author | wenzelm |
Mon, 09 Dec 2013 12:22:23 +0100 | |
changeset 54703 | 499f92dc6e45 |
parent 54489 | 03ff4d1e6784 |
child 58645 | 94bef115c08f |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: HOL/Parity.thy |
2 |
Author: Jeremy Avigad |
|
3 |
Author: Jacques D. Fleuriot |
|
21256 | 4 |
*) |
5 |
||
6 |
header {* Even and Odd for int and nat *} |
|
7 |
||
8 |
theory Parity |
|
30738 | 9 |
imports Main |
21256 | 10 |
begin |
11 |
||
54228 | 12 |
class even_odd = semiring_div_parity |
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
13 |
begin |
21256 | 14 |
|
54228 | 15 |
definition even :: "'a \<Rightarrow> bool" |
16 |
where |
|
17 |
even_def [presburger]: "even a \<longleftrightarrow> a mod 2 = 0" |
|
18 |
||
19 |
lemma even_iff_2_dvd [algebra]: |
|
20 |
"even a \<longleftrightarrow> 2 dvd a" |
|
21 |
by (simp add: even_def dvd_eq_mod_eq_0) |
|
22 |
||
23 |
lemma even_zero [simp]: |
|
24 |
"even 0" |
|
25 |
by (simp add: even_def) |
|
26 |
||
27 |
lemma even_times_anything: |
|
28 |
"even a \<Longrightarrow> even (a * b)" |
|
29 |
by (simp add: even_iff_2_dvd) |
|
30 |
||
31 |
lemma anything_times_even: |
|
32 |
"even a \<Longrightarrow> even (b * a)" |
|
33 |
by (simp add: even_iff_2_dvd) |
|
34 |
||
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
35 |
abbreviation odd :: "'a \<Rightarrow> bool" |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
36 |
where |
54228 | 37 |
"odd a \<equiv> \<not> even a" |
38 |
||
39 |
lemma odd_times_odd: |
|
40 |
"odd a \<Longrightarrow> odd b \<Longrightarrow> odd (a * b)" |
|
41 |
by (auto simp add: even_def mod_mult_left_eq) |
|
42 |
||
43 |
lemma even_product [simp, presburger]: |
|
44 |
"even (a * b) \<longleftrightarrow> even a \<or> even b" |
|
45 |
apply (auto simp add: even_times_anything anything_times_even) |
|
46 |
apply (rule ccontr) |
|
47 |
apply (auto simp add: odd_times_odd) |
|
48 |
done |
|
22390 | 49 |
|
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
50 |
end |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
51 |
|
54228 | 52 |
instance nat and int :: even_odd .. |
22390 | 53 |
|
54228 | 54 |
lemma even_nat_def [presburger]: |
55 |
"even x \<longleftrightarrow> even (int x)" |
|
56 |
by (auto simp add: even_def int_eq_iff int_mult nat_mult_distrib) |
|
57 |
||
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
58 |
lemma transfer_int_nat_relations: |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
59 |
"even (int x) \<longleftrightarrow> even x" |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
60 |
by (simp add: even_nat_def) |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
61 |
|
35644 | 62 |
declare transfer_morphism_int_nat[transfer add return: |
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
63 |
transfer_int_nat_relations |
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
64 |
] |
21256 | 65 |
|
54228 | 66 |
lemma odd_one_int [simp]: |
67 |
"odd (1::int)" |
|
68 |
by presburger |
|
31148 | 69 |
|
54228 | 70 |
lemma odd_1_nat [simp]: |
71 |
"odd (1::nat)" |
|
72 |
by presburger |
|
31148 | 73 |
|
47224 | 74 |
lemma even_numeral_int [simp]: "even (numeral (Num.Bit0 k) :: int)" |
75 |
unfolding even_def by simp |
|
76 |
||
77 |
lemma odd_numeral_int [simp]: "odd (numeral (Num.Bit1 k) :: int)" |
|
78 |
unfolding even_def by simp |
|
79 |
||
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45607
diff
changeset
|
80 |
(* TODO: proper simp rules for Num.Bit0, Num.Bit1 *) |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54228
diff
changeset
|
81 |
declare even_def [of "- numeral v", simp] for v |
31148 | 82 |
|
47224 | 83 |
lemma even_numeral_nat [simp]: "even (numeral (Num.Bit0 k) :: nat)" |
84 |
unfolding even_nat_def by simp |
|
85 |
||
86 |
lemma odd_numeral_nat [simp]: "odd (numeral (Num.Bit1 k) :: nat)" |
|
87 |
unfolding even_nat_def by simp |
|
31148 | 88 |
|
21256 | 89 |
subsection {* Even and odd are mutually exclusive *} |
90 |
||
25600 | 91 |
|
21256 | 92 |
