author | huffman |
Fri, 05 Mar 2010 14:05:25 -0800 | |
changeset 35596 | 49a02dab35ed |
parent 35579 | cc9a5a0ab5ea |
child 35828 | 46cfc4b8112e |
permissions | -rw-r--r-- |
28685 | 1 |
(* Title: HOL/Orderings.thy |
15524 | 2 |
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson |
3 |
*) |
|
4 |
||
25614 | 5 |
header {* Abstract orderings *} |
15524 | 6 |
|
7 |
theory Orderings |
|
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35115
diff
changeset
|
8 |
imports HOL |
32215 | 9 |
uses |
10 |
"~~/src/Provers/order.ML" |
|
11 |
"~~/src/Provers/quasi.ML" (* FIXME unused? *) |
|
15524 | 12 |
begin |
13 |
||
35092
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
14 |
subsection {* Syntactic orders *} |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
15 |
|
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
16 |
class ord = |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
17 |
fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
18 |
and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
19 |
begin |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
20 |
|
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
21 |
notation |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
22 |
less_eq ("op <=") and |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
23 |
less_eq ("(_/ <= _)" [51, 51] 50) and |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
24 |
less ("op <") and |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
25 |
less ("(_/ < _)" [51, 51] 50) |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
26 |
|
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
27 |
notation (xsymbols) |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
28 |
less_eq ("op \<le>") and |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
29 |
less_eq ("(_/ \<le> _)" [51, 51] 50) |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
30 |
|
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
31 |
notation (HTML output) |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
32 |
less_eq ("op \<le>") and |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
33 |
less_eq ("(_/ \<le> _)" [51, 51] 50) |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
34 |
|
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
35 |
abbreviation (input) |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
36 |
greater_eq (infix ">=" 50) where |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
37 |
"x >= y \<equiv> y <= x" |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
38 |
|
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
39 |
notation (input) |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
40 |
greater_eq (infix "\<ge>" 50) |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
41 |
|
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
42 |
abbreviation (input) |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
43 |
greater (infix ">" 50) where |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
44 |
"x > y \<equiv> y < x" |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
45 |
|
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
46 |
end |
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
47 |
|
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
haftmann
parents:
35028
diff
changeset
|
48 |
|
27682 | 49 |
subsection {* Quasi orders *} |
15524 | 50 |
|
27682 | 51 |
class preorder = ord + |
52 |
assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" |
|
25062 | 53 |
and order_refl [iff]: "x \<le> x" |
54 |
and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" |
|
21248 | 55 |
begin |
56 |
||
15524 | 57 |
text {* Reflexivity. *} |
58 |
||
25062 | 59 |
lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" |
15524 | 60 |
-- {* This form is useful with the classical reasoner. *} |
23212 | 61 |
by (erule ssubst) (rule order_refl) |
15524 | 62 |
|
25062 | 63 |
lemma less_irrefl [iff]: "\<not> x < x" |
27682 | 64 |
by (simp add: less_le_not_le) |
65 |
||
66 |
lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" |
|
67 |
unfolding less_le_not_le by blast |
|
68 |
||
69 |
||
70 |
text {* Asymmetry. *} |
|
71 |
||
72 |
lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" |
|
73 |
by (simp add: less_le_not_le) |
|
74 |
||
75 |
lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" |
|
76 |
by (drule less_not_sym, erule contrapos_np) simp |
|
77 |
||
78 |
||
79 |
text {* Transitivity. *} |
|
80 |
||
81 |
lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" |
|
82 |
by (auto simp add: less_le_not_le intro: order_trans) |
|
83 |
||
84 |
lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" |
|
85 |
by (auto simp add: less_le_not_le intro: order_trans) |
|
86 |
||
87 |
lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" |
|
88 |
by (auto simp add: less_le_not_le intro: order_trans) |
|
89 |
||
90 |
||
91 |
text {* Useful for simplification, but too risky to include by default. *} |
|
92 |
||
93 |
lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" |
|
94 |
by (blast elim: less_asym) |
|
95 |
||
96 |
lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" |
|
97 |
by (blast elim: less_asym) |
|
98 |
||
99 |
||
100 |
text {* Transitivity rules for calculational reasoning *} |
|
101 |
||
102 |
lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" |
|
103 |
by (rule less_asym) |
|
104 |
||
105 |
||
106 |
text {* Dual order *} |
|
107 |
||
108 |
lemma dual_preorder: |
|
109 |
"preorder (op \<ge>) (op >)" |
|
28823 | 110 |
proof qed (auto simp add: less_le_not_le intro: order_trans) |
27682 | 111 |
|
112 |
end |
|
113 |
||
114 |
||
115 |
subsection {* Partial orders *} |
|
116 |
||
117 |
class order = preorder + |
|
118 |
assumes antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" |
|
119 |
begin |
|
120 |
||
121 |
text {* Reflexivity. *} |
|
122 |
||
123 |
lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" |
|
124 |
by (auto simp add: less_le_not_le intro: antisym) |
|
15524 | 125 |
|
25062 | 126 |
lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" |
15524 | 127 |
-- {* NOT suitable for iff, since it can cause PROOF FAILED. *} |
23212 | 128 |
by (simp add: less_le) blast |
15524 | 129 |
|
25062 | 130 |
lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" |
23212 | 131 |
unfolding less_le by blast |
15524 | 132 |
|
21329 | 133 |
|
134 |
text {* Useful for simplification, but too risky to include by default. *} |
|
135 |
||
25062 | 136 |
lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" |
23212 | 137 |
by auto |
21329 | 138 |
|
25062 | 139 |
lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" |
23212 | 140 |
by auto |
21329 | 141 |
|
142 |
||
143 |
text {* Transitivity rules for calculational reasoning *} |
|
144 |
||
25062 | 145 |
lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" |
23212 | 146 |
by (simp add: less_le) |
21329 | 147 |
|
25062 | 148 |
lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" |
23212 | 149 |
by (simp add: less_le) |
21329 | 150 |
|
15524 | 151 |
|
152 |
text {* Asymmetry. *} |
|
153 |
||
25062 | 154 |
lemma eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" |
23212 | 155 |
by (blast intro: antisym) |
15524 | 156 |
|
25062 | 157 |
lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" |
23212 | 158 |
by (blast intro: antisym) |
15524 | 159 |
|
25062 | 160 |
lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" |
23212 | 161 |
by (erule contrapos_pn, erule subst, rule less_irrefl) |
21248 | 162 |
|
21083 | 163 |
|
27107 | 164 |
text {* Least value operator *} |
165 |
||
27299 | 166 |
definition (in ord) |
27107 | 167 |
Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where |
168 |
"Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" |
|
169 |
||
170 |
lemma Least_equality: |
|
171 |
assumes "P x" |
|
172 |
and "\<And>y. P y \<Longrightarrow> x \<le> y" |
|
173 |
shows "Least P = x" |
|
174 |
unfolding Least_def by (rule the_equality) |
|
175 |
(blast intro: assms antisym)+ |
|
176 |
||
177 |
lemma LeastI2_order: |
|
178 |
assumes "P x" |
|
179 |
and "\<And>y. P y \<Longrightarrow> x \<le> y" |
|
180 |
and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" |
|
181 |
shows "Q (Least P)" |
|
182 |
unfolding Least_def by (rule theI2) |
|
183 |
(blast intro: assms antisym)+ |
|
184 |
||
185 |
||
26014 | 186 |
text {* Dual order *} |
22916 | 187 |
|
26014 | 188 |
lemma dual_order: |
25103 | 189 |
"order (op \<ge>) (op >)" |
27682 | 190 |
by (intro_locales, rule dual_preorder) (unfold_locales, rule antisym) |
22916 | 191 |
|
21248 | 192 |
end |
15524 | 193 |
|
21329 | 194 |
|
195 |
subsection {* Linear (total) orders *} |
|
196 |
||
22316 | 197 |
class linorder = order + |
25207 | 198 |
assumes linear: "x \<le> y \<or> y \<le> x" |
21248 | 199 |
begin |
200 |
||
25062 | 201 |
lemma less_linear: "x < y \<or> x = y \<or> y < x" |
23212 | 202 |
unfolding less_le using less_le linear by blast |
21248 | 203 |
|
25062 | 204 |
lemma le_less_linear: "x \<le> y \<or> y < x" |
23212 | 205 |
by (simp add: le_less less_linear) |
21248 | 206 |
|
207 |
lemma le_cases [case_names le ge]: |
