono, of b a"-cmod b"], simp) |
14323 | 514 |
|
515 |
lemma complex_mod_diff_commute: "cmod (x - y) = cmod (y - x)" |
|
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
516 |
by (rule norm_minus_commute) |
14323 | 517 |
|
14374 | 518 |
lemma complex_mod_add_less: |
519 |
"[| cmod x < r; cmod y < s |] ==> cmod (x + y) < r + s" |
|
14334 | 520 |
by (auto intro: order_le_less_trans complex_mod_triangle_ineq) |
14323 | 521 |
|
14374 | 522 |
lemma complex_mod_mult_less: |
523 |
"[| cmod x < r; cmod y < s |] ==> cmod (x * y) < r * s" |
|
14334 | 524 |
by (auto intro: real_mult_less_mono' simp add: complex_mod_mult) |
14323 | 525 |
|
14374 | 526 |
lemma complex_mod_diff_ineq [simp]: "cmod(a) - cmod(b) \<le> cmod(a + b)" |
14323 | 527 |
apply (rule linorder_cases [of "cmod(a)" "cmod (b)"]) |
528 |
apply auto |
|
14334 | 529 |
apply (rule order_trans [of _ 0], rule order_less_imp_le) |
14374 | 530 |
apply (simp add: compare_rls, simp) |
14323 | 531 |
apply (simp add: compare_rls) |
532 |
apply (rule complex_mod_minus [THEN subst]) |
|
533 |
apply (rule order_trans) |
|
534 |
apply (rule_tac [2] complex_mod_triangle_ineq) |
|
14373 | 535 |
apply (auto simp add: add_ac) |
14323 | 536 |
done |
537 |
||
14374 | 538 |
lemma complex_Re_le_cmod [simp]: "Re z \<le> cmod z" |
14373 | 539 |
by (induct z, simp add: complex_mod del: realpow_Suc) |
14323 | 540 |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
541 |
lemma complex_mod_gt_zero: "z \<noteq> 0 ==> 0 < cmod z" |
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
542 |
by (rule zero_less_norm_iff [THEN iffD2]) |
14323 | 543 |
|
544 |
lemma complex_mod_inverse: "cmod(inverse x) = inverse(cmod x)" |
|
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
545 |
by (rule norm_inverse) |
14323 | 546 |
|
14373 | 547 |
lemma complex_mod_divide: "cmod(x/y) = cmod(x)/(cmod y)" |
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
548 |
by (simp add: divide_inverse norm_mult norm_inverse) |
14323 | 549 |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
550 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
551 |
subsection{*Exponentiation*} |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
552 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
553 |
primrec |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
554 |
complexpow_0: "z ^ 0 = 1" |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
555 |
complexpow_Suc: "z ^ (Suc n) = (z::complex) * (z ^ n)" |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
556 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
557 |
|
15003 | 558 |
instance complex :: recpower |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
559 |
proof |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
560 |
fix z :: complex |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
561 |
fix n :: nat |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
562 |
show "z^0 = 1" by simp |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
563 |
show "z^(Suc n) = z * (z^n)" by simp |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
564 |
qed |
14323 | 565 |
|
566 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
567 |
lemma complex_of_real_pow: "complex_of_real (x ^ n) = (complex_of_real x) ^ n" |
14323 | 568 |
apply (induct_tac "n") |
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
569 |
apply (auto simp add: of_real_mult [symmetric]) |
14323 | 570 |
done |
571 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
572 |
lemma complex_cnj_pow: "cnj(z ^ n) = cnj(z) ^ n" |
14323 | 573 |
apply (induct_tac "n") |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
574 |
apply (auto simp add: complex_cnj_mult) |
14323 | 575 |
done |
576 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
577 |
lemma complex_mod_complexpow: "cmod(x ^ n) = cmod(x) ^ n" |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
578 |
apply (induct_tac "n") |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
579 |
apply (auto simp add: complex_mod_mult) |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
580 |
