author | wenzelm |
Wed, 01 Aug 2007 16:55:37 +0200 | |
changeset 24110 | 4ab3084e311c |
parent 24078 | 04b28c723d43 |
child 24742 | 73b8b42a36b6 |
permissions | -rw-r--r-- |
13020 | 1 |
|
2 |
header {* \chapter{Case Study: Single and Multi-Mutator Garbage Collection Algorithms} |
|
3 |
||
4 |
\section {Formalization of the Memory} *} |
|
5 |
||
16417 | 6 |
theory Graph imports Main begin |
13020 | 7 |
|
8 |
datatype node = Black | White |
|
9 |
||
10 |
types |
|
11 |
nodes = "node list" |
|
12 |
edge = "nat \<times> nat" |
|
13 |
edges = "edge list" |
|
14 |
||
15 |
consts Roots :: "nat set" |
|
16 |
||
17 |
constdefs |
|
18 |
Proper_Roots :: "nodes \<Rightarrow> bool" |
|
19 |
"Proper_Roots M \<equiv> Roots\<noteq>{} \<and> Roots \<subseteq> {i. i<length M}" |
|
20 |
||
21 |
Proper_Edges :: "(nodes \<times> edges) \<Rightarrow> bool" |
|
22 |
"Proper_Edges \<equiv> (\<lambda>(M,E). \<forall>i<length E. fst(E!i)<length M \<and> snd(E!i)<length M)" |
|
23 |
||
24 |
BtoW :: "(edge \<times> nodes) \<Rightarrow> bool" |
|
25 |
"BtoW \<equiv> (\<lambda>(e,M). (M!fst e)=Black \<and> (M!snd e)\<noteq>Black)" |
|
26 |
||
27 |
Blacks :: "nodes \<Rightarrow> nat set" |
|
28 |
"Blacks M \<equiv> {i. i<length M \<and> M!i=Black}" |
|
29 |
||
30 |
Reach :: "edges \<Rightarrow> nat set" |
|
31 |
"Reach E \<equiv> {x. (\<exists>path. 1<length path \<and> path!(length path - 1)\<in>Roots \<and> x=path!0 |
|
32 |
\<and> (\<forall>i<length path - 1. (\<exists>j<length E. E!j=(path!(i+1), path!i)))) |
|
33 |
\<or> x\<in>Roots}" |
|
34 |
||
35 |
text{* Reach: the set of reachable nodes is the set of Roots together with the |
|
36 |
nodes reachable from some Root by a path represented by a list of |
|
37 |
nodes (at least two since we traverse at least one edge), where two |
|
38 |
consecutive nodes correspond to an edge in E. *} |
|
39 |
||
40 |
subsection {* Proofs about Graphs *} |
|
41 |
||
42 |
lemmas Graph_defs= Blacks_def Proper_Roots_def Proper_Edges_def BtoW_def |
|
43 |
declare Graph_defs [simp] |
|
44 |
||
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
45 |
subsubsection{* Graph 1 *} |
13020 | 46 |
|
47 |
lemma Graph1_aux [rule_format]: |
|
48 |
"\<lbrakk> Roots\<subseteq>Blacks M; \<forall>i<length E. \<not>BtoW(E!i,M)\<rbrakk> |
|
49 |
\<Longrightarrow> 1< length path \<longrightarrow> (path!(length path - 1))\<in>Roots \<longrightarrow> |
|
50 |
(\<forall>i<length path - 1. (\<exists>j. j < length E \<and> E!j=(path!(Suc i), path!i))) |
|
51 |
\<longrightarrow> M!(path!0) = Black" |
|
52 |
apply(induct_tac "path") |
|
53 |
apply force |
|
54 |
apply clarify |
|
55 |
apply simp |
|
56 |
apply(case_tac "list") |
|
57 |
apply force |
|
58 |
apply simp |
|
13601 | 59 |
apply(rotate_tac -2) |
13020 | 60 |
apply(erule_tac x = "0" in all_dupE) |
61 |
apply simp |
|
62 |
apply clarify |
|