|
25062 | 208 |
"(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" |
23212 | 209 |
using linear by blast |
21248 | 210 |
|
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
211 |
lemma linorder_cases [case_names less equal greater]: |
25062 | 212 |
"(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" |
23212 | 213 |
using less_linear by blast |
21248 | 214 |
|
25062 | 215 |
lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" |
23212 | 216 |
apply (simp add: less_le) |
217 |
using linear apply (blast intro: antisym) |
|
218 |
done |
|
219 |
||
220 |
lemma not_less_iff_gr_or_eq: |
|
25062 | 221 |
"\<not>(x < y) \<longleftrightarrow> (x > y | x = y)" |
23212 | 222 |
apply(simp add:not_less le_less) |
223 |
apply blast |
|
224 |
done |
|
15524 | 225 |
|
25062 | 226 |
lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" |
23212 | 227 |
apply (simp add: less_le) |
228 |
using linear apply (blast intro: antisym) |
|
229 |
done |
|
15524 | 230 |
|
25062 | 231 |
lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" |
23212 | 232 |
by (cut_tac x = x and y = y in less_linear, auto) |
15524 | 233 |
|
25062 | 234 |
lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" |
23212 | 235 |
by (simp add: neq_iff) blast |
15524 | 236 |
|
25062 | 237 |
lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" |
23212 | 238 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
15524 | 239 |
|
25062 | 240 |
lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" |
23212 | 241 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
15524 | 242 |
|
25062 | 243 |
lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" |
23212 | 244 |
by (blast intro: antisym dest: not_less [THEN iffD1]) |
15524 | 245 |
|
25062 | 246 |
lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" |
23212 | 247 |
unfolding not_less . |
16796 | 248 |
|
25062 | 249 |
lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" |
23212 | 250 |
unfolding not_less . |
16796 | 251 |
|
252 |
(*FIXME inappropriate name (or delete altogether)*) |
|
25062 | 253 |
lemma not_leE: "\<not> y \<le> x \<Longrightarrow> x < y" |
23212 | 254 |
unfolding not_le . |
21248 | 255 |
|
22916 | 256 |
|
26014 | 257 |
text {* Dual order *} |
22916 | 258 |
|
26014 | 259 |
lemma dual_linorder: |
25103 | 260 |
"linorder (op \<ge>) (op >)" |
27682 | 261 |
by (rule linorder.intro, rule dual_order) (unfold_locales, rule linear) |
22916 | 262 |
|
263 |
||
23881 | 264 |
text {* min/max *} |
265 |
||
27299 | 266 |
definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
28516 | 267 |
[code del]: "min a b = (if a \<le> b then a else b)" |
23881 | 268 |
|
27299 | 269 |
definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where |
28516 | 270 |
[code del]: "max a b = (if a \<le> b then b else a)" |
22384
33a46e6c7f04
prefix of class interpretation not mandatory any longer
haftmann
parents:
22377
diff
changeset
|
271 |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
272 |
lemma min_le_iff_disj: |
25062 | 273 |
"min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z" |
23212 | 274 |
unfolding min_def using linear by (auto intro: order_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
275 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
276 |
lemma le_max_iff_disj: |
25062 | 277 |
"z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y" |
23212 | 278 |
unfolding max_def using linear by (auto intro: order_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
279 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
280 |
lemma min_less_iff_disj: |
25062 | 281 |
"min x y < z \<longleftrightarrow> x < z \<or> y < z" |
23212 | 282 |
unfolding min_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
283 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
284 |
lemma less_max_iff_disj: |
25062 | 285 |
"z < max x y \<longleftrightarrow> z < x \<or> z < y" |
23212 | 286 |
unfolding max_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
287 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
288 |
lemma min_less_iff_conj [simp]: |
25062 | 289 |
"z < min x y \<longleftrightarrow> z < x \<and> z < y" |
23212 | 290 |
unfolding min_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
291 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
292 |
lemma max_less_iff_conj [simp]: |
25062 | 293 |
"max x y < z \<longleftrightarrow> x < z \<and> y < z" |
23212 | 294 |
unfolding max_def le_less using less_linear by (auto intro: less_trans) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
295 |
|
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23948
diff
changeset
|
296 |
lemma split_min [noatp]: |
25062 | 297 |
"P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)" |
23212 | 298 |
by (simp add: min_def) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
299 |
|
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
23948
diff
changeset
|
300 |
lemma split_max [noatp]: |
25062 | 301 |
"P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)" |
23212 | 302 |
by (simp add: max_def) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
303 |
|
21248 | 304 |
end |
305 |
||
28516 | 306 |
text {* Explicit dictionaries for code generation *} |
307 |
||
31998
2c7a24f74db9
code attributes use common underscore convention
haftmann
parents:
30929
diff
changeset
|
308 |
lemma min_ord_min [code, code_unfold, code_inline del]: |
28516 | 309 |
"min = ord.min (op \<le>)" |
310 |
by (rule ext)+ (simp add: min_def ord.min_def) |
|
311 |
||
312 |
declare ord.min_def [code] |
|
313 |
||
31998
2c7a24f74db9
code attributes use common underscore convention
haftmann
parents:
30929
diff
changeset
|
314 |
lemma max_ord_max [code, code_unfold, code_inline del]: |
28516 | 315 |
"max = ord.max (op \<le>)" |
316 |
by (rule ext)+ (simp add: max_def ord.max_def) |
|
317 |
||
318 |
declare ord.max_def [code] |
|
319 |
||
23948 | 320 |
|
21083 | 321 |
subsection {* Reasoning tools setup *} |
322 |
||
21091 | 323 |
ML {* |
324 |
||
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
325 |
signature ORDERS = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
326 |
sig |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
327 |
val print_structures: Proof.context -> unit |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
328 |
val setup: theory -> theory |
32215 | 329 |
val order_tac: Proof.context -> thm list -> int -> tactic |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
330 |
end; |
21091 | 331 |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
332 |
structure Orders: ORDERS = |
21248 | 333 |
struct |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
334 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
335 |
(** Theory and context data **) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
336 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
337 |
fun struct_eq ((s1: string, ts1), (s2, ts2)) = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
338 |
(s1 = s2) andalso eq_list (op aconv) (ts1, ts2); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
339 |
|
33519 | 340 |
structure Data = Generic_Data |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
341 |
( |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
342 |
type T = ((string * term list) * Order_Tac.less_arith) list; |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
343 |
(* Order structures: |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
344 |
identifier of the structure, list of operations and record of theorems |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
345 |
needed to set up the transitivity reasoner, |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
346 |
identifier and operations identify the structure uniquely. *) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
347 |
val empty = []; |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
348 |
val extend = I; |
33519 | 349 |
fun merge data = AList.join struct_eq (K fst) data; |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
350 |
); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
351 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
352 |
fun print_structures ctxt = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
353 |
let |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
354 |
val structs = Data.get (Context.Proof ctxt); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
355 |
fun pretty_term t = Pretty.block |
24920 | 356 |
[Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
357 |
Pretty.str "::", Pretty.brk 1, |
24920 | 358 |
Pretty.quote (Syntax.pretty_typ ctxt (type_of t))]; |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
359 |
fun pretty_struct ((s, ts), _) = Pretty.block |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
360 |
[Pretty.str s, Pretty.str ":", Pretty.brk 1, |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
361 |
Pretty.enclose "(" ")" (Pretty.breaks (map pretty_term ts))]; |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
362 |
in |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
363 |
