| 
437
 | 
     1  | 
(*  Title: 	ZF/CardinalArith.ML
  | 
| 
 | 
     2  | 
    ID:         $Id$
  | 
| 
 | 
     3  | 
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
  | 
| 
 | 
     4  | 
    Copyright   1994  University of Cambridge
  | 
| 
 | 
     5  | 
  | 
| 
 | 
     6  | 
Cardinal arithmetic -- WITHOUT the Axiom of Choice
  | 
| 
 | 
     7  | 
*)
  | 
| 
 | 
     8  | 
  | 
| 
 | 
     9  | 
open CardinalArith;
  | 
| 
 | 
    10  | 
  | 
| 
484
 | 
    11  | 
(*** Elementary properties ***)
  | 
| 
467
 | 
    12  | 
  | 
| 
437
 | 
    13  | 
(*Use AC to discharge first premise*)
  | 
| 
 | 
    14  | 
goal CardinalArith.thy
  | 
| 
 | 
    15  | 
    "!!A B. [| well_ord(B,r);  A lepoll B |] ==> |A| le |B|";
  | 
| 
 | 
    16  | 
by (res_inst_tac [("i","|A|"),("j","|B|")] Ord_linear_le 1);
 | 
| 
 | 
    17  | 
by (REPEAT_FIRST (ares_tac [Ord_cardinal, le_eqI]));
  | 
| 
 | 
    18  | 
by (rtac (eqpollI RS cardinal_cong) 1 THEN assume_tac 1);
  | 
| 
 | 
    19  | 
by (rtac lepoll_trans 1);
  | 
| 
 | 
    20  | 
by (rtac (well_ord_cardinal_eqpoll RS eqpoll_sym RS eqpoll_imp_lepoll) 1);
  | 
| 
 | 
    21  | 
by (assume_tac 1);
  | 
| 
 | 
    22  | 
by (etac (le_imp_subset RS subset_imp_lepoll RS lepoll_trans) 1);
  | 
| 
 | 
    23  | 
by (rtac eqpoll_imp_lepoll 1);
  | 
| 
 | 
    24  | 
by (rewtac lepoll_def);
  | 
| 
 | 
    25  | 
by (etac exE 1);
  | 
| 
 | 
    26  | 
by (rtac well_ord_cardinal_eqpoll 1);
  | 
| 
 | 
    27  | 
by (etac well_ord_rvimage 1);
  | 
| 
 | 
    28  | 
by (assume_tac 1);
  | 
| 
 | 
    29  | 
val well_ord_lepoll_imp_le = result();
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
val case_ss = ZF_ss addsimps [Inl_iff, Inl_Inr_iff, Inr_iff, Inr_Inl_iff,
  | 
| 
 | 
    32  | 
			      case_Inl, case_Inr, InlI, InrI];
  | 
| 
 | 
    33  | 
  | 
| 
 | 
    34  | 
  | 
| 
 | 
    35  | 
(** Congruence laws for successor, cardinal addition and multiplication **)
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
val bij_inverse_ss =
  | 
| 
 | 
    38  | 
    case_ss addsimps [bij_is_fun RS apply_type,
  | 
| 
 | 
    39  | 
		      bij_converse_bij RS bij_is_fun RS apply_type,
  | 
| 
 | 
    40  | 
		      left_inverse_bij, right_inverse_bij];
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
  | 
| 
484
 | 
    43  | 
(*Congruence law for  cons  under equipollence*)
  | 
| 
437
 | 
    44  | 
goalw CardinalArith.thy [eqpoll_def]
  | 
| 
484
 | 
    45  | 
    "!!A B. [| A eqpoll B;  a ~: A;  b ~: B |] ==> cons(a,A) eqpoll cons(b,B)";
  | 
| 
437
 | 
    46  | 
by (safe_tac ZF_cs);
  | 
| 
 | 
    47  | 
by (rtac exI 1);
  | 
| 
484
 | 
    48  | 
by (res_inst_tac [("c", "%z.if(z=a,b,f`z)"), 
 | 
| 
 | 
    49  | 
                  ("d", "%z.if(z=b,a,converse(f)`z)")] lam_bijective 1);
 | 
| 
437
 | 
    50  | 
by (ALLGOALS
  | 
| 
484
 | 
    51  | 
    (asm_simp_tac (bij_inverse_ss addsimps [consI2]
  | 
| 
 | 
    52  | 
 		                  setloop (etac consE ORELSE' 
  | 
| 
 | 
    53  | 
				           split_tac [expand_if]))));
  | 
| 
 | 
    54  | 
by (fast_tac (ZF_cs addIs [bij_is_fun RS apply_type]) 1);
  | 
| 
 | 
    55  | 
by (fast_tac (ZF_cs addIs [bij_converse_bij RS bij_is_fun RS apply_type]) 1);
  | 
| 
 | 
    56  | 
val cons_eqpoll_cong = result();
  | 
| 
 | 
    57  | 
  | 
| 
 | 
    58  | 
(*Congruence law for  succ  under equipollence*)
  | 
| 
 | 
    59  | 
goalw CardinalArith.thy [succ_def]
  | 
| 
 | 
    60  | 
    "!!A B. A eqpoll B ==> succ(A) eqpoll succ(B)";
  | 
| 
 | 
    61  | 
by (REPEAT (ares_tac [cons_eqpoll_cong, mem_not_refl] 1));
  | 
| 
437
 | 
    62  | 
val succ_eqpoll_cong = result();
  | 
| 
 | 
    63  | 
  | 
| 
484
 | 
    64  | 
(*Each element of Fin(A) is equivalent to a natural number*)
  | 
| 
 | 
    65  | 
goal CardinalArith.thy
  | 
| 
 | 
    66  | 
    "!!X A. X: Fin(A) ==> EX n:nat. X eqpoll n";
  | 
| 
 | 
    67  | 
by (eresolve_tac [Fin_induct] 1);
  | 
| 
 | 
    68  | 
by (fast_tac (ZF_cs addIs [eqpoll_refl, nat_0I]) 1);
  | 
| 
 | 
    69  | 
by (fast_tac (ZF_cs addSIs [cons_eqpoll_cong, 
  | 
| 
 | 
    70  | 
			    rewrite_rule [succ_def] nat_succI] 
  | 
| 
 | 
    71  | 
                            addSEs [mem_irrefl]) 1);
  | 
| 
 | 
    72  | 
val Fin_eqpoll = result();
  | 
| 
 | 
    73  | 
  | 
| 
437
 | 
    74  | 
(*Congruence law for + under equipollence*)
  | 
| 
 | 
    75  | 
goalw CardinalArith.thy [eqpoll_def]
  | 
| 
 | 
    76  | 
    "!!A B C D. [| A eqpoll C;  B eqpoll D |] ==> A+B eqpoll C+D";
  | 
| 
 | 
    77  | 
by (safe_tac ZF_cs);
  | 
| 
 | 
    78  | 
by (rtac exI 1);
  | 
| 
 | 
    79  | 
by (res_inst_tac [("c", "case(%x. Inl(f`x), %y. Inr(fa`y))"),
 | 
| 
 | 
    80  | 
	 ("d", "case(%x. Inl(converse(f)`x), %y. Inr(converse(fa)`y))")] 
 | 
| 
 | 
    81  | 
    lam_bijective 1);
  | 
| 
 | 
    82  | 
by (safe_tac (ZF_cs addSEs [sumE]));
  | 
| 
 | 
    83  | 
by (ALLGOALS (asm_simp_tac bij_inverse_ss));
  | 
| 
 | 
    84  | 
val sum_eqpoll_cong = result();
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
(*Congruence law for * under equipollence*)
  | 
| 
 | 
