src/HOL/Real/RealVector.thy
author huffman
Wed, 27 Aug 2008 23:46:33 +0200
changeset 28029 4c55cdec4ce7
parent 28009 e93b121074fb
child 28562 4e74209f113e
permissions -rw-r--r--
simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
27552
15cf4ed9c2a1 re-removed subclass relation real_field < field_char_0: coregularity violation in NSA/HyperDef
haftmann
parents: 27515
diff changeset
     1
(*  Title:      RealVector.thy
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     2
    ID:         $Id$
27552
15cf4ed9c2a1 re-removed subclass relation real_field < field_char_0: coregularity violation in NSA/HyperDef
haftmann
parents: 27515
diff changeset
     3
    Author:     Brian Huffman
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     4
*)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     5
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     6
header {* Vector Spaces and Algebras over the Reals *}
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     7
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
     8
theory RealVector
20684
74e8b46abb97 add lemma norm_power
huffman
parents: 20584
diff changeset
     9
imports RealPow
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    10
begin
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    11
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    12
subsection {* Locale for additive functions *}
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    13
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    14
locale additive =
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    15
  fixes f :: "'a::ab_group_add \<Rightarrow> 'b::ab_group_add"
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    16
  assumes add: "f (x + y) = f x + f y"
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
    17
begin
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    18
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
    19
lemma zero: "f 0 = 0"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    20
proof -
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    21
  have "f 0 = f (0 + 0)" by simp
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    22
  also have "\<dots> = f 0 + f 0" by (rule add)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    23
  finally show "f 0 = 0" by simp
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    24
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    25
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
    26
lemma minus: "f (- x) = - f x"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    27
proof -
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    28
  have "f (- x) + f x = f (- x + x)" by (rule add [symmetric])
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    29
  also have "\<dots> = - f x + f x" by (simp add: zero)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    30
  finally show "f (- x) = - f x" by (rule add_right_imp_eq)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    31
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    32
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
    33
lemma diff: "f (x - y) = f x - f y"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    34
by (simp add: diff_def add minus)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    35
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
    36
lemma setsum: "f (setsum g A) = (\<Sum>x\<in>A. f (g x))"
22942
bf718970e5ef add lemma additive.setsum
huffman
parents: 22912
diff changeset
    37
apply (cases "finite A")
bf718970e5ef add lemma additive.setsum
huffman
parents: 22912
diff changeset
    38
apply (induct set: finite)
bf718970e5ef add lemma additive.setsum
huffman
parents: 22912
diff changeset
    39
apply (simp add: zero)
bf718970e5ef add lemma additive.setsum
huffman
parents: 22912
diff changeset
    40
apply (simp add: add)
bf718970e5ef add lemma additive.setsum
huffman
parents: 22912
diff changeset
    41
apply (simp add: zero)
bf718970e5ef add lemma additive.setsum
huffman
parents: 22912
diff changeset
    42
done
bf718970e5ef add lemma additive.setsum
huffman
parents: 22912
diff changeset
    43
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
    44
end
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
    45
28029
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    46
subsection {* Vector spaces *}
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    47
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    48
locale vector_space =
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    49
  fixes scale :: "'a::field \<Rightarrow> 'b::ab_group_add \<Rightarrow> 'b"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    50
  assumes scale_right_distrib: "scale a (x + y) = scale a x + scale a y"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    51
  and scale_left_distrib: "scale (a + b) x = scale a x + scale b x"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    52
  and scale_scale [simp]: "scale a (scale b x) = scale (a * b) x"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    53
  and scale_one [simp]: "scale 1 x = x"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    54
begin
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    55
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    56
lemma scale_left_commute:
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    57
  "scale a (scale b x) = scale b (scale a x)"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    58
by (simp add: mult_commute)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    59
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    60
lemma scale_zero_left [simp]: "scale 0 x = 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    61
  and scale_minus_left [simp]: "scale (- a) x = - (scale a x)"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    62
  and scale_left_diff_distrib: "scale (a - b) x = scale a x - scale b x"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    63
proof -
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    64
  interpret s: additive ["\<lambda>a. scale a x"]
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    65
    by unfold_locales (rule scale_left_distrib)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    66
  show "scale 0 x = 0" by (rule s.zero)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    67
  show "scale (- a) x = - (scale a x)" by (rule s.minus)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    68
  show "scale (a - b) x = scale a x - scale b x" by (rule s.diff)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    69
qed
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    70
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    71