Pretty.writeln (Pretty.big_list "Order structures:" (map pretty_struct structs)) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
364 |
end; |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
365 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
366 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
367 |
(** Method **) |
21091 | 368 |
|
32215 | 369 |
fun struct_tac ((s, [eq, le, less]), thms) ctxt prems = |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
370 |
let |
30107
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
berghofe
parents:
29823
diff
changeset
|
371 |
fun decomp thy (@{const Trueprop} $ t) = |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
372 |
let |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
373 |
fun excluded t = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
374 |
(* exclude numeric types: linear arithmetic subsumes transitivity *) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
375 |
let val T = type_of t |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
376 |
in |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32899
diff
changeset
|
377 |
T = HOLogic.natT orelse T = HOLogic.intT orelse T = HOLogic.realT |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
378 |
end; |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32899
diff
changeset
|
379 |
fun rel (bin_op $ t1 $ t2) = |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
380 |
if excluded t1 then NONE |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
381 |
else if Pattern.matches thy (eq, bin_op) then SOME (t1, "=", t2) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
382 |
else if Pattern.matches thy (le, bin_op) then SOME (t1, "<=", t2) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
383 |
else if Pattern.matches thy (less, bin_op) then SOME (t1, "<", t2) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
384 |
else NONE |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32899
diff
changeset
|
385 |
| rel _ = NONE; |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32899
diff
changeset
|
386 |
fun dec (Const (@{const_name Not}, _) $ t) = (case rel t |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32899
diff
changeset
|
387 |
of NONE => NONE |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
32899
diff
changeset
|
388 |
| SOME (t1, rel, t2) => SOME (t1, "~" ^ rel, t2)) |
24741
a53f5db5acbb
Fixed setup of transitivity reasoner (function decomp).
ballarin
parents:
24704
diff
changeset
|
389 |
| dec x = rel x; |
30107
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
berghofe
parents:
29823
diff
changeset
|
390 |
in dec t end |
f3b3b0e3d184
Fixed nonexhaustive match problem in decomp, to make it fail more gracefully
berghofe
parents:
29823
diff
changeset
|
391 |
| decomp thy _ = NONE; |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
392 |
in |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
393 |
case s of |
32215 | 394 |
"order" => Order_Tac.partial_tac decomp thms ctxt prems |
395 |
| "linorder" => Order_Tac.linear_tac decomp thms ctxt prems |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
396 |
| _ => error ("Unknown kind of order `" ^ s ^ "' encountered in transitivity reasoner.") |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
397 |
end |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
398 |
|
32215 | 399 |
fun order_tac ctxt prems = |
400 |
FIRST' (map (fn s => CHANGED o struct_tac s ctxt prems) (Data.get (Context.Proof ctxt))); |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
401 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
402 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
403 |
(** Attribute **) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
404 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
405 |
fun add_struct_thm s tag = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
406 |
Thm.declaration_attribute |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
407 |
(fn thm => Data.map (AList.map_default struct_eq (s, Order_Tac.empty TrueI) (Order_Tac.update tag thm))); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
408 |
fun del_struct s = |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
409 |
Thm.declaration_attribute |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
410 |
(fn _ => Data.map (AList.delete struct_eq s)); |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
411 |
|
30722
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
wenzelm
parents:
30528
diff
changeset
|
412 |
val attrib_setup = |
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
wenzelm
parents:
30528
diff
changeset
|
413 |
Attrib.setup @{binding order} |
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
wenzelm
parents:
30528
diff
changeset
|
414 |
(Scan.lift ((Args.add -- Args.name >> (fn (_, s) => SOME s) || Args.del >> K NONE) --| |
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
wenzelm
parents:
30528
diff
changeset
|
415 |
Args.colon (* FIXME || Scan.succeed true *) ) -- Scan.lift Args.name -- |
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
wenzelm
parents:
30528
diff
changeset
|
416 |
Scan.repeat Args.term |
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
wenzelm
parents:
30528
diff
changeset
|
417 |
>> (fn ((SOME tag, n), ts) => add_struct_thm (n, ts) tag |
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
wenzelm
parents:
30528
diff
changeset
|
418 |
| ((NONE, n), ts) => del_struct (n, ts))) |
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
wenzelm
parents:
30528
diff
changeset
|
419 |
"theorems controlling transitivity reasoner"; |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
420 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
421 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
422 |
(** Diagnostic command **) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
423 |
|
24867 | 424 |
val _ = |
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
425 |
OuterSyntax.improper_command "print_orders" |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
426 |
"print order structures available to transitivity reasoner" OuterKeyword.diag |
30806 | 427 |
(Scan.succeed (Toplevel.no_timing o Toplevel.unknown_context o |
428 |
Toplevel.keep (print_structures o Toplevel.context_of))); |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
429 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
430 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
431 |
(** Setup **) |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
432 |
|
24867 | 433 |
val setup = |
32215 | 434 |
Method.setup @{binding order} (Scan.succeed (fn ctxt => SIMPLE_METHOD' (order_tac ctxt []))) |
30722
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
wenzelm
parents:
30528
diff
changeset
|
435 |
"transitivity reasoner" #> |
623d4831c8cf
simplified attribute and method setup: eliminating bottom-up styles makes it easier to keep things in one place, and also SML/NJ happy;
wenzelm
parents:
30528
diff
changeset
|
436 |
attrib_setup; |
21091 | 437 |
|
438 |
end; |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
439 |
|
21091 | 440 |
*} |
441 |
||
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
442 |
setup Orders.setup |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
443 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
444 |
|
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
445 |
text {* Declarations to set up transitivity reasoner of partial and linear orders. *} |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
446 |
|
25076 | 447 |
context order |
448 |
begin |
|
449 |
||
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
450 |
(* The type constraint on @{term op =} below is necessary since the operation |
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
451 |
is not a parameter of the locale. *) |
25076 | 452 |
|
27689 | 453 |
declare less_irrefl [THEN notE, order add less_reflE: order "op = :: 'a \<Rightarrow> 'a \<Rightarrow> bool" "op <=" "op <"] |
454 |
||
455 |
declare order_refl [order add le_refl: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
456 |
||
457 |
declare less_imp_le [order add less_imp_le: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
458 |
||
459 |
declare antisym [order add eqI: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
460 |
||
461 |
declare eq_refl [order add eqD1: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
462 |
||
463 |
declare sym [THEN eq_refl, order add eqD2: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
464 |
||
465 |
declare less_trans [order add less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
466 |
||
467 |
declare less_le_trans [order add less_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
468 |
||
469 |
declare le_less_trans [order add le_less_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
470 |
||
471 |
declare order_trans [order add le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
472 |
||
473 |
declare le_neq_trans [order add le_neq_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
474 |
||
475 |
