| author | wenzelm | 
| Wed, 04 Apr 2007 00:11:21 +0200 | |
| changeset 22588 | 4a859d13ef83 | 
| parent 22422 | ee19cdb07528 | 
| child 23743 | 52fbc991039f | 
| permissions | -rw-r--r-- | 
| 10213 | 1  | 
(* Title: HOL/Transitive_Closure.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1992 University of Cambridge  | 
|
5  | 
*)  | 
|
6  | 
||
| 12691 | 7  | 
header {* Reflexive and Transitive closure of a relation *}
 | 
8  | 
||
| 15131 | 9  | 
theory Transitive_Closure  | 
| 22262 | 10  | 
imports Predicate  | 
| 21589 | 11  | 
uses "~~/src/Provers/trancl.ML"  | 
| 15131 | 12  | 
begin  | 
| 12691 | 13  | 
|
14  | 
text {*
 | 
|
15  | 
  @{text rtrancl} is reflexive/transitive closure,
 | 
|
16  | 
  @{text trancl} is transitive closure,
 | 
|
17  | 
  @{text reflcl} is reflexive closure.
 | 
|
18  | 
||
19  | 
  These postfix operators have \emph{maximum priority}, forcing their
 | 
|
20  | 
operands to be atomic.  | 
|
21  | 
*}  | 
|
| 10213 | 22  | 
|
| 22262 | 23  | 
inductive2  | 
24  | 
  rtrancl :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"   ("(_^**)" [1000] 1000)
 | 
|
25  | 
for r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
|
26  | 
where  | 
|
27  | 
rtrancl_refl [intro!, Pure.intro!, simp]: "r^** a a"  | 
|
28  | 
| rtrancl_into_rtrancl [Pure.intro]: "r^** a b ==> r b c ==> r^** a c"  | 
|
| 
11327
 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 
berghofe 
parents: 
11115 
diff
changeset
 | 
29  | 
|
| 22262 | 30  | 
inductive2  | 
31  | 
  trancl :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"  ("(_^++)" [1000] 1000)
 | 
|
32  | 
for r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
|
33  | 
where  | 
|
34  | 
r_into_trancl [intro, Pure.intro]: "r a b ==> r^++ a b"  | 
|
35  | 
| trancl_into_trancl [Pure.intro]: "r^++ a b ==> r b c ==> r^++ a c"  | 
|
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
36  | 
|
| 22262 | 37  | 
constdefs  | 
38  | 
  rtrancl_set :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^*)" [1000] 999)
 | 
|
39  | 
"r^* == Collect2 (member2 r)^**"  | 
|
40  | 
||
41  | 
  trancl_set :: "('a \<times> 'a) set => ('a \<times> 'a) set"    ("(_^+)" [1000] 999)
 | 
|
42  | 
"r^+ == Collect2 (member2 r)^++"  | 
|
| 10213 | 43  | 
|
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19623 
diff
changeset
 | 
44  | 
abbreviation  | 
| 22262 | 45  | 
  reflcl :: "('a => 'a => bool) => 'a => 'a => bool"  ("(_^==)" [1000] 1000) where
 | 
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22262 
diff
changeset
 | 
46  | 
"r^== == sup r op ="  | 
| 22262 | 47  | 
|
48  | 
abbreviation  | 
|
49  | 
  reflcl_set :: "('a \<times> 'a) set => ('a \<times> 'a) set"  ("(_^=)" [1000] 999) where
 | 
|
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19623 
diff
changeset
 | 
50  | 
"r^= == r \<union> Id"  | 
| 10213 | 51  | 
|
| 21210 | 52  | 
notation (xsymbols)  | 
| 22262 | 53  | 
  rtrancl  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
 | 
54  | 
  trancl  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
 | 
|
55  | 
  reflcl  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
 | 
|
56  | 
  rtrancl_set  ("(_\<^sup>*)" [1000] 999) and
 | 
|
57  | 
  trancl_set  ("(_\<^sup>+)" [1000] 999) and
 | 
|
58  | 
  reflcl_set  ("(_\<^sup>=)" [1000] 999)
 | 
|
| 12691 | 59  | 
|
| 21210 | 60  | 
notation (HTML output)  | 
| 22262 | 61  | 
  rtrancl  ("(_\<^sup>*\<^sup>*)" [1000] 1000) and
 | 
62  | 
  trancl  ("(_\<^sup>+\<^sup>+)" [1000] 1000) and
 | 
|
63  | 
  reflcl  ("(_\<^sup>=\<^sup>=)" [1000] 1000) and
 | 
|
64  | 
  rtrancl_set  ("(_\<^sup>*)" [1000] 999) and
 | 
|
65  | 
  trancl_set  ("(_\<^sup>+)" [1000] 999) and
 | 
|
66  | 
  reflcl_set  ("(_\<^sup>=)" [1000] 999)
 | 
|
| 14565 | 67  | 
|
| 12691 | 68  | 
|
69  | 
subsection {* Reflexive-transitive closure *}
 | 
|
70  | 
||
| 22262 | 71  | 
lemma rtrancl_set_eq [pred_set_conv]: "(member2 r)^** = member2 (r^*)"  | 
72  | 
by (simp add: rtrancl_set_def)  | 
|
73  | 
||
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22262 
diff
changeset
 | 
74  | 
lemma reflcl_set_eq [pred_set_conv]: "(sup (member2 r) op =) = member2 (r Un Id)"  | 
| 22262 | 75  | 
by (simp add: expand_fun_eq)  | 
76  | 
||
77  | 
