| author | wenzelm | 
| Tue, 02 May 2017 18:27:51 +0200 | |
| changeset 65686 | 4a762cad298f | 
| parent 64848 | c50db2128048 | 
| child 65811 | 2653f1cd8775 | 
| permissions | -rw-r--r-- | 
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 1 | (* Title: HOL/Rings.thy | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 2 | Author: Gertrud Bauer | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 3 | Author: Steven Obua | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 4 | Author: Tobias Nipkow | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 5 | Author: Lawrence C Paulson | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 6 | Author: Markus Wenzel | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
30961diff
changeset | 7 | Author: Jeremy Avigad | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 8 | *) | 
| 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 9 | |
| 60758 | 10 | section \<open>Rings\<close> | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 11 | |
| 35050 
9f841f20dca6
renamed OrderedGroup to Groups; split theory Ring_and_Field into Rings Fields
 haftmann parents: 
35043diff
changeset | 12 | theory Rings | 
| 63588 | 13 | imports Groups Set | 
| 15131 | 14 | begin | 
| 14504 | 15 | |
| 22390 | 16 | class semiring = ab_semigroup_add + semigroup_mult + | 
| 58776 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58649diff
changeset | 17 | assumes distrib_right[algebra_simps]: "(a + b) * c = a * c + b * c" | 
| 
95e58e04e534
use NO_MATCH-simproc for distribution rules in field_simps, otherwise field_simps on '(a / (c + d)) * (e + f)' can be non-terminating
 hoelzl parents: 
58649diff
changeset | 18 | assumes distrib_left[algebra_simps]: "a * (b + c) = a * b + a * c" | 
| 25152 | 19 | begin | 
| 20 | ||
| 63325 | 21 | text \<open>For the \<open>combine_numerals\<close> simproc\<close> | 
| 22 | lemma combine_common_factor: "a * e + (b * e + c) = (a + b) * e + c" | |
| 23 | by (simp add: distrib_right ac_simps) | |
| 25152 | 24 | |
| 25 | end | |
| 14504 | 26 | |
| 22390 | 27 | class mult_zero = times + zero + | 
| 25062 | 28 | assumes mult_zero_left [simp]: "0 * a = 0" | 
| 29 | assumes mult_zero_right [simp]: "a * 0 = 0" | |
| 58195 | 30 | begin | 
| 31 | ||
| 63325 | 32 | lemma mult_not_zero: "a * b \<noteq> 0 \<Longrightarrow> a \<noteq> 0 \<and> b \<noteq> 0" | 
| 58195 | 33 | by auto | 
| 34 | ||
| 35 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 36 | |
| 58198 | 37 | class semiring_0 = semiring + comm_monoid_add + mult_zero | 
| 38 | ||
| 29904 | 39 | class semiring_0_cancel = semiring + cancel_comm_monoid_add | 
| 25186 | 40 | begin | 
| 14504 | 41 | |
| 25186 | 42 | subclass semiring_0 | 
| 28823 | 43 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 44 | fix a :: 'a | 
| 63588 | 45 | have "0 * a + 0 * a = 0 * a + 0" | 
| 46 | by (simp add: distrib_right [symmetric]) | |
| 47 | then show "0 * a = 0" | |
| 48 | by (simp only: add_left_cancel) | |
| 49 | have "a * 0 + a * 0 = a * 0 + 0" | |
| 50 | by (simp add: distrib_left [symmetric]) | |
| 51 | then show "a * 0 = 0" | |
| 52 | by (simp only: add_left_cancel) | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 53 | qed | 
| 14940 | 54 | |
| 25186 | 55 | end | 
| 25152 | 56 | |
| 22390 | 57 | class comm_semiring = ab_semigroup_add + ab_semigroup_mult + | 
| 25062 | 58 | assumes distrib: "(a + b) * c = a * c + b * c" | 
| 25152 | 59 | begin | 
| 14504 | 60 | |
| 25152 | 61 | subclass semiring | 
| 28823 | 62 | proof | 
| 14738 | 63 | fix a b c :: 'a | 
| 63588 | 64 | show "(a + b) * c = a * c + b * c" | 
| 65 | by (simp add: distrib) | |
| 66 | have "a * (b + c) = (b + c) * a" | |
| 67 | by (simp add: ac_simps) | |
| 68 | also have "\<dots> = b * a + c * a" | |
| 69 | by (simp only: distrib) | |
| 70 | also have "\<dots> = a * b + a * c" | |
| 71 | by (simp add: ac_simps) | |
| 72 | finally show "a * (b + c) = a * b + a * c" | |
| 73 | by blast | |
| 14504 | 74 | qed | 
| 75 | ||
| 25152 | 76 | end | 
| 14504 | 77 | |
| 25152 | 78 | class comm_semiring_0 = comm_semiring + comm_monoid_add + mult_zero | 
| 79 | begin | |
| 80 | ||
| 27516 | 81 | subclass semiring_0 .. | 
| 25152 | 82 | |
| 83 | end | |
| 14504 | 84 | |
| 29904 | 85 | class comm_semiring_0_cancel = comm_semiring + cancel_comm_monoid_add | 
| 25186 | 86 | begin | 
| 14940 | 87 | |
| 27516 | 88 | subclass semiring_0_cancel .. | 
| 14940 | 89 | |
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 90 | subclass comm_semiring_0 .. | 
| 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 91 | |
| 25186 | 92 | end | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 93 | |
| 22390 | 94 | class zero_neq_one = zero + one + | 
| 25062 | 95 | assumes zero_neq_one [simp]: "0 \<noteq> 1" | 
| 26193 | 96 | begin | 
| 97 | ||
| 98 | lemma one_neq_zero [simp]: "1 \<noteq> 0" | |
| 63325 | 99 | by (rule not_sym) (rule zero_neq_one) | 
| 26193 | 100 | |
| 54225 | 101 | definition of_bool :: "bool \<Rightarrow> 'a" | 
| 63325 | 102 | where "of_bool p = (if p then 1 else 0)" | 
| 54225 | 103 | |
| 104 | lemma of_bool_eq [simp, code]: | |
| 105 | "of_bool False = 0" | |
| 106 | "of_bool True = 1" | |
| 107 | by (simp_all add: of_bool_def) | |
| 108 | ||
| 63325 | 109 | lemma of_bool_eq_iff: "of_bool p = of_bool q \<longleftrightarrow> p = q" | 
| 54225 | 110 | by (simp add: of_bool_def) | 
| 111 | ||
| 63325 | 112 | lemma split_of_bool [split]: "P (of_bool p) \<longleftrightarrow> (p \<longrightarrow> P 1) \<and> (\<not> p \<longrightarrow> P 0)" | 
| 55187 | 113 | by (cases p) simp_all | 
| 114 | ||
| 63325 | 115 | lemma split_of_bool_asm: "P (of_bool p) \<longleftrightarrow> \<not> (p \<and> \<not> P 1 \<or> \<not> p \<and> \<not> P 0)" | 
| 55187 | 116 | by (cases p) simp_all | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 117 | |
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 118 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 119 | |
| 22390 | 120 | class semiring_1 = zero_neq_one + semiring_0 + monoid_mult | 
| 14504 | 121 | |
| 60758 | 122 | text \<open>Abstract divisibility\<close> | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 123 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 124 | class dvd = times | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 125 | begin | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 126 | |
| 63325 | 127 | definition dvd :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "dvd" 50) | 
| 128 | where "b dvd a \<longleftrightarrow> (\<exists>k. a = b * k)" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 129 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 130 | lemma dvdI [intro?]: "a = b * k \<Longrightarrow> b dvd a" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 131 | unfolding dvd_def .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 132 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 133 | lemma dvdE [elim?]: "b dvd a \<Longrightarrow> (\<And>k. a = b * k \<Longrightarrow> P) \<Longrightarrow> P" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 134 | unfolding dvd_def by blast | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 135 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 136 | end | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 137 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 138 | context comm_monoid_mult | 
| 25152 | 139 | begin | 
| 14738 | 140 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 141 | subclass dvd . | 
| 25152 | 142 | |
| 63325 | 143 | lemma dvd_refl [simp]: "a dvd a" | 
| 28559 | 144 | proof | 
| 145 | show "a = a * 1" by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 146 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 147 | |
| 62349 
7c23469b5118
cleansed junk-producing interpretations for gcd/lcm on nat altogether
 haftmann parents: 
62347diff
changeset | 148 | lemma dvd_trans [trans]: | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 149 | assumes "a dvd b" and "b dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 150 | shows "a dvd c" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 151 | proof - | 
| 63588 | 152 | from assms obtain v where "b = a * v" | 
| 153 | by (auto elim!: dvdE) | |
| 154 | moreover from assms obtain w where "c = b * w" | |
| 155 | by (auto elim!: dvdE) | |
| 156 | ultimately have "c = a * (v * w)" | |
| 157 | by (simp add: mult.assoc) | |
| 28559 | 158 | then show ?thesis .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 159 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 160 | |
| 63325 | 161 | lemma subset_divisors_dvd: "{c. c dvd a} \<subseteq> {c. c dvd b} \<longleftrightarrow> a dvd b"
 | 
| 62366 | 162 | by (auto simp add: subset_iff intro: dvd_trans) | 
| 163 | ||
| 63325 | 164 | lemma strict_subset_divisors_dvd: "{c. c dvd a} \<subset> {c. c dvd b} \<longleftrightarrow> a dvd b \<and> \<not> b dvd a"
 | 
| 62366 | 165 | by (auto simp add: subset_iff intro: dvd_trans) | 
| 166 | ||
| 63325 | 167 | lemma one_dvd [simp]: "1 dvd a" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 168 | by (auto intro!: dvdI) | 
| 28559 | 169 | |
| 63325 | 170 | lemma dvd_mult [simp]: "a dvd c \<Longrightarrow> a dvd (b * c)" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 171 | by (auto intro!: mult.left_commute dvdI elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 172 | |
| 63325 | 173 | lemma dvd_mult2 [simp]: "a dvd b \<Longrightarrow> a dvd (b * c)" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 174 | using dvd_mult [of a b c] by (simp add: ac_simps) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 175 | |
| 63325 | 176 | lemma dvd_triv_right [simp]: "a dvd b * a" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 177 | by (rule dvd_mult) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 178 | |
| 63325 | 179 | lemma dvd_triv_left [simp]: "a dvd a * b" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 180 | by (rule dvd_mult2) (rule dvd_refl) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 181 | |
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 182 | lemma mult_dvd_mono: | 
| 30042 | 183 | assumes "a dvd b" | 
| 184 | and "c dvd d" | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 185 | shows "a * c dvd b * d" | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 186 | proof - | 
| 60758 | 187 | from \<open>a dvd b\<close> obtain b' where "b = a * b'" .. | 
| 188 | moreover from \<open>c dvd d\<close> obtain d' where "d = c * d'" .. | |
| 63588 | 189 | ultimately have "b * d = (a * c) * (b' * d')" | 
| 190 | by (simp add: ac_simps) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 191 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 192 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 193 | |
| 63325 | 194 | lemma dvd_mult_left: "a * b dvd c \<Longrightarrow> a dvd c" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 195 | by (simp add: dvd_def mult.assoc) blast | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 196 | |
| 63325 | 197 | lemma dvd_mult_right: "a * b dvd c \<Longrightarrow> b dvd c" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 198 | using dvd_mult_left [of b a c] by (simp add: ac_simps) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 199 | |
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 200 | end | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 201 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 202 | class comm_semiring_1 = zero_neq_one + comm_semiring_0 + comm_monoid_mult | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 203 | begin | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 204 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 205 | subclass semiring_1 .. | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 206 | |
| 63325 | 207 | lemma dvd_0_left_iff [simp]: "0 dvd a \<longleftrightarrow> a = 0" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 208 | by (auto intro: dvd_refl elim!: dvdE) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 209 | |
| 63325 | 210 | lemma dvd_0_right [iff]: "a dvd 0" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 211 | proof | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 212 | show "0 = a * 0" by simp | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 213 | qed | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 214 | |
| 63325 | 215 | lemma dvd_0_left: "0 dvd a \<Longrightarrow> a = 0" | 
| 59009 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 216 | by simp | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 217 | |
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 218 | lemma dvd_add [simp]: | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 219 | assumes "a dvd b" and "a dvd c" | 
| 
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
 haftmann parents: 
59000diff
changeset | 220 | shows "a dvd (b + c)" | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 221 | proof - | 
| 60758 | 222 | from \<open>a dvd b\<close> obtain b' where "b = a * b'" .. | 
| 223 | moreover from \<open>a dvd c\<close> obtain c' where "c = a * c'" .. | |
| 63588 | 224 | ultimately have "b + c = a * (b' + c')" | 
| 225 | by (simp add: distrib_left) | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 226 | then show ?thesis .. | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 227 | qed | 
| 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 228 | |
| 25152 | 229 | end | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 230 | |
| 29904 | 231 | class semiring_1_cancel = semiring + cancel_comm_monoid_add | 
| 232 | + zero_neq_one + monoid_mult | |
| 25267 | 233 | begin | 
| 14940 | 234 | |
| 27516 | 235 | subclass semiring_0_cancel .. | 
| 25512 
4134f7c782e2
using intro_locales instead of unfold_locales if appropriate
 haftmann parents: 
25450diff
changeset | 236 | |
| 27516 | 237 | subclass semiring_1 .. | 
| 25267 | 238 | |
| 239 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 240 | |
| 63325 | 241 | class comm_semiring_1_cancel = | 
| 242 | comm_semiring + cancel_comm_monoid_add + zero_neq_one + comm_monoid_mult + | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 243 | assumes right_diff_distrib' [algebra_simps]: "a * (b - c) = a * b - a * c" | 
| 25267 | 244 | begin | 
| 14738 | 245 | |
| 27516 | 246 | subclass semiring_1_cancel .. | 
| 247 | subclass comm_semiring_0_cancel .. | |
| 248 | subclass comm_semiring_1 .. | |
| 25267 | 249 | |
| 63325 | 250 | lemma left_diff_distrib' [algebra_simps]: "(b - c) * a = b * a - c * a" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 251 | by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 252 | |
| 63325 | 253 | lemma dvd_add_times_triv_left_iff [simp]: "a dvd c * a + b \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 254 | proof - | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 255 | have "a dvd a * c + b \<longleftrightarrow> a dvd b" (is "?P \<longleftrightarrow> ?Q") | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 256 | proof | 
| 63325 | 257 | assume ?Q | 
| 258 | then show ?P by simp | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 259 | next | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 260 | assume ?P | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 261 | then obtain d where "a * c + b = a * d" .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 262 | then have "a * c + b - a * c = a * d - a * c" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 263 | then have "b = a * d - a * c" by simp | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 264 | then have "b = a * (d - c)" by (simp add: algebra_simps) | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 265 | then show ?Q .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 266 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 267 | then show "a dvd c * a + b \<longleftrightarrow> a dvd b" by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 268 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 269 | |
| 63325 | 270 | lemma dvd_add_times_triv_right_iff [simp]: "a dvd b + c * a \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 271 | using dvd_add_times_triv_left_iff [of a c b] by (simp add: ac_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 272 | |
| 63325 | 273 | lemma dvd_add_triv_left_iff [simp]: "a dvd a + b \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 274 | using dvd_add_times_triv_left_iff [of a 1 b] by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 275 | |
| 63325 | 276 | lemma dvd_add_triv_right_iff [simp]: "a dvd b + a \<longleftrightarrow> a dvd b" | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 277 | using dvd_add_times_triv_right_iff [of a b 1] by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 278 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 279 | lemma dvd_add_right_iff: | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 280 | assumes "a dvd b" | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 281 | shows "a dvd b + c \<longleftrightarrow> a dvd c" (is "?P \<longleftrightarrow> ?Q") | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 282 | proof | 
| 63325 | 283 | assume ?P | 
| 284 | then obtain d where "b + c = a * d" .. | |
| 60758 | 285 | moreover from \<open>a dvd b\<close> obtain e where "b = a * e" .. | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 286 | ultimately have "a * e + c = a * d" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 287 | then have "a * e + c - a * e = a * d - a * e" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 288 | then have "c = a * d - a * e" by simp | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 289 | then have "c = a * (d - e)" by (simp add: algebra_simps) | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 290 | then show ?Q .. | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 291 | next | 
| 63325 | 292 | assume ?Q | 
| 293 | with assms show ?P by simp | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 294 | qed | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 295 | |
| 63325 | 296 | lemma dvd_add_left_iff: "a dvd c \<Longrightarrow> a dvd b + c \<longleftrightarrow> a dvd b" | 
| 297 | using dvd_add_right_iff [of a c b] by (simp add: ac_simps) | |
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 298 | |
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 299 | end | 
| 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 300 | |
| 22390 | 301 | class ring = semiring + ab_group_add | 
| 25267 | 302 | begin | 
| 25152 | 303 | |
| 27516 | 304 | subclass semiring_0_cancel .. | 
| 25152 | 305 | |
| 60758 | 306 | text \<open>Distribution rules\<close> | 
| 25152 | 307 | |
| 308 | lemma minus_mult_left: "- (a * b) = - a * b" | |
| 63325 | 309 | by (rule minus_unique) (simp add: distrib_right [symmetric]) | 
| 25152 | 310 | |
| 311 | lemma minus_mult_right: "- (a * b) = a * - b" | |
| 63325 | 312 | by (rule minus_unique) (simp add: distrib_left [symmetric]) | 
| 25152 | 313 | |
| 63325 | 314 | text \<open>Extract signs from products\<close> | 
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 315 | lemmas mult_minus_left [simp] = minus_mult_left [symmetric] | 
| 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 316 | lemmas mult_minus_right [simp] = minus_mult_right [symmetric] | 
| 29407 
5ef7e97fd9e4
move lemmas mult_minus{left,right} inside class ring
 huffman parents: 
29406diff
changeset | 317 | |
| 25152 | 318 | lemma minus_mult_minus [simp]: "- a * - b = a * b" | 
| 63325 | 319 | by simp | 
| 25152 | 320 | |
| 321 | lemma minus_mult_commute: "- a * b = a * - b" | |
| 63325 | 322 | by simp | 
| 29667 | 323 | |
| 63325 | 324 | lemma right_diff_distrib [algebra_simps]: "a * (b - c) = a * b - a * c" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 325 | using distrib_left [of a b "-c "] by simp | 
| 29667 | 326 | |
| 63325 | 327 | lemma left_diff_distrib [algebra_simps]: "(a - b) * c = a * c - b * c" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 328 | using distrib_right [of a "- b" c] by simp | 
| 25152 | 329 | |
| 63325 | 330 | lemmas ring_distribs = distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 331 | |
| 63325 | 332 | lemma eq_add_iff1: "a * e + c = b * e + d \<longleftrightarrow> (a - b) * e + c = d" | 
| 333 | by (simp add: algebra_simps) | |
| 25230 | 334 | |
| 63325 | 335 | lemma eq_add_iff2: "a * e + c = b * e + d \<longleftrightarrow> c = (b - a) * e + d" | 
| 336 | by (simp add: algebra_simps) | |
| 25230 | 337 | |
| 25152 | 338 | end | 
| 339 | ||
| 63325 | 340 | lemmas ring_distribs = distrib_left distrib_right left_diff_distrib right_diff_distrib | 
| 25152 | 341 | |
| 22390 | 342 | class comm_ring = comm_semiring + ab_group_add | 
| 25267 | 343 | begin | 
| 14738 | 344 | |
| 27516 | 345 | subclass ring .. | 
| 28141 
193c3ea0f63b
instances comm_semiring_0_cancel < comm_semiring_0, comm_ring < comm_semiring_0_cancel
 huffman parents: 
27651diff
changeset | 346 | subclass comm_semiring_0_cancel .. | 
| 25267 | 347 | |
| 63325 | 348 | lemma square_diff_square_factored: "x * x - y * y = (x + y) * (x - y)" | 
| 44350 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 349 | by (simp add: algebra_simps) | 