declare neq_le_trans [order add neq_le_trans: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
476 |
||
477 |
declare less_imp_neq [order add less_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
478 |
||
479 |
declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
480 |
||
481 |
declare not_sym [order add not_sym: order "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
482 |
|
25076 | 483 |
end |
484 |
||
485 |
context linorder |
|
486 |
begin |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
487 |
|
27689 | 488 |
declare [[order del: order "op = :: 'a => 'a => bool" "op <=" "op <"]] |
489 |
||
490 |
declare less_irrefl [THEN notE, order add less_reflE: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
491 |
||
492 |
declare order_refl [order add le_refl: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
493 |
||
494 |
declare less_imp_le [order add less_imp_le: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
495 |
||
496 |
declare not_less [THEN iffD2, order add not_lessI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
497 |
||
498 |
declare not_le [THEN iffD2, order add not_leI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
499 |
||
500 |
declare not_less [THEN iffD1, order add not_lessD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
501 |
||
502 |
declare not_le [THEN iffD1, order add not_leD: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
503 |
||
504 |
declare antisym [order add eqI: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
505 |
||
506 |
declare eq_refl [order add eqD1: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
25076 | 507 |
|
27689 | 508 |
declare sym [THEN eq_refl, order add eqD2: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
509 |
||
510 |
declare less_trans [order add less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
511 |
||
512 |
declare less_le_trans [order add less_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
513 |
||
514 |
declare le_less_trans [order add le_less_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
515 |
||
516 |
declare order_trans [order add le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
517 |
||
518 |
declare le_neq_trans [order add le_neq_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
519 |
||
520 |
declare neq_le_trans [order add neq_le_trans: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
521 |
||
522 |
declare less_imp_neq [order add less_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
523 |
||
524 |
declare eq_neq_eq_imp_neq [order add eq_neq_eq_imp_neq: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
525 |
||
526 |
declare not_sym [order add not_sym: linorder "op = :: 'a => 'a => bool" "op <=" "op <"] |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
527 |
|
25076 | 528 |
end |
529 |
||
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
530 |
|
21083 | 531 |
setup {* |
532 |
let |
|
533 |
||
534 |
fun prp t thm = (#prop (rep_thm thm) = t); |
|
15524 | 535 |
|
21083 | 536 |
fun prove_antisym_le sg ss ((le as Const(_,T)) $ r $ s) = |
537 |
let val prems = prems_of_ss ss; |
|
22916 | 538 |
val less = Const (@{const_name less}, T); |
21083 | 539 |
val t = HOLogic.mk_Trueprop(le $ s $ r); |
540 |
in case find_first (prp t) prems of |
|
541 |
NONE => |
|
542 |
let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) |
|
543 |
in case find_first (prp t) prems of |
|
544 |
NONE => NONE |
|
24422 | 545 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv1})) |
21083 | 546 |
end |
24422 | 547 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm order_class.antisym_conv})) |
21083 | 548 |
end |
549 |
handle THM _ => NONE; |
|
15524 | 550 |
|
21083 | 551 |
fun prove_antisym_less sg ss (NotC $ ((less as Const(_,T)) $ r $ s)) = |
552 |
let val prems = prems_of_ss ss; |
|
22916 | 553 |
val le = Const (@{const_name less_eq}, T); |
21083 | 554 |
val t = HOLogic.mk_Trueprop(le $ r $ s); |
555 |
in case find_first (prp t) prems of |
|
556 |
NONE => |
|
557 |
let val t = HOLogic.mk_Trueprop(NotC $ (less $ s $ r)) |
|
558 |
in case find_first (prp t) prems of |
|
559 |
NONE => NONE |
|
24422 | 560 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3})) |
21083 | 561 |
end |
24422 | 562 |
| SOME thm => SOME(mk_meta_eq(thm RS @{thm linorder_class.antisym_conv2})) |
21083 | 563 |
end |
564 |
handle THM _ => NONE; |
|
15524 | 565 |
|
21248 | 566 |
fun add_simprocs procs thy = |
26496
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26324
diff
changeset
|
567 |
Simplifier.map_simpset (fn ss => ss |
21248 | 568 |
addsimprocs (map (fn (name, raw_ts, proc) => |
26496
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26324
diff
changeset
|
569 |
Simplifier.simproc thy name raw_ts proc) procs)) thy; |
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26324
diff
changeset
|
570 |
fun add_solver name tac = |
49ae9456eba9
purely functional setup of claset/simpset/clasimpset;
wenzelm
parents:
26324
diff
changeset
|
571 |
Simplifier.map_simpset (fn ss => ss addSolver |
32215 | 572 |
mk_solver' name (fn ss => tac (Simplifier.the_context ss) (Simplifier.prems_of_ss ss))); |
21083 | 573 |
|
574 |
in |
|
21248 | 575 |
add_simprocs [ |
576 |
("antisym le", ["(x::'a::order) <= y"], prove_antisym_le), |
|
577 |
("antisym less", ["~ (x::'a::linorder) < y"], prove_antisym_less) |
|
578 |
] |
|
24641
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
ballarin
parents:
24422
diff
changeset
|
579 |
#> add_solver "Transitivity" Orders.order_tac |
21248 | 580 |
(* Adding the transitivity reasoners also as safe solvers showed a slight |
581 |
speed up, but the reasoning strength appears to be not higher (at least |
|
582 |
no breaking of additional proofs in the entire HOL distribution, as |
|
583 |
of 5 March 2004, was observed). *) |
|
21083 | 584 |
end |
585 |
*} |
|
15524 | 586 |
|
587 |
||
21083 | 588 |
subsection {* Bounded quantifiers *} |
589 |
||
590 |
syntax |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
591 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3ALL _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
592 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3EX _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
593 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _<=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
594 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3EX _<=_./ _)" [0, 0, 10] 10) |
21083 | 595 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
596 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3ALL _>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
597 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3EX _>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
598 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3ALL _>=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
599 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3EX _>=_./ _)" [0, 0, 10] 10) |
21083 | 600 |
|
601 |
syntax (xsymbols) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
602 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
603 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
604 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
605 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) |
21083 | 606 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
607 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
608 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
609 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
610 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) |
21083 | 611 |
|
612 |
syntax (HOL) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
613 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3! _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
614 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3? _<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
615 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3! _<=_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
616 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3? _<=_./ _)" [0, 0, 10] 10) |
21083 | 617 |
|
618 |
syntax (HTML output) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
619 |
"_All_less" :: "[idt, 'a, bool] => bool" ("(3\<forall>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
620 |
"_Ex_less" :: "[idt, 'a, bool] => bool" ("(3\<exists>_<_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
621 |
"_All_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
622 |
"_Ex_less_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10) |
21083 | 623 |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
624 |
"_All_greater" :: "[idt, 'a, bool] => bool" ("(3\<forall>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
625 |
"_Ex_greater" :: "[idt, 'a, bool] => bool" ("(3\<exists>_>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
626 |
"_All_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10) |
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
627 |
"_Ex_greater_eq" :: "[idt, 'a, bool] => bool" ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10) |
21083 | 628 |
|
629 |