    87  | 
goalw CardinalArith.thy [eqpoll_def]
  | 
| 
 | 
    88  | 
    "!!A B C D. [| A eqpoll C;  B eqpoll D |] ==> A*B eqpoll C*D";
  | 
| 
 | 
    89  | 
by (safe_tac ZF_cs);
  | 
| 
 | 
    90  | 
by (rtac exI 1);
  | 
| 
 | 
    91  | 
by (res_inst_tac [("c", "split(%x y. <f`x, fa`y>)"),
 | 
| 
 | 
    92  | 
		  ("d", "split(%x y. <converse(f)`x, converse(fa)`y>)")] 
 | 
| 
 | 
    93  | 
    lam_bijective 1);
  | 
| 
 | 
    94  | 
by (safe_tac ZF_cs);
  | 
| 
 | 
    95  | 
by (ALLGOALS (asm_simp_tac bij_inverse_ss));
  | 
| 
 | 
    96  | 
val prod_eqpoll_cong = result();
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
(*** Cardinal addition ***)
  | 
| 
 | 
   100  | 
  | 
| 
 | 
   101  | 
(** Cardinal addition is commutative **)
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
(*Easier to prove the two directions separately*)
  | 
| 
 | 
   104  | 
goalw CardinalArith.thy [eqpoll_def] "A+B eqpoll B+A";
  | 
| 
 | 
   105  | 
by (rtac exI 1);
  | 
| 
 | 
   106  | 
by (res_inst_tac [("c", "case(Inr, Inl)"), ("d", "case(Inr, Inl)")] 
 | 
| 
 | 
   107  | 
    lam_bijective 1);
  | 
| 
 | 
   108  | 
by (safe_tac (ZF_cs addSEs [sumE]));
  | 
| 
 | 
   109  | 
by (ALLGOALS (asm_simp_tac case_ss));
  | 
| 
 | 
   110  | 
val sum_commute_eqpoll = result();
  | 
| 
 | 
   111  | 
  | 
| 
 | 
   112  | 
goalw CardinalArith.thy [cadd_def] "i |+| j = j |+| i";
  | 
| 
 | 
   113  | 
by (rtac (sum_commute_eqpoll RS cardinal_cong) 1);
  | 
| 
 | 
   114  | 
val cadd_commute = result();
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
(** Cardinal addition is associative **)
  | 
| 
 | 
   117  | 
  | 
| 
 | 
   118  | 
goalw CardinalArith.thy [eqpoll_def] "(A+B)+C eqpoll A+(B+C)";
  | 
| 
 | 
   119  | 
by (rtac exI 1);
  | 
| 
 | 
   120  | 
by (res_inst_tac [("c", "case(case(Inl, %y.Inr(Inl(y))), %y. Inr(Inr(y)))"),
 | 
| 
 | 
   121  | 
		  ("d", "case(%x.Inl(Inl(x)), case(%x.Inl(Inr(x)), Inr))")] 
 | 
| 
 | 
   122  | 
    lam_bijective 1);
  | 
| 
 | 
   123  | 
by (ALLGOALS (asm_simp_tac (case_ss setloop etac sumE)));
  | 
| 
 | 
   124  | 
val sum_assoc_eqpoll = result();
  | 
| 
 | 
   125  | 
  | 
| 
 | 
   126  | 
(*Unconditional version requires AC*)
  | 
| 
 | 
   127  | 
goalw CardinalArith.thy [cadd_def]
  | 
| 
484
 | 
   128  | 
    "!!i j k. [| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==>	\
  | 
| 
437
 | 
   129  | 
\             (i |+| j) |+| k = i |+| (j |+| k)";
  | 
| 
 | 
   130  | 
by (rtac cardinal_cong 1);
  | 
| 
 | 
   131  | 
br ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS sum_eqpoll_cong RS
  | 
| 
 | 
   132  | 
    eqpoll_trans) 1;
  | 
| 
 | 
   133  | 
by (rtac (sum_assoc_eqpoll RS eqpoll_trans) 2);
  | 
| 
 | 
   134  | 
br ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong RS
  | 
| 
 | 
   135  | 
    eqpoll_sym) 2;
  | 
| 
484
 | 
   136  | 
by (REPEAT (ares_tac [well_ord_radd] 1));
  | 
| 
 | 
   137  | 
val well_ord_cadd_assoc = result();
  | 
| 
437
 | 
   138  | 
  | 
| 
 | 
   139  | 
(** 0 is the identity for addition **)
  | 
| 
 | 
   140  | 
  | 
| 
 | 
   141  | 
goalw CardinalArith.thy [eqpoll_def] "0+A eqpoll A";
  | 
| 
 | 
   142  | 
by (rtac exI 1);
  | 
| 
 | 
   143  | 
by (res_inst_tac [("c", "case(%x.x, %y.y)"), ("d", "Inr")] 
 | 
| 
 | 
   144  | 
    lam_bijective 1);
  | 
| 
 | 
   145  | 
by (ALLGOALS (asm_simp_tac (case_ss setloop eresolve_tac [sumE,emptyE])));
  | 
| 
 | 
   146  | 
val sum_0_eqpoll = result();
  | 
| 
 | 
   147  | 
  | 
| 
484
 | 
   148  | 
goalw CardinalArith.thy [cadd_def] "!!K. Card(K) ==> 0 |+| K = K";
  | 
| 
437
 | 
   149  | 
by (asm_simp_tac (ZF_ss addsimps [sum_0_eqpoll RS cardinal_cong, 
  | 
| 
 | 
   150  | 
				  Card_cardinal_eq]) 1);
  | 
| 
 | 
   151  | 
val cadd_0 = result();
  | 
| 
 | 
   152  | 
  | 
| 
 | 
   153  | 
(** Addition of finite cardinals is "ordinary" addition **)
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
goalw CardinalArith.thy [eqpoll_def] "succ(A)+B eqpoll succ(A+B)";
  | 
| 
 | 
   156  | 
by (rtac exI 1);
  | 
| 
 | 
   157  | 
by (res_inst_tac [("c", "%z.if(z=Inl(A),A+B,z)"), 
 | 
| 
 | 
   158  | 
		  ("d", "%z.if(z=A+B,Inl(A),z)")] 
 | 
| 
 | 
   159  | 
    lam_bijective 1);
  | 
| 
 | 
   160  | 
by (ALLGOALS
  | 
| 
 | 
   161  | 
    (asm_simp_tac (case_ss addsimps [succI2, mem_imp_not_eq]
  | 
| 
 | 
   162  | 
		           setloop eresolve_tac [sumE,succE])));
  | 
| 
 | 
   163  | 
val sum_succ_eqpoll = result();
  | 
| 
 | 
   164  | 
  | 
| 
 | 
   165  | 
(*Pulling the  succ(...)  outside the |...| requires m, n: nat  *)
  | 
| 
 | 
   166  | 
(*Unconditional version requires AC*)
  | 
| 
 | 
   167  | 
goalw CardinalArith.thy [cadd_def]
  | 
| 
 | 
   168  | 
    "!!m n. [| Ord(m);  Ord(n) |] ==> succ(m) |+| n = |succ(m |+| n)|";
  | 
| 
 | 
   169  | 
by (rtac (sum_succ_eqpoll RS cardinal_cong RS trans) 1);
  | 
| 
 | 
   170  | 
by (rtac (succ_eqpoll_cong RS cardinal_cong) 1);
  | 
| 
 | 
   171  | 
by (rtac (well_ord_cardinal_eqpoll RS eqpoll_sym) 1);
  | 
| 
 | 
   172  | 
by (REPEAT (ares_tac [well_ord_radd, well_ord_Memrel] 1));
  | 
| 
 | 