lemmas rtrancl_refl [intro!, Pure.intro!, simp] = rtrancl_refl [to_set]  | 
|
78  | 
lemmas rtrancl_into_rtrancl [Pure.intro] = rtrancl_into_rtrancl [to_set]  | 
|
79  | 
||
| 12691 | 80  | 
lemma r_into_rtrancl [intro]: "!!p. p \<in> r ==> p \<in> r^*"  | 
81  | 
  -- {* @{text rtrancl} of @{text r} contains @{text r} *}
 | 
|
82  | 
apply (simp only: split_tupled_all)  | 
|
83  | 
apply (erule rtrancl_refl [THEN rtrancl_into_rtrancl])  | 
|
84  | 
done  | 
|
85  | 
||
| 22262 | 86  | 
lemma r_into_rtrancl' [intro]: "r x y ==> r^** x y"  | 
87  | 
  -- {* @{text rtrancl} of @{text r} contains @{text r} *}
 | 
|
88  | 
by (erule rtrancl.rtrancl_refl [THEN rtrancl.rtrancl_into_rtrancl])  | 
|
89  | 
||
90  | 
lemma rtrancl_mono': "r \<le> s ==> r^** \<le> s^**"  | 
|
| 12691 | 91  | 
  -- {* monotonicity of @{text rtrancl} *}
 | 
| 22262 | 92  | 
apply (rule predicate2I)  | 
| 12691 | 93  | 
apply (erule rtrancl.induct)  | 
| 22262 | 94  | 
apply (rule_tac [2] rtrancl.rtrancl_into_rtrancl, blast+)  | 
| 12691 | 95  | 
done  | 
96  | 
||
| 22262 | 97  | 
lemmas rtrancl_mono = rtrancl_mono' [to_set]  | 
98  | 
||
99  | 
theorem rtrancl_induct' [consumes 1, induct set: rtrancl]:  | 
|
100  | 
assumes a: "r^** a b"  | 
|
101  | 
and cases: "P a" "!!y z. [| r^** a y; r y z; P y |] ==> P z"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12823 
diff
changeset
 | 
102  | 
shows "P b"  | 
| 12691 | 103  | 
proof -  | 
104  | 
from a have "a = a --> P b"  | 
|
| 17589 | 105  | 
by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+  | 
106  | 
thus ?thesis by iprover  | 
|
| 12691 | 107  | 
qed  | 
108  | 
||
| 22262 | 109  | 
lemmas rtrancl_induct [consumes 1, induct set: rtrancl_set] = rtrancl_induct' [to_set]  | 
110  | 
||
111  | 
lemmas rtrancl_induct2' =  | 
|
112  | 
rtrancl_induct'[of _ "(ax,ay)" "(bx,by)", split_rule,  | 
|
113  | 
consumes 1, case_names refl step]  | 
|
114  | 
||
| 
14404
 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 
nipkow 
parents: 
14398 
diff
changeset
 | 
115  | 
lemmas rtrancl_induct2 =  | 
| 
 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 
nipkow 
parents: 
14398 
diff
changeset
 | 
116  | 
rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),  | 
| 
 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 
nipkow 
parents: 
14398 
diff
changeset
 | 
117  | 
consumes 1, case_names refl step]  | 
| 18372 | 118  | 
|
| 19228 | 119  | 
lemma reflexive_rtrancl: "reflexive (r^*)"  | 
120  | 
by (unfold refl_def) fast  | 
|
121  | 
||
| 12691 | 122  | 
lemma trans_rtrancl: "trans(r^*)"  | 
123  | 
  -- {* transitivity of transitive closure!! -- by induction *}
 | 
|
| 12823 | 124  | 
proof (rule transI)  | 
125  | 
fix x y z  | 
|
126  | 
assume "(x, y) \<in> r\<^sup>*"  | 
|
127  | 
assume "(y, z) \<in> r\<^sup>*"  | 
|
| 17589 | 128  | 
thus "(x, z) \<in> r\<^sup>*" by induct (iprover!)+  | 
| 12823 | 129  | 
qed  | 
| 12691 | 130  | 
|
131  | 
lemmas rtrancl_trans = trans_rtrancl [THEN transD, standard]  | 
|
132  | 
||
| 22262 | 133  | 
lemma rtrancl_trans':  | 
134  | 
assumes xy: "r^** x y"  | 
|
135  | 
and yz: "r^** y z"  | 
|
136  | 
shows "r^** x z" using yz xy  | 
|
137  | 
by induct iprover+  | 
|
138  | 
||
| 12691 | 139  | 
lemma rtranclE:  | 
| 18372 | 140  | 
assumes major: "(a::'a,b) : r^*"  | 
141  | 
and cases: "(a = b) ==> P"  | 
|
142  | 
"!!y. [| (a,y) : r^*; (y,b) : r |] ==> P"  | 
|
143  | 
shows P  | 
|
| 12691 | 144  | 
  -- {* elimination of @{text rtrancl} -- by induction on a special formula *}
 | 
| 18372 | 145  | 
apply (subgoal_tac "(a::'a) = b | (EX y. (a,y) : r^* & (y,b) : r)")  | 
146  | 
apply (rule_tac [2] major [THEN rtrancl_induct])  | 
|
147  | 
prefer 2 apply blast  | 
|
148  | 
prefer 2 apply blast  | 
|
149  | 
apply (erule asm_rl exE disjE conjE cases)+  | 
|
150  | 
done  | 
|
| 12691 | 151  | 
|
| 
22080
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
152  | 
lemma rtrancl_Int_subset: "[| Id \<subseteq> s; r O (r^* \<inter> s) \<subseteq> s|] ==> r^* \<subseteq> s"  | 
| 
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
153  | 
apply (rule subsetI)  | 
| 
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
154  | 
apply (rule_tac p="x" in PairE, clarify)  | 
| 
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