| 
63cddfbc5a09
replace lemma realpow_two_diff with new lemma square_diff_square_factored
 huffman parents: 
44346diff
changeset | 350 | |
| 25267 | 351 | end | 
| 14738 | 352 | |
| 22390 | 353 | class ring_1 = ring + zero_neq_one + monoid_mult | 
| 25267 | 354 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 355 | |
| 27516 | 356 | subclass semiring_1_cancel .. | 
| 25267 | 357 | |
| 63325 | 358 | lemma square_diff_one_factored: "x * x - 1 = (x + 1) * (x - 1)" | 
| 44346 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 359 | by (simp add: algebra_simps) | 
| 
00dd3c4dabe0
rename real_squared_diff_one_factored to square_diff_one_factored and move to Rings.thy
 huffman parents: 
44064diff
changeset | 360 | |
| 25267 | 361 | end | 
| 25152 | 362 | |
| 22390 | 363 | class comm_ring_1 = comm_ring + zero_neq_one + comm_monoid_mult | 
| 25267 | 364 | begin | 
| 14738 | 365 | |
| 27516 | 366 | subclass ring_1 .. | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 367 | subclass comm_semiring_1_cancel | 
| 59816 
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
 haftmann parents: 
59557diff
changeset | 368 | by unfold_locales (simp add: algebra_simps) | 
| 58647 | 369 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 370 | lemma dvd_minus_iff [simp]: "x dvd - y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 371 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 372 | assume "x dvd - y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 373 | then have "x dvd - 1 * - y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 374 | then show "x dvd y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 375 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 376 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 377 | then have "x dvd - 1 * y" by (rule dvd_mult) | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 378 | then show "x dvd - y" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 379 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 380 | |
| 29465 
b2cfb5d0a59e
change dvd_minus_iff, minus_dvd_iff from [iff] to [simp] (due to problems with Library/Primes.thy)
 huffman parents: 
29461diff
changeset | 381 | lemma minus_dvd_iff [simp]: "- x dvd y \<longleftrightarrow> x dvd y" | 
| 29408 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 382 | proof | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 383 | assume "- x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 384 | then obtain k where "y = - x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 385 | then have "y = x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 386 | then show "x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 387 | next | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 388 | assume "x dvd y" | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 389 | then obtain k where "y = x * k" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 390 | then have "y = - x * - k" by simp | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 391 | then show "- x dvd y" .. | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 392 | qed | 
| 
6d10cf26b5dc
add lemmas dvd_minus_iff and minus_dvd_iff in class comm_ring_1
 huffman parents: 
29407diff
changeset | 393 | |
| 63325 | 394 | lemma dvd_diff [simp]: "x dvd y \<Longrightarrow> x dvd z \<Longrightarrow> x dvd (y - z)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54225diff
changeset | 395 | using dvd_add [of x y "- z"] by simp | 
| 29409 | 396 | |
| 25267 | 397 | end | 
| 25152 | 398 | |
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 399 | class semiring_no_zero_divisors = semiring_0 + | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 400 | assumes no_zero_divisors: "a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> a * b \<noteq> 0" | 
| 25230 | 401 | begin | 
| 402 | ||
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 403 | lemma divisors_zero: | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 404 | assumes "a * b = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 405 | shows "a = 0 \<or> b = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 406 | proof (rule classical) | 
| 63325 | 407 | assume "\<not> ?thesis" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 408 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 409 | with no_zero_divisors have "a * b \<noteq> 0" by blast | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 410 | with assms show ?thesis by simp | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 411 | qed | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 412 | |
| 63325 | 413 | lemma mult_eq_0_iff [simp]: "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" | 
| 25230 | 414 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 415 | case False | 
| 416 | then have "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 25230 | 417 | then show ?thesis using no_zero_divisors by simp | 
| 418 | next | |
| 63325 | 419 | case True | 
| 420 | then show ?thesis by auto | |
| 25230 | 421 | qed | 
| 422 | ||
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 423 | end | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 424 | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 425 | class semiring_1_no_zero_divisors = semiring_1 + semiring_no_zero_divisors | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 426 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 427 | class semiring_no_zero_divisors_cancel = semiring_no_zero_divisors + | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 428 | assumes mult_cancel_right [simp]: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 429 | and mult_cancel_left [simp]: "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" | 
| 58952 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 430 | begin | 
| 
5d82cdef6c1b
equivalence rules for structures without zero divisors
 haftmann parents: 
58889diff
changeset | 431 | |
| 63325 | 432 | lemma mult_left_cancel: "c \<noteq> 0 \<Longrightarrow> c * a = c * b \<longleftrightarrow> a = b" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 433 | by simp | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55912diff
changeset | 434 | |
| 63325 | 435 | lemma mult_right_cancel: "c \<noteq> 0 \<Longrightarrow> a * c = b * c \<longleftrightarrow> a = b" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 436 | by simp | 
| 56217 
dc429a5b13c4
Some rationalisation of basic lemmas
 paulson <lp15@cam.ac.uk> parents: 
55912diff
changeset | 437 | |
| 25230 | 438 | end | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 439 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 440 | class ring_no_zero_divisors = ring + semiring_no_zero_divisors | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 441 | begin | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 442 | |
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 443 | subclass semiring_no_zero_divisors_cancel | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 444 | proof | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 445 | fix a b c | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 446 | have "a * c = b * c \<longleftrightarrow> (a - b) * c = 0" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 447 | by (simp add: algebra_simps) | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 448 | also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 449 | by auto | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 450 | finally show "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" . | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 451 | have "c * a = c * b \<longleftrightarrow> c * (a - b) = 0" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 452 | by (simp add: algebra_simps) | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 453 | also have "\<dots> \<longleftrightarrow> c = 0 \<or> a = b" | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 454 | by auto | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 455 | finally show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" . | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 456 | qed | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 457 | |
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 458 | end | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 459 | |
| 23544 | 460 | class ring_1_no_zero_divisors = ring_1 + ring_no_zero_divisors | 
| 26274 | 461 | begin | 
| 462 | ||
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 463 | subclass semiring_1_no_zero_divisors .. | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 464 | |
| 63325 | 465 | lemma square_eq_1_iff: "x * x = 1 \<longleftrightarrow> x = 1 \<or> x = - 1" | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 466 | proof - | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 467 | have "(x - 1) * (x + 1) = x * x - 1" | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 468 | by (simp add: algebra_simps) | 
| 63325 | 469 | then have "x * x = 1 \<longleftrightarrow> (x - 1) * (x + 1) = 0" | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 470 | by simp | 
| 63325 | 471 | then show ?thesis | 
| 36821 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 472 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 473 | qed | 
| 
9207505d1ee5
move lemma real_mult_is_one to Rings.thy, renamed to square_eq_1_iff
 huffman parents: 
36719diff
changeset | 474 | |
| 63325 | 475 | lemma mult_cancel_right1 [simp]: "c = b * c \<longleftrightarrow> c = 0 \<or> b = 1" | 
| 476 | using mult_cancel_right [of 1 c b] by auto | |
| 26274 | 477 | |
| 63325 | 478 | lemma mult_cancel_right2 [simp]: "a * c = c \<longleftrightarrow> c = 0 \<or> a = 1" | 
| 479 | using mult_cancel_right [of a c 1] by simp | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 480 | |
| 63325 | 481 | lemma mult_cancel_left1 [simp]: "c = c * b \<longleftrightarrow> c = 0 \<or> b = 1" | 
| 482 | using mult_cancel_left [of c 1 b] by force | |
| 26274 | 483 | |
| 63325 | 484 | lemma mult_cancel_left2 [simp]: "c * a = c \<longleftrightarrow> c = 0 \<or> a = 1" | 
| 485 | using mult_cancel_left [of c a 1] by simp | |
| 26274 | 486 | |
| 487 | end | |
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 488 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 489 | class semidom = comm_semiring_1_cancel + semiring_no_zero_divisors | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 490 | begin | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 491 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 492 | subclass semiring_1_no_zero_divisors .. | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 493 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62390diff
changeset | 494 | end | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 495 | |
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 496 | class idom = comm_ring_1 + semiring_no_zero_divisors | 
| 25186 | 497 | begin | 
| 14421 
ee97b6463cb4
new Ring_and_Field hierarchy, eliminating redundant axioms
 paulson parents: 
14398diff
changeset | 498 | |
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 499 | subclass semidom .. | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 500 | |
| 27516 | 501 | subclass ring_1_no_zero_divisors .. | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 502 | |
| 63325 | 503 | lemma dvd_mult_cancel_right [simp]: "a * c dvd b * c \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 504 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 505 | have "a * c dvd b * c \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 506 | unfolding dvd_def by (simp add: ac_simps) | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 507 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 508 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 509 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 510 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 511 | |
| 63325 | 512 | lemma dvd_mult_cancel_left [simp]: "c * a dvd c * b \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 513 | proof - | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 514 | have "c * a dvd c * b \<longleftrightarrow> (\<exists>k. b * c = (a * k) * c)" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 515 | unfolding dvd_def by (simp add: ac_simps) | 
| 29981 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 516 | also have "(\<exists>k. b * c = (a * k) * c) \<longleftrightarrow> c = 0 \<or> a dvd b" | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 517 | unfolding dvd_def by simp | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 518 | finally show ?thesis . | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 519 | qed | 
| 
7d0ed261b712
generalize int_dvd_cancel_factor simproc to idom class
 huffman parents: 
29949diff
changeset | 520 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 521 | lemma square_eq_iff: "a * a = b * b \<longleftrightarrow> a = b \<or> a = - b" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 522 | proof | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 523 | assume "a * a = b * b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 524 | then have "(a - b) * (a + b) = 0" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 525 | by (simp add: algebra_simps) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 526 | then show "a = b \<or> a = - b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 527 | by (simp add: eq_neg_iff_add_eq_0) | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 528 | next | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 529 | assume "a = b \<or> a = - b" | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 530 | then show "a * a = b * b" by auto | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 531 | qed | 
| 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 532 | |
| 25186 | 533 | end | 
| 25152 | 534 | |
| 64290 | 535 | class idom_abs_sgn = idom + abs + sgn + | 
| 536 | assumes sgn_mult_abs: "sgn a * \<bar>a\<bar> = a" | |
| 537 | and sgn_sgn [simp]: "sgn (sgn a) = sgn a" | |
| 538 | and abs_abs [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>" | |
| 539 | and abs_0 [simp]: "\<bar>0\<bar> = 0" | |
| 540 | and sgn_0 [simp]: "sgn 0 = 0" | |
| 541 | and sgn_1 [simp]: "sgn 1 = 1" | |
| 542 | and sgn_minus_1: "sgn (- 1) = - 1" | |
| 543 | and sgn_mult: "sgn (a * b) = sgn a * sgn b" | |
| 544 | begin | |
| 545 | ||
| 546 | lemma sgn_eq_0_iff: | |
| 547 | "sgn a = 0 \<longleftrightarrow> a = 0" | |
| 548 | proof - | |
| 549 |   { assume "sgn a = 0"
 | |
| 550 | then have "sgn a * \<bar>a\<bar> = 0" | |
| 551 | by simp | |
| 552 | then have "a = 0" | |
| 553 | by (simp add: sgn_mult_abs) | |
| 554 | } then show ?thesis | |
| 555 | by auto | |
| 556 | qed | |
| 557 | ||
| 558 | lemma abs_eq_0_iff: | |
| 559 | "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0" | |
| 560 | proof - | |
| 561 |   { assume "\<bar>a\<bar> = 0"
 | |
| 562 | then have "sgn a * \<bar>a\<bar> = 0" | |
| 563 | by simp | |
| 564 | then have "a = 0" | |
| 565 | by (simp add: sgn_mult_abs) | |
| 566 | } then show ?thesis | |
| 567 | by auto | |
| 568 | qed | |
| 569 | ||
| 570 | lemma abs_mult_sgn: | |
| 571 | "\<bar>a\<bar> * sgn a = a" | |
| 572 | using sgn_mult_abs [of a] by (simp add: ac_simps) | |
| 573 | ||
| 574 | lemma abs_1 [simp]: | |
| 575 | "\<bar>1\<bar> = 1" | |
| 576 | using sgn_mult_abs [of 1] by simp | |
| 577 | ||
| 578 | lemma sgn_abs [simp]: | |
| 579 | "\<bar>sgn a\<bar> = of_bool (a \<noteq> 0)" | |
| 580 | using sgn_mult_abs [of "sgn a"] mult_cancel_left [of "sgn a" "\<bar>sgn a\<bar>" 1] | |
| 581 | by (auto simp add: sgn_eq_0_iff) | |
| 582 | ||
| 583 | lemma abs_sgn [simp]: | |
| 584 | "sgn \<bar>a\<bar> = of_bool (a \<noteq> 0)" | |
| 585 | using sgn_mult_abs [of "\<bar>a\<bar>"] mult_cancel_right [of "sgn \<bar>a\<bar>" "\<bar>a\<bar>" 1] | |
| 586 | by (auto simp add: abs_eq_0_iff) | |
| 587 | ||
| 588 | lemma abs_mult: | |
| 589 | "\<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | |
| 590 | proof (cases "a = 0 \<or> b = 0") | |
| 591 | case True | |
| 592 | then show ?thesis | |
| 593 | by auto | |
| 594 | next | |
| 595 | case False | |
| 596 | then have *: "sgn (a * b) \<noteq> 0" | |
| 597 | by (simp add: sgn_eq_0_iff) | |
| 598 | from abs_mult_sgn [of "a * b"] abs_mult_sgn [of a] abs_mult_sgn [of b] | |
| 599 | have "\<bar>a * b\<bar> * sgn (a * b) = \<bar>a\<bar> * sgn a * \<bar>b\<bar> * sgn b" | |
| 600 | by (simp add: ac_simps) | |
| 601 | then have "\<bar>a * b\<bar> * sgn (a * b) = \<bar>a\<bar> * \<bar>b\<bar> * sgn (a * b)" | |
| 602 | by (simp add: sgn_mult ac_simps) | |
| 603 | with * show ?thesis | |
| 604 | by simp | |
| 605 | qed | |
| 606 | ||
| 607 | lemma sgn_minus [simp]: | |
| 608 | "sgn (- a) = - sgn a" | |
| 609 | proof - | |
| 610 | from sgn_minus_1 have "sgn (- 1 * a) = - 1 * sgn a" | |
| 611 | by (simp only: sgn_mult) | |
| 612 | then show ?thesis | |
| 613 | by simp | |
| 614 | qed | |
| 615 | ||
| 616 | lemma abs_minus [simp]: | |
| 617 | "\<bar>- a\<bar> = \<bar>a\<bar>" | |
| 618 | proof - | |
| 619 | have [simp]: "\<bar>- 1\<bar> = 1" | |
| 620 | using sgn_mult_abs [of "- 1"] by simp | |
| 621 | then have "\<bar>- 1 * a\<bar> = 1 * \<bar>a\<bar>" | |
| 622 | by (simp only: abs_mult) | |
| 623 | then show ?thesis | |
| 624 | by simp | |
| 625 | qed | |
| 626 | ||
| 627 | end | |
| 628 | ||
| 60758 | 629 | text \<open> | 
| 35302 | 630 | The theory of partially ordered rings is taken from the books: | 
| 63325 | 631 | \<^item> \<^emph>\<open>Lattice Theory\<close> by Garret Birkhoff, American Mathematical Society, 1979 | 
| 632 | \<^item> \<^emph>\<open>Partially Ordered Algebraic Systems\<close>, Pergamon Press, 1963 | |
| 633 | ||
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 634 | Most of the used notions can also be looked up in | 
| 63680 | 635 | \<^item> \<^url>\<open>http://www.mathworld.com\<close> by Eric Weisstein et. al. | 
| 63325 | 636 | \<^item> \<^emph>\<open>Algebra I\<close> by van der Waerden, Springer | 
| 60758 | 637 | \<close> | 
| 35302 | 638 | |
| 63950 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 haftmann parents: 
63947diff
changeset | 639 | text \<open>Syntactic division operator\<close> | 
| 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 haftmann parents: 
63947diff
changeset | 640 | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 641 | class divide = | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 642 | fixes divide :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70) | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 643 | |
| 60758 | 644 | setup \<open>Sign.add_const_constraint (@{const_name "divide"}, SOME @{typ "'a \<Rightarrow> 'a \<Rightarrow> 'a"})\<close>
 | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 645 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 646 | context semiring | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 647 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 648 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 649 | lemma [field_simps]: | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 650 | shows distrib_left_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b + c) = a * b + a * c" | 
| 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 651 | and distrib_right_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a + b) * c = a * c + b * c" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 652 | by (rule distrib_left distrib_right)+ | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 653 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 654 | end | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 655 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 656 | context ring | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 657 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 658 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 659 | lemma [field_simps]: | 
| 60429 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 660 | shows left_diff_distrib_NO_MATCH: "NO_MATCH (x div y) c \<Longrightarrow> (a - b) * c = a * c - b * c" | 
| 
d3d1e185cd63
uniform _ div _ as infix syntax for ring division
 haftmann parents: 
60353diff
changeset | 661 | and right_diff_distrib_NO_MATCH: "NO_MATCH (x div y) a \<Longrightarrow> a * (b - c) = a * b - a * c" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 662 | by (rule left_diff_distrib right_diff_distrib)+ | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 663 | |
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 664 | end | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 665 | |
| 60758 | 666 | setup \<open>Sign.add_const_constraint (@{const_name "divide"}, SOME @{typ "'a::divide \<Rightarrow> 'a \<Rightarrow> 'a"})\<close>
 | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 667 | |
| 63950 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 haftmann parents: 
63947diff
changeset | 668 | text \<open>Algebraic classes with division\<close> | 
| 
cdc1e59aa513
syntactic type class for operation mod named after mod;
 haftmann parents: 
63947diff