   173  | 
val cadd_succ_lemma = result();
  | 
| 
 | 
   174  | 
  | 
| 
 | 
   175  | 
val [mnat,nnat] = goal CardinalArith.thy
  | 
| 
 | 
   176  | 
    "[| m: nat;  n: nat |] ==> m |+| n = m#+n";
  | 
| 
 | 
   177  | 
by (cut_facts_tac [nnat] 1);
  | 
| 
 | 
   178  | 
by (nat_ind_tac "m" [mnat] 1);
  | 
| 
 | 
   179  | 
by (asm_simp_tac (arith_ss addsimps [nat_into_Card RS cadd_0]) 1);
  | 
| 
 | 
   180  | 
by (asm_simp_tac (arith_ss addsimps [nat_into_Ord, cadd_succ_lemma,
  | 
| 
 | 
   181  | 
				     nat_into_Card RS Card_cardinal_eq]) 1);
  | 
| 
 | 
   182  | 
val nat_cadd_eq_add = result();
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
  | 
| 
 | 
   185  | 
(*** Cardinal multiplication ***)
  | 
| 
 | 
   186  | 
  | 
| 
 | 
   187  | 
(** Cardinal multiplication is commutative **)
  | 
| 
 | 
   188  | 
  | 
| 
 | 
   189  | 
(*Easier to prove the two directions separately*)
  | 
| 
 | 
   190  | 
goalw CardinalArith.thy [eqpoll_def] "A*B eqpoll B*A";
  | 
| 
 | 
   191  | 
by (rtac exI 1);
  | 
| 
 | 
   192  | 
by (res_inst_tac [("c", "split(%x y.<y,x>)"), ("d", "split(%x y.<y,x>)")] 
 | 
| 
 | 
   193  | 
    lam_bijective 1);
  | 
| 
 | 
   194  | 
by (safe_tac ZF_cs);
  | 
| 
 | 
   195  | 
by (ALLGOALS (asm_simp_tac ZF_ss));
  | 
| 
 | 
   196  | 
val prod_commute_eqpoll = result();
  | 
| 
 | 
   197  | 
  | 
| 
 | 
   198  | 
goalw CardinalArith.thy [cmult_def] "i |*| j = j |*| i";
  | 
| 
 | 
   199  | 
by (rtac (prod_commute_eqpoll RS cardinal_cong) 1);
  | 
| 
 | 
   200  | 
val cmult_commute = result();
  | 
| 
 | 
   201  | 
  | 
| 
 | 
   202  | 
(** Cardinal multiplication is associative **)
  | 
| 
 | 
   203  | 
  | 
| 
 | 
   204  | 
goalw CardinalArith.thy [eqpoll_def] "(A*B)*C eqpoll A*(B*C)";
  | 
| 
 | 
   205  | 
by (rtac exI 1);
  | 
| 
 | 
   206  | 
by (res_inst_tac [("c", "split(%w z. split(%x y. <x,<y,z>>, w))"),
 | 
| 
 | 
   207  | 
		  ("d", "split(%x.   split(%y z. <<x,y>, z>))")] 
 | 
| 
 | 
   208  | 
    lam_bijective 1);
  | 
| 
 | 
   209  | 
by (safe_tac ZF_cs);
  | 
| 
 | 
   210  | 
by (ALLGOALS (asm_simp_tac ZF_ss));
  | 
| 
 | 
   211  | 
val prod_assoc_eqpoll = result();
  | 
| 
 | 
   212  | 
  | 
| 
 | 
   213  | 
(*Unconditional version requires AC*)
  | 
| 
 | 
   214  | 
goalw CardinalArith.thy [cmult_def]
  | 
| 
484
 | 
   215  | 
    "!!i j k. [| well_ord(i,ri); well_ord(j,rj); well_ord(k,rk) |] ==>	\
  | 
| 
437
 | 
   216  | 
\             (i |*| j) |*| k = i |*| (j |*| k)";
  | 
| 
 | 
   217  | 
by (rtac cardinal_cong 1);
  | 
| 
 | 
   218  | 
br ([well_ord_cardinal_eqpoll, eqpoll_refl] MRS prod_eqpoll_cong RS
  | 
| 
 | 
   219  | 
    eqpoll_trans) 1;
  | 
| 
 | 
   220  | 
by (rtac (prod_assoc_eqpoll RS eqpoll_trans) 2);
  | 
| 
 | 
   221  | 
br ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS prod_eqpoll_cong RS
  | 
| 
 | 
   222  | 
    eqpoll_sym) 2;
  | 
| 
484
 | 
   223  | 
by (REPEAT (ares_tac [well_ord_rmult] 1));
  | 
| 
 | 
   224  | 
val well_ord_cmult_assoc = result();
  | 
| 
437
 | 
   225  | 
  | 
| 
 | 
   226  | 
(** Cardinal multiplication distributes over addition **)
  | 
| 
 | 
   227  | 
  | 
| 
 | 
   228  | 
goalw CardinalArith.thy [eqpoll_def] "(A+B)*C eqpoll (A*C)+(B*C)";
  | 
| 
 | 
   229  | 
by (rtac exI 1);
  | 
| 
 | 
   230  | 
by (res_inst_tac
  | 
| 
 | 
   231  | 
    [("c", "split(%x z. case(%y.Inl(<y,z>), %y.Inr(<y,z>), x))"),
 | 
| 
 | 
   232  | 
     ("d", "case(split(%x y.<Inl(x),y>), split(%x y.<Inr(x),y>))")] 
 | 
| 
 | 
   233  | 
    lam_bijective 1);
  | 
| 
 | 
   234  | 
by (safe_tac (ZF_cs addSEs [sumE]));
  | 
| 
 | 
   235  | 
by (ALLGOALS (asm_simp_tac case_ss));
  | 
| 
 | 
   236  | 
val sum_prod_distrib_eqpoll = result();
  | 
| 
 | 
   237  | 
  | 
| 
 | 
   238  | 
goalw CardinalArith.thy [lepoll_def, inj_def] "A lepoll A*A";
  | 
| 
 | 
   239  | 
by (res_inst_tac [("x", "lam x:A. <x,x>")] exI 1);
 | 
| 
 | 
   240  | 
by (simp_tac (ZF_ss addsimps [lam_type]) 1);
  | 
| 
 | 
   241  | 
val prod_square_lepoll = result();
  | 
| 
 | 
   242  | 
  | 
| 
484
 | 
   243  | 
goalw CardinalArith.thy [cmult_def] "!!K. Card(K) ==> K le K |*| K";
  | 
| 
437
 | 
   244  | 
by (rtac le_trans 1);
  | 
| 
 | 
   245  | 
by (rtac well_ord_lepoll_imp_le 2);
  | 
| 
 | 
   246  | 
by (rtac prod_square_lepoll 3);
  | 
| 
 | 
   247  | 
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel, Card_is_Ord] 2));
  | 
| 
 | 
   248  | 
by (asm_simp_tac (ZF_ss addsimps [le_refl, Card_is_Ord, Card_cardinal_eq]) 1);
  | 
| 
 | 
   249  | 
val cmult_square_le = result();
  | 
| 
 | 
   250  | 
  | 
| 
 | 
   251  | 
(** Multiplication by 0 yields 0 **)
  | 
| 
 | 
   252  | 
  | 
| 
 | 
   253  | 
goalw CardinalArith.thy [eqpoll_def] "0*A eqpoll 0";
  | 
| 
 | 
   254  | 
by (rtac exI 1);
  | 
| 
 | 
   255  | 
by (rtac lam_bijective 1);
  | 
| 
 | 
   256  | 
by (safe_tac ZF_cs);
  | 
| 
 | 
   257  | 
val prod_0_eqpoll = result();
  | 
| 
 | 
   258  | 
  | 
| 
 | 
   259  | 
goalw CardinalArith.thy [cmult_def] "0 |*| i = 0";
  | 
| 
 | 
   260  | 
by (asm_simp_tac (ZF_ss addsimps [prod_0_eqpoll RS cardinal_cong, 