lemma scale_zero_right [simp]: "scale a 0 = 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    72
  and scale_minus_right [simp]: "scale a (- x) = - (scale a x)"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    73
  and scale_right_diff_distrib: "scale a (x - y) = scale a x - scale a y"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    74
proof -
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    75
  interpret s: additive ["\<lambda>x. scale a x"]
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    76
    by unfold_locales (rule scale_right_distrib)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    77
  show "scale a 0 = 0" by (rule s.zero)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    78
  show "scale a (- x) = - (scale a x)" by (rule s.minus)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    79
  show "scale a (x - y) = scale a x - scale a y" by (rule s.diff)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    80
qed
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    81
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    82
lemma scale_eq_0_iff [simp]:
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    83
  "scale a x = 0 \<longleftrightarrow> a = 0 \<or> x = 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    84
proof cases
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    85
  assume "a = 0" thus ?thesis by simp
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    86
next
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    87
  assume anz [simp]: "a \<noteq> 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    88
  { assume "scale a x = 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    89
    hence "scale (inverse a) (scale a x) = 0" by simp
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    90
    hence "x = 0" by simp }
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    91
  thus ?thesis by force
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    92
qed
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    93
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    94
lemma scale_left_imp_eq:
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    95
  "\<lbrakk>a \<noteq> 0; scale a x = scale a y\<rbrakk> \<Longrightarrow> x = y"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    96
proof -
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    97
  assume nonzero: "a \<noteq> 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    98
  assume "scale a x = scale a y"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
    99
  hence "scale a (x - y) = 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   100
     by (simp add: scale_right_diff_distrib)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   101
  hence "x - y = 0" by (simp add: nonzero)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   102
  thus "x = y" by (simp only: right_minus_eq)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   103
qed
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   104
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   105
lemma scale_right_imp_eq:
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   106
  "\<lbrakk>x \<noteq> 0; scale a x = scale b x\<rbrakk> \<Longrightarrow> a = b"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   107
proof -
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   108
  assume nonzero: "x \<noteq> 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   109
  assume "scale a x = scale b x"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   110
  hence "scale (a - b) x = 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   111
     by (simp add: scale_left_diff_distrib)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   112
  hence "a - b = 0" by (simp add: nonzero)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   113
  thus "a = b" by (simp only: right_minus_eq)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   114
qed
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   115
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   116
lemma scale_cancel_left:
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   117
  "scale a x = scale a y \<longleftrightarrow> x = y \<or> a = 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   118
by (auto intro: scale_left_imp_eq)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   119
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   120
lemma scale_cancel_right:
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   121
  "scale a x = scale b x \<longleftrightarrow> a = b \<or> x = 0"
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   122
by (auto intro: scale_right_imp_eq)
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   123
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   124
end
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   125
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   126
subsection {* Real vector spaces *}
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   127
22636
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
   128
class scaleR = type +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   129
  fixes scaleR :: "real \<Rightarrow> 'a \<Rightarrow> 'a" (infixr "*\<^sub>R" 75)
24748
ee0a0eb6b738 proper syntax during class specification
haftmann
parents: 24588
diff changeset
   130
begin
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   131
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   132
abbreviation
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   133
  divideR :: "'a \<Rightarrow> real \<Rightarrow> 'a" (infixl "'/\<^sub>R" 70)
24748
ee0a0eb6b738 proper syntax during class specification
haftmann
parents: 24588
diff changeset
   134
where
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   135
  "x /\<^sub>R r == scaleR (inverse r) x"
24748
ee0a0eb6b738 proper syntax during class specification
haftmann
parents: 24588
diff changeset
   136
ee0a0eb6b738 proper syntax during class specification
haftmann
parents: 24588
diff changeset
   137
end
ee0a0eb6b738 proper syntax during class specification
haftmann
parents: 24588
diff changeset
   138
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   139
instantiation real :: scaleR
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   140
begin
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   141
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   142
definition
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   143
  real_scaleR_def [simp]: "scaleR a x = a * x"
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   144
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   145
instance ..