done |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
581 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
582 |
lemma complexpow_i_squared [simp]: "ii ^ 2 = -(1::complex)" |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
583 |
by (simp add: i_def complex_mult complex_one_def complex_minus numeral_2_eq_2) |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
584 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
585 |
lemma complex_i_not_zero [simp]: "ii \<noteq> 0" |
14373 | 586 |
by (simp add: i_def complex_zero_def) |
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
587 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
588 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
589 |
subsection{*The Function @{term sgn}*} |
14323 | 590 |
|
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
591 |
definition |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
592 |
(*------------ Argand -------------*) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
593 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
594 |
sgn :: "complex => complex" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
595 |
"sgn z = z / complex_of_real(cmod z)" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
596 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
597 |
arg :: "complex => real" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
598 |
"arg z = (SOME a. Re(sgn z) = cos a & Im(sgn z) = sin a & -pi < a & a \<le> pi)" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
599 |
|
14374 | 600 |
lemma sgn_zero [simp]: "sgn 0 = 0" |
14373 | 601 |
by (simp add: sgn_def) |
14323 | 602 |
|
14374 | 603 |
lemma sgn_one [simp]: "sgn 1 = 1" |
14373 | 604 |
by (simp add: sgn_def) |
14323 | 605 |
|
606 |
lemma sgn_minus: "sgn (-z) = - sgn(z)" |
|
14373 | 607 |
by (simp add: sgn_def) |
14323 | 608 |
|
14374 | 609 |
lemma sgn_eq: "sgn z = z / complex_of_real (cmod z)" |
14377 | 610 |
by (simp add: sgn_def) |
14323 | 611 |
|
612 |
lemma i_mult_eq: "ii * ii = complex_of_real (-1)" |
|
14373 | 613 |
by (simp add: i_def complex_of_real_def complex_mult complex_add) |
14323 | 614 |
|
14374 | 615 |
lemma i_mult_eq2 [simp]: "ii * ii = -(1::complex)" |
14373 | 616 |
by (simp add: i_def complex_one_def complex_mult complex_minus) |
14323 | 617 |
|
14374 | 618 |
lemma complex_eq_cancel_iff2 [simp]: |
14377 | 619 |
"(Complex x y = complex_of_real xa) = (x = xa & y = 0)" |
620 |
by (simp add: complex_of_real_def) |
|
14323 | 621 |
|
14374 | 622 |
lemma complex_eq_cancel_iff2a [simp]: |
14377 | 623 |
"(Complex x y = complex_of_real xa) = (x = xa & y = 0)" |
624 |
by (simp add: complex_of_real_def) |
|
14323 | 625 |
|
14377 | 626 |
lemma Complex_eq_0 [simp]: "(Complex x y = 0) = (x = 0 & y = 0)" |
627 |
by (simp add: complex_zero_def) |
|
14323 | 628 |
|
14377 | 629 |
lemma Complex_eq_1 [simp]: "(Complex x y = 1) = (x = 1 & y = 0)" |
630 |
by (simp add: complex_one_def) |
|
14323 | 631 |
|
14377 | 632 |
lemma Complex_eq_i [simp]: "(Complex x y = ii) = (x = 0 & y = 1)" |
633 |
by (simp add: i_def) |
|
14323 | 634 |
|
15013 | 635 |
|
636 |
||
14374 | 637 |
lemma Re_sgn [simp]: "Re(sgn z) = Re(z)/cmod z" |
15013 | 638 |
proof (induct z) |
639 |
case (Complex x y) |
|
640 |
have "sqrt (x\<twosuperior> + y\<twosuperior>) * inverse (x\<twosuperior> + y\<twosuperior>) = inverse (sqrt (x\<twosuperior> + y\<twosuperior>))" |
|
641 |
by (simp add: divide_inverse [symmetric] sqrt_divide_self_eq) |
|
642 |
thus "Re (sgn (Complex x y)) = Re (Complex x y) /cmod (Complex x y)" |
|
643 |
by (simp add: sgn_def complex_of_real_def divide_inverse) |
|
644 |
qed |
|
645 |
||
14323 | 646 |
|
14374 | 647 |
lemma Im_sgn [simp]: "Im(sgn z) = Im(z)/cmod z" |
15013 | 648 |
proof (induct z) |
649 |
case (Complex x y) |
|
650 |
have "sqrt (x\<twosuperior> + y\<twosuperior>) * inverse (x\<twosuperior> + y\<twosuperior>) = inverse (sqrt (x\<twosuperior> + y\<twosuperior>))" |
|
651 |
by (simp add: divide_inverse [symmetric] sqrt_divide_self_eq) |
|
652 |
thus "Im (sgn (Complex x y)) = Im (Complex x y) /cmod (Complex x y)" |
|
653 |
by (simp add: sgn_def complex_of_real_def divide_inverse) |