translations |
|
630 |
"ALL x<y. P" => "ALL x. x < y \<longrightarrow> P" |
|
631 |
"EX x<y. P" => "EX x. x < y \<and> P" |
|
632 |
"ALL x<=y. P" => "ALL x. x <= y \<longrightarrow> P" |
|
633 |
"EX x<=y. P" => "EX x. x <= y \<and> P" |
|
634 |
"ALL x>y. P" => "ALL x. x > y \<longrightarrow> P" |
|
635 |
"EX x>y. P" => "EX x. x > y \<and> P" |
|
636 |
"ALL x>=y. P" => "ALL x. x >= y \<longrightarrow> P" |
|
637 |
"EX x>=y. P" => "EX x. x >= y \<and> P" |
|
638 |
||
639 |
print_translation {* |
|
640 |
let |
|
22916 | 641 |
val All_binder = Syntax.binder_name @{const_syntax All}; |
642 |
val Ex_binder = Syntax.binder_name @{const_syntax Ex}; |
|
22377 | 643 |
val impl = @{const_syntax "op -->"}; |
644 |
val conj = @{const_syntax "op &"}; |
|
22916 | 645 |
val less = @{const_syntax less}; |
646 |
val less_eq = @{const_syntax less_eq}; |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
647 |
|
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
648 |
val trans = |
35115 | 649 |
[((All_binder, impl, less), |
650 |
(@{syntax_const "_All_less"}, @{syntax_const "_All_greater"})), |
|
651 |
((All_binder, impl, less_eq), |
|
652 |
(@{syntax_const "_All_less_eq"}, @{syntax_const "_All_greater_eq"})), |
|
653 |
((Ex_binder, conj, less), |
|
654 |
(@{syntax_const "_Ex_less"}, @{syntax_const "_Ex_greater"})), |
|
655 |
((Ex_binder, conj, less_eq), |
|
656 |
(@{syntax_const "_Ex_less_eq"}, @{syntax_const "_Ex_greater_eq"}))]; |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
657 |
|
35115 | 658 |
fun matches_bound v t = |
659 |
(case t of |
|
35364 | 660 |
Const (@{syntax_const "_bound"}, _) $ Free (v', _) => v = v' |
35115 | 661 |
| _ => false); |
662 |
fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); |
|
663 |
fun mk v c n P = Syntax.const c $ Syntax.mark_bound v $ n $ P; |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
664 |
|
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
665 |
fun tr' q = (q, |
35364 | 666 |
fn [Const (@{syntax_const "_bound"}, _) $ Free (v, _), |
667 |
Const (c, _) $ (Const (d, _) $ t $ u) $ P] => |
|
35115 | 668 |
(case AList.lookup (op =) trans (q, c, d) of |
669 |
NONE => raise Match |
|
670 |
| SOME (l, g) => |
|
671 |
if matches_bound v t andalso not (contains_var v u) then mk v l u P |
|
672 |
else if matches_bound v u andalso not (contains_var v t) then mk v g t P |
|
673 |
else raise Match) |
|
21180
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
wenzelm
parents:
21091
diff
changeset
|
674 |
| _ => raise Match); |
21524 | 675 |
in [tr' All_binder, tr' Ex_binder] end |
21083 | 676 |
*} |
677 |
||
678 |
||
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
679 |
subsection {* Transitivity reasoning *} |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
680 |
|
25193 | 681 |
context ord |
682 |
begin |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
683 |
|
25193 | 684 |
lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" |
685 |
by (rule subst) |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
686 |
|
25193 | 687 |
lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" |
688 |
by (rule ssubst) |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
689 |
|
25193 | 690 |
lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" |
691 |
by (rule subst) |
|
692 |
||
693 |
lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" |
|
694 |
by (rule ssubst) |
|
695 |
||
696 |
end |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
697 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
698 |
lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
699 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
700 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
701 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
702 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
703 |
also assume "f b < c" |
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
704 |
finally (less_trans) show ?thesis . |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
705 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
706 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
707 |
lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
708 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
709 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
710 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
711 |
assume "a < f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
712 |
also assume "b < c" hence "f b < f c" by (rule r) |
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
713 |
finally (less_trans) show ?thesis . |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
714 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
715 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
716 |
lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
717 |
(!!x y. x <= y ==> f x <= f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
718 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
719 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
720 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
721 |
also assume "f b < c" |
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
722 |
finally (le_less_trans) show ?thesis . |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
723 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
724 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
725 |
lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
726 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
727 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
728 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
729 |
assume "a <= f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
730 |
also assume "b < c" hence "f b < f c" by (rule r) |
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
731 |
finally (le_less_trans) show ?thesis . |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
732 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
733 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
734 |
lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
735 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
736 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
737 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
738 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
739 |
also assume "f b <= c" |
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
740 |
finally (less_le_trans) show ?thesis . |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
741 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
742 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
743 |
lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
744 |
(!!x y. x <= y ==> f x <= f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
745 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
746 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
747 |
assume "a < f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
748 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
749 |
finally (less_le_trans) show ?thesis . |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
750 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
751 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
752 |
lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
753 |
(!!x y. x <= y ==> f x <= f y) ==> a <= f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
754 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
755 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
756 |
assume "a <= f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
757 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
758 |
finally (order_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
759 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
760 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
761 |
lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
762 |
(!!x y. x <= y ==> f x <= f y) ==> f a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
763 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
764 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
765 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
766 |
also assume "f b <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
767 |
finally (order_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
768 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
769 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
770 |
lemma ord_le_eq_subst: "a <= b ==> f b = c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
771 |
(!!x y. x <= y ==> f x <= f y) ==> f a <= c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
772 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
773 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
774 |
assume "a <= b" hence "f a <= f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
775 |
also assume "f b = c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
776 |
finally (ord_le_eq_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
777 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
778 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