  | 
| 
 | 
   261  | 
				  Card_0 RS Card_cardinal_eq]) 1);
  | 
| 
 | 
   262  | 
val cmult_0 = result();
  | 
| 
 | 
   263  | 
  | 
| 
 | 
   264  | 
(** 1 is the identity for multiplication **)
  | 
| 
 | 
   265  | 
  | 
| 
 | 
   266  | 
goalw CardinalArith.thy [eqpoll_def] "{x}*A eqpoll A";
 | 
| 
 | 
   267  | 
by (rtac exI 1);
  | 
| 
 | 
   268  | 
by (res_inst_tac [("c", "snd"), ("d", "%z.<x,z>")] lam_bijective 1);
 | 
| 
 | 
   269  | 
by (safe_tac ZF_cs);
  | 
| 
 | 
   270  | 
by (ALLGOALS (asm_simp_tac ZF_ss));
  | 
| 
 | 
   271  | 
val prod_singleton_eqpoll = result();
  | 
| 
 | 
   272  | 
  | 
| 
484
 | 
   273  | 
goalw CardinalArith.thy [cmult_def, succ_def] "!!K. Card(K) ==> 1 |*| K = K";
  | 
| 
437
 | 
   274  | 
by (asm_simp_tac (ZF_ss addsimps [prod_singleton_eqpoll RS cardinal_cong, 
  | 
| 
 | 
   275  | 
				  Card_cardinal_eq]) 1);
  | 
| 
 | 
   276  | 
val cmult_1 = result();
  | 
| 
 | 
   277  | 
  | 
| 
 | 
   278  | 
(** Multiplication of finite cardinals is "ordinary" multiplication **)
  | 
| 
 | 
   279  | 
  | 
| 
 | 
   280  | 
goalw CardinalArith.thy [eqpoll_def] "succ(A)*B eqpoll B + A*B";
  | 
| 
 | 
   281  | 
by (rtac exI 1);
  | 
| 
 | 
   282  | 
by (res_inst_tac [("c", "split(%x y. if(x=A, Inl(y), Inr(<x,y>)))"), 
 | 
| 
 | 
   283  | 
		  ("d", "case(%y. <A,y>, %z.z)")] 
 | 
| 
 | 
   284  | 
    lam_bijective 1);
  | 
| 
 | 
   285  | 
by (safe_tac (ZF_cs addSEs [sumE]));
  | 
| 
 | 
   286  | 
by (ALLGOALS
  | 
| 
 | 
   287  | 
    (asm_simp_tac (case_ss addsimps [succI2, if_type, mem_imp_not_eq])));
  | 
| 
 | 
   288  | 
val prod_succ_eqpoll = result();
  | 
| 
 | 
   289  | 
  | 
| 
 | 
   290  | 
  | 
| 
 | 
   291  | 
(*Unconditional version requires AC*)
  | 
| 
 | 
   292  | 
goalw CardinalArith.thy [cmult_def, cadd_def]
  | 
| 
 | 
   293  | 
    "!!m n. [| Ord(m);  Ord(n) |] ==> succ(m) |*| n = n |+| (m |*| n)";
  | 
| 
 | 
   294  | 
by (rtac (prod_succ_eqpoll RS cardinal_cong RS trans) 1);
  | 
| 
 | 
   295  | 
by (rtac (cardinal_cong RS sym) 1);
  | 
| 
 | 
   296  | 
by (rtac ([eqpoll_refl, well_ord_cardinal_eqpoll] MRS sum_eqpoll_cong) 1);
  | 
| 
 | 
   297  | 
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1));
  | 
| 
 | 
   298  | 
val cmult_succ_lemma = result();
  | 
| 
 | 
   299  | 
  | 
| 
 | 
   300  | 
val [mnat,nnat] = goal CardinalArith.thy
  | 
| 
 | 
   301  | 
    "[| m: nat;  n: nat |] ==> m |*| n = m#*n";
  | 
| 
 | 
   302  | 
by (cut_facts_tac [nnat] 1);
  | 
| 
 | 
   303  | 
by (nat_ind_tac "m" [mnat] 1);
  | 
| 
 | 
   304  | 
by (asm_simp_tac (arith_ss addsimps [cmult_0]) 1);
  | 
| 
 | 
   305  | 
by (asm_simp_tac (arith_ss addsimps [nat_into_Ord, cmult_succ_lemma,
  | 
| 
 | 
   306  | 
				     nat_cadd_eq_add]) 1);
  | 
| 
 | 
   307  | 
val nat_cmult_eq_mult = result();
  | 
| 
 | 
   308  | 
  | 
| 
 | 
   309  | 
  | 
| 
 | 
   310  | 
(*** Infinite Cardinals are Limit Ordinals ***)
  | 
| 
 | 
   311  | 
  | 
| 
516
 | 
   312  | 
goalw CardinalArith.thy [lepoll_def]
  | 
| 
 | 
   313  | 
    "!!i. nat <= A ==> succ(A) lepoll A";
  | 
| 
 | 
   314  | 
by (res_inst_tac [("x",
 | 
| 
 | 
   315  | 
    "lam z:succ(A). if(z=A, 0, if(z:nat, succ(z), z))")] exI 1);
  | 
| 
 | 
   316  | 
by (res_inst_tac [("d", "%y. if(y:nat, nat_case(A,%z.z,y), y)")] 
 | 
| 
 | 
   317  | 
    lam_injective 1);
  | 
| 
 | 
   318  | 
by (fast_tac (ZF_cs addSIs [if_type, nat_0I, nat_succI]) 1);
  | 
| 
 | 
   319  | 
by (asm_simp_tac 
  | 
| 
 | 
   320  | 
    (ZF_ss addsimps [nat_case_0, nat_case_succ, nat_0I, nat_succI]
  | 
| 
 | 
   321  | 
           setloop split_tac [expand_if]) 1);
  | 
| 
 | 
   322  | 
val nat_succ_lepoll = result();
  | 
| 
 | 
   323  | 
  | 
| 
437
 | 
   324  | 
goalw CardinalArith.thy [lepoll_def, inj_def]
  | 
| 
 | 
   325  | 
    "!!i. nat <= A ==> succ(A) lepoll A";
  | 
| 
 | 
   326  | 
by (res_inst_tac [("x",
 | 
| 
 | 
   327  | 
   "lam z:succ(A). if(z=A, 0, if(z:nat, succ(z), z))")] exI 1);
  | 
| 
 | 
   328  | 
by (rtac (lam_type RS CollectI) 1);
  | 
| 
516
 | 
   329  | 
by (fast_tac (ZF_cs addSIs [if_type, nat_0I, nat_succI]) 1);
  | 
| 
437
 | 
   330  | 
by (REPEAT (rtac ballI 1));
  | 
| 
 | 
   331  | 
by (asm_simp_tac 
  | 
| 
 | 
   332  | 
    (ZF_ss addsimps [succ_inject_iff, succ_not_0, succ_not_0 RS not_sym]
  | 
| 
 | 
   333  | 
           setloop split_tac [expand_if]) 1);
  | 
| 
 | 
   334  | 
by (safe_tac (ZF_cs addSIs [nat_0I, nat_succI]));
  | 
| 
 | 
   335  | 
val nat_succ_lepoll = result();
  | 
| 
 | 
   336  | 
  | 
| 
 | 
   337  | 
goal CardinalArith.thy "!!i. nat <= A ==> succ(A) eqpoll A";
  | 
| 
 | 
   338  | 
by (etac (nat_succ_lepoll RS eqpollI) 1);
  | 
| 
 | 
   339  | 
by (rtac (subset_succI RS subset_imp_lepoll) 1);
  | 
| 
 | 
   340  | 
val nat_succ_eqpoll = result();
  | 
| 
 | 
   341  | 
  | 
| 
488
 | 
   342  | 
goalw CardinalArith.thy [InfCard_def] "InfCard(nat)";
  | 
| 
 | 
   343  | 
by (fast_tac (ZF_cs addIs [Card_nat, le_refl, Card_is_Ord]) 1);
  | 
| 
 | 
   344  | 
val InfCard_nat = result();
  | 
| 
 | 
   345  | 
  | 
| 
484
 | 
   346  | 
