author | webertj |
Fri, 11 Apr 2003 23:11:13 +0200 | |
changeset 13908 | 4bdfa9f77254 |
parent 13890 | 90611b4e0054 |
child 13909 | a5247a49c85e |
permissions | -rw-r--r-- |
3981 | 1 |
(* Title: HOL/Map.thy |
2 |
ID: $Id$ |
|
3 |
Author: Tobias Nipkow, based on a theory by David von Oheimb |
|
13908 | 4 |
Copyright 1997-2003 TU Muenchen |
3981 | 5 |
|
6 |
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. |
|
7 |
*) |
|
8 |
||
13908 | 9 |
theory Map = List: |
3981 | 10 |
|
13908 | 11 |
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) |
3981 | 12 |
|
13 |
consts |
|
5300 | 14 |
chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)" |
3981 | 15 |
override:: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) |
5300 | 16 |
dom :: "('a ~=> 'b) => 'a set" |
17 |
ran :: "('a ~=> 'b) => 'b set" |
|
18 |
map_of :: "('a * 'b)list => 'a ~=> 'b" |
|
19 |
map_upds:: "('a ~=> 'b) => 'a list => 'b list => |
|
20 |
('a ~=> 'b)" ("_/'(_[|->]_/')" [900,0,0]900) |
|
21 |
syntax |
|
13890 | 22 |
empty :: "'a ~=> 'b" |
5300 | 23 |
map_upd :: "('a ~=> 'b) => 'a => 'b => ('a ~=> 'b)" |
24 |
("_/'(_/|->_')" [900,0,0]900) |
|
3981 | 25 |
|
12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset
|
26 |
syntax (xsymbols) |
13908 | 27 |
"~=>" :: "[type, type] => type" (infixr "\<leadsto>" 0) |
5300 | 28 |
map_upd :: "('a ~=> 'b) => 'a => 'b => ('a ~=> 'b)" |
13908 | 29 |
("_/'(_/\<mapsto>/_')" [900,0,0]900) |
5300 | 30 |
map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)" |
13908 | 31 |
("_/'(_/[\<mapsto>]/_')" [900,0,0]900) |
5300 | 32 |
|
33 |
translations |
|
13890 | 34 |
"empty" => "_K None" |
35 |
"empty" <= "%x. None" |
|
5300 | 36 |
|
37 |
"m(a|->b)" == "m(a:=Some b)" |
|
3981 | 38 |
|
39 |
defs |
|
40 |
||
13908 | 41 |
chg_map_def: "chg_map f a m == case m a of None => m | Some b => m(a|->f b)" |
3981 | 42 |
|
13908 | 43 |
override_def: "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y" |
3981 | 44 |
|
13908 | 45 |
dom_def: "dom(m) == {a. m a ~= None}" |
46 |
ran_def: "ran(m) == {b. ? a. m a = Some b}" |
|
3981 | 47 |
|
5183 | 48 |
primrec |
49 |
"map_of [] = empty" |
|
5300 | 50 |
"map_of (p#ps) = (map_of ps)(fst p |-> snd p)" |
51 |
||
52 |
primrec "t([] [|->]bs) = t" |
|
53 |
"t(a#as[|->]bs) = t(a|->hd bs)(as[|->]tl bs)" |
|
3981 | 54 |
|
13908 | 55 |
|
56 |
section "empty" |
|
57 |
||
58 |
lemma empty_upd_none: "empty(x := None) = empty" |
|
59 |
apply (rule ext) |
|
60 |
apply (simp (no_asm)) |
|
61 |
done |
|
62 |
declare empty_upd_none [simp] |
|
63 |
||
64 |
(* FIXME: what is this sum_case nonsense?? *) |
|
65 |
lemma sum_case_empty_empty: "sum_case empty empty = empty" |
|
66 |
apply (rule ext) |
|
67 |
apply (simp (no_asm) split add: sum.split) |
|
68 |
done |
|
69 |
declare sum_case_empty_empty [simp] |
|
70 |
||
71 |
||
72 |
section "map_upd" |
|
73 |
||
74 |
lemma map_upd_triv: "t k = Some x ==> t(k|->x) = t" |
|
75 |
apply (rule ext) |
|
76 |
apply (simp (no_asm_simp)) |
|
77 |
done |
|
78 |
||
79 |
lemma map_upd_nonempty: "t(k|->x) ~= empty" |
|
80 |
apply safe |
|
81 |
apply (drule_tac x = "k" in fun_cong) |
|
82 |
apply (simp (no_asm_use)) |
|
83 |
done |
|
84 |
declare map_upd_nonempty [simp] |
|
85 |
||
86 |
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" |
|
87 |
apply (unfold image_def) |
|
88 |
apply (simp (no_asm_use) add: full_SetCompr_eq) |
|
89 |
apply (rule finite_subset) |
|
90 |
prefer 2 apply (assumption) |
|
91 |
apply auto |
|
92 |
done |
|
93 |
||
94 |
||
95 |
(* FIXME: what is this sum_case nonsense?? *) |
|
96 |
section "sum_case and empty/map_upd" |
|
97 |
||
98 |
lemma sum_case_map_upd_empty: "sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" |
|
99 |
apply (rule ext) |