63 |
apply(erule allE , erule (1) notE impE) |
|
64 |
apply simp |
|
65 |
apply(erule mp) |
|
66 |
apply(case_tac "lista") |
|
67 |
apply force |
|
68 |
apply simp |
|
69 |
apply(erule mp) |
|
70 |
apply clarify |
|
71 |
apply(erule_tac x = "Suc i" in allE) |
|
72 |
apply force |
|
73 |
done |
|
74 |
||
75 |
lemma Graph1: |
|
76 |
"\<lbrakk>Roots\<subseteq>Blacks M; Proper_Edges(M, E); \<forall>i<length E. \<not>BtoW(E!i,M) \<rbrakk> |
|
77 |
\<Longrightarrow> Reach E\<subseteq>Blacks M" |
|
78 |
apply (unfold Reach_def) |
|
79 |
apply simp |
|
80 |
apply clarify |
|
81 |
apply(erule disjE) |
|
82 |
apply clarify |
|
83 |
apply(rule conjI) |
|
84 |
apply(subgoal_tac "0< length path - Suc 0") |
|
85 |
apply(erule allE , erule (1) notE impE) |
|
86 |
apply force |
|
87 |
apply simp |
|
88 |
apply(rule Graph1_aux) |
|
89 |
apply auto |
|
90 |
done |
|
91 |
||
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
92 |
subsubsection{* Graph 2 *} |
13020 | 93 |
|
94 |
lemma Ex_first_occurrence [rule_format]: |
|
95 |
"P (n::nat) \<longrightarrow> (\<exists>m. P m \<and> (\<forall>i. i<m \<longrightarrow> \<not> P i))"; |
|
96 |
apply(rule nat_less_induct) |
|
97 |
apply clarify |
|
98 |
apply(case_tac "\<forall>m. m<n \<longrightarrow> \<not> P m") |
|
99 |
apply auto |
|
100 |
done |
|
101 |
||
102 |
lemma Compl_lemma: "(n::nat)\<le>l \<Longrightarrow> (\<exists>m. m\<le>l \<and> n=l - m)" |
|
103 |
apply(rule_tac x = "l - n" in exI) |
|
104 |
apply arith |
|
105 |
done |
|
106 |
||
107 |
lemma Ex_last_occurrence: |
|
108 |
"\<lbrakk>P (n::nat); n\<le>l\<rbrakk> \<Longrightarrow> (\<exists>m. P (l - m) \<and> (\<forall>i. i<m \<longrightarrow> \<not>P (l - i)))" |
|
109 |
apply(drule Compl_lemma) |
|
110 |
apply clarify |
|
111 |
apply(erule Ex_first_occurrence) |
|
112 |
done |
|
113 |
||
114 |
lemma Graph2: |
|
115 |
"\<lbrakk>T \<in> Reach E; R<length E\<rbrakk> \<Longrightarrow> T \<in> Reach (E[R:=(fst(E!R), T)])" |
|
116 |
apply (unfold Reach_def) |
|
117 |
apply clarify |
|
118 |
apply simp |
|
119 |
apply(case_tac "\<forall>z<length path. fst(E!R)\<noteq>path!z") |
|
120 |
apply(rule_tac x = "path" in exI) |
|
121 |
apply simp |
|
122 |
apply clarify |
|
123 |
apply(erule allE , erule (1) notE impE) |
|
124 |
apply clarify |
|
125 |
apply(rule_tac x = "j" in exI) |
|
126 |
apply(case_tac "j=R") |
|
127 |
apply(erule_tac x = "Suc i" in allE) |
|
128 |
apply simp |
|
129 |
apply (force simp add:nth_list_update) |
|
130 |
apply simp |
|
131 |
apply(erule exE) |
|
132 |
apply(subgoal_tac "z \<le> length path - Suc 0") |
|
133 |
prefer 2 apply arith |
|
134 |
apply(drule_tac P = "\<lambda>m. m<length path \<and> fst(E!R)=path!m" in Ex_last_occurrence) |
|
135 |
apply assumption |
|
136 |
apply clarify |
|
137 |
apply simp |
|
138 |
apply(rule_tac x = "(path!0)#(drop (length path - Suc m) path)" in exI) |