changeset | 669 | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 670 | class semidom_divide = semidom + divide + | 
| 64240 | 671 | assumes nonzero_mult_div_cancel_right [simp]: "b \<noteq> 0 \<Longrightarrow> (a * b) div b = a" | 
| 672 | assumes div_by_0 [simp]: "a div 0 = 0" | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 673 | begin | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 674 | |
| 64240 | 675 | lemma nonzero_mult_div_cancel_left [simp]: "a \<noteq> 0 \<Longrightarrow> (a * b) div a = b" | 
| 676 | using nonzero_mult_div_cancel_right [of a b] by (simp add: ac_simps) | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 677 | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 678 | subclass semiring_no_zero_divisors_cancel | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 679 | proof | 
| 63325 | 680 | show *: "a * c = b * c \<longleftrightarrow> c = 0 \<or> a = b" for a b c | 
| 681 | proof (cases "c = 0") | |
| 682 | case True | |
| 683 | then show ?thesis by simp | |
| 684 | next | |
| 685 | case False | |
| 63588 | 686 | have "a = b" if "a * c = b * c" | 
| 687 | proof - | |
| 688 | from that have "a * c div c = b * c div c" | |
| 63325 | 689 | by simp | 
| 63588 | 690 | with False show ?thesis | 
| 63325 | 691 | by simp | 
| 63588 | 692 | qed | 
| 63325 | 693 | then show ?thesis by auto | 
| 694 | qed | |
| 695 | show "c * a = c * b \<longleftrightarrow> c = 0 \<or> a = b" for a b c | |
| 696 | using * [of a c b] by (simp add: ac_simps) | |
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 697 | qed | 
| 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 698 | |
| 63325 | 699 | lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1" | 
| 64240 | 700 | using nonzero_mult_div_cancel_left [of a 1] by simp | 
| 60516 
0826b7025d07
generalized some theorems about integral domains and moved to HOL theories
 haftmann parents: 
60429diff
changeset | 701 | |
| 64240 | 702 | lemma div_0 [simp]: "0 div a = 0" | 
| 60570 | 703 | proof (cases "a = 0") | 
| 63325 | 704 | case True | 
| 705 | then show ?thesis by simp | |
| 60570 | 706 | next | 
| 63325 | 707 | case False | 
| 708 | then have "a * 0 div a = 0" | |
| 64240 | 709 | by (rule nonzero_mult_div_cancel_left) | 
| 60570 | 710 | then show ?thesis by simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 711 | qed | 
| 60570 | 712 | |
| 64240 | 713 | lemma div_by_1 [simp]: "a div 1 = a" | 
| 714 | using nonzero_mult_div_cancel_left [of 1 a] by simp | |
| 60690 | 715 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 716 | lemma dvd_div_eq_0_iff: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 717 | assumes "b dvd a" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 718 | shows "a div b = 0 \<longleftrightarrow> a = 0" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 719 | using assms by (elim dvdE, cases "b = 0") simp_all | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 720 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 721 | lemma dvd_div_eq_cancel: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 722 | "a div c = b div c \<Longrightarrow> c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> a = b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 723 | by (elim dvdE, cases "c = 0") simp_all | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 724 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 725 | lemma dvd_div_eq_iff: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 726 | "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> a div c = b div c \<longleftrightarrow> a = b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 727 | by (elim dvdE, cases "c = 0") simp_all | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 728 | |
| 60867 | 729 | end | 
| 730 | ||
| 731 | class idom_divide = idom + semidom_divide | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 732 | begin | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 733 | |
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 734 | lemma dvd_neg_div: | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 735 | assumes "b dvd a" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 736 | shows "- a div b = - (a div b)" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 737 | proof (cases "b = 0") | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 738 | case True | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 739 | then show ?thesis by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 740 | next | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 741 | case False | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 742 | from assms obtain c where "a = b * c" .. | 
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 743 | then have "- a div b = (b * - c) div b" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 744 | by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 745 | from False also have "\<dots> = - c" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 746 | by (rule nonzero_mult_div_cancel_left) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 747 | with False \<open>a = b * c\<close> show ?thesis | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 748 | by simp | 
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 749 | qed | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 750 | |
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 751 | lemma dvd_div_neg: | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 752 | assumes "b dvd a" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 753 | shows "a div - b = - (a div b)" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 754 | proof (cases "b = 0") | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 755 | case True | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 756 | then show ?thesis by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 757 | next | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 758 | case False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 759 | then have "- b \<noteq> 0" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 760 | by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 761 | from assms obtain c where "a = b * c" .. | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 762 | then have "a div - b = (- b * - c) div - b" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 763 | by simp | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 764 | from \<open>- b \<noteq> 0\<close> also have "\<dots> = - c" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 765 | by (rule nonzero_mult_div_cancel_left) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 766 | with False \<open>a = b * c\<close> show ?thesis | 
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 767 | by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 768 | qed | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 769 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 770 | end | 
| 60867 | 771 | |
| 772 | class algebraic_semidom = semidom_divide | |
| 773 | begin | |
| 774 | ||
| 775 | text \<open> | |
| 776 |   Class @{class algebraic_semidom} enriches a integral domain
 | |
| 777 | by notions from algebra, like units in a ring. | |
| 778 | It is a separate class to avoid spoiling fields with notions | |
| 779 | which are degenerated there. | |
| 780 | \<close> | |
| 781 | ||
| 60690 | 782 | lemma dvd_times_left_cancel_iff [simp]: | 
| 783 | assumes "a \<noteq> 0" | |
| 63588 | 784 | shows "a * b dvd a * c \<longleftrightarrow> b dvd c" | 
| 785 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 60690 | 786 | proof | 
| 63588 | 787 | assume ?lhs | 
| 63325 | 788 | then obtain d where "a * c = a * b * d" .. | 
| 60690 | 789 | with assms have "c = b * d" by (simp add: ac_simps) | 
| 63588 | 790 | then show ?rhs .. | 
| 60690 | 791 | next | 
| 63588 | 792 | assume ?rhs | 
| 63325 | 793 | then obtain d where "c = b * d" .. | 
| 60690 | 794 | then have "a * c = a * b * d" by (simp add: ac_simps) | 
| 63588 | 795 | then show ?lhs .. | 
| 60690 | 796 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 797 | |
| 60690 | 798 | lemma dvd_times_right_cancel_iff [simp]: | 
| 799 | assumes "a \<noteq> 0" | |
| 63588 | 800 | shows "b * a dvd c * a \<longleftrightarrow> b dvd c" | 
| 63325 | 801 | using dvd_times_left_cancel_iff [of a b c] assms by (simp add: ac_simps) | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 802 | |
| 60690 | 803 | lemma div_dvd_iff_mult: | 
| 804 | assumes "b \<noteq> 0" and "b dvd a" | |
| 805 | shows "a div b dvd c \<longleftrightarrow> a dvd c * b" | |
| 806 | proof - | |
| 807 | from \<open>b dvd a\<close> obtain d where "a = b * d" .. | |
| 808 | with \<open>b \<noteq> 0\<close> show ?thesis by (simp add: ac_simps) | |
| 809 | qed | |
| 810 | ||
| 811 | lemma dvd_div_iff_mult: | |
| 812 | assumes "c \<noteq> 0" and "c dvd b" | |
| 813 | shows "a dvd b div c \<longleftrightarrow> a * c dvd b" | |
| 814 | proof - | |
| 815 | from \<open>c dvd b\<close> obtain d where "b = c * d" .. | |
| 816 | with \<open>c \<noteq> 0\<close> show ?thesis by (simp add: mult.commute [of a]) | |
| 817 | qed | |
| 818 | ||
| 60867 | 819 | lemma div_dvd_div [simp]: | 
| 820 | assumes "a dvd b" and "a dvd c" | |
| 821 | shows "b div a dvd c div a \<longleftrightarrow> b dvd c" | |
| 822 | proof (cases "a = 0") | |
| 63325 | 823 | case True | 
| 824 | with assms show ?thesis by simp | |
| 60867 | 825 | next | 
| 826 | case False | |
| 827 | moreover from assms obtain k l where "b = a * k" and "c = a * l" | |
| 828 | by (auto elim!: dvdE) | |
| 829 | ultimately show ?thesis by simp | |
| 830 | qed | |
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60352diff
changeset | 831 | |
| 60867 | 832 | lemma div_add [simp]: | 
| 833 | assumes "c dvd a" and "c dvd b" | |
| 834 | shows "(a + b) div c = a div c + b div c" | |
| 835 | proof (cases "c = 0") | |
| 63325 | 836 | case True | 
| 837 | then show ?thesis by simp | |
| 60867 | 838 | next | 
| 839 | case False | |
| 840 | moreover from assms obtain k l where "a = c * k" and "b = c * l" | |
| 841 | by (auto elim!: dvdE) | |
| 842 | moreover have "c * k + c * l = c * (k + l)" | |
| 843 | by (simp add: algebra_simps) | |
| 844 | ultimately show ?thesis | |
| 845 | by simp | |
| 846 | qed | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 847 | |
| 60867 | 848 | lemma div_mult_div_if_dvd: | 
| 849 | assumes "b dvd a" and "d dvd c" | |
| 850 | shows "(a div b) * (c div d) = (a * c) div (b * d)" | |
| 851 | proof (cases "b = 0 \<or> c = 0") | |
| 63325 | 852 | case True | 
| 853 | with assms show ?thesis by auto | |
| 60867 | 854 | next | 
| 855 | case False | |
| 856 | moreover from assms obtain k l where "a = b * k" and "c = d * l" | |
| 857 | by (auto elim!: dvdE) | |
| 858 | moreover have "b * k * (d * l) div (b * d) = (b * d) * (k * l) div (b * d)" | |
| 859 | by (simp add: ac_simps) | |
| 860 | ultimately show ?thesis by simp | |
| 861 | qed | |
| 862 | ||
| 863 | lemma dvd_div_eq_mult: | |
| 864 | assumes "a \<noteq> 0" and "a dvd b" | |
| 865 | shows "b div a = c \<longleftrightarrow> b = c * a" | |
| 63588 | 866 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60867 | 867 | proof | 
| 63588 | 868 | assume ?rhs | 
| 869 | then show ?lhs by (simp add: assms) | |
| 60867 | 870 | next | 
| 63588 | 871 | assume ?lhs | 
| 60867 | 872 | then have "b div a * a = c * a" by simp | 
| 63325 | 873 | moreover from assms have "b div a * a = b" | 
| 60867 | 874 | by (auto elim!: dvdE simp add: ac_simps) | 
| 63588 | 875 | ultimately show ?rhs by simp | 
| 60867 | 876 | qed | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 877 | |
| 63325 | 878 | lemma dvd_div_mult_self [simp]: "a dvd b \<Longrightarrow> b div a * a = b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 879 | by (cases "a = 0") (auto elim: dvdE simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 880 | |
| 63325 | 881 | lemma dvd_mult_div_cancel [simp]: "a dvd b \<Longrightarrow> a * (b div a) = b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 882 | using dvd_div_mult_self [of a b] by (simp add: ac_simps) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 883 | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 884 | lemma div_mult_swap: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 885 | assumes "c dvd b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 886 | shows "a * (b div c) = (a * b) div c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 887 | proof (cases "c = 0") | 
| 63325 | 888 | case True | 
| 889 | then show ?thesis by simp | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 890 | next | 
| 63325 | 891 | case False | 
| 892 | from assms obtain d where "b = c * d" .. | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 893 | moreover from False have "a * divide (d * c) c = ((a * d) * c) div c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 894 | by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 895 | ultimately show ?thesis by (simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 896 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 897 | |
| 63325 | 898 | lemma dvd_div_mult: "c dvd b \<Longrightarrow> b div c * a = (b * a) div c" | 
| 899 | using div_mult_swap [of c b a] by (simp add: ac_simps) | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 900 | |
| 60570 | 901 | lemma dvd_div_mult2_eq: | 
| 902 | assumes "b * c dvd a" | |
| 903 | shows "a div (b * c) = a div b div c" | |
| 63325 | 904 | proof - | 
| 905 | from assms obtain k where "a = b * c * k" .. | |
| 60570 | 906 | then show ?thesis | 
| 907 | by (cases "b = 0 \<or> c = 0") (auto, simp add: ac_simps) | |
| 908 | qed | |
| 909 | ||
| 60867 | 910 | lemma dvd_div_div_eq_mult: | 
| 911 | assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d" | |
| 63588 | 912 | shows "b div a = d div c \<longleftrightarrow> b * c = a * d" | 
| 913 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 60867 | 914 | proof - | 
| 915 | from assms have "a * c \<noteq> 0" by simp | |
| 63588 | 916 | then have "?lhs \<longleftrightarrow> b div a * (a * c) = d div c * (a * c)" | 
| 60867 | 917 | by simp | 
| 918 | also have "\<dots> \<longleftrightarrow> (a * (b div a)) * c = (c * (d div c)) * a" | |
| 919 | by (simp add: ac_simps) | |
| 920 | also have "\<dots> \<longleftrightarrow> (a * b div a) * c = (c * d div c) * a" | |
| 921 | using assms by (simp add: div_mult_swap) | |
| 63588 | 922 | also have "\<dots> \<longleftrightarrow> ?rhs" | 
| 60867 | 923 | using assms by (simp add: ac_simps) | 
| 924 | finally show ?thesis . | |
| 925 | qed | |
| 926 | ||
| 63359 | 927 | lemma dvd_mult_imp_div: | 
| 928 | assumes "a * c dvd b" | |
| 929 | shows "a dvd b div c" | |
| 930 | proof (cases "c = 0") | |
| 931 | case True then show ?thesis by simp | |
| 932 | next | |
| 933 | case False | |
| 934 | from \<open>a * c dvd b\<close> obtain d where "b = a * c * d" .. | |
| 63588 | 935 | with False show ?thesis | 
| 936 | by (simp add: mult.commute [of a] mult.assoc) | |
| 63359 | 937 | qed | 
| 938 | ||
| 64592 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 939 | lemma div_div_eq_right: | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 940 | assumes "c dvd b" "b dvd a" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 941 | shows "a div (b div c) = a div b * c" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 942 | proof (cases "c = 0 \<or> b = 0") | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 943 | case True | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 944 | then show ?thesis | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 945 | by auto | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 946 | next | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 947 | case False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 948 | from assms obtain r s where "b = c * r" and "a = c * r * s" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 949 | by (blast elim: dvdE) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 950 | moreover with False have "r \<noteq> 0" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 951 | by auto | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 952 | ultimately show ?thesis using False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 953 | by simp (simp add: mult.commute [of _ r] mult.assoc mult.commute [of c]) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 954 | qed | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 955 | |
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 956 | lemma div_div_div_same: | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 957 | assumes "d dvd b" "b dvd a" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 958 | shows "(a div d) div (b div d) = a div b" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 959 | proof (cases "b = 0 \<or> d = 0") | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 960 | case True | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 961 | with assms show ?thesis | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 962 | by auto | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 963 | next | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 964 | case False | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 965 | from assms obtain r s | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 966 | where "a = d * r * s" and "b = d * r" | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 967 | by (blast elim: dvdE) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 968 | with False show ?thesis | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 969 | by simp (simp add: ac_simps) | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 970 | qed | 
| 
7759f1766189
more fine-grained type class hierarchy for div and mod
 haftmann parents: 
64591diff
changeset | 971 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 972 | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 973 | text \<open>Units: invertible elements in a ring\<close> | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 974 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 975 | abbreviation is_unit :: "'a \<Rightarrow> bool" | 
| 63325 | 976 | where "is_unit a \<equiv> a dvd 1" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 977 | |
| 63325 | 978 | lemma not_is_unit_0 [simp]: "\<not> is_unit 0" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 979 | by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 980 | |
| 63325 | 981 | lemma unit_imp_dvd [dest]: "is_unit b \<Longrightarrow> b dvd a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 982 | by (rule dvd_trans [of _ 1]) simp_all | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 983 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 984 | lemma unit_dvdE: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 985 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 986 | obtains c where "a \<noteq> 0" and "b = a * c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 987 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 988 | from assms have "a dvd b" by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 989 | then obtain c where "b = a * c" .. | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 990 | moreover from assms have "a \<noteq> 0" by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 991 | ultimately show thesis using that by blast | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 992 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 993 | |
| 63325 | 994 | lemma dvd_unit_imp_unit: "a dvd b \<Longrightarrow> is_unit b \<Longrightarrow> is_unit a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 995 | by (rule dvd_trans) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 996 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 997 | lemma unit_div_1_unit [simp, intro]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 998 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 999 | shows "is_unit (1 div a)" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1000 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1001 | from assms have "1 = 1 div a * a" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1002 | then show "is_unit (1 div a)" by (rule dvdI) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1003 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1004 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1005 | lemma is_unitE [elim?]: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1006 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1007 | obtains b where "a \<noteq> 0" and "b \<noteq> 0" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1008 | and "is_unit b" and "1 div a = b" and "1 div b = a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1009 | and "a * b = 1" and "c div a = c * b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1010 | proof (rule that) | 
| 63040 | 1011 | define b where "b = 1 div a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1012 | then show "1 div a = b" by simp | 
| 63325 | 1013 | from assms b_def show "is_unit b" by simp | 
| 1014 | with assms show "a \<noteq> 0" and "b \<noteq> 0" by auto | |