|
654 |
qed |
|
14323 | 655 |
|
656 |
lemma complex_inverse_complex_split: |
|
657 |
"inverse(complex_of_real x + ii * complex_of_real y) = |
|
658 |
complex_of_real(x/(x ^ 2 + y ^ 2)) - |
|
659 |
ii * complex_of_real(y/(x ^ 2 + y ^ 2))" |
|
14374 | 660 |
by (simp add: complex_of_real_def i_def complex_mult complex_add |
15013 | 661 |
diff_minus complex_minus complex_inverse divide_inverse) |
14323 | 662 |
|
663 |
(*----------------------------------------------------------------------------*) |
|
664 |
(* Many of the theorems below need to be moved elsewhere e.g. Transc. Also *) |
|
665 |
(* many of the theorems are not used - so should they be kept? *) |
|
666 |
(*----------------------------------------------------------------------------*) |
|
667 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
668 |
lemma complex_of_real_zero_iff [simp]: "(complex_of_real y = 0) = (y = 0)" |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
669 |
by (auto simp add: complex_zero_def complex_of_real_def) |
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
670 |
|
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
671 |
lemma cos_arg_i_mult_zero_pos: |
14377 | 672 |
"0 < y ==> cos (arg(Complex 0 y)) = 0" |
14373 | 673 |
apply (simp add: arg_def abs_if) |
14334 | 674 |
apply (rule_tac a = "pi/2" in someI2, auto) |
675 |
apply (rule order_less_trans [of _ 0], auto) |
|
14323 | 676 |
done |
677 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
678 |
lemma cos_arg_i_mult_zero_neg: |
14377 | 679 |
"y < 0 ==> cos (arg(Complex 0 y)) = 0" |
14373 | 680 |
apply (simp add: arg_def abs_if) |
14334 | 681 |
apply (rule_tac a = "- pi/2" in someI2, auto) |
682 |
apply (rule order_trans [of _ 0], auto) |
|
14323 | 683 |
done |
684 |
||
14374 | 685 |
lemma cos_arg_i_mult_zero [simp]: |
14377 | 686 |
"y \<noteq> 0 ==> cos (arg(Complex 0 y)) = 0" |
687 |
by (auto simp add: linorder_neq_iff cos_arg_i_mult_zero_pos cos_arg_i_mult_zero_neg) |
|
14323 | 688 |
|
689 |
||
690 |
subsection{*Finally! Polar Form for Complex Numbers*} |
|
691 |
||
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
692 |
definition |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
693 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
694 |
(* abbreviation for (cos a + i sin a) *) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
695 |
cis :: "real => complex" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
696 |
"cis a = Complex (cos a) (sin a)" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
697 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
698 |
(* abbreviation for r*(cos a + i sin a) *) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
699 |
rcis :: "[real, real] => complex" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
700 |
"rcis r a = complex_of_real r * cis a" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
701 |
|
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
702 |
(* e ^ (x + iy) *) |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
703 |
expi :: "complex => complex" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
704 |
"expi z = complex_of_real(exp (Re z)) * cis (Im z)" |
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
705 |
|
14374 | 706 |
lemma complex_split_polar: |
14377 | 707 |
"\<exists>r a. z = complex_of_real r * (Complex (cos a) (sin a))" |
708 |
apply (induct z) |
|
709 |
apply (auto simp add: polar_Ex complex_of_real_mult_Complex) |
|
14323 | 710 |
done |
711 |
||
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
712 |
lemma rcis_Ex: "\<exists>r a. z = rcis r a" |
14377 | 713 |
apply (induct z) |
714 |
apply (simp add: rcis_def cis_def polar_Ex complex_of_real_mult_Complex) |
|
14323 | 715 |
done |
716 |
||
14374 | 717 |
lemma Re_rcis [simp]: "Re(rcis r a) = r * cos a" |
14373 | 718 |
by (simp add: rcis_def cis_def) |
14323 | 719 |
|
14348
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
paulson
parents:
14341
diff
changeset
|
720 |
lemma Im_rcis [simp]: "Im(rcis r a) = r * sin a" |
14373 | 721 |
by (simp add: rcis_def cis_def) |
14323 | 722 |