|
139 |
apply simp |
|
140 |
apply(case_tac "length path - (length path - Suc m)") |
|
141 |
apply arith |
|
142 |
apply simp |
|
143 |
apply(subgoal_tac "(length path - Suc m) + nat \<le> length path") |
|
144 |
prefer 2 apply arith |
|
145 |
apply(drule nth_drop) |
|
146 |
apply simp |
|
147 |
apply(subgoal_tac "length path - Suc m + nat = length path - Suc 0") |
|
148 |
prefer 2 apply arith |
|
149 |
apply simp |
|
150 |
apply clarify |
|
151 |
apply(case_tac "i") |
|
152 |
apply(force simp add: nth_list_update) |
|
153 |
apply simp |
|
154 |
apply(subgoal_tac "(length path - Suc m) + nata \<le> length path") |
|
155 |
prefer 2 apply arith |
|
156 |
apply(subgoal_tac "(length path - Suc m) + (Suc nata) \<le> length path") |
|
157 |
prefer 2 apply arith |
|
158 |
apply simp |
|
159 |
apply(erule_tac x = "length path - Suc m + nata" in allE) |
|
160 |
apply simp |
|
161 |
apply clarify |
|
162 |
apply(rule_tac x = "j" in exI) |
|
163 |
apply(case_tac "R=j") |
|
164 |
prefer 2 apply force |
|
165 |
apply simp |
|
166 |
apply(drule_tac t = "path ! (length path - Suc m)" in sym) |
|
167 |
apply simp |
|
168 |
apply(case_tac " length path - Suc 0 < m") |
|
169 |
apply(subgoal_tac "(length path - Suc m)=0") |
|
170 |
prefer 2 apply arith |
|
171 |
apply(simp del: diff_is_0_eq) |
|
172 |
apply(subgoal_tac "Suc nata\<le>nat") |
|
173 |
prefer 2 apply arith |
|
174 |
apply(drule_tac n = "Suc nata" in Compl_lemma) |
|
175 |
apply clarify |
|
24110
4ab3084e311c
tuned config options: eliminated separate attribute "option";
wenzelm
parents:
24078
diff
changeset
|
176 |
using [[fast_arith_split_limit = 0]] |
13020 | 177 |
apply force |
24110
4ab3084e311c
tuned config options: eliminated separate attribute "option";
wenzelm
parents:
24078
diff
changeset
|
178 |
using [[fast_arith_split_limit = 9]] |
13020 | 179 |
apply(drule leI) |
180 |
apply(subgoal_tac "Suc (length path - Suc m + nata)=(length path - Suc 0) - (m - Suc nata)") |
|
181 |
apply(erule_tac x = "m - (Suc nata)" in allE) |
|
182 |
apply(case_tac "m") |
|
183 |
apply simp |
|
184 |
apply simp |
|
13601 | 185 |
apply simp |
13020 | 186 |
done |
187 |
||
20432
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
webertj
parents:
20279
diff
changeset
|
188 |
|
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
189 |
subsubsection{* Graph 3 *} |
13020 | 190 |
|
191 |
lemma Graph3: |
|
192 |
"\<lbrakk> T\<in>Reach E; R<length E \<rbrakk> \<Longrightarrow> Reach(E[R:=(fst(E!R),T)]) \<subseteq> Reach E" |
|
193 |
apply (unfold Reach_def) |
|
194 |
apply clarify |
|
195 |
apply simp |
|
196 |
apply(case_tac "\<exists>i<length path - 1. (fst(E!R),T)=(path!(Suc i),path!i)") |
|
197 |
--{* the changed edge is part of the path *} |
|
198 |
apply(erule exE) |
|
199 |