155  | 
apply (erule rtrancl_induct, auto)  | 
| 
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
156  | 
done  | 
| 
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
157  | 
|
| 22262 | 158  | 
lemma converse_rtrancl_into_rtrancl':  | 
159  | 
"r a b \<Longrightarrow> r\<^sup>*\<^sup>* b c \<Longrightarrow> r\<^sup>*\<^sup>* a c"  | 
|
160  | 
by (rule rtrancl_trans') iprover+  | 
|
161  | 
||
162  | 
lemmas converse_rtrancl_into_rtrancl = converse_rtrancl_into_rtrancl' [to_set]  | 
|
| 12691 | 163  | 
|
164  | 
text {*
 | 
|
165  | 
  \medskip More @{term "r^*"} equations and inclusions.
 | 
|
166  | 
*}  | 
|
167  | 
||
| 22262 | 168  | 
lemma rtrancl_idemp' [simp]: "(r^**)^** = r^**"  | 
169  | 
apply (auto intro!: order_antisym)  | 
|
170  | 
apply (erule rtrancl_induct')  | 
|
171  | 
apply (rule rtrancl.rtrancl_refl)  | 
|
172  | 
apply (blast intro: rtrancl_trans')  | 
|
| 12691 | 173  | 
done  | 
174  | 
||
| 22262 | 175  | 
lemmas rtrancl_idemp [simp] = rtrancl_idemp' [to_set]  | 
176  | 
||
| 12691 | 177  | 
lemma rtrancl_idemp_self_comp [simp]: "R^* O R^* = R^*"  | 
178  | 
apply (rule set_ext)  | 
|
179  | 
apply (simp only: split_tupled_all)  | 
|
180  | 
apply (blast intro: rtrancl_trans)  | 
|
181  | 
done  | 
|
182  | 
||
183  | 
lemma rtrancl_subset_rtrancl: "r \<subseteq> s^* ==> r^* \<subseteq> s^*"  | 
|
| 14208 | 184  | 
by (drule rtrancl_mono, simp)  | 
| 12691 | 185  | 
|
| 22262 | 186  | 
lemma rtrancl_subset': "R \<le> S ==> S \<le> R^** ==> S^** = R^**"  | 
187  | 
apply (drule rtrancl_mono')  | 
|
188  | 
apply (drule rtrancl_mono', simp)  | 
|
| 12691 | 189  | 
done  | 
190  | 
||
| 22262 | 191  | 
lemmas rtrancl_subset = rtrancl_subset' [to_set]  | 
192  | 
||
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22262 
diff
changeset
 | 
193  | 
lemma rtrancl_Un_rtrancl': "(sup (R^**) (S^**))^** = (sup R S)^**"  | 
| 22262 | 194  | 
by (blast intro!: rtrancl_subset' intro: rtrancl_mono' [THEN predicate2D])  | 
| 12691 | 195  | 
|
| 22262 | 196  | 
lemmas rtrancl_Un_rtrancl = rtrancl_Un_rtrancl' [to_set]  | 
197  | 
||
198  | 
lemma rtrancl_reflcl' [simp]: "(R^==)^** = R^**"  | 
|
199  | 
by (blast intro!: rtrancl_subset')  | 
|
200  | 
||
201  | 
lemmas rtrancl_reflcl [simp] = rtrancl_reflcl' [to_set]  | 
|
| 12691 | 202  | 
|
203  | 
lemma rtrancl_r_diff_Id: "(r - Id)^* = r^*"  | 
|
204  | 
apply (rule sym)  | 
|
| 14208 | 205  | 
apply (rule rtrancl_subset, blast, clarify)  | 
| 12691 | 206  | 
apply (rename_tac a b)  | 
| 14208 | 207  | 
apply (case_tac "a = b", blast)  | 
| 12691 | 208  | 
apply (blast intro!: r_into_rtrancl)  | 
209  | 
done  | 
|
210  | 
||
| 
22422
 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 
haftmann 
parents: 
22262 
diff
changeset
 | 
211  | 
lemma rtrancl_r_diff_Id': "(inf r op ~=)^** = r^**"  | 
| 22262 | 212  | 
apply (rule sym)  | 
213  | 
apply (rule rtrancl_subset')  | 
|
214  | 
apply blast+  | 
|
215  | 
done  | 
|
216  | 
||
217  | 
theorem rtrancl_converseD':  | 
|
218  | 
assumes r: "(r^--1)^** x y"  | 
|
219  | 
shows "r^** y x"  | 
|
| 12823 | 220  | 
proof -  | 
221  | 
from r show ?thesis  | 
|
| 22262 | 222  | 
by induct (iprover intro: rtrancl_trans' dest!: conversepD)+  | 
| 12823 | 223  | 
qed  | 
| 12691 | 224  | 
|
| 22262 | 225  | 
lemmas rtrancl_converseD = rtrancl_converseD' [to_set]  | 
226  | 
||
227  | 
theorem rtrancl_converseI':  | 
|
228  | 
assumes r: "r^** y x"  | 
|
229  | 
shows "(r^--1)^** x y"  | 
|
| 12823 | 230  | 
proof -  | 
231  | 
from r show ?thesis  | 
|
| 22262 | 232  | 
by induct (iprover intro: rtrancl_trans' conversepI)+  | 
| 12823 | 233  | 
qed  | 
| 12691 | 234  | 
|
| 22262 | 235  | 
lemmas rtrancl_converseI = rtrancl_converseI' [to_set]  | 
236  | 
||
| 12691 | 237  | 
lemma rtrancl_converse: "(r^-1)^* = (r^*)^-1"  | 
238  | 
by (fast dest!: rtrancl_converseD intro!: rtrancl_converseI)  | 
|
239  | 
||
| 19228 | 240  | 
lemma sym_rtrancl: "sym r ==> sym (r^*)"  | 
241  | 
by (simp only: sym_conv_converse_eq rtrancl_converse [symmetric])  | 
|
242  | 
||
| 22262 | 243  | 
theorem converse_rtrancl_induct'[consumes 1]:  | 
244  | 
assumes major: "r^** a b"  | 
|
245  | 
and cases: "P b" "!!y z. [| r y z; r^** z b; P z |] ==> P y"  | 
|
| 
12937
 