| 1015 | from assms b_def show "a * b = 1" by simp | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1016 | then have "1 = a * b" .. | 
| 60758 | 1017 | with b_def \<open>b \<noteq> 0\<close> show "1 div b = a" by simp | 
| 63325 | 1018 | from assms have "a dvd c" .. | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1019 | then obtain d where "c = a * d" .. | 
| 60758 | 1020 | with \<open>a \<noteq> 0\<close> \<open>a * b = 1\<close> show "c div a = c * b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1021 | by (simp add: mult.assoc mult.left_commute [of a]) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1022 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1023 | |
| 63325 | 1024 | lemma unit_prod [intro]: "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a * b)" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1025 | by (subst mult_1_left [of 1, symmetric]) (rule mult_dvd_mono) | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1026 | |
| 63325 | 1027 | lemma is_unit_mult_iff: "is_unit (a * b) \<longleftrightarrow> is_unit a \<and> is_unit b" | 
| 62366 | 1028 | by (auto dest: dvd_mult_left dvd_mult_right) | 
| 1029 | ||
| 63325 | 1030 | lemma unit_div [intro]: "is_unit a \<Longrightarrow> is_unit b \<Longrightarrow> is_unit (a div b)" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1031 | by (erule is_unitE [of b a]) (simp add: ac_simps unit_prod) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1032 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1033 | lemma mult_unit_dvd_iff: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1034 | assumes "is_unit b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1035 | shows "a * b dvd c \<longleftrightarrow> a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1036 | proof | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1037 | assume "a * b dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1038 | with assms show "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1039 | by (simp add: dvd_mult_left) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1040 | next | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1041 | assume "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1042 | then obtain k where "c = a * k" .. | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1043 | with assms have "c = (a * b) * (1 div b * k)" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1044 | by (simp add: mult_ac) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1045 | then show "a * b dvd c" by (rule dvdI) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1046 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1047 | |
| 63924 | 1048 | lemma mult_unit_dvd_iff': "is_unit a \<Longrightarrow> (a * b) dvd c \<longleftrightarrow> b dvd c" | 
| 1049 | using mult_unit_dvd_iff [of a b c] by (simp add: ac_simps) | |
| 1050 | ||
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1051 | lemma dvd_mult_unit_iff: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1052 | assumes "is_unit b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1053 | shows "a dvd c * b \<longleftrightarrow> a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1054 | proof | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1055 | assume "a dvd c * b" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1056 | with assms have "c * b dvd c * (b * (1 div b))" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1057 | by (subst mult_assoc [symmetric]) simp | 
| 63325 | 1058 | also from assms have "b * (1 div b) = 1" | 
| 1059 | by (rule is_unitE) simp | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1060 | finally have "c * b dvd c" by simp | 
| 60758 | 1061 | with \<open>a dvd c * b\<close> show "a dvd c" by (rule dvd_trans) | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1062 | next | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1063 | assume "a dvd c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1064 | then show "a dvd c * b" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1065 | qed | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1066 | |
| 63924 | 1067 | lemma dvd_mult_unit_iff': "is_unit b \<Longrightarrow> a dvd b * c \<longleftrightarrow> a dvd c" | 
| 1068 | using dvd_mult_unit_iff [of b a c] by (simp add: ac_simps) | |
| 1069 | ||
| 63325 | 1070 | lemma div_unit_dvd_iff: "is_unit b \<Longrightarrow> a div b dvd c \<longleftrightarrow> a dvd c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1071 | by (erule is_unitE [of _ a]) (auto simp add: mult_unit_dvd_iff) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1072 | |
| 63325 | 1073 | lemma dvd_div_unit_iff: "is_unit b \<Longrightarrow> a dvd c div b \<longleftrightarrow> a dvd c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1074 | by (erule is_unitE [of _ c]) (simp add: dvd_mult_unit_iff) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1075 | |
| 63924 | 1076 | lemmas unit_dvd_iff = mult_unit_dvd_iff mult_unit_dvd_iff' | 
| 1077 | dvd_mult_unit_iff dvd_mult_unit_iff' | |
| 1078 | div_unit_dvd_iff dvd_div_unit_iff (* FIXME consider named_theorems *) | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1079 | |
| 63325 | 1080 | lemma unit_mult_div_div [simp]: "is_unit a \<Longrightarrow> b * (1 div a) = b div a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1081 | by (erule is_unitE [of _ b]) simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1082 | |
| 63325 | 1083 | lemma unit_div_mult_self [simp]: "is_unit a \<Longrightarrow> b div a * a = b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1084 | by (rule dvd_div_mult_self) auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1085 | |
| 63325 | 1086 | lemma unit_div_1_div_1 [simp]: "is_unit a \<Longrightarrow> 1 div (1 div a) = a" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1087 | by (erule is_unitE) simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1088 | |
| 63325 | 1089 | lemma unit_div_mult_swap: "is_unit c \<Longrightarrow> a * (b div c) = (a * b) div c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1090 | by (erule unit_dvdE [of _ b]) (simp add: mult.left_commute [of _ c]) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1091 | |
| 63325 | 1092 | lemma unit_div_commute: "is_unit b \<Longrightarrow> (a div b) * c = (a * c) div b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1093 | using unit_div_mult_swap [of b c a] by (simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1094 | |
| 63325 | 1095 | lemma unit_eq_div1: "is_unit b \<Longrightarrow> a div b = c \<longleftrightarrow> a = c * b" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1096 | by (auto elim: is_unitE) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1097 | |
| 63325 | 1098 | lemma unit_eq_div2: "is_unit b \<Longrightarrow> a = c div b \<longleftrightarrow> a * b = c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1099 | using unit_eq_div1 [of b c a] by auto | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1100 | |
| 63325 | 1101 | lemma unit_mult_left_cancel: "is_unit a \<Longrightarrow> a * b = a * c \<longleftrightarrow> b = c" | 
| 1102 | using mult_cancel_left [of a b c] by auto | |
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1103 | |
| 63325 | 1104 | lemma unit_mult_right_cancel: "is_unit a \<Longrightarrow> b * a = c * a \<longleftrightarrow> b = c" | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1105 | using unit_mult_left_cancel [of a b c] by (auto simp add: ac_simps) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1106 | |
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1107 | lemma unit_div_cancel: | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1108 | assumes "is_unit a" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1109 | shows "b div a = c div a \<longleftrightarrow> b = c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1110 | proof - | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1111 | from assms have "is_unit (1 div a)" by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1112 | then have "b * (1 div a) = c * (1 div a) \<longleftrightarrow> b = c" | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1113 | by (rule unit_mult_right_cancel) | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1114 | with assms show ?thesis by simp | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1115 | qed | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1116 | |
| 60570 | 1117 | lemma is_unit_div_mult2_eq: | 
| 1118 | assumes "is_unit b" and "is_unit c" | |
| 1119 | shows "a div (b * c) = a div b div c" | |
| 1120 | proof - | |
| 63325 | 1121 | from assms have "is_unit (b * c)" | 
| 1122 | by (simp add: unit_prod) | |
| 60570 | 1123 | then have "b * c dvd a" | 
| 1124 | by (rule unit_imp_dvd) | |
| 1125 | then show ?thesis | |
| 1126 | by (rule dvd_div_mult2_eq) | |
| 1127 | qed | |
| 1128 | ||
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1129 | lemmas unit_simps = mult_unit_dvd_iff div_unit_dvd_iff dvd_mult_unit_iff | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1130 | dvd_div_unit_iff unit_div_mult_swap unit_div_commute | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1131 | unit_mult_left_cancel unit_mult_right_cancel unit_div_cancel | 
| 60517 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1132 | unit_eq_div1 unit_eq_div2 | 
| 
f16e4fb20652
separate class for notions specific for integral (semi)domains, in contrast to fields where these are trivial
 haftmann parents: 
60516diff
changeset | 1133 | |
| 64240 | 1134 | lemma is_unit_div_mult_cancel_left: | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1135 | assumes "a \<noteq> 0" and "is_unit b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1136 | shows "a div (a * b) = 1 div b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1137 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1138 | from assms have "a div (a * b) = a div a div b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1139 | by (simp add: mult_unit_dvd_iff dvd_div_mult2_eq) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1140 | with assms show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1141 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1142 | |
| 64240 | 1143 | lemma is_unit_div_mult_cancel_right: | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1144 | assumes "a \<noteq> 0" and "is_unit b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1145 | shows "a div (b * a) = 1 div b" | 
| 64240 | 1146 | using assms is_unit_div_mult_cancel_left [of a b] by (simp add: ac_simps) | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1147 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1148 | lemma unit_div_eq_0_iff: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1149 | assumes "is_unit b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1150 | shows "a div b = 0 \<longleftrightarrow> a = 0" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1151 | by (rule dvd_div_eq_0_iff) (insert assms, auto) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1152 | |
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1153 | lemma div_mult_unit2: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1154 | "is_unit c \<Longrightarrow> b dvd a \<Longrightarrow> a div (b * c) = a div b div c" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1155 | by (rule dvd_div_mult2_eq) (simp_all add: mult_unit_dvd_iff) | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1156 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1157 | end | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1158 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1159 | class unit_factor = | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1160 | fixes unit_factor :: "'a \<Rightarrow> 'a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1161 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1162 | class semidom_divide_unit_factor = semidom_divide + unit_factor + | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1163 | assumes unit_factor_0 [simp]: "unit_factor 0 = 0" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1164 | and is_unit_unit_factor: "a dvd 1 \<Longrightarrow> unit_factor a = a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1165 | and unit_factor_is_unit: "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd 1" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1166 | and unit_factor_mult: "unit_factor (a * b) = unit_factor a * unit_factor b" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1167 | -- \<open>This fine-grained hierarchy will later on allow lean normalization of polynomials\<close> | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1168 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1169 | class normalization_semidom = algebraic_semidom + semidom_divide_unit_factor + | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1170 | fixes normalize :: "'a \<Rightarrow> 'a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1171 | assumes unit_factor_mult_normalize [simp]: "unit_factor a * normalize a = a" | 
| 63588 | 1172 | and normalize_0 [simp]: "normalize 0 = 0" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1173 | begin | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1174 | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1175 | text \<open> | 
| 63588 | 1176 |   Class @{class normalization_semidom} cultivates the idea that each integral
 | 
| 1177 | domain can be split into equivalence classes whose representants are | |
| 1178 |   associated, i.e. divide each other. @{const normalize} specifies a canonical
 | |
| 1179 | representant for each equivalence class. The rationale behind this is that | |
| 1180 | it is easier to reason about equality than equivalences, hence we prefer to | |
| 1181 | think about equality of normalized values rather than associated elements. | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1182 | \<close> | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1183 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1184 | declare unit_factor_is_unit [iff] | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1185 | |
| 63325 | 1186 | lemma unit_factor_dvd [simp]: "a \<noteq> 0 \<Longrightarrow> unit_factor a dvd b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1187 | by (rule unit_imp_dvd) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1188 | |
| 63325 | 1189 | lemma unit_factor_self [simp]: "unit_factor a dvd a" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1190 | by (cases "a = 0") simp_all | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1191 | |
| 63325 | 1192 | lemma normalize_mult_unit_factor [simp]: "normalize a * unit_factor a = a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1193 | using unit_factor_mult_normalize [of a] by (simp add: ac_simps) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1194 | |
| 63325 | 1195 | lemma normalize_eq_0_iff [simp]: "normalize a = 0 \<longleftrightarrow> a = 0" | 
| 63588 | 1196 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1197 | proof | 
| 63588 | 1198 | assume ?lhs | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1199 | moreover have "unit_factor a * normalize a = a" by simp | 
| 63588 | 1200 | ultimately show ?rhs by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1201 | next | 
| 63588 | 1202 | assume ?rhs | 
| 1203 | then show ?lhs by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1204 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1205 | |
| 63325 | 1206 | lemma unit_factor_eq_0_iff [simp]: "unit_factor a = 0 \<longleftrightarrow> a = 0" | 
| 63588 | 1207 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1208 | proof | 
| 63588 | 1209 | assume ?lhs | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1210 | moreover have "unit_factor a * normalize a = a" by simp | 
| 63588 | 1211 | ultimately show ?rhs by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1212 | next | 
| 63588 | 1213 | assume ?rhs | 
| 1214 | then show ?lhs by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1215 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1216 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1217 | lemma div_unit_factor [simp]: "a div unit_factor a = normalize a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1218 | proof (cases "a = 0") | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1219 | case True | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1220 | then show ?thesis by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1221 | next | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1222 | case False | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1223 | then have "unit_factor a \<noteq> 0" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1224 | by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1225 | with nonzero_mult_div_cancel_left | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1226 | have "unit_factor a * normalize a div unit_factor a = normalize a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1227 | by blast | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1228 | then show ?thesis by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1229 | qed | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1230 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1231 | lemma normalize_div [simp]: "normalize a div a = 1 div unit_factor a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1232 | proof (cases "a = 0") | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1233 | case True | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1234 | then show ?thesis by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1235 | next | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1236 | case False | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1237 | have "normalize a div a = normalize a div (unit_factor a * normalize a)" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1238 | by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1239 | also have "\<dots> = 1 div unit_factor a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1240 | using False by (subst is_unit_div_mult_cancel_right) simp_all | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1241 | finally show ?thesis . | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1242 | qed | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1243 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1244 | lemma is_unit_normalize: | 
| 63325 | 1245 | assumes "is_unit a" | 
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1246 | shows "normalize a = 1" | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1247 | proof - | 
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1248 | from assms have "unit_factor a = a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1249 | by (rule is_unit_unit_factor) | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1250 | moreover from assms have "a \<noteq> 0" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1251 | by auto | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1252 | moreover have "normalize a = a div unit_factor a" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1253 | by simp | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1254 | ultimately show ?thesis | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1255 | by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1256 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1257 | |
| 63325 | 1258 | lemma unit_factor_1 [simp]: "unit_factor 1 = 1" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1259 | by (rule is_unit_unit_factor) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1260 | |
| 63325 | 1261 | lemma normalize_1 [simp]: "normalize 1 = 1" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1262 | by (rule is_unit_normalize) simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1263 | |
| 63325 | 1264 | lemma normalize_1_iff: "normalize a = 1 \<longleftrightarrow> is_unit a" | 
| 63588 | 1265 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1266 | proof | 
| 63588 | 1267 | assume ?rhs | 
| 1268 | then show ?lhs by (rule is_unit_normalize) | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1269 | next | 
| 63588 | 1270 | assume ?lhs | 
| 1271 | then have "unit_factor a * normalize a = unit_factor a * 1" | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1272 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1273 | then have "unit_factor a = a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1274 | by simp | 
| 63588 | 1275 | moreover | 
| 1276 | from \<open>?lhs\<close> have "a \<noteq> 0" by auto | |
| 1277 | then have "is_unit (unit_factor a)" by simp | |
| 1278 | ultimately show ?rhs by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1279 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1280 | |
| 63325 | 1281 | lemma div_normalize [simp]: "a div normalize a = unit_factor a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1282 | proof (cases "a = 0") | 
| 63325 | 1283 | case True | 
| 1284 | then show ?thesis by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1285 | next | 