|
14377 | 723 |
lemma sin_cos_squared_add2_mult: "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior>" |
724 |
proof - |
|
725 |
have "(r * cos a)\<twosuperior> + (r * sin a)\<twosuperior> = r\<twosuperior> * ((cos a)\<twosuperior> + (sin a)\<twosuperior>)" |
|
726 |
by (simp only: power_mult_distrib right_distrib) |
|
727 |
thus ?thesis by simp |
|
728 |
qed |
|
14323 | 729 |
|
14374 | 730 |
lemma complex_mod_rcis [simp]: "cmod(rcis r a) = abs r" |
14377 | 731 |
by (simp add: rcis_def cis_def sin_cos_squared_add2_mult) |
14323 | 732 |
|
733 |
lemma complex_mod_sqrt_Re_mult_cnj: "cmod z = sqrt (Re (z * cnj z))" |
|
14373 | 734 |
apply (simp add: cmod_def) |
14323 | 735 |
apply (rule real_sqrt_eq_iff [THEN iffD2]) |
736 |
apply (auto simp add: complex_mult_cnj) |
|
737 |
done |
|
738 |
||
14374 | 739 |
lemma complex_Re_cnj [simp]: "Re(cnj z) = Re z" |
14373 | 740 |
by (induct z, simp add: complex_cnj) |
14323 | 741 |
|
14374 | 742 |
lemma complex_Im_cnj [simp]: "Im(cnj z) = - Im z" |
743 |
by (induct z, simp add: complex_cnj) |
|
744 |
||
745 |
lemma complex_In_mult_cnj_zero [simp]: "Im (z * cnj z) = 0" |
|
14373 | 746 |
by (induct z, simp add: complex_cnj complex_mult) |
14323 | 747 |
|
748 |
||
749 |
(*---------------------------------------------------------------------------*) |
|
750 |
(* (r1 * cis a) * (r2 * cis b) = r1 * r2 * cis (a + b) *) |
|
751 |
(*---------------------------------------------------------------------------*) |
|
752 |
||
753 |
lemma cis_rcis_eq: "cis a = rcis 1 a" |
|
14373 | 754 |
by (simp add: rcis_def) |
14323 | 755 |
|
14374 | 756 |
lemma rcis_mult: "rcis r1 a * rcis r2 b = rcis (r1*r2) (a + b)" |
15013 | 757 |
by (simp add: rcis_def cis_def cos_add sin_add right_distrib right_diff_distrib |
758 |
complex_of_real_def) |
|
14323 | 759 |
|
760 |
lemma cis_mult: "cis a * cis b = cis (a + b)" |
|
14373 | 761 |
by (simp add: cis_rcis_eq rcis_mult) |
14323 | 762 |
|
14374 | 763 |
lemma cis_zero [simp]: "cis 0 = 1" |
14377 | 764 |
by (simp add: cis_def complex_one_def) |
14323 | 765 |
|
14374 | 766 |
lemma rcis_zero_mod [simp]: "rcis 0 a = 0" |
14373 | 767 |
by (simp add: rcis_def) |
14323 | 768 |
|
14374 | 769 |
lemma rcis_zero_arg [simp]: "rcis r 0 = complex_of_real r" |
14373 | 770 |
by (simp add: rcis_def) |
14323 | 771 |
|
772 |
lemma complex_of_real_minus_one: |
|
773 |
"complex_of_real (-(1::real)) = -(1::complex)" |
|
14377 | 774 |
by (simp add: complex_of_real_def complex_one_def complex_minus) |
14323 | 775 |
|
14374 | 776 |
lemma complex_i_mult_minus [simp]: "ii * (ii * x) = - x" |
14373 | 777 |
by (simp add: complex_mult_assoc [symmetric]) |
14323 | 778 |
|
779 |
||
780 |
lemma cis_real_of_nat_Suc_mult: |
|
781 |
"cis (real (Suc n) * a) = cis a * cis (real n * a)" |
|
14377 | 782 |
by (simp add: cis_def real_of_nat_Suc left_distrib cos_add sin_add right_distrib) |
14323 | 783 |
|
784 |
lemma DeMoivre: "(cis a) ^ n = cis (real n * a)" |
|
785 |
apply (induct_tac "n") |
|
786 |
apply (auto simp add: cis_real_of_nat_Suc_mult) |
|
787 |
done |
|
788 |
||
14374 | 789 |
lemma DeMoivre2: "(rcis r a) ^ n = rcis (r ^ n) (real n * a)" |
790 |
by (simp add: rcis_def power_mult_distrib DeMoivre complex_of_real_pow) |
|
14323 | 791 |
|
14374 | 792 |
lemma cis_inverse [simp]: "inverse(cis a) = cis (-a)" |
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
793 |
by (simp add: cis_def complex_inverse_complex_split of_real_minus |
15013 | 794 |
diff_minus) |
14323 | 795 |
|
796 |
lemma rcis_inverse: "inverse(rcis r a) = rcis (1/r) (-a)" |
|
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14421
diff
changeset
|
797 |
by (simp add: divide_inverse rcis_def complex_of_real_inverse) |
14323 | 798 |
|
799 |
lemma cis_divide: "cis a / cis b = cis (a - b)" |
|
14373 | 800 |
by (simp add: complex_divide_def cis_mult real_diff_def) |
14323 | 801 |
|
14354
988aa4648597
types complex and hcomplex are now instances of class ringpower:
paulson
parents:
14353
diff
changeset
|
802 |
lemma rcis_divide: "rcis r1 a / rcis r2 b = rcis (r1/r2) (a - b)" |
14373 | 803 |
apply (simp add: complex_divide_def) |