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
 
wenzelm 
parents: 
12823 
diff
changeset
 | 
246  | 
shows "P a"  | 
| 12691 | 247  | 
proof -  | 
| 22262 | 248  | 
from rtrancl_converseI' [OF major]  | 
| 12691 | 249  | 
show ?thesis  | 
| 22262 | 250  | 
by induct (iprover intro: cases dest!: conversepD rtrancl_converseD')+  | 
| 12691 | 251  | 
qed  | 
252  | 
||
| 22262 | 253  | 
lemmas converse_rtrancl_induct[consumes 1] = converse_rtrancl_induct' [to_set]  | 
254  | 
||
255  | 
lemmas converse_rtrancl_induct2' =  | 
|
256  | 
converse_rtrancl_induct'[of _ "(ax,ay)" "(bx,by)", split_rule,  | 
|
257  | 
consumes 1, case_names refl step]  | 
|
258  | 
||
| 
14404
 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 
nipkow 
parents: 
14398 
diff
changeset
 | 
259  | 
lemmas converse_rtrancl_induct2 =  | 
| 
 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 
nipkow 
parents: 
14398 
diff
changeset
 | 
260  | 
converse_rtrancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),  | 
| 
 
4952c5a92e04
Transitive_Closure: added consumes and case_names attributes
 
nipkow 
parents: 
14398 
diff
changeset
 | 
261  | 
consumes 1, case_names refl step]  | 
| 12691 | 262  | 
|
| 22262 | 263  | 
lemma converse_rtranclE':  | 
264  | 
assumes major: "r^** x z"  | 
|
| 18372 | 265  | 
and cases: "x=z ==> P"  | 
| 22262 | 266  | 
"!!y. [| r x y; r^** y z |] ==> P"  | 
| 18372 | 267  | 
shows P  | 
| 22262 | 268  | 
apply (subgoal_tac "x = z | (EX y. r x y & r^** y z)")  | 
269  | 
apply (rule_tac [2] major [THEN converse_rtrancl_induct'])  | 
|
| 18372 | 270  | 
prefer 2 apply iprover  | 
271  | 
prefer 2 apply iprover  | 
|
272  | 
apply (erule asm_rl exE disjE conjE cases)+  | 
|
273  | 
done  | 
|
| 12691 | 274  | 
|
| 22262 | 275  | 
lemmas converse_rtranclE = converse_rtranclE' [to_set]  | 
276  | 
||
277  | 
lemmas converse_rtranclE2' = converse_rtranclE' [of _ "(xa,xb)" "(za,zb)", split_rule]  | 
|
278  | 
||
279  | 
lemmas converse_rtranclE2 = converse_rtranclE [of "(xa,xb)" "(za,zb)", split_rule]  | 
|
| 12691 | 280  | 
|
281  | 
lemma r_comp_rtrancl_eq: "r O r^* = r^* O r"  | 
|
282  | 
by (blast elim: rtranclE converse_rtranclE  | 
|
283  | 
intro: rtrancl_into_rtrancl converse_rtrancl_into_rtrancl)  | 
|
284  | 
||
| 
20716
 
a6686a8e1b68
Changed precedence of "op O" (relation composition) from 60 to 75.
 
krauss 
parents: 
19656 
diff
changeset
 | 
285  | 
lemma rtrancl_unfold: "r^* = Id Un r O r^*"  | 
| 15551 | 286  | 
by (auto intro: rtrancl_into_rtrancl elim: rtranclE)  | 
287  | 
||
| 12691 | 288  | 
|
289  | 
subsection {* Transitive closure *}
 | 
|
| 10331 | 290  | 
|
| 22262 | 291  | 
lemma trancl_set_eq [pred_set_conv]: "(member2 r)^++ = member2 (r^+)"  | 
292  | 
by (simp add: trancl_set_def)  | 
|
293  | 
||
294  | 
lemmas r_into_trancl [intro, Pure.intro] = r_into_trancl [to_set]  | 
|
295  | 
lemmas trancl_into_trancl [Pure.intro] = trancl_into_trancl [to_set]  | 
|
296  | 
||
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
297  | 
lemma trancl_mono: "!!p. p \<in> r^+ ==> r \<subseteq> s ==> p \<in> s^+"  | 
| 22262 | 298  | 
apply (simp add: split_tupled_all trancl_set_def)  | 
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
299  | 
apply (erule trancl.induct)  | 
| 17589 | 300  | 
apply (iprover dest: subsetD)+  | 
| 12691 | 301  | 
done  | 
302  | 
||
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
303  | 
lemma r_into_trancl': "!!p. p : r ==> p : r^+"  | 
| 
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
304  | 
by (simp only: split_tupled_all) (erule r_into_trancl)  | 
| 
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
305  | 
|
| 12691 | 306  | 
text {*
 | 
307  | 
  \medskip Conversions between @{text trancl} and @{text rtrancl}.
 | 
|
308  | 
*}  | 
|
309  | 
||
| 22262 | 310  | 
lemma trancl_into_rtrancl': "r^++ a b ==> r^** a b"  | 
| 17589 | 311  | 
by (erule trancl.induct) iprover+  | 
| 12691 | 312  | 
|
| 22262 | 313  | 
lemmas trancl_into_rtrancl = trancl_into_rtrancl' [to_set]  | 
314  | 
||
315  | 
lemma rtrancl_into_trancl1': assumes r: "r^** a b"  | 
|
316  | 
shows "!!c. r b c ==> r^++ a c" using r  | 
|
| 17589 | 317  | 
by induct iprover+  | 
| 12691 | 318  | 
|
| 22262 | 319  | 
lemmas rtrancl_into_trancl1 = rtrancl_into_trancl1' [to_set]  | 
320  | 
||
321  | 
lemma rtrancl_into_trancl2': "[| r a b; r^** b c |] ==> r^++ a c"  | 
|
| 12691 | 322  | 
  -- {* intro rule from @{text r} and @{text rtrancl} *}
 | 
| 22262 | 323  | 
apply (erule rtrancl.cases, iprover)  | 
324  | 
apply (rule rtrancl_trans' [THEN rtrancl_into_trancl1'])  | 
|
325  | 
apply (simp | rule r_into_rtrancl')+  | 
|
| 12691 | 326  | 
done  | 
327  | 
||
| 22262 | 328  | 
lemmas rtrancl_into_trancl2 = rtrancl_into_trancl2' [to_set]  | 
329  | 
||
330  | 
lemma trancl_induct' [consumes 1, induct set: trancl]:  | 
|
331  | 
assumes a: "r^++ a b"  | 
|
332  | 
and cases: "!!y. r a y ==> P y"  | 
|
333  | 
"!!y z. r^++ a y ==> r y z ==> P y ==> P z"  | 
|
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
334  | 
shows "P b"  | 
| 12691 | 335  | 
  -- {* Nice induction rule for @{text trancl} *}
 | 
336  | 
proof -  | 
|
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
337  | 
from a have "a = a --> P b"  | 
| 17589 | 338  | 
by (induct "%x y. x = a --> P y" a b) (iprover intro: cases)+  | 
339  | 
thus ?thesis by iprover  | 
|
| 12691 | 340  | 
qed  | 
341  | 
||
| 22262 | 342  | 
lemmas trancl_induct [consumes 1, induct set: trancl_set] = trancl_induct' [to_set]  | 
343  | 
||
344  | 
lemmas trancl_induct2' =  | 
|
345  | 
trancl_induct'[of _ "(ax,ay)" "(bx,by)", split_rule,  | 
|
346  | 
consumes 1, case_names base step]  | 
|
347  | 
||
| 22172 | 348  | 
lemmas trancl_induct2 =  | 
349  | 
trancl_induct[of "(ax,ay)" "(bx,by)", split_format (complete),  | 
|
350  | 
consumes 1, case_names base step]  | 
|
351  | 
||
| 22262 | 352  | 
lemma trancl_trans_induct':  | 
353  | 
assumes major: "r^++ x y"  | 
|
354  | 
and cases: "!!x y. r x y ==> P x y"  | 
|
355  | 
"!!x y z. [| r^++ x y; P x y; r^++ y z; P y z |] ==> P x z"  | 
|
| 18372 | 356  | 
shows "P x y"  | 
| 12691 | 357  | 
  -- {* Another induction rule for trancl, incorporating transitivity *}
 | 
| 22262 | 358  | 
by (iprover intro: major [THEN trancl_induct'] cases)  | 
359  | 
||
360  | 
lemmas trancl_trans_induct = trancl_trans_induct' [to_set]  | 
|
| 12691 | 361  | 
|
| 22262 | 362  | 
lemma tranclE:  | 
363  | 
assumes H: "(a, b) : r^+"  | 
|
364  | 
and cases: "(a, b) : r ==> P" "\<And>c. (a, c) : r^+ ==> (c, b) : r ==> P"  | 
|
365  | 
shows P  | 
|
366  | 
using H [simplified trancl_set_def, simplified]  | 
|
367  | 
by cases (auto intro: cases [simplified trancl_set_def, simplified])  | 
|
| 10980 | 368  | 
|
| 
22080
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
369  | 
lemma trancl_Int_subset: "[| r \<subseteq> s; r O (r^+ \<inter> s) \<subseteq> s|] ==> r^+ \<subseteq> s"  | 
| 
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
370  | 
apply (rule subsetI)  | 
| 
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
371  | 
apply (rule_tac p="x" in PairE, clarify)  | 
| 
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
372  | 
apply (erule trancl_induct, auto)  | 
| 
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
373  | 
done  | 
| 
 