779 |
lemma ord_eq_le_subst: "a = f b ==> b <= c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
780 |
(!!x y. x <= y ==> f x <= f y) ==> a <= f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
781 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
782 |
assume r: "!!x y. x <= y ==> f x <= f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
783 |
assume "a = f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
784 |
also assume "b <= c" hence "f b <= f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
785 |
finally (ord_eq_le_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
786 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
787 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
788 |
lemma ord_less_eq_subst: "a < b ==> f b = c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
789 |
(!!x y. x < y ==> f x < f y) ==> f a < c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
790 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
791 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
792 |
assume "a < b" hence "f a < f b" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
793 |
also assume "f b = c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
794 |
finally (ord_less_eq_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
795 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
796 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
797 |
lemma ord_eq_less_subst: "a = f b ==> b < c ==> |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
798 |
(!!x y. x < y ==> f x < f y) ==> a < f c" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
799 |
proof - |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
800 |
assume r: "!!x y. x < y ==> f x < f y" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
801 |
assume "a = f b" |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
802 |
also assume "b < c" hence "f b < f c" by (rule r) |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
803 |
finally (ord_eq_less_trans) show ?thesis . |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
804 |
qed |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
805 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
806 |
text {* |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
807 |
Note that this list of rules is in reverse order of priorities. |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
808 |
*} |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
809 |
|
27682 | 810 |
lemmas [trans] = |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
811 |
order_less_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
812 |
order_less_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
813 |
order_le_less_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
814 |
order_le_less_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
815 |
order_less_le_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
816 |
order_less_le_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
817 |
order_subst2 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
818 |
order_subst1 |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
819 |
ord_le_eq_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
820 |
ord_eq_le_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
821 |
ord_less_eq_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
822 |
ord_eq_less_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
823 |
forw_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
824 |
back_subst |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
825 |
rev_mp |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
826 |
mp |
27682 | 827 |
|
828 |
lemmas (in order) [trans] = |
|
829 |
neq_le_trans |
|
830 |
le_neq_trans |
|
831 |
||
832 |
lemmas (in preorder) [trans] = |
|
833 |
less_trans |
|
834 |
less_asym' |
|
835 |
le_less_trans |
|
836 |
less_le_trans |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
837 |
order_trans |
27682 | 838 |
|
839 |
lemmas (in order) [trans] = |
|
840 |
antisym |
|
841 |
||
842 |
lemmas (in ord) [trans] = |
|
843 |
ord_le_eq_trans |
|
844 |
ord_eq_le_trans |
|
845 |
ord_less_eq_trans |
|
846 |
ord_eq_less_trans |
|
847 |
||
848 |
lemmas [trans] = |
|
849 |
trans |
|
850 |
||
851 |
lemmas order_trans_rules = |
|
852 |
order_less_subst2 |
|
853 |
order_less_subst1 |
|
854 |
order_le_less_subst2 |
|
855 |
order_le_less_subst1 |
|
856 |
order_less_le_subst2 |
|
857 |
order_less_le_subst1 |
|
858 |
order_subst2 |
|
859 |
order_subst1 |
|
860 |
ord_le_eq_subst |
|
861 |
ord_eq_le_subst |
|
862 |
ord_less_eq_subst |
|
863 |
ord_eq_less_subst |
|
864 |
forw_subst |
|
865 |
back_subst |
|
866 |
rev_mp |
|
867 |
mp |
|
868 |
neq_le_trans |
|
869 |
le_neq_trans |
|
870 |
less_trans |
|
871 |
less_asym' |
|
872 |
le_less_trans |
|
873 |
less_le_trans |
|
874 |
order_trans |
|
875 |
antisym |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
876 |
ord_le_eq_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
877 |
ord_eq_le_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
878 |
ord_less_eq_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
879 |
ord_eq_less_trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
880 |
trans |
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
881 |
|
21083 | 882 |
text {* These support proving chains of decreasing inequalities |
883 |
a >= b >= c ... in Isar proofs. *} |
|
884 |
||
885 |
lemma xt1: |
|
886 |
"a = b ==> b > c ==> a > c" |
|
887 |
"a > b ==> b = c ==> a > c" |
|
888 |
"a = b ==> b >= c ==> a >= c" |
|
889 |
"a >= b ==> b = c ==> a >= c" |
|
890 |
"(x::'a::order) >= y ==> y >= x ==> x = y" |
|
891 |
"(x::'a::order) >= y ==> y >= z ==> x >= z" |
|
892 |
"(x::'a::order) > y ==> y >= z ==> x > z" |
|
893 |
"(x::'a::order) >= y ==> y > z ==> x > z" |
|
23417 | 894 |
"(a::'a::order) > b ==> b > a ==> P" |
21083 | 895 |
"(x::'a::order) > y ==> y > z ==> x > z" |
896 |
"(a::'a::order) >= b ==> a ~= b ==> a > b" |
|
897 |
"(a::'a::order) ~= b ==> a >= b ==> a > b" |
|
898 |
"a = f b ==> b > c ==> (!!x y. x > y ==> f x > f y) ==> a > f c" |
|
899 |
"a > b ==> f b = c ==> (!!x y. x > y ==> f x > f y) ==> f a > c" |
|
900 |
"a = f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" |
|
901 |
"a >= b ==> f b = c ==> (!! x y. x >= y ==> f x >= f y) ==> f a >= c" |
|
25076 | 902 |
by auto |
21083 | 903 |
|
904 |
lemma xt2: |
|
905 |
"(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" |
|
906 |
by (subgoal_tac "f b >= f c", force, force) |
|
907 |
||
908 |
lemma xt3: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> |
|
909 |
(!!x y. x >= y ==> f x >= f y) ==> f a >= c" |
|
910 |
by (subgoal_tac "f a >= f b", force, force) |
|
911 |
||
912 |
lemma xt4: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> |
|
913 |
(!!x y. x >= y ==> f x >= f y) ==> a > f c" |
|
914 |
by (subgoal_tac "f b >= f c", force, force) |
|
915 |
||
916 |
lemma xt5: "(a::'a::order) > b ==> (f b::'b::order) >= c==> |
|
917 |
(!!x y. x > y ==> f x > f y) ==> f a > c" |
|
918 |
by (subgoal_tac "f a > f b", force, force) |
|
919 |
||
920 |
lemma xt6: "(a::'a::order) >= f b ==> b > c ==> |
|
921 |
(!!x y. x > y ==> f x > f y) ==> a > f c" |
|
922 |
by (subgoal_tac "f b > f c", force, force) |
|
923 |
||
924 |
lemma xt7: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> |
|
925 |
(!!x y. x >= y ==> f x >= f y) ==> f a > c" |
|
926 |
by (subgoal_tac "f a >= f b", force, force) |
|
927 |
||
928 |
lemma xt8: "(a::'a::order) > f b ==> (b::'b::order) > c ==> |
|
929 |
(!!x y. x > y ==> f x > f y) ==> a > f c" |
|
930 |
by (subgoal_tac "f b > f c", force, force) |
|
931 |
||
932 |
lemma xt9: "(a::'a::order) > b ==> (f b::'b::order) > c ==> |
|
933 |
(!!x y. x > y ==> f x > f y) ==> f a > c" |
|
934 |
by (subgoal_tac "f a > f b", force, force) |
|
935 |
||
936 |
lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 |
|
937 |
||
938 |
(* |
|
939 |
Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands |
|
940 |
for the wrong thing in an Isar proof. |
|
941 |
||
942 |
The extra transitivity rules can be used as follows: |
|
943 |
||
944 |
lemma "(a::'a::order) > z" |
|
945 |
proof - |
|
946 |
have "a >= b" (is "_ >= ?rhs") |
|
947 |
sorry |
|
948 |
also have "?rhs >= c" (is "_ >= ?rhs") |
|
949 |
sorry |
|
950 |
also (xtrans) have "?rhs = d" (is "_ = ?rhs") |
|
951 |
sorry |
|
952 |
also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") |
|
953 |
sorry |
|
954 |
also (xtrans) have "?rhs > f" (is "_ > ?rhs") |
|
955 |
sorry |
|
956 |
also (xtrans) have "?rhs > z" |
|
957 |
sorry |
|
958 |
finally (xtrans) show ?thesis . |
|
959 |
qed |
|
960 |
||
961 |
Alternatively, one can use "declare xtrans [trans]" and then |
|
962 |
leave out the "(xtrans)" above. |
|
963 |
*) |
|
964 |
||
23881 | 965 |
|
966 |
subsection {* Monotonicity, least value operator and min/max *} |
|
21083 | 967 |
|
25076 | 968 |
context order |
969 |
begin |
|
970 |
||
30298 | 971 |
definition mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where |
25076 | 972 |
"mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" |
973 |
||
974 |