804 |
apply (case_tac "r2=0", simp) |
|
805 |
apply (simp add: rcis_inverse rcis_mult real_diff_def) |
|
14323 | 806 |
done |
807 |
||
14374 | 808 |
lemma Re_cis [simp]: "Re(cis a) = cos a" |
14373 | 809 |
by (simp add: cis_def) |
14323 | 810 |
|
14374 | 811 |
lemma Im_cis [simp]: "Im(cis a) = sin a" |
14373 | 812 |
by (simp add: cis_def) |
14323 | 813 |
|
814 |
lemma cos_n_Re_cis_pow_n: "cos (real n * a) = Re(cis a ^ n)" |
|
14334 | 815 |
by (auto simp add: DeMoivre) |
14323 | 816 |
|
817 |
lemma sin_n_Im_cis_pow_n: "sin (real n * a) = Im(cis a ^ n)" |
|
14334 | 818 |
by (auto simp add: DeMoivre) |
14323 | 819 |
|
820 |
lemma expi_add: "expi(a + b) = expi(a) * expi(b)" |
|
14374 | 821 |
by (simp add: expi_def complex_Re_add exp_add complex_Im_add |
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
822 |
cis_mult [symmetric] of_real_mult mult_ac) |
14323 | 823 |
|
14374 | 824 |
lemma expi_zero [simp]: "expi (0::complex) = 1" |
14373 | 825 |
by (simp add: expi_def) |
14323 | 826 |
|
14374 | 827 |
lemma complex_expi_Ex: "\<exists>a r. z = complex_of_real r * expi a" |
14373 | 828 |
apply (insert rcis_Ex [of z]) |
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
829 |
apply (auto simp add: expi_def rcis_def complex_mult_assoc [symmetric] of_real_mult) |
14334 | 830 |
apply (rule_tac x = "ii * complex_of_real a" in exI, auto) |
14323 | 831 |
done |
832 |
||
833 |
||
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
834 |
subsection{*Numerals and Arithmetic*} |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
835 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
836 |
instance complex :: number .. |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
837 |
|
15013 | 838 |
defs (overloaded) |
20485 | 839 |
complex_number_of_def: "(number_of w :: complex) == of_int w" |
15013 | 840 |
--{*the type constraint is essential!*} |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
841 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
842 |
instance complex :: number_ring |
15013 | 843 |
by (intro_classes, simp add: complex_number_of_def) |
844 |
||
845 |
||
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
846 |
text{*Collapse applications of @{term complex_of_real} to @{term number_of}*} |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
847 |
lemma complex_number_of [simp]: "complex_of_real (number_of w) = number_of w" |
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
848 |
by (rule of_real_number_of_eq) |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
849 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
850 |
text{*This theorem is necessary because theorems such as |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
851 |
@{text iszero_number_of_0} only hold for ordered rings. They cannot |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
852 |
be generalized to fields in general because they fail for finite fields. |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
853 |
They work for type complex because the reals can be embedded in them.*} |
20557
81dd3679f92c
complex_of_real abbreviates of_real::real=>complex;
huffman
parents:
20556
diff
changeset
|
854 |
(* TODO: generalize and move to Real/RealVector.thy *) |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
855 |
lemma iszero_complex_number_of [simp]: |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
856 |
"iszero (number_of w :: complex) = iszero (number_of w :: real)" |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
857 |
by (simp only: complex_of_real_zero_iff complex_number_of [symmetric] |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
858 |
iszero_def) |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
859 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
860 |
lemma complex_number_of_cnj [simp]: "cnj(number_of v :: complex) = number_of v" |
15481 | 861 |
by (simp only: complex_number_of [symmetric] complex_cnj_complex_of_real) |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
862 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
863 |