| 63325 | 1286 | case False | 
| 1287 | then have "normalize a \<noteq> 0" by simp | |
| 64240 | 1288 | with nonzero_mult_div_cancel_right | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1289 | have "unit_factor a * normalize a div normalize a = unit_factor a" by blast | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1290 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1291 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1292 | |
| 63325 | 1293 | lemma mult_one_div_unit_factor [simp]: "a * (1 div unit_factor b) = a div unit_factor b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1294 | by (cases "b = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1295 | |
| 63947 | 1296 | lemma inv_unit_factor_eq_0_iff [simp]: | 
| 1297 | "1 div unit_factor a = 0 \<longleftrightarrow> a = 0" | |
| 1298 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 1299 | proof | |
| 1300 | assume ?lhs | |
| 1301 | then have "a * (1 div unit_factor a) = a * 0" | |
| 1302 | by simp | |
| 1303 | then show ?rhs | |
| 1304 | by simp | |
| 1305 | next | |
| 1306 | assume ?rhs | |
| 1307 | then show ?lhs by simp | |
| 1308 | qed | |
| 1309 | ||
| 63325 | 1310 | lemma normalize_mult: "normalize (a * b) = normalize a * normalize b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1311 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 1312 | case True | 
| 1313 | then show ?thesis by auto | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1314 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1315 | case False | 
| 63588 | 1316 | have "unit_factor (a * b) * normalize (a * b) = a * b" | 
| 1317 | by (rule unit_factor_mult_normalize) | |
| 63325 | 1318 | then have "normalize (a * b) = a * b div unit_factor (a * b)" | 
| 1319 | by simp | |
| 1320 | also have "\<dots> = a * b div unit_factor (b * a)" | |
| 1321 | by (simp add: ac_simps) | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1322 | also have "\<dots> = a * b div unit_factor b div unit_factor a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1323 | using False by (simp add: unit_factor_mult is_unit_div_mult2_eq [symmetric]) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1324 | also have "\<dots> = a * (b div unit_factor b) div unit_factor a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1325 | using False by (subst unit_div_mult_swap) simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1326 | also have "\<dots> = normalize a * normalize b" | 
| 63325 | 1327 | using False | 
| 1328 | by (simp add: mult.commute [of a] mult.commute [of "normalize a"] unit_div_mult_swap [symmetric]) | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1329 | finally show ?thesis . | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1330 | qed | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1331 | |
| 63325 | 1332 | lemma unit_factor_idem [simp]: "unit_factor (unit_factor a) = unit_factor a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1333 | by (cases "a = 0") (auto intro: is_unit_unit_factor) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1334 | |
| 63325 | 1335 | lemma normalize_unit_factor [simp]: "a \<noteq> 0 \<Longrightarrow> normalize (unit_factor a) = 1" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1336 | by (rule is_unit_normalize) simp | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1337 | |
| 63325 | 1338 | lemma normalize_idem [simp]: "normalize (normalize a) = normalize a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1339 | proof (cases "a = 0") | 
| 63325 | 1340 | case True | 
| 1341 | then show ?thesis by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1342 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1343 | case False | 
| 63325 | 1344 | have "normalize a = normalize (unit_factor a * normalize a)" | 
| 1345 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1346 | also have "\<dots> = normalize (unit_factor a) * normalize (normalize a)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1347 | by (simp only: normalize_mult) | 
| 63325 | 1348 | finally show ?thesis | 
| 1349 | using False by simp_all | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1350 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1351 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1352 | lemma unit_factor_normalize [simp]: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1353 | assumes "a \<noteq> 0" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1354 | shows "unit_factor (normalize a) = 1" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1355 | proof - | 
| 63325 | 1356 | from assms have *: "normalize a \<noteq> 0" | 
| 1357 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1358 | have "unit_factor (normalize a) * normalize (normalize a) = normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1359 | by (simp only: unit_factor_mult_normalize) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1360 | then have "unit_factor (normalize a) * normalize a = normalize a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1361 | by simp | 
| 63325 | 1362 | with * have "unit_factor (normalize a) * normalize a div normalize a = normalize a div normalize a" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1363 | by simp | 
| 63325 | 1364 | with * show ?thesis | 
| 1365 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1366 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1367 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1368 | lemma dvd_unit_factor_div: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1369 | assumes "b dvd a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1370 | shows "unit_factor (a div b) = unit_factor a div unit_factor b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1371 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1372 | from assms have "a = a div b * b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1373 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1374 | then have "unit_factor a = unit_factor (a div b * b)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1375 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1376 | then show ?thesis | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1377 | by (cases "b = 0") (simp_all add: unit_factor_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1378 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1379 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1380 | lemma dvd_normalize_div: | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1381 | assumes "b dvd a" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1382 | shows "normalize (a div b) = normalize a div normalize b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1383 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1384 | from assms have "a = a div b * b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1385 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1386 | then have "normalize a = normalize (a div b * b)" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1387 | by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1388 | then show ?thesis | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1389 | by (cases "b = 0") (simp_all add: normalize_mult) | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1390 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1391 | |
| 63325 | 1392 | lemma normalize_dvd_iff [simp]: "normalize a dvd b \<longleftrightarrow> a dvd b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1393 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1394 | have "normalize a dvd b \<longleftrightarrow> unit_factor a * normalize a dvd b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1395 | using mult_unit_dvd_iff [of "unit_factor a" "normalize a" b] | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1396 | by (cases "a = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1397 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1398 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1399 | |
| 63325 | 1400 | lemma dvd_normalize_iff [simp]: "a dvd normalize b \<longleftrightarrow> a dvd b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1401 | proof - | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1402 | have "a dvd normalize b \<longleftrightarrow> a dvd normalize b * unit_factor b" | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1403 | using dvd_mult_unit_iff [of "unit_factor b" a "normalize b"] | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1404 | by (cases "b = 0") simp_all | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1405 | then show ?thesis by simp | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1406 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1407 | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1408 | text \<open> | 
| 63588 | 1409 | We avoid an explicit definition of associated elements but prefer explicit | 
| 1410 |   normalisation instead. In theory we could define an abbreviation like @{prop
 | |
| 1411 | "associated a b \<longleftrightarrow> normalize a = normalize b"} but this is counterproductive | |
| 1412 | without suggestive infix syntax, which we do not want to sacrifice for this | |
| 1413 | purpose here. | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1414 | \<close> | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1415 | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1416 | lemma associatedI: | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1417 | assumes "a dvd b" and "b dvd a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1418 | shows "normalize a = normalize b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1419 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 1420 | case True | 
| 1421 | with assms show ?thesis by auto | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1422 | next | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1423 | case False | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1424 | from \<open>a dvd b\<close> obtain c where b: "b = a * c" .. | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1425 | moreover from \<open>b dvd a\<close> obtain d where a: "a = b * d" .. | 
| 63325 | 1426 | ultimately have "b * 1 = b * (c * d)" | 
| 1427 | by (simp add: ac_simps) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1428 | with False have "1 = c * d" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1429 | unfolding mult_cancel_left by simp | 
| 63325 | 1430 | then have "is_unit c" and "is_unit d" | 
| 1431 | by auto | |
| 1432 | with a b show ?thesis | |
| 1433 | by (simp add: normalize_mult is_unit_normalize) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1434 | qed | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1435 | |
| 63325 | 1436 | lemma associatedD1: "normalize a = normalize b \<Longrightarrow> a dvd b" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1437 | using dvd_normalize_iff [of _ b, symmetric] normalize_dvd_iff [of a _, symmetric] | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1438 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1439 | |
| 63325 | 1440 | lemma associatedD2: "normalize a = normalize b \<Longrightarrow> b dvd a" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1441 | using dvd_normalize_iff [of _ a, symmetric] normalize_dvd_iff [of b _, symmetric] | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1442 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1443 | |
| 63325 | 1444 | lemma associated_unit: "normalize a = normalize b \<Longrightarrow> is_unit a \<Longrightarrow> is_unit b" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1445 | using dvd_unit_imp_unit by (auto dest!: associatedD1 associatedD2) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1446 | |
| 63325 | 1447 | lemma associated_iff_dvd: "normalize a = normalize b \<longleftrightarrow> a dvd b \<and> b dvd a" | 
| 63588 | 1448 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1449 | proof | 
| 63588 | 1450 | assume ?rhs | 
| 1451 | then show ?lhs by (auto intro!: associatedI) | |
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1452 | next | 
| 63588 | 1453 | assume ?lhs | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1454 | then have "unit_factor a * normalize a = unit_factor a * normalize b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1455 | by simp | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1456 | then have *: "normalize b * unit_factor a = a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1457 | by (simp add: ac_simps) | 
| 63588 | 1458 | show ?rhs | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1459 | proof (cases "a = 0 \<or> b = 0") | 
| 63325 | 1460 | case True | 
| 63588 | 1461 | with \<open>?lhs\<close> show ?thesis by auto | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1462 | next | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1463 | case False | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1464 | then have "b dvd normalize b * unit_factor a" and "normalize b * unit_factor a dvd b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1465 | by (simp_all add: mult_unit_dvd_iff dvd_mult_unit_iff) | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1466 | with * show ?thesis by simp | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1467 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1468 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1469 | |
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1470 | lemma associated_eqI: | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1471 | assumes "a dvd b" and "b dvd a" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1472 | assumes "normalize a = a" and "normalize b = b" | 
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1473 | shows "a = b" | 
| 60688 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1474 | proof - | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1475 | from assms have "normalize a = normalize b" | 
| 
01488b559910
avoid explicit definition of the relation of associated elements in a ring -- prefer explicit normalization instead
 haftmann parents: 
60685diff
changeset | 1476 | unfolding associated_iff_dvd by simp | 
| 63588 | 1477 | with \<open>normalize a = a\<close> have "a = normalize b" | 
| 1478 | by simp | |
| 1479 | with \<open>normalize b = b\<close> show "a = b" | |
| 1480 | by simp | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1481 | qed | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1482 | |
| 64591 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1483 | lemma normalize_unit_factor_eqI: | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1484 | assumes "normalize a = normalize b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1485 | and "unit_factor a = unit_factor b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1486 | shows "a = b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1487 | proof - | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1488 | from assms have "unit_factor a * normalize a = unit_factor b * normalize b" | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1489 | by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1490 | then show ?thesis | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1491 | by simp | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1492 | qed | 
| 
240a39af9ec4
restructured matter on polynomials and normalized fractions
 haftmann parents: 
64290diff
changeset | 1493 | |
| 60685 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1494 | end | 
| 
cb21b7022b00
moved normalization and unit_factor into Main HOL corpus
 haftmann parents: 
60615diff
changeset | 1495 | |
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1496 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1497 | text \<open>Syntactic division remainder operator\<close> | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1498 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1499 | class modulo = dvd + divide + | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1500 | fixes modulo :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70) | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1501 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1502 | text \<open>Arbitrary quotient and remainder partitions\<close> | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1503 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1504 | class semiring_modulo = comm_semiring_1_cancel + divide + modulo + | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1505 | assumes div_mult_mod_eq: "a div b * b + a mod b = a" | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1506 | begin | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1507 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1508 | lemma mod_div_decomp: | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1509 | fixes a b | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1510 | obtains q r where "q = a div b" and "r = a mod b" | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1511 | and "a = q * b + r" | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1512 | proof - | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1513 | from div_mult_mod_eq have "a = a div b * b + a mod b" by simp | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1514 | moreover have "a div b = a div b" .. | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1515 | moreover have "a mod b = a mod b" .. | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1516 | note that ultimately show thesis by blast | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1517 | qed | 
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1518 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1519 | lemma mult_div_mod_eq: "b * (a div b) + a mod b = a" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1520 | using div_mult_mod_eq [of a b] by (simp add: ac_simps) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1521 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1522 | lemma mod_div_mult_eq: "a mod b + a div b * b = a" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1523 | using div_mult_mod_eq [of a b] by (simp add: ac_simps) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1524 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1525 | lemma mod_mult_div_eq: "a mod b + b * (a div b) = a" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1526 | using div_mult_mod_eq [of a b] by (simp add: ac_simps) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1527 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1528 | lemma minus_div_mult_eq_mod: "a - a div b * b = a mod b" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1529 | by (rule add_implies_diff [symmetric]) (fact mod_div_mult_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1530 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1531 | lemma minus_mult_div_eq_mod: "a - b * (a div b) = a mod b" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1532 | by (rule add_implies_diff [symmetric]) (fact mod_mult_div_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1533 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1534 | lemma minus_mod_eq_div_mult: "a - a mod b = a div b * b" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1535 | by (rule add_implies_diff [symmetric]) (fact div_mult_mod_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1536 | |
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1537 | lemma minus_mod_eq_mult_div: "a - a mod b = b * (a div b)" | 
| 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1538 | by (rule add_implies_diff [symmetric]) (fact mult_div_mod_eq) | 
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1539 | |
| 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1540 | end | 
| 64242 
93c6f0da5c70
more standardized theorem names for facts involving the div and mod identity
 haftmann parents: 
64240diff
changeset | 1541 | |
| 64164 
38c407446400
separate type class for arbitrary quotient and remainder partitions
 haftmann parents: 
63950diff
changeset | 1542 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1543 | class ordered_semiring = semiring + ordered_comm_monoid_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1544 | assumes mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1545 | assumes mult_right_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c" | 
| 25230 | 1546 | begin | 
| 1547 | ||
| 63325 | 1548 | lemma mult_mono: "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 1549 | apply (erule (1) mult_right_mono [THEN order_trans]) | |
| 1550 | apply (erule (1) mult_left_mono) | |
| 1551 | done | |
| 25230 | 1552 | |
| 63325 | 1553 | lemma mult_mono': "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * d" | 
| 63588 | 1554 | by (rule mult_mono) (fast intro: order_trans)+ | 
| 25230 | 1555 | |
| 1556 | end | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 1557 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1558 | class ordered_semiring_0 = semiring_0 + ordered_semiring | 
| 25267 | 1559 | begin | 
| 14268 
5cf13e80be0e
Removal of Hyperreal/ExtraThms2.ML, sending the material to the correct files.