|
100 |
apply (simp (no_asm) split add: sum.split) |
|
101 |
done |
|
102 |
declare sum_case_map_upd_empty [simp] |
|
103 |
||
104 |
lemma sum_case_empty_map_upd: "sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" |
|
105 |
apply (rule ext) |
|
106 |
apply (simp (no_asm) split add: sum.split) |
|
107 |
done |
|
108 |
declare sum_case_empty_map_upd [simp] |
|
109 |
||
110 |
lemma sum_case_map_upd_map_upd: "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" |
|
111 |
apply (rule ext) |
|
112 |
apply (simp (no_asm) split add: sum.split) |
|
113 |
done |
|
114 |
declare sum_case_map_upd_map_upd [simp] |
|
115 |
||
116 |
||
117 |
section "map_upds" |
|
118 |
||
119 |
lemma map_upds_twist [rule_format (no_asm)]: "a ~: set as --> (!m bs. (m(a|->b)(as[|->]bs)) = (m(as[|->]bs)(a|->b)))" |
|
120 |
apply (induct_tac "as") |
|
121 |
apply (auto simp del: fun_upd_apply) |
|
122 |
apply (drule spec)+ |
|
123 |
apply (rotate_tac -1) |
|
124 |
apply (erule subst) |
|
125 |
apply (erule fun_upd_twist [THEN subst]) |
|
126 |
apply (rule refl) |
|
127 |
done |
|
128 |
declare map_upds_twist [simp] |
|
129 |
||
130 |
||
131 |
section "chg_map" |
|
132 |
||
133 |
lemma chg_map_new: "m a = None ==> chg_map f a m = m" |
|
134 |
apply (unfold chg_map_def) |
|
135 |
apply auto |
|
136 |
done |
|
137 |
||
138 |
lemma chg_map_upd: "m a = Some b ==> chg_map f a m = m(a|->f b)" |
|
139 |
apply (unfold chg_map_def) |
|
140 |
apply auto |
|
141 |
done |
|
142 |
||
143 |
declare chg_map_new [simp] chg_map_upd [simp] |
|
144 |
||
145 |
||
146 |
section "map_of" |
|
147 |
||
148 |
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y --> (k,y):set xs" |
|
149 |
apply (induct_tac "xs") |
|
150 |
apply auto |
|
151 |
done |
|
152 |
||
153 |
lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x --> |
|
154 |
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" |
|
155 |
apply (induct_tac "t") |
|
156 |
apply (auto simp add: inj_eq) |
|
157 |
done |
|
158 |
||
159 |
lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l --> (? x. map_of l k = Some x)" |
|
160 |
apply (induct_tac "l") |
|
161 |
apply auto |
|
162 |
done |
|
163 |
||
164 |
lemma map_of_filter_in: |
|
165 |
"[| map_of xs k = Some z; P k z |] ==> map_of (filter (split P) xs) k = Some z" |
|
166 |
apply (rule mp) |
|
167 |
prefer 2 apply (assumption) |
|
168 |
apply (erule thin_rl) |
|
169 |
apply (induct_tac "xs") |
|
170 |
apply auto |
|
171 |
done |
|
172 |
||
173 |
lemma finite_range_map_of: "finite (range (map_of l))" |
|
174 |
apply (induct_tac "l") |
|
175 |
apply (simp_all (no_asm) add: image_constant) |
|
176 |
apply (rule finite_subset) |
|
177 |
prefer 2 apply (assumption) |
|
178 |
apply auto |
|
179 |
done |
|
180 |
||
181 |
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" |
|
182 |
apply (induct_tac "xs") |
|
183 |
apply auto |
|
184 |
done |
|
185 |
||
186 |
||
187 |
section "option_map related" |
|
188 |
||
189 |
lemma option_map_o_empty: "option_map f o empty = empty" |
|
190 |
apply (rule ext) |
|
191 |
apply (simp (no_asm)) |
|
192 |
done |
|
193 |
||
194 |
lemma option_map_o_map_upd: "option_map f o m(a|->b) = (option_map f o m)(a|->f b)" |
|
195 |
apply (rule ext) |
|
196 |
apply (simp (no_asm)) |
|
197 |
done |
|
198 |
||
199 |
declare option_map_o_empty [simp] option_map_o_map_upd [simp] |
|
200 |
||
201 |
||
202 |
section "++" |
|
203 |
||
204 |
lemma override_empty: "m ++ empty = m" |
|
205 |
apply (unfold override_def) |
|
206 |
apply (simp (no_asm)) |
|
207 |
done |
|
208 |
declare override_empty [simp] |
|
209 |
||
210 |
lemma empty_override: "empty ++ m = m" |
|
211 |
apply (unfold override_def) |
|
212 |
apply (rule ext) |
|
213 |
apply (simp split add: option.split) |