lemma complex_number_of_cmod: |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
864 |
"cmod(number_of v :: complex) = abs (number_of v :: real)" |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
865 |
by (simp only: complex_number_of [symmetric] complex_mod_complex_of_real) |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
866 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
867 |
lemma complex_number_of_Re [simp]: "Re(number_of v :: complex) = number_of v" |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
868 |
by (simp only: complex_number_of [symmetric] Re_complex_of_real) |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
869 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
870 |
lemma complex_number_of_Im [simp]: "Im(number_of v :: complex) = 0" |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
871 |
by (simp only: complex_number_of [symmetric] Im_complex_of_real) |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
872 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
873 |
lemma expi_two_pi_i [simp]: "expi((2::complex) * complex_of_real pi * ii) = 1" |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
874 |
by (simp add: expi_def complex_Re_mult_eq complex_Im_mult_eq cis_def) |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
875 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
876 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
877 |
(*examples: |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
878 |
print_depth 22 |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
879 |
set timing; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
880 |
set trace_simp; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
881 |
fun test s = (Goal s, by (Simp_tac 1)); |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
882 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
883 |
test "23 * ii + 45 * ii= (x::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
884 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
885 |
test "5 * ii + 12 - 45 * ii= (x::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
886 |
test "5 * ii + 40 - 12 * ii + 9 = (x::complex) + 89 * ii"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
887 |
test "5 * ii + 40 - 12 * ii + 9 - 78 = (x::complex) + 89 * ii"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
888 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
889 |
test "l + 10 * ii + 90 + 3*l + 9 + 45 * ii= (x::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
890 |
test "87 + 10 * ii + 90 + 3*7 + 9 + 45 * ii= (x::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
891 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
892 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
893 |
fun test s = (Goal s; by (Asm_simp_tac 1)); |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
894 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
895 |
test "x*k = k*(y::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
896 |
test "k = k*(y::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
897 |
test "a*(b*c) = (b::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
898 |
test "a*(b*c) = d*(b::complex)*(x*a)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
899 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
900 |
|
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
901 |
test "(x*k) / (k*(y::complex)) = (uu::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
902 |
test "(k) / (k*(y::complex)) = (uu::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
903 |
test "(a*(b*c)) / ((b::complex)) = (uu::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
904 |
test "(a*(b*c)) / (d*(b::complex)*(x*a)) = (uu::complex)"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
905 |
|
15003 | 906 |
FIXME: what do we do about this? |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
907 |
test "a*(b*c)/(y*z) = d*(b::complex)*(x*a)/z"; |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
908 |
*) |
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14377
diff
changeset
|
909 |
|
13957 | 910 |
end |
911 |
||
912 |