subsection {* Behavior under integer arithmetic operations *} |
93 |
||
94 |
lemma even_plus_even: "even (x::int) ==> even y ==> even (x + y)" |
|
31148 | 95 |
by presburger |
21256 | 96 |
|
97 |
lemma even_plus_odd: "even (x::int) ==> odd y ==> odd (x + y)" |
|
31148 | 98 |
by presburger |
21256 | 99 |
|
100 |
lemma odd_plus_even: "odd (x::int) ==> even y ==> odd (x + y)" |
|
31148 | 101 |
by presburger |
21256 | 102 |
|
23522 | 103 |
lemma odd_plus_odd: "odd (x::int) ==> odd y ==> even (x + y)" by presburger |
21256 | 104 |
|
31148 | 105 |
lemma even_sum[simp,presburger]: |
106 |
"even ((x::int) + y) = ((even x & even y) | (odd x & odd y))" |
|
107 |
by presburger |
|
21256 | 108 |
|
31148 | 109 |
lemma even_neg[simp,presburger,algebra]: "even (-(x::int)) = even x" |
110 |
by presburger |
|
21256 | 111 |
|
31148 | 112 |
lemma even_difference[simp]: |
23522 | 113 |
"even ((x::int) - y) = ((even x & even y) | (odd x & odd y))" by presburger |
21256 | 114 |
|
31148 | 115 |
lemma even_power[simp,presburger]: "even ((x::int)^n) = (even x & n \<noteq> 0)" |
116 |
by (induct n) auto |
|
21256 | 117 |
|
31148 | 118 |
lemma odd_pow: "odd x ==> odd((x::int)^n)" by simp |
21256 | 119 |
|
120 |
||
121 |
subsection {* Equivalent definitions *} |
|
122 |
||
23522 | 123 |
lemma two_times_even_div_two: "even (x::int) ==> 2 * (x div 2) = x" |
31148 | 124 |
by presburger |
21256 | 125 |
|
31148 | 126 |
lemma two_times_odd_div_two_plus_one: |
127 |
"odd (x::int) ==> 2 * (x div 2) + 1 = x" |
|
128 |
by presburger |
|
21256 | 129 |
|
23522 | 130 |
lemma even_equiv_def: "even (x::int) = (EX y. x = 2 * y)" by presburger |
21256 | 131 |
|
23522 | 132 |
lemma odd_equiv_def: "odd (x::int) = (EX y. x = 2 * y + 1)" by presburger |
21256 | 133 |
|
134 |
subsection {* even and odd for nats *} |
|
135 |
||
136 |
lemma pos_int_even_equiv_nat_even: "0 \<le> x ==> even x = even (nat x)" |
|
31148 | 137 |
by (simp add: even_nat_def) |
21256 | 138 |
|
31148 | 139 |
lemma even_product_nat[simp,presburger,algebra]: |
140 |
"even((x::nat) * y) = (even x | even y)" |
|
141 |
by (simp add: even_nat_def int_mult) |
|
21256 | 142 |
|
31148 | 143 |
lemma even_sum_nat[simp,presburger,algebra]: |
144 |
"even ((x::nat) + y) = ((even x & even y) | (odd x & odd y))" |
|
23522 | 145 |
by presburger |
21256 | 146 |
|
31148 | 147 |
lemma even_difference_nat[simp,presburger,algebra]: |
148 |
"even ((x::nat) - y) = (x < y | (even x & even y) | (odd x & odd y))" |
|
149 |
by presburger |
|
21256 | 150 |
|
31148 | 151 |
lemma even_Suc[simp,presburger,algebra]: "even (Suc x) = odd x" |
152 |
by presburger |
|
21256 | 153 |
|
31148 | 154 |
lemma even_power_nat[simp,presburger,algebra]: |
155 |
"even ((x::nat)^y) = (even x & 0 < y)" |
|
156 |
by (simp add: even_nat_def int_power) |
|
21256 | 157 |
|
158 |
||
159 |
subsection {* Equivalent definitions *} |
|
160 |
||
161 |
lemma even_nat_mod_two_eq_zero: "even (x::nat) ==> x mod (Suc (Suc 0)) = 0" |
|
31148 | 162 |
by presburger |
21256 | 163 |
|
164 |
lemma odd_nat_mod_two_eq_one: "odd (x::nat) ==> x mod (Suc (Suc 0)) = Suc 0" |
|
23522 | 165 |
by presburger |
21256 | 166 |
|
21263 | 167 |
lemma even_nat_equiv_def: "even (x::nat) = (x mod Suc (Suc 0) = 0)" |
31148 | 168 |
by presburger |
21256 | 169 |
|
170 |
lemma odd_nat_equiv_def: "odd (x::nat) = (x mod Suc (Suc 0) = Suc 0)" |
|
31148 | 171 |
by presburger |
21256 | 172 |
|
21263 | 173 |
lemma even_nat_div_two_times_two: "even (x::nat) ==> |
23522 | 174 |
Suc (Suc 0) * (x div Suc (Suc 0)) = x" by presburger |
21256 | 175 |
|
21263 | 176 |
lemma odd_nat_div_two_times_two_plus_one: "odd (x::nat) ==> |
23522 | 177 |
Suc( Suc (Suc 0) * (x div Suc (Suc 0))) = x" by presburger |
21256 | 178 |
|
179 |
lemma even_nat_equiv_def2: "even (x::nat) = (EX y. x = Suc (Suc 0) * y)" |
|
31148 | 180 |
by presburger |
21256 | 181 |
|
182 |
lemma odd_nat_equiv_def2: "odd (x::nat) = (EX y. x = Suc(Suc (Suc 0) * y))" |
|
31148 | 183 |
by presburger |
21256 | 184 |
|
25600 | 185 |