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   146
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   147
end
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   148
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   149
class real_vector = scaleR + ab_group_add +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   150
  assumes scaleR_right_distrib: "scaleR a (x + y) = scaleR a x + scaleR a y"
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   151
  and scaleR_left_distrib: "scaleR (a + b) x = scaleR a x + scaleR b x"
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   152
  and scaleR_scaleR [simp]: "scaleR a (scaleR b x) = scaleR (a * b) x"
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   153
  and scaleR_one [simp]: "scaleR 1 x = x"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   154
28029
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   155
interpretation real_vector:
4c55cdec4ce7 simplify definition of vector_space locale (use axclasses instead of inheriting from field and ab_group_add classes)
huffman
parents: 28009
diff changeset
   156
  vector_space ["scaleR :: real \<Rightarrow> 'a \<Rightarrow> 'a::real_vector"]
28009
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   157
apply unfold_locales
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   158
apply (rule scaleR_right_distrib)
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   159
apply (rule scaleR_left_distrib)
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   160
apply (rule scaleR_scaleR)
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   161
apply (rule scaleR_one)
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   162
done
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   163
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   164
text {* Recover original theorem names *}
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   165
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   166
lemmas scaleR_left_commute = real_vector.scale_left_commute
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   167
lemmas scaleR_zero_left = real_vector.scale_zero_left
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   168
lemmas scaleR_minus_left = real_vector.scale_minus_left
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   169
lemmas scaleR_left_diff_distrib = real_vector.scale_left_diff_distrib
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   170
lemmas scaleR_zero_right = real_vector.scale_zero_right
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   171
lemmas scaleR_minus_right = real_vector.scale_minus_right
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   172
lemmas scaleR_right_diff_distrib = real_vector.scale_right_diff_distrib
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   173
lemmas scaleR_eq_0_iff = real_vector.scale_eq_0_iff
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   174
lemmas scaleR_left_imp_eq = real_vector.scale_left_imp_eq
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   175
lemmas scaleR_right_imp_eq = real_vector.scale_right_imp_eq
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   176
lemmas scaleR_cancel_left = real_vector.scale_cancel_left
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   177
lemmas scaleR_cancel_right = real_vector.scale_cancel_right
e93b121074fb move real_vector class proofs into vector_space and group_hom locales
huffman
parents: 27553
diff changeset
   178
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   179
class real_algebra = real_vector + ring +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   180
  assumes mult_scaleR_left [simp]: "scaleR a x * y = scaleR a (x * y)"
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   181
  and mult_scaleR_right [simp]: "x * scaleR a y = scaleR a (x * y)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   182
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   183
class real_algebra_1 = real_algebra + ring_1
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   184
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   185
class real_div_algebra = real_algebra_1 + division_ring
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   186
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   187
class real_field = real_div_algebra + field
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   188
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   189
instance real :: real_field
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   190
apply (intro_classes, unfold real_scaleR_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   191
apply (rule right_distrib)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   192
apply (rule left_distrib)
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   193
apply (rule mult_assoc [symmetric])
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   194
apply (rule mult_1_left)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   195
apply (rule mult_assoc)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   196
apply (rule mult_left_commute)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   197
done
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   198
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   199
interpretation scaleR_left: additive ["(\<lambda>a. scaleR a x::'a::real_vector)"]
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   200
by unfold_locales (rule scaleR_left_distrib)
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   201
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   202
interpretation scaleR_right: additive ["(\<lambda>x. scaleR a x::'a::real_vector)"]
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   203
by unfold_locales (rule scaleR_right_distrib)
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   204
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   205
lemma nonzero_inverse_scaleR_distrib:
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   206