goalw CardinalArith.thy [InfCard_def] "!!K. InfCard(K) ==> Card(K)";
  | 
| 
437
 | 
   347  | 
by (etac conjunct1 1);
  | 
| 
 | 
   348  | 
val InfCard_is_Card = result();
  | 
| 
 | 
   349  | 
  | 
| 
523
 | 
   350  | 
goalw CardinalArith.thy [InfCard_def]
  | 
| 
 | 
   351  | 
    "!!K L. [| InfCard(K);  Card(L) |] ==> InfCard(K Un L)";
  | 
| 
 | 
   352  | 
by (asm_simp_tac (ZF_ss addsimps [Card_Un, Un_upper1_le RSN (2,le_trans), 
  | 
| 
 | 
   353  | 
				  Card_is_Ord]) 1);
  | 
| 
 | 
   354  | 
val InfCard_Un = result();
  | 
| 
 | 
   355  | 
  | 
| 
437
 | 
   356  | 
(*Kunen's Lemma 10.11*)
  | 
| 
484
 | 
   357  | 
goalw CardinalArith.thy [InfCard_def] "!!K. InfCard(K) ==> Limit(K)";
  | 
| 
437
 | 
   358  | 
by (etac conjE 1);
  | 
| 
 | 
   359  | 
by (rtac (ltI RS non_succ_LimitI) 1);
  | 
| 
 | 
   360  | 
by (etac ([asm_rl, nat_0I] MRS (le_imp_subset RS subsetD)) 1);
  | 
| 
 | 
   361  | 
by (etac Card_is_Ord 1);
  | 
| 
 | 
   362  | 
by (safe_tac (ZF_cs addSDs [Limit_nat RS Limit_le_succD]));
  | 
| 
 | 
   363  | 
by (forward_tac [Card_is_Ord RS Ord_succD] 1);
  | 
| 
 | 
   364  | 
by (rewtac Card_def);
  | 
| 
 | 
   365  | 
by (res_inst_tac [("i", "succ(y)")] lt_irrefl 1);
 | 
| 
 | 
   366  | 
by (dtac (le_imp_subset RS nat_succ_eqpoll RS cardinal_cong) 1);
  | 
| 
 | 
   367  | 
(*Tricky combination of substitutions; backtracking needed*)
  | 
| 
 | 
   368  | 
by (etac ssubst 1 THEN etac ssubst 1 THEN rtac Ord_cardinal_le 1);
  | 
| 
 | 
   369  | 
by (assume_tac 1);
  | 
| 
 | 
   370  | 
val InfCard_is_Limit = result();
  | 
| 
 | 
   371  | 
  | 
| 
 | 
   372  | 
  | 
| 
 | 
   373  | 
  | 
| 
 | 
   374  | 
(*** An infinite cardinal equals its square (Kunen, Thm 10.12, page 29) ***)
  | 
| 
 | 
   375  | 
  | 
| 
 | 
   376  | 
(*A general fact about ordermap*)
  | 
| 
 | 
   377  | 
goalw Cardinal.thy [eqpoll_def]
  | 
| 
 | 
   378  | 
    "!!A. [| well_ord(A,r);  x:A |] ==> ordermap(A,r)`x eqpoll pred(A,x,r)";
  | 
| 
 | 
   379  | 
by (rtac exI 1);
  | 
| 
 | 
   380  | 
by (asm_simp_tac (ZF_ss addsimps [ordermap_eq_image, well_ord_is_wf]) 1);
  | 
| 
467
 | 
   381  | 
by (etac (ordermap_bij RS bij_is_inj RS restrict_bij RS bij_converse_bij) 1);
  | 
| 
437
 | 
   382  | 
by (rtac pred_subset 1);
  | 
| 
 | 
   383  | 
val ordermap_eqpoll_pred = result();
  | 
| 
 | 
   384  | 
  | 
| 
 | 
   385  | 
(** Establishing the well-ordering **)
  | 
| 
 | 
   386  | 
  | 
| 
 | 
   387  | 
goalw CardinalArith.thy [inj_def]
  | 
| 
484
 | 
   388  | 
 "!!K. Ord(K) ==>	\
  | 
| 
 | 
   389  | 
\ (lam z:K*K. split(%x y. <x Un y, <x, y>>, z)) : inj(K*K, K*K*K)";
  | 
| 
437
 | 
   390  | 
by (safe_tac ZF_cs);
  | 
| 
 | 
   391  | 
by (fast_tac (ZF_cs addIs [lam_type, Un_least_lt RS ltD, ltI]
  | 
| 
 | 
   392  | 
                    addSEs [split_type]) 1);
  | 
| 
 | 
   393  | 
by (asm_full_simp_tac ZF_ss 1);
  | 
| 
 | 
   394  | 
val csquare_lam_inj = result();
  | 
| 
 | 
   395  | 
  | 
| 
 | 
   396  | 
goalw CardinalArith.thy [csquare_rel_def]
  | 
| 
484
 | 
   397  | 
 "!!K. Ord(K) ==> well_ord(K*K, csquare_rel(K))";
  | 
| 
437
 | 
   398  | 
by (rtac (csquare_lam_inj RS well_ord_rvimage) 1);
  | 
| 
 | 
   399  | 
by (REPEAT (ares_tac [well_ord_rmult, well_ord_Memrel] 1));
  | 
| 
 | 
   400  | 
val well_ord_csquare = result();
  | 
| 
 | 
   401  | 
  | 
| 
 | 
   402  | 
(** Characterising initial segments of the well-ordering **)
  | 
| 
 | 
   403  | 
  | 
| 
 | 
   404  | 
goalw CardinalArith.thy [csquare_rel_def]
  | 
| 
484
 | 
   405  | 
 "!!K. [| x<K;  y<K;  z<K |] ==> \
  | 
| 
 | 
   406  | 
\      <<x,y>, <z,z>> : csquare_rel(K) --> x le z & y le z";
  | 
| 
437
 | 
   407  | 
by (REPEAT (etac ltE 1));
  | 
| 
 | 
   408  | 
by (asm_simp_tac (ZF_ss addsimps [rvimage_iff, rmult_iff, Memrel_iff,
  | 
| 
 | 
   409  | 
                                  Un_absorb, Un_least_mem_iff, ltD]) 1);
  | 
| 
 | 
   410  | 
by (safe_tac (ZF_cs addSEs [mem_irrefl] 
  | 
| 
 | 
   411  | 
                    addSIs [Un_upper1_le, Un_upper2_le]));
  | 
| 
 | 
   412  | 
by (ALLGOALS (asm_simp_tac (ZF_ss addsimps [lt_def, succI2, Ord_succ])));
  | 
| 
 | 
   413  | 
val csquareD_lemma = result();
  | 
| 
 | 
   414  | 
val csquareD = csquareD_lemma RS mp |> standard;
  | 
| 
 | 
   415  | 
  | 
| 
 | 
   416  | 
goalw CardinalArith.thy [pred_def]
  | 
| 
484
 | 
   417  | 
 "!!K. z<K ==> pred(K*K, <z,z>, csquare_rel(K)) <= succ(z)*succ(z)";
  | 
| 
437
 | 
   418  | 
by (safe_tac (lemmas_cs addSEs [SigmaE]));	(*avoids using succCI*)
  | 
| 
 | 
   419  | 
by (rtac (csquareD RS conjE) 1);
  | 
| 
 | 
   420  | 
by (rewtac lt_def);
  | 
| 
 | 
   421  | 
by (assume_tac 4);
  | 
| 
 | 
   422  | 
by (ALLGOALS (fast_tac ZF_cs));
  | 
| 
 | 
   423  | 
val pred_csquare_subset = result();
  | 
| 
 | 
   424  | 
  | 
| 
 | 
   425  | 
goalw CardinalArith.thy [csquare_rel_def]
  | 
| 
484
 | 
   426  | 
 "!!K. [| x<z;  y<z;  z<K |] ==> \
  | 
| 
 | 
   427  | 
\      <<x,y>, <z,z>> : csquare_rel(K)";
  | 
| 
 | 
   428  | 
by (subgoals_tac ["x<K", "y<K"] 1);
  | 
| 
437
 | 
   429  | 