|
21256 | 186 |
subsection {* Parity and powers *} |
187 |
||
54228 | 188 |
lemma (in comm_ring_1) neg_power_if: |
189 |
"(- a) ^ n = (if even n then (a ^ n) else - (a ^ n))" |
|
190 |
by (induct n) simp_all |
|
21256 | 191 |
|
54228 | 192 |
lemma (in comm_ring_1) |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54228
diff
changeset
|
193 |
shows neg_one_even_power [simp]: "even n \<Longrightarrow> (- 1) ^ n = 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54228
diff
changeset
|
194 |
and neg_one_odd_power [simp]: "odd n \<Longrightarrow> (- 1) ^ n = - 1" |
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54228
diff
changeset
|
195 |
by (simp_all add: neg_power_if) |
21256 | 196 |
|
21263 | 197 |
lemma zero_le_even_power: "even n ==> |
35631
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
huffman
parents:
35216
diff
changeset
|
198 |
0 <= (x::'a::{linordered_ring,monoid_mult}) ^ n" |
21256 | 199 |
apply (simp add: even_nat_equiv_def2) |
200 |
apply (erule exE) |
|
201 |
apply (erule ssubst) |
|
202 |
apply (subst power_add) |
|
203 |
apply (rule zero_le_square) |
|
204 |
done |
|
205 |
||
21263 | 206 |
lemma zero_le_odd_power: "odd n ==> |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
207 |
(0 <= (x::'a::{linordered_idom}) ^ n) = (0 <= x)" |
35216 | 208 |
apply (auto simp: odd_nat_equiv_def2 power_add zero_le_mult_iff) |
36722 | 209 |
apply (metis field_power_not_zero divisors_zero order_antisym_conv zero_le_square) |
30056 | 210 |
done |
21256 | 211 |
|
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
212 |
lemma zero_le_power_eq [presburger]: "(0 <= (x::'a::{linordered_idom}) ^ n) = |
21256 | 213 |
(even n | (odd n & 0 <= x))" |
214 |
apply auto |
|
21263 | 215 |
apply (subst zero_le_odd_power [symmetric]) |
21256 | 216 |
apply assumption+ |
217 |
apply (erule zero_le_even_power) |
|
21263 | 218 |
done |
21256 | 219 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
220 |
lemma zero_less_power_eq[presburger]: "(0 < (x::'a::{linordered_idom}) ^ n) = |
21256 | 221 |
(n = 0 | (even n & x ~= 0) | (odd n & 0 < x))" |
27668 | 222 |
|
223 |
unfolding order_less_le zero_le_power_eq by auto |
|
21256 | 224 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
225 |
lemma power_less_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n < 0) = |
27668 | 226 |
(odd n & x < 0)" |
21263 | 227 |
apply (subst linorder_not_le [symmetric])+ |
21256 | 228 |
apply (subst zero_le_power_eq) |
229 |
apply auto |
|
21263 | 230 |
done |
21256 | 231 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
232 |
lemma power_le_zero_eq[presburger]: "((x::'a::{linordered_idom}) ^ n <= 0) = |
21256 | 233 |
(n ~= 0 & ((odd n & x <= 0) | (even n & x = 0)))" |
21263 | 234 |
apply (subst linorder_not_less [symmetric])+ |
21256 | 235 |
apply (subst zero_less_power_eq) |
236 |
apply auto |
|
21263 | 237 |
done |
21256 | 238 |
|
21263 | 239 |
lemma power_even_abs: "even n ==> |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
240 |
(abs (x::'a::{linordered_idom}))^n = x^n" |
21263 | 241 |
apply (subst power_abs [symmetric]) |
21256 | 242 |
apply (simp add: zero_le_even_power) |
21263 | 243 |
done |
21256 | 244 |
|
21263 | 245 |
lemma power_minus_even [simp]: "even n ==> |
31017 | 246 |
(- x)^n = (x^n::'a::{comm_ring_1})" |
21256 | 247 |
apply (subst power_minus) |
248 |
apply simp |
|
21263 | 249 |
done |
21256 | 250 |
|
21263 | 251 |
lemma power_minus_odd [simp]: "odd n ==> |
31017 | 252 |
(- x)^n = - (x^n::'a::{comm_ring_1})" |
21256 | 253 |
apply (subst power_minus) |
254 |
apply simp |
|
21263 | 255 |
done |
21256 | 256 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
257 |
lemma power_mono_even: fixes x y :: "'a :: {linordered_idom}" |
29803
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
258 |
assumes "even n" and "\<bar>x\<bar> \<le> \<bar>y\<bar>" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
259 |
shows "x^n \<le> y^n" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