7bf8868ab3e4
induction rules for trancl/rtrancl expressed using subsets
 
paulson 
parents: 
21589 
diff
changeset
 | 
374  | 
|
| 
20716
 
a6686a8e1b68
Changed precedence of "op O" (relation composition) from 60 to 75.
 
krauss 
parents: 
19656 
diff
changeset
 | 
375  | 
lemma trancl_unfold: "r^+ = r Un r O r^+"  | 
| 15551 | 376  | 
by (auto intro: trancl_into_trancl elim: tranclE)  | 
377  | 
||
| 19623 | 378  | 
lemma trans_trancl[simp]: "trans(r^+)"  | 
| 12691 | 379  | 
  -- {* Transitivity of @{term "r^+"} *}
 | 
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
380  | 
proof (rule transI)  | 
| 
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
381  | 
fix x y z  | 
| 18372 | 382  | 
assume xy: "(x, y) \<in> r^+"  | 
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
383  | 
assume "(y, z) \<in> r^+"  | 
| 18372 | 384  | 
thus "(x, z) \<in> r^+" by induct (insert xy, iprover)+  | 
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
385  | 
qed  | 
| 12691 | 386  | 
|
387  | 
lemmas trancl_trans = trans_trancl [THEN transD, standard]  | 
|
388  | 
||
| 22262 | 389  | 
lemma trancl_trans':  | 
390  | 
assumes xy: "r^++ x y"  | 
|
391  | 
and yz: "r^++ y z"  | 
|
392  | 
shows "r^++ x z" using yz xy  | 
|
393  | 
by induct iprover+  | 
|
394  | 
||
| 19623 | 395  | 
lemma trancl_id[simp]: "trans r \<Longrightarrow> r^+ = r"  | 
396  | 
apply(auto)  | 
|
397  | 
apply(erule trancl_induct)  | 
|
398  | 
apply assumption  | 
|
399  | 
apply(unfold trans_def)  | 
|
400  | 
apply(blast)  | 
|
401  | 
done  | 
|
402  | 
||
| 22262 | 403  | 
lemma rtrancl_trancl_trancl': assumes r: "r^** x y"  | 
404  | 
shows "!!z. r^++ y z ==> r^++ x z" using r  | 
|
405  | 
by induct (iprover intro: trancl_trans')+  | 
|
| 12691 | 406  | 
|
| 22262 | 407  | 
lemmas rtrancl_trancl_trancl = rtrancl_trancl_trancl' [to_set]  | 
408  | 
||
409  | 
lemma trancl_into_trancl2': "r a b ==> r^++ b c ==> r^++ a c"  | 
|
410  | 
by (erule trancl_trans' [OF trancl.r_into_trancl])  | 
|
411  | 
||
412  | 
lemmas trancl_into_trancl2 = trancl_into_trancl2' [to_set]  | 
|
| 12691 | 413  | 
|
414  | 
lemma trancl_insert:  | 
|
415  | 
  "(insert (y, x) r)^+ = r^+ \<union> {(a, b). (a, y) \<in> r^* \<and> (x, b) \<in> r^*}"
 | 
|
416  | 
  -- {* primitive recursion for @{text trancl} over finite relations *}
 | 
|
417  | 
apply (rule equalityI)  | 
|
418  | 
apply (rule subsetI)  | 
|
419  | 
apply (simp only: split_tupled_all)  | 
|
| 14208 | 420  | 
apply (erule trancl_induct, blast)  | 
| 12691 | 421  | 
apply (blast intro: rtrancl_into_trancl1 trancl_into_rtrancl r_into_trancl trancl_trans)  | 
422  | 
apply (rule subsetI)  | 
|
423  | 
apply (blast intro: trancl_mono rtrancl_mono  | 
|
424  | 
[THEN [2] rev_subsetD] rtrancl_trancl_trancl rtrancl_into_trancl2)  | 
|
425  | 
done  | 
|
426  | 
||
| 22262 | 427  | 
lemma trancl_converseI': "(r^++)^--1 x y ==> (r^--1)^++ x y"  | 
428  | 
apply (drule conversepD)  | 
|
429  | 
apply (erule trancl_induct')  | 
|
430  | 
apply (iprover intro: conversepI trancl_trans')+  | 
|
| 12691 | 431  | 
done  | 
432  | 
||
| 22262 | 433  | 
lemmas trancl_converseI = trancl_converseI' [to_set]  | 
434  | 
||
435  | 
lemma trancl_converseD': "(r^--1)^++ x y ==> (r^++)^--1 x y"  | 
|
436  | 
apply (rule conversepI)  | 
|
437  | 
apply (erule trancl_induct')  | 
|
438  | 
apply (iprover dest: conversepD intro: trancl_trans')+  | 
|
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
439  | 
done  | 
| 12691 | 440  | 
|
| 22262 | 441  | 
lemmas trancl_converseD = trancl_converseD' [to_set]  | 
442  | 
||
443  | 
lemma trancl_converse': "(r^--1)^++ = (r^++)^--1"  | 
|
444  | 
by (fastsimp simp add: expand_fun_eq  | 
|
445  | 
intro!: trancl_converseI' dest!: trancl_converseD')  | 
|
446  | 
||
447  | 
lemmas trancl_converse = trancl_converse' [to_set]  | 
|
| 12691 | 448  | 
|
| 19228 | 449  | 
lemma sym_trancl: "sym r ==> sym (r^+)"  | 
450  | 
by (simp only: sym_conv_converse_eq trancl_converse [symmetric])  | 
|
451  | 
||
| 22262 | 452  | 
lemma converse_trancl_induct':  | 
453  | 
assumes major: "r^++ a b"  | 
|
454  | 
and cases: "!!y. r y b ==> P(y)"  | 
|
455  | 
"!!y z.[| r y z; r^++ z b; P(z) |] ==> P(y)"  | 
|
| 18372 | 456  | 
shows "P a"  | 
| 22262 | 457  | 
apply (rule trancl_induct' [OF trancl_converseI', OF conversepI, OF major])  | 
| 18372 | 458  | 
apply (rule cases)  | 
| 22262 | 459  | 
apply (erule conversepD)  | 
460  | 
apply (blast intro: prems dest!: trancl_converseD' conversepD)  | 
|
| 18372 | 461  | 
done  | 
| 12691 | 462  | 
|
| 22262 | 463  | 
lemmas converse_trancl_induct = converse_trancl_induct' [to_set]  | 
464  | 
||
465  | 
lemma tranclD': "R^++ x y ==> EX z. R x z \<and> R^** z y"  | 
|
466  | 
apply (erule converse_trancl_induct', auto)  | 
|
467  | 
apply (blast intro: rtrancl_trans')  | 
|
| 12691 | 468  | 
done  | 
469  | 
||
| 22262 | 470  | 
lemmas tranclD = tranclD' [to_set]  | 
471  | 
||
| 13867 | 472  | 
lemma irrefl_tranclI: "r^-1 \<inter> r^* = {} ==> (x, x) \<notin> r^+"
 | 
| 18372 | 473  | 
by (blast elim: tranclE dest: trancl_into_rtrancl)  | 
| 12691 | 474  | 
|
475  | 
lemma irrefl_trancl_rD: "!!X. ALL x. (x, x) \<notin> r^+ ==> (x, y) \<in> r ==> x \<noteq> y"  | 
|
476  | 
by (blast dest: r_into_trancl)  | 
|
477  | 
||
478  | 
lemma trancl_subset_Sigma_aux:  | 
|
479  | 
"(a, b) \<in> r^* ==> r \<subseteq> A \<times> A ==> a = b \<or> a \<in> A"  | 
|
| 18372 | 480  | 
by (induct rule: rtrancl_induct) auto  | 
| 12691 | 481  | 
|
482  | 
lemma trancl_subset_Sigma: "r \<subseteq> A \<times> A ==> r^+ \<subseteq> A \<times> A"  | 
|
| 
13704
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
483  | 
apply (rule subsetI)  | 
| 
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
484  | 
apply (simp only: split_tupled_all)  | 
| 
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
485  | 
apply (erule tranclE)  | 
| 
 