lemma monoI [intro?]: |
|
975 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order" |
|
976 |
shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" |
|
977 |
unfolding mono_def by iprover |
|
21216
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
haftmann
parents:
21204
diff
changeset
|
978 |
|
25076 | 979 |
lemma monoD [dest?]: |
980 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>order" |
|
981 |
shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" |
|
982 |
unfolding mono_def by iprover |
|
983 |
||
30298 | 984 |
definition strict_mono :: "('a \<Rightarrow> 'b\<Colon>order) \<Rightarrow> bool" where |
985 |
"strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" |
|
986 |
||
987 |
lemma strict_monoI [intro?]: |
|
988 |
assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" |
|
989 |
shows "strict_mono f" |
|
990 |
using assms unfolding strict_mono_def by auto |
|
991 |
||
992 |
lemma strict_monoD [dest?]: |
|
993 |
"strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" |
|
994 |
unfolding strict_mono_def by auto |
|
995 |
||
996 |
lemma strict_mono_mono [dest?]: |
|
997 |
assumes "strict_mono f" |
|
998 |
shows "mono f" |
|
999 |
proof (rule monoI) |
|
1000 |
fix x y |
|
1001 |
assume "x \<le> y" |
|
1002 |
show "f x \<le> f y" |
|
1003 |
proof (cases "x = y") |
|
1004 |
case True then show ?thesis by simp |
|
1005 |
next |
|
1006 |
case False with `x \<le> y` have "x < y" by simp |
|
1007 |
with assms strict_monoD have "f x < f y" by auto |
|
1008 |
then show ?thesis by simp |
|
1009 |
qed |
|
1010 |
qed |
|
1011 |
||
25076 | 1012 |
end |
1013 |
||
1014 |
context linorder |
|
1015 |
begin |
|
1016 |
||
30298 | 1017 |
lemma strict_mono_eq: |
1018 |
assumes "strict_mono f" |
|
1019 |
shows "f x = f y \<longleftrightarrow> x = y" |
|
1020 |
proof |
|
1021 |
assume "f x = f y" |
|
1022 |
show "x = y" proof (cases x y rule: linorder_cases) |
|
1023 |
case less with assms strict_monoD have "f x < f y" by auto |
|
1024 |
with `f x = f y` show ?thesis by simp |
|
1025 |
next |
|
1026 |
case equal then show ?thesis . |
|
1027 |
next |
|
1028 |
case greater with assms strict_monoD have "f y < f x" by auto |
|
1029 |
with `f x = f y` show ?thesis by simp |
|
1030 |
qed |
|
1031 |
qed simp |
|
1032 |
||
1033 |
lemma strict_mono_less_eq: |
|
1034 |
assumes "strict_mono f" |
|
1035 |
shows "f x \<le> f y \<longleftrightarrow> x \<le> y" |
|
1036 |
proof |
|
1037 |
assume "x \<le> y" |
|
1038 |
with assms strict_mono_mono monoD show "f x \<le> f y" by auto |
|
1039 |
next |
|
1040 |
assume "f x \<le> f y" |
|
1041 |
show "x \<le> y" proof (rule ccontr) |
|
1042 |
assume "\<not> x \<le> y" then have "y < x" by simp |
|
1043 |
with assms strict_monoD have "f y < f x" by auto |
|
1044 |
with `f x \<le> f y` show False by simp |
|
1045 |
qed |
|
1046 |
qed |
|
1047 |
||
1048 |
lemma strict_mono_less: |
|
1049 |
assumes "strict_mono f" |
|
1050 |
shows "f x < f y \<longleftrightarrow> x < y" |
|
1051 |
using assms |
|
1052 |
by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) |
|
1053 |
||
25076 | 1054 |
lemma min_of_mono: |
1055 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" |
|
25377 | 1056 |
shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)" |
25076 | 1057 |
by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym) |
1058 |
||
1059 |
lemma max_of_mono: |
|
1060 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>linorder" |
|
25377 | 1061 |
shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)" |
25076 | 1062 |
by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym) |
1063 |
||
1064 |
end |
|
21083 | 1065 |
|
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1066 |
lemma min_leastL: "(!!x. least <= x) ==> min least x = least" |
23212 | 1067 |
by (simp add: min_def) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1068 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1069 |
lemma max_leastL: "(!!x. least <= x) ==> max least x = x" |
23212 | 1070 |
by (simp add: max_def) |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1071 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1072 |
lemma min_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> min x least = least" |
23212 | 1073 |
apply (simp add: min_def) |
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1074 |
apply (blast intro: antisym) |
23212 | 1075 |
done |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1076 |
|
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1077 |
lemma max_leastR: "(\<And>x\<Colon>'a\<Colon>order. least \<le> x) \<Longrightarrow> max x least = x" |
23212 | 1078 |
apply (simp add: max_def) |
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1079 |
apply (blast intro: antisym) |
23212 | 1080 |
done |
21383
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
haftmann
parents:
21329
diff
changeset
|
1081 |
|
27823 | 1082 |
|
28685 | 1083 |
subsection {* Top and bottom elements *} |
1084 |
||
1085 |
class top = preorder + |
|
1086 |
fixes top :: 'a |
|
1087 |
assumes top_greatest [simp]: "x \<le> top" |
|
1088 |
||
1089 |
class bot = preorder + |
|
1090 |
fixes bot :: 'a |
|
1091 |
assumes bot_least [simp]: "bot \<le> x" |
|
1092 |
||
1093 |
||
27823 | 1094 |
subsection {* Dense orders *} |
1095 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34974
diff
changeset
|
1096 |
class dense_linorder = linorder + |
27823 | 1097 |
assumes gt_ex: "\<exists>y. x < y" |
1098 |
and lt_ex: "\<exists>y. y < x" |
|
1099 |
and dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" |
|
35579
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1100 |
begin |
27823 | 1101 |
|
35579
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1102 |
lemma dense_le: |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1103 |
fixes y z :: 'a |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1104 |
assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1105 |
shows "y \<le> z" |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1106 |
proof (rule ccontr) |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1107 |
assume "\<not> ?thesis" |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1108 |
hence "z < y" by simp |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1109 |
from dense[OF this] |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1110 |
obtain x where "x < y" and "z < x" by safe |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1111 |
moreover have "x \<le> z" using assms[OF `x < y`] . |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1112 |
ultimately show False by auto |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1113 |
qed |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1114 |
|
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1115 |
lemma dense_le_bounded: |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1116 |
fixes x y z :: 'a |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1117 |
assumes "x < y" |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1118 |
assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1119 |
shows "y \<le> z" |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1120 |
proof (rule dense_le) |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1121 |
fix w assume "w < y" |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1122 |
from dense[OF `x < y`] obtain u where "x < u" "u < y" by safe |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1123 |
from linear[of u w] |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1124 |
show "w \<le> z" |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1125 |
proof (rule disjE) |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1126 |
assume "u \<le> w" |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1127 |
from less_le_trans[OF `x < u` `u \<le> w`] `w < y` |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1128 |
show "w \<le> z" by (rule *) |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1129 |
next |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1130 |
assume "w \<le> u" |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1131 |
from `w \<le> u` *[OF `x < u` `u < y`] |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1132 |
show "w \<le> z" by (rule order_trans) |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1133 |
qed |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1134 |
qed |
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1135 |
|
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
hoelzl
parents:
35364
diff
changeset
|
1136 |
end |
27823 | 1137 |
|
1138 |
subsection {* Wellorders *} |
|
1139 |
||
1140 |
class wellorder = linorder + |
|
1141 |
assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" |
|
1142 |
begin |
|
1143 |
||
1144 |
lemma wellorder_Least_lemma: |
|
1145 |
fixes k :: 'a |
|
1146 |
assumes "P k" |
|
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1147 |
shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k" |
27823 | 1148 |
proof - |
1149 |
have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" |
|
1150 |
using assms proof (induct k rule: less_induct) |