by (REPEAT (eresolve_tac [asm_rl, lt_trans] 2));
  | 
| 
 | 
   430  | 
by (REPEAT (etac ltE 1));
  | 
| 
 | 
   431  | 
by (asm_simp_tac (ZF_ss addsimps [rvimage_iff, rmult_iff, Memrel_iff,
  | 
| 
 | 
   432  | 
                                  Un_absorb, Un_least_mem_iff, ltD]) 1);
  | 
| 
 | 
   433  | 
val csquare_ltI = result();
  | 
| 
 | 
   434  | 
  | 
| 
 | 
   435  | 
(*Part of the traditional proof.  UNUSED since it's harder to prove & apply *)
  | 
| 
 | 
   436  | 
goalw CardinalArith.thy [csquare_rel_def]
  | 
| 
484
 | 
   437  | 
 "!!K. [| x le z;  y le z;  z<K |] ==> \
  | 
| 
 | 
   438  | 
\      <<x,y>, <z,z>> : csquare_rel(K) | x=z & y=z";
  | 
| 
 | 
   439  | 
by (subgoals_tac ["x<K", "y<K"] 1);
  | 
| 
437
 | 
   440  | 
by (REPEAT (eresolve_tac [asm_rl, lt_trans1] 2));
  | 
| 
 | 
   441  | 
by (REPEAT (etac ltE 1));
  | 
| 
 | 
   442  | 
by (asm_simp_tac (ZF_ss addsimps [rvimage_iff, rmult_iff, Memrel_iff,
  | 
| 
 | 
   443  | 
                                  Un_absorb, Un_least_mem_iff, ltD]) 1);
  | 
| 
 | 
   444  | 
by (REPEAT_FIRST (etac succE));
  | 
| 
 | 
   445  | 
by (ALLGOALS
  | 
| 
 | 
   446  | 
    (asm_simp_tac (ZF_ss addsimps [subset_Un_iff RS iff_sym, 
  | 
| 
 | 
   447  | 
				   subset_Un_iff2 RS iff_sym, OrdmemD])));
  | 
| 
 | 
   448  | 
val csquare_or_eqI = result();
  | 
| 
 | 
   449  | 
  | 
| 
 | 
   450  | 
(** The cardinality of initial segments **)
  | 
| 
 | 
   451  | 
  | 
| 
 | 
   452  | 
goal CardinalArith.thy
  | 
| 
484
 | 
   453  | 
    "!!K. [| InfCard(K);  x<K;  y<K;  z=succ(x Un y) |] ==> \
  | 
| 
 | 
   454  | 
\         ordermap(K*K, csquare_rel(K)) ` <x,y> lepoll 		\
  | 
| 
 | 
   455  | 
\         ordermap(K*K, csquare_rel(K)) ` <z,z>";
  | 
| 
 | 
   456  | 
by (subgoals_tac ["z<K", "well_ord(K*K, csquare_rel(K))"] 1);
  | 
| 
437
 | 
   457  | 
by (etac (InfCard_is_Card RS Card_is_Ord RS well_ord_csquare) 2);
  | 
| 
 | 
   458  | 
by (fast_tac (ZF_cs addSIs [Un_least_lt, InfCard_is_Limit, Limit_has_succ]) 2);
  | 
| 
 | 
   459  | 
by (rtac (OrdmemD RS subset_imp_lepoll) 1);
  | 
| 
467
 | 
   460  | 
by (res_inst_tac [("z1","z")] (csquare_ltI RS ordermap_mono) 1);
 | 
| 
437
 | 
   461  | 
by (etac well_ord_is_wf 4);
  | 
| 
 | 
   462  | 
by (ALLGOALS 
  | 
| 
 | 
   463  | 
    (fast_tac (ZF_cs addSIs [Un_upper1_le, Un_upper2_le, Ord_ordermap] 
  | 
| 
 | 
   464  | 
                     addSEs [ltE])));
  | 
| 
 | 
   465  | 
val ordermap_z_lepoll = result();
  | 
| 
 | 
   466  | 
  | 
| 
484
 | 
   467  | 
(*Kunen: "each <x,y>: K*K has no more than z*z predecessors..." (page 29) *)
  | 
| 
437
 | 
   468  | 
goalw CardinalArith.thy [cmult_def]
  | 
| 
484
 | 
   469  | 
  "!!K. [| InfCard(K);  x<K;  y<K;  z=succ(x Un y) |] ==> \
  | 
| 
 | 
   470  | 
\       | ordermap(K*K, csquare_rel(K)) ` <x,y> | le  |succ(z)| |*| |succ(z)|";
  | 
| 
437
 | 
   471  | 
by (rtac (well_ord_rmult RS well_ord_lepoll_imp_le) 1);
  | 
| 
 | 
   472  | 
by (REPEAT (ares_tac [Ord_cardinal, well_ord_Memrel] 1));
  | 
| 
484
 | 
   473  | 
by (subgoals_tac ["z<K"] 1);
  | 
| 
437
 | 
   474  | 
by (fast_tac (ZF_cs addSIs [Un_least_lt, InfCard_is_Limit, 
  | 
| 
 | 
   475  | 
                            Limit_has_succ]) 2);
  | 
| 
 | 
   476  | 
by (rtac (ordermap_z_lepoll RS lepoll_trans) 1);
  | 
| 
 | 
   477  | 
by (REPEAT_SOME assume_tac);
  | 
| 
 | 
   478  | 
by (rtac (ordermap_eqpoll_pred RS eqpoll_imp_lepoll RS lepoll_trans) 1);
  | 
| 
 | 
   479  | 
by (etac (InfCard_is_Card RS Card_is_Ord RS well_ord_csquare) 1);
  | 
| 
 | 
   480  | 
by (fast_tac (ZF_cs addIs [ltD]) 1);
  | 
| 
 | 
   481  | 
by (rtac (pred_csquare_subset RS subset_imp_lepoll RS lepoll_trans) 1 THEN
  | 
| 
 | 
   482  | 
    assume_tac 1);
  | 
| 
 | 
   483  | 
by (REPEAT_FIRST (etac ltE));
  | 
| 
 | 
   484  | 
by (rtac (prod_eqpoll_cong RS eqpoll_sym RS eqpoll_imp_lepoll) 1);
  | 
| 
 | 
   485  | 
by (REPEAT_FIRST (etac (Ord_succ RS Ord_cardinal_eqpoll)));
  | 
| 
 | 
   486  | 
val ordermap_csquare_le = result();
  | 
| 
 | 
   487  | 
  | 
| 
484
 | 
   488  | 
(*Kunen: "... so the order type <= K" *)
  | 
| 
437
 | 
   489  | 
goal CardinalArith.thy
  | 
| 
484
 | 
   490  | 
    "!!K. [| InfCard(K);  ALL y:K. InfCard(y) --> y |*| y = y |]  ==>  \
  | 
| 
 | 
   491  | 
\         ordertype(K*K, csquare_rel(K)) le K";
  | 
| 
437
 | 
   492  | 
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1);
  | 
| 
 | 
   493  | 
by (rtac all_lt_imp_le 1);
  | 
| 
 | 
   494  | 
by (assume_tac 1);
  | 
| 
 | 
   495  | 
by (etac (well_ord_csquare RS Ord_ordertype) 1);
  | 
| 
 | 
   496  | 
by (rtac Card_lt_imp_lt 1);
  | 
| 
 | 
   497  | 
by (etac InfCard_is_Card 3);
  | 
| 
 | 
   498  | 
by (etac ltE 2 THEN assume_tac 2);
  | 
| 
 | 
   499  | 
by (asm_full_simp_tac (ZF_ss addsimps [ordertype_unfold]) 1);
  | 
| 
 | 
   500  | 
by (safe_tac (ZF_cs addSEs [ltE]));
  | 
| 
 | 
   501  | 
by (subgoals_tac ["Ord(xb)", "Ord(y)"] 1);
  | 
| 
 | 
   502  | 
by (REPEAT (eresolve_tac [asm_rl, Ord_in_Ord] 2));
  | 
| 
 | 
   503  | 
by (rtac (ordermap_csquare_le RS lt_trans1) 1  THEN
  | 
| 
 | 
   504  | 