 paulson parents: 
14267diff
changeset | 1560 | |
| 63325 | 1561 | lemma mult_nonneg_nonneg [simp]: "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a * b" | 
| 1562 | using mult_left_mono [of 0 b a] by simp | |
| 25230 | 1563 | |
| 1564 | lemma mult_nonneg_nonpos: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> a * b \<le> 0" | |
| 63325 | 1565 | using mult_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1566 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1567 | lemma mult_nonpos_nonneg: "a \<le> 0 \<Longrightarrow> 0 \<le> b \<Longrightarrow> a * b \<le> 0" | 
| 63325 | 1568 | using mult_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1569 | |
| 63588 | 1570 | text \<open>Legacy -- use @{thm [source] mult_nonpos_nonneg}.\<close>
 | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1571 | lemma mult_nonneg_nonpos2: "0 \<le> a \<Longrightarrow> b \<le> 0 \<Longrightarrow> b * a \<le> 0" | 
| 63588 | 1572 | by (drule mult_right_mono [of b 0]) auto | 
| 25230 | 1573 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1574 | lemma split_mult_neg_le: "(0 \<le> a \<and> b \<le> 0) \<or> (a \<le> 0 \<and> 0 \<le> b) \<Longrightarrow> a * b \<le> 0" | 
| 63325 | 1575 | by (auto simp add: mult_nonneg_nonpos mult_nonneg_nonpos2) | 
| 25230 | 1576 | |
| 1577 | end | |
| 1578 | ||
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1579 | class ordered_cancel_semiring = ordered_semiring + cancel_comm_monoid_add | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1580 | begin | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1581 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1582 | subclass semiring_0_cancel .. | 
| 63588 | 1583 | |
| 62377 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1584 | subclass ordered_semiring_0 .. | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1585 | |
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1586 | end | 
| 
ace69956d018
moved more proofs to ordered_comm_monoid_add; introduced strict_ordered_ab_semigroup/comm_monoid_add
 hoelzl parents: 
62376diff
changeset | 1587 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1588 | class linordered_semiring = ordered_semiring + linordered_cancel_ab_semigroup_add | 
| 25267 | 1589 | begin | 
| 25230 | 1590 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1591 | subclass ordered_cancel_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1592 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 1593 | subclass ordered_cancel_comm_monoid_add .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1594 | |
| 63456 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63359diff
changeset | 1595 | subclass ordered_ab_semigroup_monoid_add_imp_le .. | 
| 
3365c8ec67bd
sharing simp rules between ordered monoids and rings
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63359diff
changeset | 1596 | |
| 63325 | 1597 | lemma mult_left_less_imp_less: "c * a < c * b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | 
| 1598 | by (force simp add: mult_left_mono not_le [symmetric]) | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1599 | |
| 63325 | 1600 | lemma mult_right_less_imp_less: "a * c < b * c \<Longrightarrow> 0 \<le> c \<Longrightarrow> a < b" | 
| 1601 | by (force simp add: mult_right_mono not_le [symmetric]) | |
| 23521 | 1602 | |
| 25186 | 1603 | end | 
| 25152 | 1604 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1605 | class linordered_semiring_1 = linordered_semiring + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1606 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1607 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1608 | lemma convex_bound_le: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1609 | assumes "x \<le> a" "y \<le> a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1610 | shows "u * x + v * y \<le> a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1611 | proof- | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1612 | from assms have "u * x + v * y \<le> u * a + v * a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1613 | by (simp add: add_mono mult_left_mono) | 
| 63325 | 1614 | with assms show ?thesis | 
| 1615 | unfolding distrib_right[symmetric] by simp | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1616 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1617 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1618 | end | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1619 | |
| 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1620 | class linordered_semiring_strict = semiring + comm_monoid_add + linordered_cancel_ab_semigroup_add + | 
| 25062 | 1621 | assumes mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 1622 | assumes mult_strict_right_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> a * c < b * c" | |
| 25267 | 1623 | begin | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14334diff
changeset | 1624 | |
| 27516 | 1625 | subclass semiring_0_cancel .. | 
| 14940 | 1626 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1627 | subclass linordered_semiring | 
| 28823 | 1628 | proof | 
| 23550 | 1629 | fix a b c :: 'a | 
| 63588 | 1630 | assume *: "a \<le> b" "0 \<le> c" | 
| 1631 | then show "c * a \<le> c * b" | |
| 25186 | 1632 | unfolding le_less | 
| 1633 | using mult_strict_left_mono by (cases "c = 0") auto | |
| 63588 | 1634 | from * show "a * c \<le> b * c" | 
| 25152 | 1635 | unfolding le_less | 
| 25186 | 1636 | using mult_strict_right_mono by (cases "c = 0") auto | 
| 25152 | 1637 | qed | 
| 1638 | ||
| 63325 | 1639 | lemma mult_left_le_imp_le: "c * a \<le> c * b \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | 
| 1640 | by (auto simp add: mult_strict_left_mono _not_less [symmetric]) | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1641 | |
| 63325 | 1642 | lemma mult_right_le_imp_le: "a * c \<le> b * c \<Longrightarrow> 0 < c \<Longrightarrow> a \<le> b" | 
| 1643 | by (auto simp add: mult_strict_right_mono not_less [symmetric]) | |
| 25230 | 1644 | |
| 56544 | 1645 | lemma mult_pos_pos[simp]: "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> 0 < a * b" | 
| 63325 | 1646 | using mult_strict_left_mono [of 0 b a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1647 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1648 | lemma mult_pos_neg: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> a * b < 0" | 
| 63325 | 1649 | using mult_strict_left_mono [of b 0 a] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1650 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1651 | lemma mult_neg_pos: "a < 0 \<Longrightarrow> 0 < b \<Longrightarrow> a * b < 0" | 
| 63325 | 1652 | using mult_strict_right_mono [of a 0 b] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1653 | |
| 63588 | 1654 | text \<open>Legacy -- use @{thm [source] mult_neg_pos}.\<close>
 | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1655 | lemma mult_pos_neg2: "0 < a \<Longrightarrow> b < 0 \<Longrightarrow> b * a < 0" | 
| 63588 | 1656 | by (drule mult_strict_right_mono [of b 0]) auto | 
| 25230 | 1657 | |
| 63325 | 1658 | lemma zero_less_mult_pos: "0 < a * b \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | 
| 1659 | apply (cases "b \<le> 0") | |
| 1660 | apply (auto simp add: le_less not_less) | |
| 1661 | apply (drule_tac mult_pos_neg [of a b]) | |
| 1662 | apply (auto dest: less_not_sym) | |
| 1663 | done | |
| 25230 | 1664 | |
| 63325 | 1665 | lemma zero_less_mult_pos2: "0 < b * a \<Longrightarrow> 0 < a \<Longrightarrow> 0 < b" | 
| 1666 | apply (cases "b \<le> 0") | |
| 1667 | apply (auto simp add: le_less not_less) | |
| 1668 | apply (drule_tac mult_pos_neg2 [of a b]) | |
| 1669 | apply (auto dest: less_not_sym) | |
| 1670 | done | |
| 1671 | ||
| 1672 | text \<open>Strict monotonicity in both arguments\<close> | |
| 26193 | 1673 | lemma mult_strict_mono: | 
| 1674 | assumes "a < b" and "c < d" and "0 < b" and "0 \<le> c" | |
| 1675 | shows "a * c < b * d" | |
| 63325 | 1676 | using assms | 
| 1677 | apply (cases "c = 0") | |
| 63588 | 1678 | apply simp | 
| 26193 | 1679 | apply (erule mult_strict_right_mono [THEN less_trans]) | 
| 63588 | 1680 | apply (auto simp add: le_less) | 
| 63325 | 1681 | apply (erule (1) mult_strict_left_mono) | 
| 26193 | 1682 | done | 
| 1683 | ||
| 63325 | 1684 | text \<open>This weaker variant has more natural premises\<close> | 
| 26193 | 1685 | lemma mult_strict_mono': | 
| 1686 | assumes "a < b" and "c < d" and "0 \<le> a" and "0 \<le> c" | |
| 1687 | shows "a * c < b * d" | |
| 63325 | 1688 | by (rule mult_strict_mono) (insert assms, auto) | 
| 26193 | 1689 | |
| 1690 | lemma mult_less_le_imp_less: | |
| 1691 | assumes "a < b" and "c \<le> d" and "0 \<le> a" and "0 < c" | |
| 1692 | shows "a * c < b * d" | |
| 63325 | 1693 | using assms | 
| 1694 | apply (subgoal_tac "a * c < b * c") | |
| 63588 | 1695 | apply (erule less_le_trans) | 
| 1696 | apply (erule mult_left_mono) | |
| 1697 | apply simp | |
| 63325 | 1698 | apply (erule (1) mult_strict_right_mono) | 
| 26193 | 1699 | done | 
| 1700 | ||
| 1701 | lemma mult_le_less_imp_less: | |
| 1702 | assumes "a \<le> b" and "c < d" and "0 < a" and "0 \<le> c" | |
| 1703 | shows "a * c < b * d" | |
| 63325 | 1704 | using assms | 
| 1705 | apply (subgoal_tac "a * c \<le> b * c") | |
| 63588 | 1706 | apply (erule le_less_trans) | 
| 1707 | apply (erule mult_strict_left_mono) | |
| 1708 | apply simp | |
| 63325 | 1709 | apply (erule (1) mult_right_mono) | 
| 26193 | 1710 | done | 
| 1711 | ||
| 25230 | 1712 | end | 
| 1713 | ||
| 35097 
4554bb2abfa3
dropped last occurence of the linlinordered accident
 haftmann parents: 
35092diff
changeset | 1714 | class linordered_semiring_1_strict = linordered_semiring_strict + semiring_1 | 
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1715 | begin | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1716 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1717 | subclass linordered_semiring_1 .. | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1718 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1719 | lemma convex_bound_lt: | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1720 | assumes "x < a" "y < a" "0 \<le> u" "0 \<le> v" "u + v = 1" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1721 | shows "u * x + v * y < a" | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1722 | proof - | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1723 | from assms have "u * x + v * y < u * a + v * a" | 
| 63325 | 1724 | by (cases "u = 0") (auto intro!: add_less_le_mono mult_strict_left_mono mult_left_mono) | 
| 1725 | with assms show ?thesis | |
| 1726 | unfolding distrib_right[symmetric] by simp | |
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1727 | qed | 
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1728 | |
| 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 1729 | end | 
| 33319 | 1730 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1731 | class ordered_comm_semiring = comm_semiring_0 + ordered_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1732 | assumes comm_mult_left_mono: "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b" | 
| 25186 | 1733 | begin | 
| 25152 | 1734 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1735 | subclass ordered_semiring | 
| 28823 | 1736 | proof | 
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 1737 | fix a b c :: 'a | 
| 23550 | 1738 | assume "a \<le> b" "0 \<le> c" | 
| 63325 | 1739 | then show "c * a \<le> c * b" by (rule comm_mult_left_mono) | 
| 1740 | then show "a * c \<le> b * c" by (simp only: mult.commute) | |
| 21199 
2d83f93c3580
* Added annihilation axioms ("x * 0 = 0") to axclass semiring_0.
 krauss parents: 
20633diff
changeset | 1741 | qed | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1742 | |
| 25267 | 1743 | end | 
| 1744 | ||
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1745 | class ordered_cancel_comm_semiring = ordered_comm_semiring + cancel_comm_monoid_add | 
| 25267 | 1746 | begin | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1747 | |
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1748 | subclass comm_semiring_0_cancel .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1749 | subclass ordered_comm_semiring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1750 | subclass ordered_cancel_semiring .. | 
| 25267 | 1751 | |
| 1752 | end | |
| 1753 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1754 | class linordered_comm_semiring_strict = comm_semiring_0 + linordered_cancel_ab_semigroup_add + | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37767diff
changeset | 1755 | assumes comm_mult_strict_left_mono: "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c * a < c * b" | 
| 25267 | 1756 | begin | 
| 1757 | ||
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1758 | subclass linordered_semiring_strict | 
| 28823 | 1759 | proof | 
| 23550 | 1760 | fix a b c :: 'a | 
| 1761 | assume "a < b" "0 < c" | |
| 63588 | 1762 | then show "c * a < c * b" | 
| 1763 | by (rule comm_mult_strict_left_mono) | |
| 1764 | then show "a * c < b * c" | |
| 1765 | by (simp only: mult.commute) | |
| 23550 | 1766 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 1767 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1768 | subclass ordered_cancel_comm_semiring | 
| 28823 | 1769 | proof | 
| 23550 | 1770 | fix a b c :: 'a | 
| 1771 | assume "a \<le> b" "0 \<le> c" | |
| 63325 | 1772 | then show "c * a \<le> c * b" | 
| 25186 | 1773 | unfolding le_less | 
| 26193 | 1774 | using mult_strict_left_mono by (cases "c = 0") auto | 
| 23550 | 1775 | qed | 
| 14272 
5efbb548107d
Tidying of the integer development; towards removing the
 paulson parents: 
14270diff
changeset | 1776 | |
| 25267 | 1777 | end | 
| 25230 | 1778 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 1779 | class ordered_ring = ring + ordered_cancel_semiring | 
| 25267 | 1780 | begin | 
| 25230 | 1781 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1782 | subclass ordered_ab_group_add .. | 
| 14270 | 1783 | |
| 63325 | 1784 | lemma less_add_iff1: "a * e + c < b * e + d \<longleftrightarrow> (a - b) * e + c < d" | 
| 1785 | by (simp add: algebra_simps) | |
| 25230 | 1786 | |
| 63325 | 1787 | lemma less_add_iff2: "a * e + c < b * e + d \<longleftrightarrow> c < (b - a) * e + d" | 
| 1788 | by (simp add: algebra_simps) | |
| 25230 | 1789 | |
| 63325 | 1790 | lemma le_add_iff1: "a * e + c \<le> b * e + d \<longleftrightarrow> (a - b) * e + c \<le> d" | 
| 1791 | by (simp add: algebra_simps) | |
| 25230 | 1792 | |
| 63325 | 1793 | lemma le_add_iff2: "a * e + c \<le> b * e + d \<longleftrightarrow> c \<le> (b - a) * e + d" | 
| 1794 | by (simp add: algebra_simps) | |
| 25230 | 1795 | |
| 63325 | 1796 | lemma mult_left_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> c * a \<le> c * b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1797 | apply (drule mult_left_mono [of _ _ "- c"]) | 
| 35216 | 1798 | apply simp_all | 
| 25230 | 1799 | done | 
| 1800 | ||
| 63325 | 1801 | lemma mult_right_mono_neg: "b \<le> a \<Longrightarrow> c \<le> 0 \<Longrightarrow> a * c \<le> b * c" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 1802 | apply (drule mult_right_mono [of _ _ "- c"]) | 
| 35216 | 1803 | apply simp_all | 
| 25230 | 1804 | done | 
| 1805 | ||
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1806 | lemma mult_nonpos_nonpos: "a \<le> 0 \<Longrightarrow> b \<le> 0 \<Longrightarrow> 0 \<le> a * b" | 
| 63325 | 1807 | using mult_right_mono_neg [of a 0 b] by simp | 
| 25230 | 1808 | |
| 63325 | 1809 | lemma split_mult_pos_le: "(0 \<le> a \<and> 0 \<le> b) \<or> (a \<le> 0 \<and> b \<le> 0) \<Longrightarrow> 0 \<le> a * b" | 
| 1810 | by (auto simp add: mult_nonpos_nonpos) | |
| 25186 | 1811 | |
| 1812 | end | |
| 14270 | 1813 | |
| 64290 | 1814 | class abs_if = minus + uminus + ord + zero + abs + | 
| 1815 | assumes abs_if: "\<bar>a\<bar> = (if a < 0 then - a else a)" | |
| 1816 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1817 | class linordered_ring = ring + linordered_semiring + linordered_ab_group_add + abs_if | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1818 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1819 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1820 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1821 | |
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1822 | subclass ordered_ab_group_add_abs | 
| 28823 | 1823 | proof | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1824 | fix a b | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1825 | show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>" | 
| 63325 | 1826 | by (auto simp add: abs_if not_le not_less algebra_simps | 
| 1827 | simp del: add.commute dest: add_neg_neg add_nonneg_nonneg) | |
| 63588 | 1828 | qed (auto simp: abs_if) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1829 | |
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1830 | lemma zero_le_square [simp]: "0 \<le> a * a" | 
| 63325 | 1831 | using linear [of 0 a] by (auto simp add: mult_nonpos_nonpos) | 
| 35631 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1832 | |