|
214 |
done |
|
215 |
declare empty_override [simp] |
|
216 |
||
217 |
lemma override_Some_iff [rule_format (no_asm)]: |
|
218 |
"((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" |
|
219 |
apply (unfold override_def) |
|
220 |
apply (simp (no_asm) split add: option.split) |
|
221 |
done |
|
222 |
||
223 |
lemmas override_SomeD = override_Some_iff [THEN iffD1, standard] |
|
224 |
declare override_SomeD [dest!] |
|
225 |
||
226 |
lemma override_find_right: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" |
|
227 |
apply (subst override_Some_iff) |
|
228 |
apply fast |
|
229 |
done |
|
230 |
declare override_find_right [simp] |
|
231 |
||
232 |
lemma override_None: "((m ++ n) k = None) = (n k = None & m k = None)" |
|
233 |
apply (unfold override_def) |
|
234 |
apply (simp (no_asm) split add: option.split) |
|
235 |
done |
|
236 |
declare override_None [iff] |
|
237 |
||
238 |
lemma override_upd: "f ++ g(x|->y) = (f ++ g)(x|->y)" |
|
239 |
apply (unfold override_def) |
|
240 |
apply (rule ext) |
|
241 |
apply auto |
|
242 |
done |
|
243 |
declare override_upd [simp] |
|
244 |
||
245 |
lemma map_of_override: "map_of ys ++ map_of xs = map_of (xs@ys)" |
|
246 |
apply (unfold override_def) |
|
247 |
apply (rule sym) |
|
248 |
apply (induct_tac "xs") |
|
249 |
apply (simp (no_asm)) |
|
250 |
apply (rule ext) |
|
251 |
apply (simp (no_asm_simp) split add: option.split) |
|
252 |
done |
|
253 |
declare map_of_override [simp] |
|
254 |
||
255 |
declare fun_upd_apply [simp del] |
|
256 |
lemma finite_range_map_of_override: "finite (range f) ==> finite (range (f ++ map_of l))" |
|
257 |
apply (induct_tac "l") |
|
258 |
apply auto |
|
259 |
apply (erule finite_range_updI) |
|
260 |
done |
|
261 |
declare fun_upd_apply [simp] |
|
262 |
||
263 |
||
264 |
section "dom" |
|
265 |
||
266 |
lemma domI: "m a = Some b ==> a : dom m" |
|
267 |
apply (unfold dom_def) |
|
268 |
apply auto |
|
269 |
done |
|
270 |
||
271 |
lemma domD: "a : dom m ==> ? b. m a = Some b" |
|
272 |
apply (unfold dom_def) |
|
273 |
apply auto |
|
274 |
done |
|
275 |
||
276 |
lemma domIff: "(a : dom m) = (m a ~= None)" |
|
277 |
apply (unfold dom_def) |
|
278 |
apply auto |
|
279 |
done |
|
280 |
declare domIff [iff] |
|
281 |
declare domIff [simp del] |
|
282 |
||
283 |
lemma dom_empty: "dom empty = {}" |
|
284 |
apply (unfold dom_def) |
|
285 |
apply (simp (no_asm)) |
|
286 |
done |
|
287 |
declare dom_empty [simp] |
|
288 |
||
289 |
lemma dom_map_upd: "dom(m(a|->b)) = insert a (dom m)" |
|
290 |
apply (unfold dom_def) |
|
291 |
apply (simp (no_asm)) |
|
292 |
apply blast |
|
293 |
done |
|
294 |
declare dom_map_upd [simp] |
|
295 |
||
296 |
lemma finite_dom_map_of: "finite (dom (map_of l))" |
|
297 |
apply (unfold dom_def) |
|
298 |
apply (induct_tac "l") |
|
299 |
apply (auto simp add: insert_Collect [symmetric]) |
|
300 |
done |
|
301 |
||
302 |
lemma dom_override: "dom(m++n) = dom n Un dom m" |
|
303 |
apply (unfold dom_def) |
|
304 |
apply auto |
|
305 |
done |
|
306 |
declare dom_override [simp] |
|
307 |
||
308 |
section "ran" |
|
309 |
||
310 |
lemma ran_empty: "ran empty = {}" |
|
311 |
apply (unfold ran_def) |
|
312 |
apply (simp (no_asm)) |
|
313 |
done |
|
314 |
declare ran_empty [simp] |
|
315 |
||
316 |
lemma ran_empty': "ran (%u. None) = {}" |
|
317 |
apply (unfold ran_def) |
|
318 |
apply auto |
|
319 |
done |
|
320 |
declare ran_empty' [simp] |
|
321 |
||
322 |
lemma ran_map_upd: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" |
|
323 |
apply (unfold ran_def) |
|
324 |
apply auto |
|
325 |
apply (subgoal_tac "~ (aa = a) ") |
|
326 |
apply auto |
|
327 |
done |
|
328 |
declare ran_map_upd [simp] |
|
329 |
||
3981 | 330 |
end |