854501b1e957
Transitive closure is now defined inductively as well.
 
berghofe 
parents: 
12937 
diff
changeset
 | 
486  | 
apply (blast dest!: trancl_into_rtrancl trancl_subset_Sigma_aux)+  | 
| 12691 | 487  | 
done  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
488  | 
|
| 22262 | 489  | 
lemma reflcl_trancl' [simp]: "(r^++)^== = r^**"  | 
490  | 
apply (safe intro!: order_antisym)  | 
|
491  | 
apply (erule trancl_into_rtrancl')  | 
|
492  | 
apply (blast elim: rtrancl.cases dest: rtrancl_into_trancl1')  | 
|
| 11084 | 493  | 
done  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
494  | 
|
| 22262 | 495  | 
lemmas reflcl_trancl [simp] = reflcl_trancl' [to_set]  | 
496  | 
||
| 11090 | 497  | 
lemma trancl_reflcl [simp]: "(r^=)^+ = r^*"  | 
| 11084 | 498  | 
apply safe  | 
| 14208 | 499  | 
apply (drule trancl_into_rtrancl, simp)  | 
500  | 
apply (erule rtranclE, safe)  | 
|
501  | 
apply (rule r_into_trancl, simp)  | 
|
| 11084 | 502  | 
apply (rule rtrancl_into_trancl1)  | 
| 14208 | 503  | 
apply (erule rtrancl_reflcl [THEN equalityD2, THEN subsetD], fast)  | 
| 11084 | 504  | 
done  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
505  | 
|
| 11090 | 506  | 
lemma trancl_empty [simp]: "{}^+ = {}"
 | 
| 11084 | 507  | 
by (auto elim: trancl_induct)  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
508  | 
|
| 11090 | 509  | 
lemma rtrancl_empty [simp]: "{}^* = Id"
 | 
| 11084 | 510  | 
by (rule subst [OF reflcl_trancl]) simp  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
511  | 
|
| 22262 | 512  | 
lemma rtranclD': "R^** a b ==> a = b \<or> a \<noteq> b \<and> R^++ a b"  | 
513  | 
by (force simp add: reflcl_trancl' [symmetric] simp del: reflcl_trancl')  | 
|
514  | 
||
515  | 
lemmas rtranclD = rtranclD' [to_set]  | 
|
| 11084 | 516  | 
|
| 16514 | 517  | 
lemma rtrancl_eq_or_trancl:  | 
518  | 
"(x,y) \<in> R\<^sup>* = (x=y \<or> x\<noteq>y \<and> (x,y) \<in> R\<^sup>+)"  | 
|
519  | 
by (fast elim: trancl_into_rtrancl dest: rtranclD)  | 
|
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
520  | 
|
| 12691 | 521  | 
text {* @{text Domain} and @{text Range} *}
 | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
522  | 
|
| 11090 | 523  | 
lemma Domain_rtrancl [simp]: "Domain (R^*) = UNIV"  | 
| 11084 | 524  | 
by blast  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
525  | 
|
| 11090 | 526  | 
lemma Range_rtrancl [simp]: "Range (R^*) = UNIV"  | 
| 11084 | 527  | 
by blast  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
528  | 
|
| 11090 | 529  | 
lemma rtrancl_Un_subset: "(R^* \<union> S^*) \<subseteq> (R Un S)^*"  | 
| 11084 | 530  | 
by (rule rtrancl_Un_rtrancl [THEN subst]) fast  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
531  | 
|
| 11090 | 532  | 
lemma in_rtrancl_UnI: "x \<in> R^* \<or> x \<in> S^* ==> x \<in> (R \<union> S)^*"  | 
| 11084 | 533  | 
by (blast intro: subsetD [OF rtrancl_Un_subset])  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
534  | 
|
| 11090 | 535  | 
lemma trancl_domain [simp]: "Domain (r^+) = Domain r"  | 
| 11084 | 536  | 
by (unfold Domain_def) (blast dest: tranclD)  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
537  | 
|
| 11090 | 538  | 
lemma trancl_range [simp]: "Range (r^+) = Range r"  | 
| 11084 | 539  | 
by (simp add: Range_def trancl_converse [symmetric])  | 
| 
10996
 