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1833 | lemma not_square_less_zero [simp]: "\<not> (a * a < 0)" | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1834 | by (simp add: not_less) | 
| 
0b8a5fd339ab
generalize some lemmas from class linordered_ring_strict to linordered_ring
 huffman parents: 
35302diff
changeset | 1835 | |
| 61944 | 1836 | proposition abs_eq_iff: "\<bar>x\<bar> = \<bar>y\<bar> \<longleftrightarrow> x = y \<or> x = -y" | 
| 62390 | 1837 | by (auto simp add: abs_if split: if_split_asm) | 
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61649diff
changeset | 1838 | |
| 64848 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1839 | lemma abs_eq_iff': | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1840 | "\<bar>a\<bar> = b \<longleftrightarrow> b \<ge> 0 \<and> (a = b \<or> a = - b)" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1841 | by (cases "a \<ge> 0") auto | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1842 | |
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1843 | lemma eq_abs_iff': | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1844 | "a = \<bar>b\<bar> \<longleftrightarrow> a \<ge> 0 \<and> (b = a \<or> b = - a)" | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1845 | using abs_eq_iff' [of b a] by auto | 
| 
c50db2128048
slightly generalized type class hierarchy concerning unit factors, to allow for lean polynomial normalization
 haftmann parents: 
64713diff
changeset | 1846 | |
| 63325 | 1847 | lemma sum_squares_ge_zero: "0 \<le> x * x + y * y" | 
| 62347 | 1848 | by (intro add_nonneg_nonneg zero_le_square) | 
| 1849 | ||
| 63325 | 1850 | lemma not_sum_squares_lt_zero: "\<not> x * x + y * y < 0" | 
| 62347 | 1851 | by (simp add: not_less sum_squares_ge_zero) | 
| 1852 | ||
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1853 | end | 
| 23521 | 1854 | |
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 1855 | class linordered_ring_strict = ring + linordered_semiring_strict | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1856 | + ordered_ab_group_add + abs_if | 
| 25230 | 1857 | begin | 
| 14348 
744c868ee0b7
Defining the type class "ringpower" and deleting superseded theorems for
 paulson parents: 
14341diff
changeset | 1858 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1859 | subclass linordered_ring .. | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1860 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1861 | lemma mult_strict_left_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> c * a < c * b" | 
| 63325 | 1862 | using mult_strict_left_mono [of b a "- c"] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1863 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1864 | lemma mult_strict_right_mono_neg: "b < a \<Longrightarrow> c < 0 \<Longrightarrow> a * c < b * c" | 
| 63325 | 1865 | using mult_strict_right_mono [of b a "- c"] by simp | 
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1866 | |
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1867 | lemma mult_neg_neg: "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> 0 < a * b" | 
| 63325 | 1868 | using mult_strict_right_mono_neg [of a 0 b] by simp | 
| 14738 | 1869 | |
| 25917 | 1870 | subclass ring_no_zero_divisors | 
| 28823 | 1871 | proof | 
| 25917 | 1872 | fix a b | 
| 63325 | 1873 | assume "a \<noteq> 0" | 
| 63588 | 1874 | then have a: "a < 0 \<or> 0 < a" by (simp add: neq_iff) | 
| 63325 | 1875 | assume "b \<noteq> 0" | 
| 63588 | 1876 | then have b: "b < 0 \<or> 0 < b" by (simp add: neq_iff) | 
| 25917 | 1877 | have "a * b < 0 \<or> 0 < a * b" | 
| 1878 | proof (cases "a < 0") | |
| 63588 | 1879 | case True | 
| 63325 | 1880 | show ?thesis | 
| 1881 | proof (cases "b < 0") | |
| 1882 | case True | |
| 63588 | 1883 | with \<open>a < 0\<close> show ?thesis by (auto dest: mult_neg_neg) | 
| 25917 | 1884 | next | 
| 63325 | 1885 | case False | 
| 63588 | 1886 | with b have "0 < b" by auto | 
| 1887 | with \<open>a < 0\<close> show ?thesis by (auto dest: mult_strict_right_mono) | |
| 25917 | 1888 | qed | 
| 1889 | next | |
| 63325 | 1890 | case False | 
| 63588 | 1891 | with a have "0 < a" by auto | 
| 63325 | 1892 | show ?thesis | 
| 1893 | proof (cases "b < 0") | |
| 1894 | case True | |
| 63588 | 1895 | with \<open>0 < a\<close> show ?thesis | 
| 63325 | 1896 | by (auto dest: mult_strict_right_mono_neg) | 
| 25917 | 1897 | next | 
| 63325 | 1898 | case False | 
| 63588 | 1899 | with b have "0 < b" by auto | 
| 1900 | with \<open>0 < a\<close> show ?thesis by auto | |
| 25917 | 1901 | qed | 
| 1902 | qed | |
| 63325 | 1903 | then show "a * b \<noteq> 0" | 
| 1904 | by (simp add: neq_iff) | |
| 25917 | 1905 | qed | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 1906 | |
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 1907 | lemma zero_less_mult_iff: "0 < a * b \<longleftrightarrow> 0 < a \<and> 0 < b \<or> a < 0 \<and> b < 0" | 
| 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 1908 | by (cases a 0 b 0 rule: linorder_cases[case_product linorder_cases]) | 
| 56544 | 1909 | (auto simp add: mult_neg_neg not_less le_less dest: zero_less_mult_pos zero_less_mult_pos2) | 
| 22990 
775e9de3db48
added classes ring_no_zero_divisors and dom (non-commutative version of idom);
 huffman parents: 
22987diff
changeset | 1910 | |
| 56480 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 1911 | lemma zero_le_mult_iff: "0 \<le> a * b \<longleftrightarrow> 0 \<le> a \<and> 0 \<le> b \<or> a \<le> 0 \<and> b \<le> 0" | 
| 
093ea91498e6
field_simps: better support for negation and division, and power
 hoelzl parents: 
56217diff
changeset | 1912 | by (auto simp add: eq_commute [of 0] le_less not_less zero_less_mult_iff) | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1913 | |
| 63325 | 1914 | lemma mult_less_0_iff: "a * b < 0 \<longleftrightarrow> 0 < a \<and> b < 0 \<or> a < 0 \<and> 0 < b" | 
| 1915 | using zero_less_mult_iff [of "- a" b] by auto | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1916 | |
| 63325 | 1917 | lemma mult_le_0_iff: "a * b \<le> 0 \<longleftrightarrow> 0 \<le> a \<and> b \<le> 0 \<or> a \<le> 0 \<and> 0 \<le> b" | 
| 1918 | using zero_le_mult_iff [of "- a" b] by auto | |
| 25917 | 1919 | |
| 63325 | 1920 | text \<open> | 
| 1921 |   Cancellation laws for @{term "c * a < c * b"} and @{term "a * c < b * c"},
 | |
| 1922 | also with the relations \<open>\<le>\<close> and equality. | |
| 1923 | \<close> | |
| 26193 | 1924 | |
| 63325 | 1925 | text \<open> | 
| 1926 | These ``disjunction'' versions produce two cases when the comparison is | |
| 1927 | an assumption, but effectively four when the comparison is a goal. | |
| 1928 | \<close> | |
| 26193 | 1929 | |
| 63325 | 1930 | lemma mult_less_cancel_right_disj: "a * c < b * c \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | 
| 26193 | 1931 | apply (cases "c = 0") | 
| 63588 | 1932 | apply (auto simp add: neq_iff mult_strict_right_mono mult_strict_right_mono_neg) | 
| 1933 | apply (auto simp add: not_less not_le [symmetric, of "a*c"] not_le [symmetric, of a]) | |
| 1934 | apply (erule_tac [!] notE) | |
| 1935 | apply (auto simp add: less_imp_le mult_right_mono mult_right_mono_neg) | |
| 26193 | 1936 | done | 
| 1937 | ||
| 63325 | 1938 | lemma mult_less_cancel_left_disj: "c * a < c * b \<longleftrightarrow> 0 < c \<and> a < b \<or> c < 0 \<and> b < a" | 
| 26193 | 1939 | apply (cases "c = 0") | 
| 63588 | 1940 | apply (auto simp add: neq_iff mult_strict_left_mono mult_strict_left_mono_neg) | 
| 1941 | apply (auto simp add: not_less not_le [symmetric, of "c * a"] not_le [symmetric, of a]) | |
| 1942 | apply (erule_tac [!] notE) | |
| 1943 | apply (auto simp add: less_imp_le mult_left_mono mult_left_mono_neg) | |
| 26193 | 1944 | done | 
| 1945 | ||
| 63325 | 1946 | text \<open> | 
| 1947 | The ``conjunction of implication'' lemmas produce two cases when the | |
| 1948 | comparison is a goal, but give four when the comparison is an assumption. | |
| 1949 | \<close> | |
| 26193 | 1950 | |
| 63325 | 1951 | lemma mult_less_cancel_right: "a * c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | 
| 26193 | 1952 | using mult_less_cancel_right_disj [of a c b] by auto | 
| 1953 | ||
| 63325 | 1954 | lemma mult_less_cancel_left: "c * a < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < b) \<and> (c \<le> 0 \<longrightarrow> b < a)" | 
| 26193 | 1955 | using mult_less_cancel_left_disj [of c a b] by auto | 
| 1956 | ||
| 63325 | 1957 | lemma mult_le_cancel_right: "a * c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | 
| 1958 | by (simp add: not_less [symmetric] mult_less_cancel_right_disj) | |
| 26193 | 1959 | |
| 63325 | 1960 | lemma mult_le_cancel_left: "c * a \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> a)" | 
| 1961 | by (simp add: not_less [symmetric] mult_less_cancel_left_disj) | |
| 26193 | 1962 | |
| 63325 | 1963 | lemma mult_le_cancel_left_pos: "0 < c \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> a \<le> b" | 
| 1964 | by (auto simp: mult_le_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1965 | |
| 63325 | 1966 | lemma mult_le_cancel_left_neg: "c < 0 \<Longrightarrow> c * a \<le> c * b \<longleftrightarrow> b \<le> a" | 
| 1967 | by (auto simp: mult_le_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1968 | |
| 63325 | 1969 | lemma mult_less_cancel_left_pos: "0 < c \<Longrightarrow> c * a < c * b \<longleftrightarrow> a < b" | 
| 1970 | by (auto simp: mult_less_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1971 | |
| 63325 | 1972 | lemma mult_less_cancel_left_neg: "c < 0 \<Longrightarrow> c * a < c * b \<longleftrightarrow> b < a" | 
| 1973 | by (auto simp: mult_less_cancel_left) | |
| 30649 
57753e0ec1d4
1. New cancellation simprocs for common factors in inequations
 nipkow parents: 
30242diff
changeset | 1974 | |
| 25917 | 1975 | end | 
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 1976 | |
| 30692 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1977 | lemmas mult_sign_intros = | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1978 | mult_nonneg_nonneg mult_nonneg_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1979 | mult_nonpos_nonneg mult_nonpos_nonpos | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1980 | mult_pos_pos mult_pos_neg | 
| 
44ea10bc07a7
clean up proofs of sign rules for multiplication; add list of lemmas mult_sign_intros
 huffman parents: 
30650diff
changeset | 1981 | mult_neg_pos mult_neg_neg | 
| 25230 | 1982 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1983 | class ordered_comm_ring = comm_ring + ordered_comm_semiring | 
| 25267 | 1984 | begin | 
| 25230 | 1985 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1986 | subclass ordered_ring .. | 
| 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 1987 | subclass ordered_cancel_comm_semiring .. | 
| 25230 | 1988 | |
| 25267 | 1989 | end | 
| 25230 | 1990 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1991 | class zero_less_one = order + zero + one + | 
| 25230 | 1992 | assumes zero_less_one [simp]: "0 < 1" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1993 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1994 | class linordered_nonzero_semiring = ordered_comm_semiring + monoid_mult + linorder + zero_less_one | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1995 | begin | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1996 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1997 | subclass zero_neq_one | 
| 63325 | 1998 | by standard (insert zero_less_one, blast) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 1999 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2000 | subclass comm_semiring_1 | 
| 63325 | 2001 | by standard (rule mult_1_left) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2002 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2003 | lemma zero_le_one [simp]: "0 \<le> 1" | 
| 63325 | 2004 | by (rule zero_less_one [THEN less_imp_le]) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2005 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2006 | lemma not_one_le_zero [simp]: "\<not> 1 \<le> 0" | 
| 63325 | 2007 | by (simp add: not_le) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2008 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2009 | lemma not_one_less_zero [simp]: "\<not> 1 < 0" | 
| 63325 | 2010 | by (simp add: not_less) | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2011 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2012 | lemma mult_left_le: "c \<le> 1 \<Longrightarrow> 0 \<le> a \<Longrightarrow> a * c \<le> a" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2013 | using mult_left_mono[of c 1 a] by simp | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2014 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2015 | lemma mult_le_one: "a \<le> 1 \<Longrightarrow> 0 \<le> b \<Longrightarrow> b \<le> 1 \<Longrightarrow> a * b \<le> 1" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2016 | using mult_mono[of a 1 b 1] by simp | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2017 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2018 | lemma zero_less_two: "0 < 1 + 1" | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2019 | using add_pos_pos[OF zero_less_one zero_less_one] . | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2020 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2021 | end | 
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2022 | |
| 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2023 | class linordered_semidom = semidom + linordered_comm_semiring_strict + zero_less_one + | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2024 | assumes le_add_diff_inverse2 [simp]: "b \<le> a \<Longrightarrow> a - b + b = a" | 
| 25230 | 2025 | begin | 
| 2026 | ||
| 63325 | 2027 | subclass linordered_nonzero_semiring .. | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2028 | |
| 60758 | 2029 | text \<open>Addition is the inverse of subtraction.\<close> | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2030 | |
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2031 | lemma le_add_diff_inverse [simp]: "b \<le> a \<Longrightarrow> b + (a - b) = a" | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2032 | by (frule le_add_diff_inverse2) (simp add: add.commute) | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2033 | |
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2034 | lemma add_diff_inverse: "\<not> a < b \<Longrightarrow> b + (a - b) = a" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2035 | by simp | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2036 | |
| 63325 | 2037 | lemma add_le_imp_le_diff: "i + k \<le> n \<Longrightarrow> i \<le> n - k" | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2038 | apply (subst add_le_cancel_right [where c=k, symmetric]) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2039 | apply (frule le_add_diff_inverse2) | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2040 | apply (simp only: add.assoc [symmetric]) | 
| 63588 | 2041 | using add_implies_diff | 
| 2042 | apply fastforce | |
| 63325 | 2043 | done | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2044 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2045 | lemma add_le_add_imp_diff_le: | 
| 63325 | 2046 | assumes 1: "i + k \<le> n" | 
| 2047 | and 2: "n \<le> j + k" | |
| 2048 | shows "i + k \<le> n \<Longrightarrow> n \<le> j + k \<Longrightarrow> n - k \<le> j" | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2049 | proof - | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2050 | have "n - (i + k) + (i + k) = n" | 
| 63325 | 2051 | using 1 by simp | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2052 | moreover have "n - k = n - k - i + i" | 
| 63325 | 2053 | using 1 by (simp add: add_le_imp_le_diff) | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2054 | ultimately show ?thesis | 
| 63325 | 2055 | using 2 | 
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2056 | apply (simp add: add.assoc [symmetric]) | 
| 63325 | 2057 | apply (rule add_le_imp_le_diff [of _ k "j + k", simplified add_diff_cancel_right']) | 
| 2058 | apply (simp add: add.commute diff_diff_add) | |
| 2059 | done | |
| 60615 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2060 | qed | 
| 
e5fa1d5d3952
Useful lemmas. The theorem concerning swapping the variables in a double integral.
 paulson <lp15@cam.ac.uk> parents: 
60570diff
changeset | 2061 | |
| 63325 | 2062 | lemma less_1_mult: "1 < m \<Longrightarrow> 1 < n \<Longrightarrow> 1 < m * n" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2063 | using mult_strict_mono [of 1 m 1 n] by (simp add: less_trans [OF zero_less_one]) | 
| 59000 | 2064 | |
| 25230 | 2065 | end | 
| 2066 | ||
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62377diff
changeset | 2067 | class linordered_idom = | 
| 64290 | 2068 | comm_ring_1 + linordered_comm_semiring_strict + ordered_ab_group_add + abs_if + sgn + | 
| 2069 | assumes sgn_if: "sgn x = (if x = 0 then 0 else if 0 < x then 1 else - 1)" | |
| 25917 | 2070 | begin | 
| 2071 | ||
| 36622 
e393a91f86df
Generalize swap_inj_on; add simps for Times; add Ex_list_of_length, log_inj; Added missing locale edges for linordered semiring with 1.