260 |
proof - |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
261 |
have "0 \<le> \<bar>x\<bar>" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
262 |
with `\<bar>x\<bar> \<le> \<bar>y\<bar>` |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
263 |
have "\<bar>x\<bar>^n \<le> \<bar>y\<bar>^n" by (rule power_mono) |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
264 |
thus ?thesis unfolding power_even_abs[OF `even n`] . |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
265 |
qed |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
266 |
|
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
267 |
lemma odd_pos: "odd (n::nat) \<Longrightarrow> 0 < n" by presburger |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
268 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
269 |
lemma power_mono_odd: fixes x y :: "'a :: {linordered_idom}" |
29803
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
270 |
assumes "odd n" and "x \<le> y" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
271 |
shows "x^n \<le> y^n" |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
272 |
proof (cases "y < 0") |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
273 |
case True with `x \<le> y` have "-y \<le> -x" and "0 \<le> -y" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
274 |
hence "(-y)^n \<le> (-x)^n" by (rule power_mono) |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
275 |
thus ?thesis unfolding power_minus_odd[OF `odd n`] by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
276 |
next |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
277 |
case False |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
278 |
show ?thesis |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
279 |
proof (cases "x < 0") |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
280 |
case True hence "n \<noteq> 0" and "x \<le> 0" using `odd n`[THEN odd_pos] by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
281 |
hence "x^n \<le> 0" unfolding power_le_zero_eq using `odd n` by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
282 |
moreover |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
283 |
from `\<not> y < 0` have "0 \<le> y" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
284 |
hence "0 \<le> y^n" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
285 |
ultimately show ?thesis by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
286 |
next |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
287 |
case False hence "0 \<le> x" by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
288 |
with `x \<le> y` show ?thesis using power_mono by auto |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
289 |
qed |
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents:
29654
diff
changeset
|
290 |
qed |
21263 | 291 |
|
25600 | 292 |
|
293 |
subsection {* More Even/Odd Results *} |
|
294 |
||
27668 | 295 |
lemma even_mult_two_ex: "even(n) = (\<exists>m::nat. n = 2*m)" by presburger |
296 |
lemma odd_Suc_mult_two_ex: "odd(n) = (\<exists>m. n = Suc (2*m))" by presburger |
|
297 |
lemma even_add [simp]: "even(m + n::nat) = (even m = even n)" by presburger |
|
25600 | 298 |
|
27668 | 299 |
lemma odd_add [simp]: "odd(m + n::nat) = (odd m \<noteq> odd n)" by presburger |
25600 | 300 |
|
27668 | 301 |
lemma lemma_even_div2 [simp]: "even (n::nat) ==> (n + 1) div 2 = n div 2" by presburger |
25600 | 302 |
|
303 |
lemma lemma_not_even_div2 [simp]: "~even n ==> (n + 1) div 2 = Suc (n div 2)" |
|
27668 | 304 |
by presburger |
25600 | 305 |
|
27668 | 306 |
lemma even_num_iff: "0 < n ==> even n = (~ even(n - 1 :: nat))" by presburger |
307 |
lemma even_even_mod_4_iff: "even (n::nat) = even (n mod 4)" by presburger |
|
25600 | 308 |
|
27668 | 309 |
lemma lemma_odd_mod_4_div_2: "n mod 4 = (3::nat) ==> odd((n - 1) div 2)" by presburger |
25600 | 310 |
|
311 |
lemma lemma_even_mod_4_div_2: "n mod 4 = (1::nat) ==> even ((n - 1) div 2)" |
|
27668 | 312 |