74e970389def
Moved some thms from Transitive_ClosureTr.ML to Transitive_Closure.thy
 
nipkow 
parents: 
10980 
diff
changeset
 | 
540  | 
|
| 11115 | 541  | 
lemma Not_Domain_rtrancl:  | 
| 12691 | 542  | 
"x ~: Domain R ==> ((x, y) : R^*) = (x = y)"  | 
543  | 
apply auto  | 
|
544  | 
by (erule rev_mp, erule rtrancl_induct, auto)  | 
|
545  | 
||
| 
11327
 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 
berghofe 
parents: 
11115 
diff
changeset
 | 
546  | 
|
| 12691 | 547  | 
text {* More about converse @{text rtrancl} and @{text trancl}, should
 | 
548  | 
be merged with main body. *}  | 
|
| 
12428
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
549  | 
|
| 
14337
 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 
nipkow 
parents: 
14208 
diff
changeset
 | 
550  | 
lemma single_valued_confluent:  | 
| 
 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 
nipkow 
parents: 
14208 
diff
changeset
 | 
551  | 
"\<lbrakk> single_valued r; (x,y) \<in> r^*; (x,z) \<in> r^* \<rbrakk>  | 
| 
 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 
nipkow 
parents: 
14208 
diff
changeset
 | 
552  | 
\<Longrightarrow> (y,z) \<in> r^* \<or> (z,y) \<in> r^*"  | 
| 
 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 
nipkow 
parents: 
14208 
diff
changeset
 | 
553  | 
apply(erule rtrancl_induct)  | 
| 
 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 
nipkow 
parents: 
14208 
diff
changeset
 | 
554  | 
apply simp  | 
| 
 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 
nipkow 
parents: 
14208 
diff
changeset
 | 
555  | 
apply(erule disjE)  | 
| 
 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 
nipkow 
parents: 
14208 
diff
changeset
 | 
556  | 
apply(blast elim:converse_rtranclE dest:single_valuedD)  | 
| 
 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 
nipkow 
parents: 
14208 
diff
changeset
 | 
557  | 
apply(blast intro:rtrancl_trans)  | 
| 
 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 
nipkow 
parents: 
14208 
diff
changeset
 | 
558  | 
done  | 
| 
 
e13731554e50
undid split_comp_eq[simp] because it leads to nontermination together with split_def!
 
nipkow 
parents: 
14208 
diff
changeset
 | 
559  | 
|
| 12691 | 560  | 
lemma r_r_into_trancl: "(a, b) \<in> R ==> (b, c) \<in> R ==> (a, c) \<in> R^+"  | 
| 
12428
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
561  | 
by (fast intro: trancl_trans)  | 
| 
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
562  | 
|
| 
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
563  | 
lemma trancl_into_trancl [rule_format]:  | 
| 12691 | 564  | 
"(a, b) \<in> r\<^sup>+ ==> (b, c) \<in> r --> (a,c) \<in> r\<^sup>+"  | 
565  | 
apply (erule trancl_induct)  | 
|
| 
12428
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
566  | 
apply (fast intro: r_r_into_trancl)  | 
| 
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
567  | 
apply (fast intro: r_r_into_trancl trancl_trans)  | 
| 
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
568  | 
done  | 
| 
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
569  | 
|
| 22262 | 570  | 
lemma trancl_rtrancl_trancl':  | 
571  | 
"r\<^sup>+\<^sup>+ a b ==> r\<^sup>*\<^sup>* b c ==> r\<^sup>+\<^sup>+ a c"  | 
|
572  | 
apply (drule tranclD')  | 
|
| 
12428
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
573  | 
apply (erule exE, erule conjE)  | 
| 22262 | 574  | 
apply (drule rtrancl_trans', assumption)  | 
575  | 
apply (drule rtrancl_into_trancl2', assumption, assumption)  | 
|
| 
12428
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
576  | 
done  | 
| 
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
577  | 
|
| 22262 | 578  | 
lemmas trancl_rtrancl_trancl = trancl_rtrancl_trancl' [to_set]  | 
579  | 
||
| 12691 | 580  | 
lemmas transitive_closure_trans [trans] =  | 
581  | 
r_r_into_trancl trancl_trans rtrancl_trans  | 
|
582  | 
trancl_into_trancl trancl_into_trancl2  | 
|
583  | 
rtrancl_into_rtrancl converse_rtrancl_into_rtrancl  | 
|
584  | 
rtrancl_trancl_trancl trancl_rtrancl_trancl  | 
|
| 
12428
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
585  | 
|
| 22262 | 586  | 
lemmas transitive_closure_trans' [trans] =  | 
587  | 
trancl_trans' rtrancl_trans'  | 
|
588  | 
trancl.trancl_into_trancl trancl_into_trancl2'  | 
|
589  | 
rtrancl.rtrancl_into_rtrancl converse_rtrancl_into_rtrancl'  | 
|
590  | 
rtrancl_trancl_trancl' trancl_rtrancl_trancl'  | 
|
591  | 
||
| 
12428
 
f3033eed309a
setup [trans] rules for calculational Isar reasoning
 
kleing 
parents: 
11327 
diff
changeset
 | 
592  | 
declare trancl_into_rtrancl [elim]  | 
| 
11327
 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 
berghofe 
parents: 
11115 
diff
changeset
 | 
593  | 
|
| 22262 | 594  | 
declare rtranclE [cases set: rtrancl_set]  | 
595  | 
declare tranclE [cases set: trancl_set]  | 
|
| 
11327
 
cd2c27a23df1
Transitive closure is now defined via "inductive".
 