 hoelzl parents: 
36348diff
changeset | 2072 | subclass linordered_semiring_1_strict .. | 
| 35043 
07dbdf60d5ad
dropped accidental duplication of "lin" prefix from cs. 108662d50512
 haftmann parents: 
35032diff
changeset | 2073 | subclass linordered_ring_strict .. | 
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2074 | subclass ordered_comm_ring .. | 
| 27516 | 2075 | subclass idom .. | 
| 25917 | 2076 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2077 | subclass linordered_semidom | 
| 28823 | 2078 | proof | 
| 26193 | 2079 | have "0 \<le> 1 * 1" by (rule zero_le_square) | 
| 63325 | 2080 | then show "0 < 1" by (simp add: le_less) | 
| 63588 | 2081 | show "b \<le> a \<Longrightarrow> a - b + b = a" for a b by simp | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2082 | qed | 
| 25917 | 2083 | |
| 64290 | 2084 | subclass idom_abs_sgn | 
| 2085 | by standard | |
| 2086 | (auto simp add: sgn_if abs_if zero_less_mult_iff) | |
| 2087 | ||
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2088 | lemma linorder_neqE_linordered_idom: | 
| 63325 | 2089 | assumes "x \<noteq> y" | 
| 2090 | obtains "x < y" | "y < x" | |
| 26193 | 2091 | using assms by (rule neqE) | 
| 2092 | ||
| 63588 | 2093 | text \<open>These cancellation simp rules also produce two cases when the comparison is a goal.\<close> | 
| 26274 | 2094 | |
| 63325 | 2095 | lemma mult_le_cancel_right1: "c \<le> b * c \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | 
| 2096 | using mult_le_cancel_right [of 1 c b] by simp | |
| 26274 | 2097 | |
| 63325 | 2098 | lemma mult_le_cancel_right2: "a * c \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | 
| 2099 | using mult_le_cancel_right [of a c 1] by simp | |
| 26274 | 2100 | |
| 63325 | 2101 | lemma mult_le_cancel_left1: "c \<le> c * b \<longleftrightarrow> (0 < c \<longrightarrow> 1 \<le> b) \<and> (c < 0 \<longrightarrow> b \<le> 1)" | 
| 2102 | using mult_le_cancel_left [of c 1 b] by simp | |
| 26274 | 2103 | |
| 63325 | 2104 | lemma mult_le_cancel_left2: "c * a \<le> c \<longleftrightarrow> (0 < c \<longrightarrow> a \<le> 1) \<and> (c < 0 \<longrightarrow> 1 \<le> a)" | 
| 2105 | using mult_le_cancel_left [of c a 1] by simp | |
| 26274 | 2106 | |
| 63325 | 2107 | lemma mult_less_cancel_right1: "c < b * c \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | 
| 2108 | using mult_less_cancel_right [of 1 c b] by simp | |
| 26274 | 2109 | |
| 63325 | 2110 | lemma mult_less_cancel_right2: "a * c < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | 
| 2111 | using mult_less_cancel_right [of a c 1] by simp | |
| 26274 | 2112 | |
| 63325 | 2113 | lemma mult_less_cancel_left1: "c < c * b \<longleftrightarrow> (0 \<le> c \<longrightarrow> 1 < b) \<and> (c \<le> 0 \<longrightarrow> b < 1)" | 
| 2114 | using mult_less_cancel_left [of c 1 b] by simp | |
| 26274 | 2115 | |
| 63325 | 2116 | lemma mult_less_cancel_left2: "c * a < c \<longleftrightarrow> (0 \<le> c \<longrightarrow> a < 1) \<and> (c \<le> 0 \<longrightarrow> 1 < a)" | 
| 2117 | using mult_less_cancel_left [of c a 1] by simp | |
| 26274 | 2118 | |
| 63325 | 2119 | lemma sgn_0_0: "sgn a = 0 \<longleftrightarrow> a = 0" | 
| 64290 | 2120 | by (fact sgn_eq_0_iff) | 
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 2121 | |
| 63325 | 2122 | lemma sgn_1_pos: "sgn a = 1 \<longleftrightarrow> a > 0" | 
| 2123 | unfolding sgn_if by simp | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 2124 | |
| 63325 | 2125 | lemma sgn_1_neg: "sgn a = - 1 \<longleftrightarrow> a < 0" | 
| 2126 | unfolding sgn_if by auto | |
| 27651 
16a26996c30e
moved op dvd to theory Ring_and_Field; generalized a couple of lemmas
 haftmann parents: 
27516diff
changeset | 2127 | |
| 63325 | 2128 | lemma sgn_pos [simp]: "0 < a \<Longrightarrow> sgn a = 1" | 
| 2129 | by (simp only: sgn_1_pos) | |
| 29940 | 2130 | |
| 63325 | 2131 | lemma sgn_neg [simp]: "a < 0 \<Longrightarrow> sgn a = - 1" | 
| 2132 | by (simp only: sgn_1_neg) | |
| 29940 | 2133 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2134 | lemma abs_sgn: "\<bar>k\<bar> = k * sgn k" | 
| 63325 | 2135 | unfolding sgn_if abs_if by auto | 
| 29700 | 2136 | |
| 63325 | 2137 | lemma sgn_greater [simp]: "0 < sgn a \<longleftrightarrow> 0 < a" | 
| 29940 | 2138 | unfolding sgn_if by auto | 
| 2139 | ||
| 63325 | 2140 | lemma sgn_less [simp]: "sgn a < 0 \<longleftrightarrow> a < 0" | 
| 29940 | 2141 | unfolding sgn_if by auto | 
| 2142 | ||
| 64239 | 2143 | lemma abs_sgn_eq_1 [simp]: | 
| 2144 | "a \<noteq> 0 \<Longrightarrow> \<bar>sgn a\<bar> = 1" | |
| 64290 | 2145 | by simp | 
| 64239 | 2146 | |
| 63325 | 2147 | lemma abs_sgn_eq: "\<bar>sgn a\<bar> = (if a = 0 then 0 else 1)" | 
| 62347 | 2148 | by (simp add: sgn_if) | 
| 2149 | ||
| 64713 | 2150 | lemma sgn_mult_self_eq [simp]: | 
| 2151 | "sgn a * sgn a = of_bool (a \<noteq> 0)" | |
| 2152 | by (cases "a > 0") simp_all | |
| 2153 | ||
| 2154 | lemma abs_mult_self_eq [simp]: | |
| 2155 | "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | |
| 2156 | by (cases "a > 0") simp_all | |
| 2157 | ||
| 2158 | lemma same_sgn_sgn_add: | |
| 2159 | "sgn (a + b) = sgn a" if "sgn b = sgn a" | |
| 2160 | proof (cases a 0 rule: linorder_cases) | |
| 2161 | case equal | |
| 2162 | with that show ?thesis | |
| 2163 | by simp | |
| 2164 | next | |
| 2165 | case less | |
| 2166 | with that have "b < 0" | |
| 2167 | by (simp add: sgn_1_neg) | |
| 2168 | with \<open>a < 0\<close> have "a + b < 0" | |
| 2169 | by (rule add_neg_neg) | |
| 2170 | with \<open>a < 0\<close> show ?thesis | |
| 2171 | by simp | |
| 2172 | next | |
| 2173 | case greater | |
| 2174 | with that have "b > 0" | |
| 2175 | by (simp add: sgn_1_pos) | |
| 2176 | with \<open>a > 0\<close> have "a + b > 0" | |
| 2177 | by (rule add_pos_pos) | |
| 2178 | with \<open>a > 0\<close> show ?thesis | |
| 2179 | by simp | |
| 2180 | qed | |
| 2181 | ||
| 2182 | lemma same_sgn_abs_add: | |
| 2183 | "\<bar>a + b\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" if "sgn b = sgn a" | |
| 2184 | proof - | |
| 2185 | have "a + b = sgn a * \<bar>a\<bar> + sgn b * \<bar>b\<bar>" | |
| 2186 | by (simp add: sgn_mult_abs) | |
| 2187 | also have "\<dots> = sgn a * (\<bar>a\<bar> + \<bar>b\<bar>)" | |
| 2188 | using that by (simp add: algebra_simps) | |
| 2189 | finally show ?thesis | |
| 2190 | by (auto simp add: abs_mult) | |
| 2191 | qed | |
| 2192 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2193 | lemma abs_dvd_iff [simp]: "\<bar>m\<bar> dvd k \<longleftrightarrow> m dvd k" | 
| 29949 | 2194 | by (simp add: abs_if) | 
| 2195 | ||
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2196 | lemma dvd_abs_iff [simp]: "m dvd \<bar>k\<bar> \<longleftrightarrow> m dvd k" | 
| 29949 | 2197 | by (simp add: abs_if) | 
| 29653 | 2198 | |
| 63325 | 2199 | lemma dvd_if_abs_eq: "\<bar>l\<bar> = \<bar>k\<bar> \<Longrightarrow> l dvd k" | 
| 2200 | by (subst abs_dvd_iff [symmetric]) simp | |
| 33676 
802f5e233e48
moved lemma from Algebra/IntRing to Ring_and_Field
 nipkow parents: 
33364diff
changeset | 2201 | |
| 63325 | 2202 | text \<open> | 
| 2203 | The following lemmas can be proven in more general structures, but | |
| 2204 |   are dangerous as simp rules in absence of @{thm neg_equal_zero},
 | |
| 2205 |   @{thm neg_less_pos}, @{thm neg_less_eq_nonneg}.
 | |
| 2206 | \<close> | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2207 | |
| 63325 | 2208 | lemma equation_minus_iff_1 [simp, no_atp]: "1 = - a \<longleftrightarrow> a = - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2209 | by (fact equation_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2210 | |
| 63325 | 2211 | lemma minus_equation_iff_1 [simp, no_atp]: "- a = 1 \<longleftrightarrow> a = - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2212 | by (subst minus_equation_iff, auto) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2213 | |
| 63325 | 2214 | lemma le_minus_iff_1 [simp, no_atp]: "1 \<le> - b \<longleftrightarrow> b \<le> - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2215 | by (fact le_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2216 | |
| 63325 | 2217 | lemma minus_le_iff_1 [simp, no_atp]: "- a \<le> 1 \<longleftrightarrow> - 1 \<le> a" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2218 | by (fact minus_le_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2219 | |
| 63325 | 2220 | lemma less_minus_iff_1 [simp, no_atp]: "1 < - b \<longleftrightarrow> b < - 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2221 | by (fact less_minus_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2222 | |
| 63325 | 2223 | lemma minus_less_iff_1 [simp, no_atp]: "- a < 1 \<longleftrightarrow> - 1 < a" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2224 | by (fact minus_less_iff) | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54250diff
changeset | 2225 | |
| 25917 | 2226 | end | 
| 25230 | 2227 | |
| 60758 | 2228 | text \<open>Simprules for comparisons where common factors can be cancelled.\<close> | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2229 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
52435diff
changeset | 2230 | lemmas mult_compare_simps = | 
| 63325 | 2231 | mult_le_cancel_right mult_le_cancel_left | 
| 2232 | mult_le_cancel_right1 mult_le_cancel_right2 | |
| 2233 | mult_le_cancel_left1 mult_le_cancel_left2 | |
| 2234 | mult_less_cancel_right mult_less_cancel_left | |
| 2235 | mult_less_cancel_right1 mult_less_cancel_right2 | |
| 2236 | mult_less_cancel_left1 mult_less_cancel_left2 | |
| 2237 | mult_cancel_right mult_cancel_left | |
| 2238 | mult_cancel_right1 mult_cancel_right2 | |
| 2239 | mult_cancel_left1 mult_cancel_left2 | |
| 2240 | ||
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2241 | |
| 60758 | 2242 | text \<open>Reasoning about inequalities with division\<close> | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2243 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2244 | context linordered_semidom | 
| 25193 | 2245 | begin | 
| 2246 | ||
| 2247 | lemma less_add_one: "a < a + 1" | |
| 14293 | 2248 | proof - | 
| 25193 | 2249 | have "a + 0 < a + 1" | 
| 23482 | 2250 | by (blast intro: zero_less_one add_strict_left_mono) | 
| 63325 | 2251 | then show ?thesis by simp | 
| 14293 | 2252 | qed | 
| 2253 | ||
| 25193 | 2254 | end | 
| 14365 
3d4df8c166ae
replacing HOL/Real/PRat, PNat by the rational number development
 paulson parents: 
14353diff
changeset | 2255 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2256 | context linordered_idom | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2257 | begin | 
| 15234 
ec91a90c604e
simplification tweaks for better arithmetic reasoning
 paulson parents: 
15229diff
changeset | 2258 | |
| 63325 | 2259 | lemma mult_right_le_one_le: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> x * y \<le> x" | 
| 59833 
ab828c2c5d67
clarified no_zero_devisors: makes only sense in a semiring;
 haftmann parents: 
59832diff
changeset | 2260 | by (rule mult_left_le) | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2261 | |
| 63325 | 2262 | lemma mult_left_le_one_le: "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> y \<le> 1 \<Longrightarrow> y * x \<le> x" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2263 | by (auto simp add: mult_le_cancel_right2) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2264 | |
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2265 | end | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2266 | |
| 60758 | 2267 | text \<open>Absolute Value\<close> | 
| 14293 | 2268 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2269 | context linordered_idom | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2270 | begin | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2271 | |
| 63325 | 2272 | lemma mult_sgn_abs: "sgn x * \<bar>x\<bar> = x" | 
| 64290 | 2273 | by (fact sgn_mult_abs) | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2274 | |
| 64290 | 2275 | lemma abs_one: "\<bar>1\<bar> = 1" | 
| 2276 | by (fact abs_1) | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2277 | |
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2278 | end | 
| 24491 | 2279 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2280 | class ordered_ring_abs = ordered_ring + ordered_ab_group_add_abs + | 
| 25304 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2281 | assumes abs_eq_mult: | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2282 | "(0 \<le> a \<or> a \<le> 0) \<and> (0 \<le> b \<or> b \<le> 0) \<Longrightarrow> \<bar>a * b\<bar> = \<bar>a\<bar> * \<bar>b\<bar>" | 
| 
7491c00f0915
removed subclass edge ordered_ring < lordered_ring
 haftmann parents: 
25267diff
changeset | 2283 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34146diff
changeset | 2284 | context linordered_idom | 
| 30961 | 2285 | begin | 
| 2286 | ||
| 63325 | 2287 | subclass ordered_ring_abs | 
| 63588 | 2288 | by standard (auto simp: abs_if not_less mult_less_0_iff) | 
| 30961 | 2289 | |
| 63325 | 2290 | lemma abs_mult_self [simp]: "\<bar>a\<bar> * \<bar>a\<bar> = a * a" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60529diff
changeset | 2291 | by (simp add: abs_if) | 
| 30961 | 2292 | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2293 | lemma abs_mult_less: | 
| 63325 | 2294 | assumes ac: "\<bar>a\<bar> < c" | 
| 2295 | and bd: "\<bar>b\<bar> < d" | |
| 2296 | shows "\<bar>a\<bar> * \<bar>b\<bar> < c * d" | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2297 | proof - | 
| 63325 | 2298 | from ac have "0 < c" | 
| 2299 | by (blast intro: le_less_trans abs_ge_zero) | |
| 2300 | with bd show ?thesis by (simp add: ac mult_strict_mono) | |
| 14294 
f4d806fd72ce
absolute value theorems moved to HOL/Ring_and_Field
 paulson parents: 
14293diff
changeset | 2301 | qed | 
| 14293 | 2302 | |
| 63325 | 2303 | lemma abs_less_iff: "\<bar>a\<bar> < b \<longleftrightarrow> a < b \<and> - a < b" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2304 | by (simp add: less_le abs_le_iff) (auto simp add: abs_if) | 
| 14738 | 2305 | |
| 63325 | 2306 | lemma abs_mult_pos: "0 \<le> x \<Longrightarrow> \<bar>y\<bar> * x = \<bar>y * x\<bar>" | 
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2307 | by (simp add: abs_mult) | 
| 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2308 | |
| 63325 | 2309 | lemma abs_diff_less_iff: "\<bar>x - a\<bar> < r \<longleftrightarrow> a - r < x \<and> x < a + r" | 
| 51520 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 2310 | by (auto simp add: diff_less_eq ac_simps abs_less_iff) | 
| 
e9b361845809
move real_isLub_unique to isLub_unique in Lubs; real_sum_of_halves to RealDef; abs_diff_less_iff to Rings
 hoelzl parents: 
50420diff
changeset | 2311 | |
| 63325 | 2312 | lemma abs_diff_le_iff: "\<bar>x - a\<bar> \<le> r \<longleftrightarrow> a - r \<le> x \<and> x \<le> a + r" | 
| 59865 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 2313 | by (auto simp add: diff_le_eq ac_simps abs_le_iff) | 
| 
8a20dd967385
rationalised and generalised some theorems concerning abs and x^2.
 paulson <lp15@cam.ac.uk> parents: 
59833diff
changeset | 2314 | |
| 62626 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62608diff
changeset | 2315 | lemma abs_add_one_gt_zero: "0 < 1 + \<bar>x\<bar>" | 
| 63325 | 2316 | by (auto simp: abs_if not_less intro: zero_less_one add_strict_increasing less_trans) | 
| 62626 
de25474ce728
Contractible sets. Also removal of obsolete theorems and refactoring
 paulson <lp15@cam.ac.uk> parents: 
62608diff
changeset | 2317 | |
| 36301 
72f4d079ebf8
more localization; factored out lemmas for division_ring
 haftmann parents: 
35828diff
changeset | 2318 | end | 
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16568diff
changeset | 2319 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2320 | subsection \<open>Dioids\<close> | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2321 | |
| 63325 | 2322 | text \<open> | 
| 2323 | Dioids are the alternative extensions of semirings, a semiring can | |
| 2324 | either be a ring or a dioid but never both. | |
| 2325 | \<close> | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2326 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2327 | class dioid = semiring_1 + canonically_ordered_monoid_add | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2328 | begin | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2329 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2330 | subclass ordered_semiring | 
| 63325 | 2331 | by standard (auto simp: le_iff_add distrib_left distrib_right) | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2332 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2333 | end | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2334 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62366diff
changeset | 2335 | |
| 59557 | 2336 | hide_fact (open) comm_mult_left_mono comm_mult_strict_left_mono distrib | 
| 2337 | ||
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 2338 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51520diff
changeset | 2339 | code_module Rings \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 2340 | |
| 14265 
95b42e69436c
HOL: installation of Ring_and_Field as the basis for Naturals and Reals
 paulson parents: diff
changeset | 2341 | end |