apply(drule_tac P = "\<lambda>i. i<length path - 1 \<and> (fst(E!R),T)=(path!Suc i,path!i)" in Ex_first_occurrence) |
|
200 |
apply clarify |
|
201 |
apply(erule disjE) |
|
202 |
--{* T is NOT a root *} |
|
203 |
apply clarify |
|
204 |
apply(rule_tac x = "(take m path)@patha" in exI) |
|
205 |
apply(subgoal_tac "\<not>(length path\<le>m)") |
|
206 |
prefer 2 apply arith |
|
207 |
apply(simp add: min_def) |
|
208 |
apply(rule conjI) |
|
209 |
apply(subgoal_tac "\<not>(m + length patha - 1 < m)") |
|
210 |
prefer 2 apply arith |
|
211 |
apply(simp add: nth_append min_def) |
|
212 |
apply(rule conjI) |
|
213 |
apply(case_tac "m") |
|
214 |
apply force |
|
215 |
apply(case_tac "path") |
|
216 |
apply force |
|
217 |
apply force |
|
218 |
apply clarify |
|
219 |
apply(case_tac "Suc i\<le>m") |
|
220 |
apply(erule_tac x = "i" in allE) |
|
221 |
apply simp |
|
222 |
apply clarify |
|
223 |
apply(rule_tac x = "j" in exI) |
|
224 |
apply(case_tac "Suc i<m") |
|
22230 | 225 |
apply(simp add: nth_append) |
13020 | 226 |
apply(case_tac "R=j") |
227 |
apply(simp add: nth_list_update) |
|
228 |
apply(case_tac "i=m") |
|
229 |
apply force |
|
230 |
apply(erule_tac x = "i" in allE) |
|
231 |
apply force |
|
232 |
apply(force simp add: nth_list_update) |
|
22230 | 233 |
apply(simp add: nth_append) |
13020 | 234 |
apply(subgoal_tac "i=m - 1") |
235 |
prefer 2 apply arith |
|
236 |
apply(case_tac "R=j") |
|
237 |
apply(erule_tac x = "m - 1" in allE) |
|
238 |
apply(simp add: nth_list_update) |
|
239 |
apply(force simp add: nth_list_update) |
|
240 |
apply(simp add: nth_append min_def) |
|
241 |
apply(rotate_tac -4) |
|
242 |
apply(erule_tac x = "i - m" in allE) |
|
243 |
apply(subgoal_tac "Suc (i - m)=(Suc i - m)" ) |
|
244 |
prefer 2 apply arith |
|
245 |
apply simp |
|
246 |
--{* T is a root *} |
|
247 |
apply(case_tac "m=0") |
|
248 |
apply force |
|
249 |
apply(rule_tac x = "take (Suc m) path" in exI) |
|
250 |
apply(subgoal_tac "\<not>(length path\<le>Suc m)" ) |
|
251 |
prefer 2 apply arith |
|
252 |
apply(simp add: min_def) |
|
253 |
apply clarify |
|
254 |
apply(erule_tac x = "i" in allE) |
|
255 |
apply simp |
|
256 |
apply clarify |
|
257 |
apply(case_tac "R=j") |
|
258 |
apply(force simp add: nth_list_update) |
|
259 |
apply(force simp add: nth_list_update) |
|
260 |
--{* the changed edge is not part of the path *} |
|
261 |
apply(rule_tac x = "path" in exI) |
|
262 |
apply simp |
|
263 |
apply clarify |
|
264 |
apply(erule_tac x = "i" in allE) |
|
265 |
apply clarify |
|
266 |
apply(case_tac "R=j") |
|
267 |
apply(erule_tac x = "i" in allE) |
|
268 |
apply simp |
|
269 |
apply(force simp add: nth_list_update) |
|
270 |
done |
|
271 |
||
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
272 |
subsubsection{* Graph 4 *} |
13020 | 273 |
|
274 |
lemma Graph4: |
|
275 |
"\<lbrakk>T \<in> Reach E; Roots\<subseteq>Blacks M; I\<le>length E; T<length M; R<length E; |