berghofe 
parents: 
11115 
diff
changeset
 | 
596  | 
|
| 15551 | 597  | 
|
598  | 
||
599  | 
||
600  | 
||
| 
15076
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
601  | 
subsection {* Setup of transitivity reasoner *}
 | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
602  | 
|
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
603  | 
ML_setup {*
 | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
604  | 
|
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
605  | 
structure Trancl_Tac = Trancl_Tac_Fun (  | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
606  | 
struct  | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
607  | 
val r_into_trancl = thm "r_into_trancl";  | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
608  | 
val trancl_trans = thm "trancl_trans";  | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
609  | 
val rtrancl_refl = thm "rtrancl_refl";  | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
610  | 
val r_into_rtrancl = thm "r_into_rtrancl";  | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
611  | 
val trancl_into_rtrancl = thm "trancl_into_rtrancl";  | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
612  | 
val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl";  | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
613  | 
val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl";  | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
614  | 
val rtrancl_trans = thm "rtrancl_trans";  | 
| 15096 | 615  | 
|
| 18372 | 616  | 
fun decomp (Trueprop $ t) =  | 
617  | 
    let fun dec (Const ("op :", _) $ (Const ("Pair", _) $ a $ b) $ rel ) =
 | 
|
| 22262 | 618  | 
        let fun decr (Const ("Transitive_Closure.rtrancl_set", _ ) $ r) = (r,"r*")
 | 
619  | 
              | decr (Const ("Transitive_Closure.trancl_set", _ ) $ r)  = (r,"r+")
 | 
|
| 18372 | 620  | 
| decr r = (r,"r");  | 
621  | 
val (rel,r) = decr rel;  | 
|
622  | 
in SOME (a,b,rel,r) end  | 
|
623  | 
| dec _ = NONE  | 
|
| 
15076
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
624  | 
in dec t end;  | 
| 18372 | 625  | 
|
| 21589 | 626  | 
end);  | 
| 
15076
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
627  | 
|
| 22262 | 628  | 
structure Tranclp_Tac = Trancl_Tac_Fun (  | 
629  | 
struct  | 
|
630  | 
val r_into_trancl = thm "trancl.r_into_trancl";  | 
|
631  | 
val trancl_trans = thm "trancl_trans'";  | 
|
632  | 
val rtrancl_refl = thm "rtrancl.rtrancl_refl";  | 
|
633  | 
val r_into_rtrancl = thm "r_into_rtrancl'";  | 
|
634  | 
val trancl_into_rtrancl = thm "trancl_into_rtrancl'";  | 
|
635  | 
val rtrancl_trancl_trancl = thm "rtrancl_trancl_trancl'";  | 
|
636  | 
val trancl_rtrancl_trancl = thm "trancl_rtrancl_trancl'";  | 
|
637  | 
val rtrancl_trans = thm "rtrancl_trans'";  | 
|
638  | 
||
639  | 
fun decomp (Trueprop $ t) =  | 
|
640  | 
let fun dec (rel $ a $ b) =  | 
|
641  | 
        let fun decr (Const ("Transitive_Closure.rtrancl", _ ) $ r) = (r,"r*")
 | 
|
642  | 
              | decr (Const ("Transitive_Closure.trancl", _ ) $ r)  = (r,"r+")
 | 
|
643  | 
| decr r = (r,"r");  | 
|
644  | 
val (rel,r) = decr rel;  | 
|
645  | 
in SOME (a, b, Envir.beta_eta_contract rel, r) end  | 
|
646  | 
| dec _ = NONE  | 
|
647  | 
in dec t end;  | 
|
648  | 
||
649  | 
end);  | 
|
650  | 
||
| 17876 | 651  | 
change_simpset (fn ss => ss  | 
652  | 
addSolver (mk_solver "Trancl" (fn _ => Trancl_Tac.trancl_tac))  | 
|
| 22262 | 653  | 
addSolver (mk_solver "Rtrancl" (fn _ => Trancl_Tac.rtrancl_tac))  | 
654  | 
addSolver (mk_solver "Tranclp" (fn _ => Tranclp_Tac.trancl_tac))  | 
|
655  | 
addSolver (mk_solver "Rtranclp" (fn _ => Tranclp_Tac.rtrancl_tac)));  | 
|
| 
15076
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
656  | 
|
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
657  | 
*}  | 
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
658  | 
|
| 21589 | 659  | 
(* Optional methods *)  | 
| 
15076
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
660  | 
|
| 
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
661  | 
method_setup trancl =  | 
| 21589 | 662  | 
  {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.trancl_tac) *}
 | 
| 18372 | 663  | 
  {* simple transitivity reasoner *}
 | 
| 
15076
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
664  | 
method_setup rtrancl =  | 
| 21589 | 665  | 
  {* Method.no_args (Method.SIMPLE_METHOD' Trancl_Tac.rtrancl_tac) *}
 | 
| 
15076
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
666  | 
  {* simple transitivity reasoner *}
 | 
| 22262 | 667  | 
method_setup tranclp =  | 
668  | 
  {* Method.no_args (Method.SIMPLE_METHOD' Tranclp_Tac.trancl_tac) *}
 | 
|
669  | 
  {* simple transitivity reasoner (predicate version) *}
 | 
|
670  | 
method_setup rtranclp =  | 
|
671  | 
  {* Method.no_args (Method.SIMPLE_METHOD' Tranclp_Tac.rtrancl_tac) *}
 | 
|
672  | 
  {* simple transitivity reasoner (predicate version) *}
 | 
|
| 
15076
 
4b3d280ef06a
New prover for transitive and reflexive-transitive closure of relations.
 
ballarin 
parents: 
14565 
diff
changeset
 | 
673  | 
|
| 10213 | 674  | 
end  |