by presburger |
25600 | 313 |
|
21263 | 314 |
text {* Simplify, when the exponent is a numeral *} |
21256 | 315 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45607
diff
changeset
|
316 |
lemmas zero_le_power_eq_numeral [simp] = |
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
317 |
zero_le_power_eq [of _ "numeral w"] for w |
21256 | 318 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45607
diff
changeset
|
319 |
lemmas zero_less_power_eq_numeral [simp] = |
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
320 |
zero_less_power_eq [of _ "numeral w"] for w |
21256 | 321 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45607
diff
changeset
|
322 |
lemmas power_le_zero_eq_numeral [simp] = |
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
323 |
power_le_zero_eq [of _ "numeral w"] for w |
21256 | 324 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45607
diff
changeset
|
325 |
lemmas power_less_zero_eq_numeral [simp] = |
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
326 |
power_less_zero_eq [of _ "numeral w"] for w |
21256 | 327 |
|
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
45607
diff
changeset
|
328 |
lemmas zero_less_power_nat_eq_numeral [simp] = |
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
329 |
nat_zero_less_power_iff [of _ "numeral w"] for w |
21256 | 330 |
|
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
331 |
lemmas power_eq_0_iff_numeral [simp] = |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
332 |
power_eq_0_iff [of _ "numeral w"] for w |
21256 | 333 |
|
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
334 |
lemmas power_even_abs_numeral [simp] = |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
335 |
power_even_abs [of "numeral w" _] for w |
21256 | 336 |
|
337 |
||
338 |
subsection {* An Equivalence for @{term [source] "0 \<le> a^n"} *} |
|
339 |
||
23522 | 340 |
lemma zero_le_power_iff[presburger]: |
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
33358
diff
changeset
|
341 |
"(0 \<le> a^n) = (0 \<le> (a::'a::{linordered_idom}) | even n)" |
21256 | 342 |
proof cases |
343 |
assume even: "even n" |
|
344 |
then obtain k where "n = 2*k" |
|
345 |
by (auto simp add: even_nat_equiv_def2 numeral_2_eq_2) |
|
21263 | 346 |
thus ?thesis by (simp add: zero_le_even_power even) |
21256 | 347 |
next |
348 |
assume odd: "odd n" |
|
349 |
then obtain k where "n = Suc(2*k)" |
|
350 |
by (auto simp add: odd_nat_equiv_def2 numeral_2_eq_2) |
|
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
351 |
moreover have "a ^ (2 * k) \<le> 0 \<Longrightarrow> a = 0" |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
352 |
by (induct k) (auto simp add: zero_le_mult_iff mult_le_0_iff) |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
353 |
ultimately show ?thesis |
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
354 |
by (auto simp add: zero_le_mult_iff zero_le_even_power) |
21263 | 355 |
qed |
356 |
||
21256 | 357 |
|
358 |
subsection {* Miscellaneous *} |
|
359 |
||
23522 | 360 |
lemma [presburger]:"(x + 1) div 2 = x div 2 \<longleftrightarrow> even (x::int)" by presburger |
361 |
lemma [presburger]: "(x + 1) div 2 = x div 2 + 1 \<longleftrightarrow> odd (x::int)" by presburger |
|
362 |
lemma even_plus_one_div_two: "even (x::int) ==> (x + 1) div 2 = x div 2" by presburger |
|
363 |
lemma odd_plus_one_div_two: "odd (x::int) ==> (x + 1) div 2 = x div 2 + 1" by presburger |
|
21256 | 364 |
|
23522 | 365 |
lemma [presburger]: "(Suc x) div Suc (Suc 0) = x div Suc (Suc 0) \<longleftrightarrow> even x" by presburger |
21263 | 366 |
lemma even_nat_plus_one_div_two: "even (x::nat) ==> |
23522 | 367 |
(Suc x) div Suc (Suc 0) = x div Suc (Suc 0)" by presburger |
21256 | 368 |
|
21263 | 369 |
lemma odd_nat_plus_one_div_two: "odd (x::nat) ==> |
23522 | 370 |
(Suc x) div Suc (Suc 0) = Suc (x div Suc (Suc 0))" by presburger |
21256 | 371 |
|
372 |
end |
|
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
373 |