|
276 |
\<forall>i<I. \<not>BtoW(E!i,M); R<I; M!fst(E!R)=Black; M!T\<noteq>Black\<rbrakk> \<Longrightarrow> |
|
277 |
(\<exists>r. I\<le>r \<and> r<length E \<and> BtoW(E[R:=(fst(E!R),T)]!r,M))" |
|
278 |
apply (unfold Reach_def) |
|
279 |
apply simp |
|
280 |
apply(erule disjE) |
|
281 |
prefer 2 apply force |
|
282 |
apply clarify |
|
283 |
--{* there exist a black node in the path to T *} |
|
284 |
apply(case_tac "\<exists>m<length path. M!(path!m)=Black") |
|
285 |
apply(erule exE) |
|
286 |
apply(drule_tac P = "\<lambda>m. m<length path \<and> M!(path!m)=Black" in Ex_first_occurrence) |
|
287 |
apply clarify |
|
288 |
apply(case_tac "ma") |
|
289 |
apply force |
|
290 |
apply simp |
|
291 |
apply(case_tac "length path") |
|
292 |
apply force |
|
293 |
apply simp |
|
13601 | 294 |
apply(erule_tac P = "\<lambda>i. i < nata \<longrightarrow> ?P i" and x = "nat" in allE) |
13020 | 295 |
apply simp |
296 |
apply clarify |
|
13601 | 297 |
apply(erule_tac P = "\<lambda>i. i < Suc nat \<longrightarrow> ?P i" and x = "nat" in allE) |
13020 | 298 |
apply simp |
299 |
apply(case_tac "j<I") |
|
300 |
apply(erule_tac x = "j" in allE) |
|
301 |
apply force |
|
302 |
apply(rule_tac x = "j" in exI) |
|
303 |
apply(force simp add: nth_list_update) |
|
304 |
apply simp |
|
305 |
apply(rotate_tac -1) |
|
306 |
apply(erule_tac x = "length path - 1" in allE) |
|
307 |
apply(case_tac "length path") |
|
308 |
apply force |
|
309 |
apply force |
|
310 |
done |
|
311 |
||
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
312 |
subsubsection {* Graph 5 *} |
13020 | 313 |
|
314 |
lemma Graph5: |
|
315 |
"\<lbrakk> T \<in> Reach E ; Roots \<subseteq> Blacks M; \<forall>i<R. \<not>BtoW(E!i,M); T<length M; |
|
316 |
R<length E; M!fst(E!R)=Black; M!snd(E!R)=Black; M!T \<noteq> Black\<rbrakk> |
|
317 |
\<Longrightarrow> (\<exists>r. R<r \<and> r<length E \<and> BtoW(E[R:=(fst(E!R),T)]!r,M))" |
|
318 |
apply (unfold Reach_def) |
|
319 |
apply simp |
|
320 |
apply(erule disjE) |
|
321 |
prefer 2 apply force |
|
322 |
apply clarify |
|
323 |
--{* there exist a black node in the path to T*} |
|
324 |
apply(case_tac "\<exists>m<length path. M!(path!m)=Black") |
|
325 |
apply(erule exE) |
|
326 |
apply(drule_tac P = "\<lambda>m. m<length path \<and> M!(path!m)=Black" in Ex_first_occurrence) |
|
327 |
apply clarify |
|
328 |
apply(case_tac "ma") |
|
329 |
apply force |
|
330 |
apply simp |
|
331 |
apply(case_tac "length path") |
|
332 |
apply force |
|
333 |
apply simp |
|
13601 | 334 |
apply(erule_tac P = "\<lambda>i. i < nata \<longrightarrow> ?P i" and x = "nat" in allE) |
13020 | 335 |
apply simp |
336 |
apply clarify |
|
13601 | 337 |
apply(erule_tac P = "\<lambda>i. i < Suc nat \<longrightarrow> ?P i" and x = "nat" in allE) |
13020 | 338 |
apply simp |
339 |
apply(case_tac "j\<le>R") |