    REPEAT (ares_tac [refl] 1 ORELSE etac ltI 1));
  | 
| 
 | 
   505  | 
by (res_inst_tac [("i","xb Un y"), ("j","nat")] Ord_linear2 1  THEN
 | 
| 
 | 
   506  | 
    REPEAT (ares_tac [Ord_Un, Ord_nat] 1));
  | 
| 
 | 
   507  | 
(*the finite case: xb Un y < nat *)
  | 
| 
 | 
   508  | 
by (res_inst_tac [("j", "nat")] lt_trans2 1);
 | 
| 
 | 
   509  | 
by (asm_full_simp_tac (FOL_ss addsimps [InfCard_def]) 2);
  | 
| 
 | 
   510  | 
by (asm_full_simp_tac
  | 
| 
 | 
   511  | 
    (ZF_ss addsimps [lt_def, nat_cmult_eq_mult, nat_succI, mult_type,
  | 
| 
 | 
   512  | 
		     nat_into_Card RS Card_cardinal_eq, Ord_nat]) 1);
  | 
| 
 | 
   513  | 
(*case nat le (xb Un y), equivalently InfCard(xb Un y)  *)
  | 
| 
 | 
   514  | 
by (asm_full_simp_tac
  | 
| 
 | 
   515  | 
    (ZF_ss addsimps [le_imp_subset RS nat_succ_eqpoll RS cardinal_cong,
  | 
| 
 | 
   516  | 
		     le_succ_iff, InfCard_def, Card_cardinal, Un_least_lt, 
  | 
| 
 | 
   517  | 
		     Ord_Un, ltI, nat_le_cardinal,
  | 
| 
 | 
   518  | 
		     Ord_cardinal_le RS lt_trans1 RS ltD]) 1);
  | 
| 
 | 
   519  | 
val ordertype_csquare_le = result();
  | 
| 
 | 
   520  | 
  | 
| 
 | 
   521  | 
(*This lemma can easily be generalized to premise well_ord(A*A,r) *)
  | 
| 
 | 
   522  | 
goalw CardinalArith.thy [cmult_def]
  | 
| 
484
 | 
   523  | 
    "!!K. Ord(K) ==> K |*| K  =  |ordertype(K*K, csquare_rel(K))|";
  | 
| 
437
 | 
   524  | 
by (rtac cardinal_cong 1);
  | 
| 
 | 
   525  | 
by (rewtac eqpoll_def);
  | 
| 
 | 
   526  | 
by (rtac exI 1);
  | 
| 
467
 | 
   527  | 
by (etac (well_ord_csquare RS ordermap_bij) 1);
  | 
| 
437
 | 
   528  | 
val csquare_eq_ordertype = result();
  | 
| 
 | 
   529  | 
  | 
| 
 | 
   530  | 
(*Main result: Kunen's Theorem 10.12*)
  | 
| 
484
 | 
   531  | 
goal CardinalArith.thy "!!K. InfCard(K) ==> K |*| K = K";
  | 
| 
437
 | 
   532  | 
by (forward_tac [InfCard_is_Card RS Card_is_Ord] 1);
  | 
| 
 | 
   533  | 
by (etac rev_mp 1);
  | 
| 
484
 | 
   534  | 
by (trans_ind_tac "K" [] 1);
  | 
| 
437
 | 
   535  | 
by (rtac impI 1);
  | 
| 
 | 
   536  | 
by (rtac le_anti_sym 1);
  | 
| 
 | 
   537  | 
by (etac (InfCard_is_Card RS cmult_square_le) 2);
  | 
| 
 | 
   538  | 
by (rtac (ordertype_csquare_le RSN (2, le_trans)) 1);
  | 
| 
 | 
   539  | 
by (assume_tac 2);
  | 
| 
 | 
   540  | 
by (assume_tac 2);
  | 
| 
 | 
   541  | 
by (asm_simp_tac 
  | 
| 
 | 
   542  | 
    (ZF_ss addsimps [csquare_eq_ordertype, Ord_cardinal_le,
  | 
| 
 | 
   543  | 
                     well_ord_csquare RS Ord_ordertype]) 1);
  | 
| 
 | 
   544  | 
val InfCard_csquare_eq = result();
  | 
| 
484
 | 
   545  | 
  | 
| 
 | 
   546  | 
  | 
| 
 | 
   547  | 
goal CardinalArith.thy
  | 
| 
 | 
   548  | 
    "!!A. [| well_ord(A,r);  InfCard(|A|) |] ==> A*A eqpoll A";
  | 
| 
 | 
   549  | 
by (resolve_tac [prod_eqpoll_cong RS eqpoll_trans] 1);
  | 
| 
 | 
   550  | 
by (REPEAT (etac (well_ord_cardinal_eqpoll RS eqpoll_sym) 1));
  | 
| 
 | 
   551  | 
by (resolve_tac [well_ord_cardinal_eqE] 1);
  | 
| 
 | 
   552  | 
by (REPEAT (ares_tac [Ord_cardinal, well_ord_rmult, well_ord_Memrel] 1));
  | 
| 
 | 
   553  | 
by (asm_simp_tac (ZF_ss addsimps [symmetric cmult_def, InfCard_csquare_eq]) 1);
  | 
| 
 | 
   554  | 
val well_ord_InfCard_square_eq = result();
  | 
| 
 | 
   555  | 
  | 
| 
 | 
   556  | 
  | 
| 
 | 
   557  | 
(*** For every cardinal number there exists a greater one
  | 
| 
 | 
   558  | 
     [Kunen's Theorem 10.16, which would be trivial using AC] ***)
  | 
| 
 | 
   559  | 
  | 
| 
 | 
   560  | 
goalw CardinalArith.thy [jump_cardinal_def] "Ord(jump_cardinal(K))";
  | 
| 
 | 
   561  | 
by (rtac (Ord_is_Transset RSN (2,OrdI)) 1);
  | 
| 
 | 
   562  | 
by (safe_tac (ZF_cs addSIs [Ord_ordertype]));
  | 
| 
 | 
   563  | 
bw Transset_def;
  | 
| 
 | 
   564  | 
by (safe_tac ZF_cs);
  | 
| 
 | 
   565  | 
by (rtac (ordertype_subset RS exE) 1 THEN REPEAT (assume_tac 1));
  | 
| 
 | 
   566  | 
by (resolve_tac [UN_I] 1);
  | 
| 
 | 
   567  | 
by (resolve_tac [ReplaceI] 2);
  | 
| 
 | 
   568  | 
by (ALLGOALS (fast_tac (ZF_cs addSEs [well_ord_subset])));
  | 
| 
 | 
   569  | 
val Ord_jump_cardinal = result();
  | 
| 
 | 
   570  | 
  | 
| 
 | 
   571  | 
(*Allows selective unfolding.  Less work than deriving intro/elim rules*)
  | 
| 
 | 
   572  | 
goalw CardinalArith.thy [jump_cardinal_def]
  | 
| 
 | 
   573  | 
     "i : jump_cardinal(K) <->   \
  | 
| 
 | 
   574  | 
\         (EX r X. r <= K*K & X <= K & well_ord(X,r) & i = ordertype(X,r))";
  | 
| 
 | 
   575  | 
by (fast_tac subset_cs 1);	(*It's vital to avoid reasoning about <=*)
  | 
| 
 | 
   576  | 
val jump_cardinal_iff = result();
  | 
| 
 | 
   577  | 
  | 
| 
 | 
   578  | 
(*The easy part of Theorem 10.16: jump_cardinal(K) exceeds K*)
  | 
| 
 | 
   579  | 
goal CardinalArith.thy "!!K. Ord(K) ==> K < jump_cardinal(K)";
  | 
| 
 | 
   580  | 
by (resolve_tac [Ord_jump_cardinal RSN (2,ltI)] 1);
  | 
| 
 | 
   581  | 
by (resolve_tac [jump_cardinal_iff RS iffD2] 1);
  | 
| 
 | 
   582  | 
by (REPEAT_FIRST (ares_tac [exI, conjI, well_ord_Memrel]));
  | 
| 
 | 
   583  | 