|
1151 |
case (less x) then have "P x" by simp |
|
1152 |
show ?case proof (rule classical) |
|
1153 |
assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" |
|
1154 |
have "\<And>y. P y \<Longrightarrow> x \<le> y" |
|
1155 |
proof (rule classical) |
|
1156 |
fix y |
|
1157 |
assume "P y" and "\<not> x \<le> y" |
|
1158 |
with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" |
|
1159 |
by (auto simp add: not_le) |
|
1160 |
with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" |
|
1161 |
by auto |
|
1162 |
then show "x \<le> y" by auto |
|
1163 |
qed |
|
1164 |
with `P x` have Least: "(LEAST a. P a) = x" |
|
1165 |
by (rule Least_equality) |
|
1166 |
with `P x` show ?thesis by simp |
|
1167 |
qed |
|
1168 |
qed |
|
1169 |
then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto |
|
1170 |
qed |
|
1171 |
||
1172 |
-- "The following 3 lemmas are due to Brian Huffman" |
|
1173 |
lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" |
|
1174 |
by (erule exE) (erule LeastI) |
|
1175 |
||
1176 |
lemma LeastI2: |
|
1177 |
"P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" |
|
1178 |
by (blast intro: LeastI) |
|
1179 |
||
1180 |
lemma LeastI2_ex: |
|
1181 |
"\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" |
|
1182 |
by (blast intro: LeastI_ex) |
|
1183 |
||
1184 |
lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" |
|
1185 |
apply (simp (no_asm_use) add: not_le [symmetric]) |
|
1186 |
apply (erule contrapos_nn) |
|
1187 |
apply (erule Least_le) |
|
1188 |
done |
|
1189 |
||
1190 |
end |
|
1191 |
||
28685 | 1192 |
|
1193 |
subsection {* Order on bool *} |
|
1194 |
||
1195 |
instantiation bool :: "{order, top, bot}" |
|
1196 |
begin |
|
1197 |
||
1198 |
definition |
|
1199 |
le_bool_def [code del]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" |
|
1200 |
||
1201 |
definition |
|
1202 |
less_bool_def [code del]: "(P\<Colon>bool) < Q \<longleftrightarrow> \<not> P \<and> Q" |
|
1203 |
||
1204 |
definition |
|
1205 |
top_bool_eq: "top = True" |
|
1206 |
||
1207 |
definition |
|
1208 |
bot_bool_eq: "bot = False" |
|
1209 |
||
1210 |
instance proof |
|
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1211 |
qed (auto simp add: bot_bool_eq top_bool_eq less_bool_def, auto simp add: le_bool_def) |
28685 | 1212 |
|
15524 | 1213 |
end |
28685 | 1214 |
|
1215 |
lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" |
|
32899 | 1216 |
by (simp add: le_bool_def) |
28685 | 1217 |
|
1218 |
lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" |
|
32899 | 1219 |
by (simp add: le_bool_def) |
28685 | 1220 |
|
1221 |
lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" |
|
32899 | 1222 |
by (simp add: le_bool_def) |
28685 | 1223 |
|
1224 |
lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" |
|
32899 | 1225 |
by (simp add: le_bool_def) |
1226 |
||
1227 |
lemma bot_boolE: "bot \<Longrightarrow> P" |
|
1228 |
by (simp add: bot_bool_eq) |
|
1229 |
||
1230 |
lemma top_boolI: top |
|
1231 |
by (simp add: top_bool_eq) |
|
28685 | 1232 |
|
1233 |
lemma [code]: |
|
1234 |
"False \<le> b \<longleftrightarrow> True" |
|
1235 |
"True \<le> b \<longleftrightarrow> b" |
|
1236 |
"False < b \<longleftrightarrow> b" |
|
1237 |
"True < b \<longleftrightarrow> False" |
|
1238 |
unfolding le_bool_def less_bool_def by simp_all |
|
1239 |
||
1240 |
||
1241 |
subsection {* Order on functions *} |
|
1242 |
||
1243 |
instantiation "fun" :: (type, ord) ord |
|
1244 |
begin |
|
1245 |
||
1246 |
definition |
|
1247 |
le_fun_def [code del]: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" |
|
1248 |
||
1249 |
definition |
|
1250 |
less_fun_def [code del]: "(f\<Colon>'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" |
|
1251 |
||
1252 |
instance .. |
|
1253 |
||
1254 |
end |
|
1255 |
||
1256 |
instance "fun" :: (type, preorder) preorder proof |
|
1257 |
qed (auto simp add: le_fun_def less_fun_def |
|
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1258 |
intro: order_trans antisym intro!: ext) |
28685 | 1259 |
|
1260 |
instance "fun" :: (type, order) order proof |
|
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1261 |
qed (auto simp add: le_fun_def intro: antisym ext) |
28685 | 1262 |
|
1263 |
instantiation "fun" :: (type, top) top |
|
1264 |
begin |
|
1265 |
||
1266 |
definition |
|
1267 |
top_fun_eq: "top = (\<lambda>x. top)" |
|
1268 |
||
1269 |
instance proof |
|
1270 |
qed (simp add: top_fun_eq le_fun_def) |
|
1271 |
||
1272 |
end |
|
1273 |
||
1274 |
instantiation "fun" :: (type, bot) bot |
|
1275 |
begin |
|
1276 |
||
1277 |
definition |
|
1278 |
bot_fun_eq: "bot = (\<lambda>x. bot)" |
|
1279 |
||
1280 |
instance proof |
|
1281 |
qed (simp add: bot_fun_eq le_fun_def) |
|
1282 |
||
1283 |
end |
|
1284 |
||
1285 |
lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" |
|
1286 |
unfolding le_fun_def by simp |
|
1287 |
||
1288 |
lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" |
|
1289 |
unfolding le_fun_def by simp |
|
1290 |
||
1291 |
lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" |
|
1292 |
unfolding le_fun_def by simp |
|
1293 |
||
34250
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1294 |
|
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1295 |
subsection {* Name duplicates *} |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1296 |
|
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1297 |
lemmas order_eq_refl = preorder_class.eq_refl |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1298 |
lemmas order_less_irrefl = preorder_class.less_irrefl |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1299 |
lemmas order_less_imp_le = preorder_class.less_imp_le |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1300 |
lemmas order_less_not_sym = preorder_class.less_not_sym |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1301 |
lemmas order_less_asym = preorder_class.less_asym |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1302 |
lemmas order_less_trans = preorder_class.less_trans |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1303 |
lemmas order_le_less_trans = preorder_class.le_less_trans |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1304 |
lemmas order_less_le_trans = preorder_class.less_le_trans |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1305 |
lemmas order_less_imp_not_less = preorder_class.less_imp_not_less |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1306 |
lemmas order_less_imp_triv = preorder_class.less_imp_triv |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1307 |
lemmas order_less_asym' = preorder_class.less_asym' |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1308 |
|
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1309 |
lemmas order_less_le = order_class.less_le |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1310 |
lemmas order_le_less = order_class.le_less |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1311 |
lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1312 |
lemmas order_less_imp_not_eq = order_class.less_imp_not_eq |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1313 |
lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1314 |
lemmas order_neq_le_trans = order_class.neq_le_trans |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1315 |
lemmas order_le_neq_trans = order_class.le_neq_trans |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1316 |
lemmas order_antisym = order_class.antisym |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1317 |
lemmas order_eq_iff = order_class.eq_iff |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1318 |
lemmas order_antisym_conv = order_class.antisym_conv |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1319 |
|
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1320 |
lemmas linorder_linear = linorder_class.linear |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1321 |
lemmas linorder_less_linear = linorder_class.less_linear |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1322 |
lemmas linorder_le_less_linear = linorder_class.le_less_linear |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1323 |
lemmas linorder_le_cases = linorder_class.le_cases |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1324 |
lemmas linorder_not_less = linorder_class.not_less |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1325 |
lemmas linorder_not_le = linorder_class.not_le |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1326 |
lemmas linorder_neq_iff = linorder_class.neq_iff |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1327 |
lemmas linorder_neqE = linorder_class.neqE |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1328 |
lemmas linorder_antisym_conv1 = linorder_class.antisym_conv1 |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1329 |
lemmas linorder_antisym_conv2 = linorder_class.antisym_conv2 |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1330 |
lemmas linorder_antisym_conv3 = linorder_class.antisym_conv3 |
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
haftmann
parents:
34065
diff
changeset
|
1331 |
|
28685 | 1332 |
end |