|
340 |
apply(drule le_imp_less_or_eq) |
|
341 |
apply(erule disjE) |
|
342 |
apply(erule allE , erule (1) notE impE) |
|
343 |
apply force |
|
344 |
apply force |
|
345 |
apply(rule_tac x = "j" in exI) |
|
346 |
apply(force simp add: nth_list_update) |
|
347 |
apply simp |
|
348 |
apply(rotate_tac -1) |
|
349 |
apply(erule_tac x = "length path - 1" in allE) |
|
350 |
apply(case_tac "length path") |
|
351 |
apply force |
|
352 |
apply force |
|
353 |
done |
|
354 |
||
13022
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
prensani
parents:
13020
diff
changeset
|
355 |
subsubsection {* Other lemmas about graphs *} |
13020 | 356 |
|
357 |
lemma Graph6: |
|
358 |
"\<lbrakk>Proper_Edges(M,E); R<length E ; T<length M\<rbrakk> \<Longrightarrow> Proper_Edges(M,E[R:=(fst(E!R),T)])" |
|
359 |
apply (unfold Proper_Edges_def) |
|
360 |
apply(force simp add: nth_list_update) |
|
361 |
done |
|
362 |
||
363 |
lemma Graph7: |
|
364 |
"\<lbrakk>Proper_Edges(M,E)\<rbrakk> \<Longrightarrow> Proper_Edges(M[T:=a],E)" |
|
365 |
apply (unfold Proper_Edges_def) |
|
366 |
apply force |
|
367 |
done |
|
368 |
||
369 |
lemma Graph8: |
|
370 |
"\<lbrakk>Proper_Roots(M)\<rbrakk> \<Longrightarrow> Proper_Roots(M[T:=a])" |
|
371 |
apply (unfold Proper_Roots_def) |
|
372 |
apply force |
|
373 |
done |
|
374 |
||
375 |
text{* Some specific lemmata for the verification of garbage collection algorithms. *} |
|
376 |
||
377 |
lemma Graph9: "j<length M \<Longrightarrow> Blacks M\<subseteq>Blacks (M[j := Black])" |
|
378 |
apply (unfold Blacks_def) |
|
379 |
apply(force simp add: nth_list_update) |
|
380 |
done |
|
381 |
||
382 |
lemma Graph10 [rule_format (no_asm)]: "\<forall>i. M!i=a \<longrightarrow>M[i:=a]=M" |
|
383 |
apply(induct_tac "M") |
|
384 |
apply auto |
|
385 |
apply(case_tac "i") |
|
386 |
apply auto |
|
387 |
done |
|
388 |
||
389 |
lemma Graph11 [rule_format (no_asm)]: |
|
390 |
"\<lbrakk> M!j\<noteq>Black;j<length M\<rbrakk> \<Longrightarrow> Blacks M \<subset> Blacks (M[j := Black])" |
|
391 |
apply (unfold Blacks_def) |
|
392 |
apply(rule psubsetI) |
|
393 |
apply(force simp add: nth_list_update) |
|
394 |
apply safe |
|
395 |
apply(erule_tac c = "j" in equalityCE) |
|
396 |
apply auto |
|
397 |
done |
|
398 |
||
399 |
lemma Graph12: "\<lbrakk>a\<subseteq>Blacks M;j<length M\<rbrakk> \<Longrightarrow> a\<subseteq>Blacks (M[j := Black])" |
|
400 |
apply (unfold Blacks_def) |
|
401 |
apply(force simp add: nth_list_update) |
|
402 |
done |
|
403 |
||
404 |
lemma Graph13: "\<lbrakk>a\<subset> Blacks M;j<length M\<rbrakk> \<Longrightarrow> a \<subset> Blacks (M[j := Black])" |
|
405 |
apply (unfold Blacks_def) |
|
406 |
apply(erule psubset_subset_trans) |
|
407 |
apply(force simp add: nth_list_update) |
|
408 |
done |
|
409 |
||
410 |
declare Graph_defs [simp del] |
|
411 |
||
412 |
end |