by (resolve_tac [subset_refl] 2);
  | 
| 
 | 
   584  | 
by (asm_simp_tac (ZF_ss addsimps [Memrel_def, subset_iff]) 1);
  | 
| 
 | 
   585  | 
by (asm_simp_tac (ZF_ss addsimps [ordertype_Memrel]) 1);
  | 
| 
 | 
   586  | 
val K_lt_jump_cardinal = result();
  | 
| 
 | 
   587  | 
  | 
| 
 | 
   588  | 
(*The proof by contradiction: the bijection f yields a wellordering of X
  | 
| 
 | 
   589  | 
  whose ordertype is jump_cardinal(K).  *)
  | 
| 
 | 
   590  | 
goal CardinalArith.thy
  | 
| 
 | 
   591  | 
    "!!K. [| well_ord(X,r);  r <= K * K;  X <= K;	\
  | 
| 
 | 
   592  | 
\            f : bij(ordertype(X,r), jump_cardinal(K)) 	\
  | 
| 
 | 
   593  | 
\	  |] ==> jump_cardinal(K) : jump_cardinal(K)";
  | 
| 
 | 
   594  | 
by (subgoal_tac "f O ordermap(X,r): bij(X, jump_cardinal(K))" 1);
  | 
| 
 | 
   595  | 
by (REPEAT (ares_tac [comp_bij, ordermap_bij] 2));
  | 
| 
 | 
   596  | 
by (resolve_tac [jump_cardinal_iff RS iffD2] 1);
  | 
| 
 | 
   597  | 
by (REPEAT_FIRST (resolve_tac [exI, conjI]));
  | 
| 
 | 
   598  | 
by (rtac ([rvimage_type, Sigma_mono] MRS subset_trans) 1);
  | 
| 
 | 
   599  | 
by (REPEAT (assume_tac 1));
  | 
| 
 | 
   600  | 
by (etac (bij_is_inj RS well_ord_rvimage) 1);
  | 
| 
 | 
   601  | 
by (rtac (Ord_jump_cardinal RS well_ord_Memrel) 1);
  | 
| 
 | 
   602  | 
by (asm_simp_tac
  | 
| 
 | 
   603  | 
    (ZF_ss addsimps [well_ord_Memrel RSN (2, bij_ordertype_vimage), 
  | 
| 
 | 
   604  | 
		     ordertype_Memrel, Ord_jump_cardinal]) 1);
  | 
| 
 | 
   605  | 
val Card_jump_cardinal_lemma = result();
  | 
| 
 | 
   606  | 
  | 
| 
 | 
   607  | 
(*The hard part of Theorem 10.16: jump_cardinal(K) is itself a cardinal*)
  | 
| 
 | 
   608  | 
goal CardinalArith.thy "Card(jump_cardinal(K))";
  | 
| 
 | 
   609  | 
by (rtac (Ord_jump_cardinal RS CardI) 1);
  | 
| 
 | 
   610  | 
by (rewrite_goals_tac [eqpoll_def]);
  | 
| 
 | 
   611  | 
by (safe_tac (ZF_cs addSDs [ltD, jump_cardinal_iff RS iffD1]));
  | 
| 
 | 
   612  | 
by (REPEAT (ares_tac [Card_jump_cardinal_lemma RS mem_irrefl] 1));
  | 
| 
 | 
   613  | 
val Card_jump_cardinal = result();
  | 
| 
 | 
   614  | 
  | 
| 
 | 
   615  | 
(*** Basic properties of successor cardinals ***)
  | 
| 
 | 
   616  | 
  | 
| 
 | 
   617  | 
goalw CardinalArith.thy [csucc_def]
  | 
| 
 | 
   618  | 
    "!!K. Ord(K) ==> Card(csucc(K)) & K < csucc(K)";
  | 
| 
 | 
   619  | 
by (rtac LeastI 1);
  | 
| 
 | 
   620  | 
by (REPEAT (ares_tac [conjI, Card_jump_cardinal, K_lt_jump_cardinal,
  | 
| 
 | 
   621  | 
		      Ord_jump_cardinal] 1));
  | 
| 
 | 
   622  | 
val csucc_basic = result();
  | 
| 
 | 
   623  | 
  | 
| 
 | 
   624  | 
val Card_csucc = csucc_basic RS conjunct1 |> standard;
  | 
| 
 | 
   625  | 
  | 
| 
 | 
   626  | 
val lt_csucc = csucc_basic RS conjunct2 |> standard;
  | 
| 
 | 
   627  | 
  | 
| 
517
 | 
   628  | 
goal CardinalArith.thy "!!K. Ord(K) ==> 0 < csucc(K)";
  | 
| 
 | 
   629  | 
by (resolve_tac [[Ord_0_le, lt_csucc] MRS lt_trans1] 1);
  | 
| 
 | 
   630  | 
by (REPEAT (assume_tac 1));
  | 
| 
 | 
   631  | 
val Ord_0_lt_csucc = result();
  | 
| 
 | 
   632  | 
  | 
| 
484
 | 
   633  | 
goalw CardinalArith.thy [csucc_def]
  | 
| 
 | 
   634  | 
    "!!K L. [| Card(L);  K<L |] ==> csucc(K) le L";
  | 
| 
 | 
   635  | 
by (rtac Least_le 1);
  | 
| 
 | 
   636  | 
by (REPEAT (ares_tac [conjI, Card_is_Ord] 1));
  | 
| 
 | 
   637  | 
val csucc_le = result();
  | 
| 
 | 
   638  | 
  | 
| 
 | 
   639  | 
goal CardinalArith.thy
  | 
| 
 | 
   640  | 
    "!!K. [| Ord(i); Card(K) |] ==> i < csucc(K) <-> |i| le K";
  | 
| 
 | 
   641  | 
by (resolve_tac [iffI] 1);
  | 
| 
 | 
   642  | 
by (resolve_tac [Card_lt_imp_lt] 2);
  | 
| 
 | 
   643  | 
by (eresolve_tac [lt_trans1] 2);
  | 
| 
 | 
   644  | 
by (REPEAT (ares_tac [lt_csucc, Card_csucc, Card_is_Ord] 2));
  | 
| 
 | 
   645  | 
by (resolve_tac [notI RS not_lt_imp_le] 1);
  | 
| 
 | 
   646  | 
by (resolve_tac [Card_cardinal RS csucc_le RS lt_trans1 RS lt_irrefl] 1);
  | 
| 
 | 
   647  | 
by (assume_tac 1);
  | 
| 
 | 
   648  | 
by (resolve_tac [Ord_cardinal_le RS lt_trans1] 1);
  | 
| 
 | 
   649  | 
by (REPEAT (ares_tac [Ord_cardinal] 1
  | 
| 
 | 
   650  | 
     ORELSE eresolve_tac [ltE, Card_is_Ord] 1));
  | 
| 
 | 
   651  | 
val lt_csucc_iff = result();
  | 
| 
 | 
   652  | 
  | 
| 
 | 
   653  | 
goal CardinalArith.thy
  | 
| 
 | 
   654  | 
    "!!K' K. [| Card(K'); Card(K) |] ==> K' < csucc(K) <-> K' le K";
  | 
| 
 | 
   655  | 
by (asm_simp_tac 
  | 
| 
 | 
   656  | 
    (ZF_ss addsimps [lt_csucc_iff, Card_cardinal_eq, Card_is_Ord]) 1);
  | 
| 
 | 
   657  | 
val Card_lt_csucc_iff = result();
  | 
| 
488
 | 
   658  | 
  | 
| 
 | 
   659  | 
goalw CardinalArith.thy [InfCard_def]
  | 
| 
 | 
   660  | 
    "!!K. InfCard(K) ==> InfCard(csucc(K))";
  | 
| 
 | 
   661  | 
by (asm_simp_tac (ZF_ss addsimps [Card_csucc, Card_is_Ord, 
  | 
| 
 | 
   662  | 
				  lt_csucc RS leI RSN (2,le_trans)]) 1);
  | 
| 
 | 
   663  | 
val InfCard_csucc = result();
  | 
| 
517
 | 
   664  | 
  | 
| 
 | 
   665  | 
val Limit_csucc = InfCard_csucc RS InfCard_is_Limit |> standard;
  |