  fixes x :: "'a::real_div_algebra" shows
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   207
  "\<lbrakk>a \<noteq> 0; x \<noteq> 0\<rbrakk> \<Longrightarrow> inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   208
by (rule inverse_unique, simp)
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   209
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   210
lemma inverse_scaleR_distrib:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   211
  fixes x :: "'a::{real_div_algebra,division_by_zero}"
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   212
  shows "inverse (scaleR a x) = scaleR (inverse a) (inverse x)"
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   213
apply (case_tac "a = 0", simp)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   214
apply (case_tac "x = 0", simp)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   215
apply (erule (1) nonzero_inverse_scaleR_distrib)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   216
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   217
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   218
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   219
subsection {* Embedding of the Reals into any @{text real_algebra_1}:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   220
@{term of_real} *}
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   221
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   222
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
   223
  of_real :: "real \<Rightarrow> 'a::real_algebra_1" where
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   224
  "of_real r = scaleR r 1"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   225
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   226
lemma scaleR_conv_of_real: "scaleR r x = of_real r * x"
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   227
by (simp add: of_real_def)
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   228
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   229
lemma of_real_0 [simp]: "of_real 0 = 0"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   230
by (simp add: of_real_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   231
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   232
lemma of_real_1 [simp]: "of_real 1 = 1"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   233
by (simp add: of_real_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   234
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   235
lemma of_real_add [simp]: "of_real (x + y) = of_real x + of_real y"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   236
by (simp add: of_real_def scaleR_left_distrib)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   237
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   238
lemma of_real_minus [simp]: "of_real (- x) = - of_real x"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   239
by (simp add: of_real_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   240
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   241
lemma of_real_diff [simp]: "of_real (x - y) = of_real x - of_real y"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   242
by (simp add: of_real_def scaleR_left_diff_distrib)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   243
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   244
lemma of_real_mult [simp]: "of_real (x * y) = of_real x * of_real y"
20763
052b348a98a9 rearranged axioms and simp rules for scaleR
huffman
parents: 20722
diff changeset
   245
by (simp add: of_real_def mult_commute)
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   246
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   247
lemma nonzero_of_real_inverse:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   248
  "x \<noteq> 0 \<Longrightarrow> of_real (inverse x) =
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   249
   inverse (of_real x :: 'a::real_div_algebra)"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   250
by (simp add: of_real_def nonzero_inverse_scaleR_distrib)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   251
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   252
lemma of_real_inverse [simp]:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   253
  "of_real (inverse x) =
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   254
   inverse (of_real x :: 'a::{real_div_algebra,division_by_zero})"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   255
by (simp add: of_real_def inverse_scaleR_distrib)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   256
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   257
lemma nonzero_of_real_divide:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   258
  "y \<noteq> 0 \<Longrightarrow> of_real (x / y) =
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   259
   (of_real x / of_real y :: 'a::real_field)"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   260
by (simp add: divide_inverse nonzero_of_real_inverse)
20722
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   261
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   262
lemma of_real_divide [simp]:
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   263
  "of_real (x / y) =
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   264
   (of_real x / of_real y :: 'a::{real_field,division_by_zero})"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   265
by (simp add: divide_inverse)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   266
20722
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   267
lemma of_real_power [simp]:
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   268
  "of_real (x ^ n) = (of_real x :: 'a::{real_algebra_1,recpower}) ^ n"
20772
7a51ed817ec7 tuned definitions/proofs;
wenzelm
parents: 20763
diff changeset
   269
by (induct n) (simp_all add: power_Suc)
20722
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   270
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   271
lemma of_real_eq_iff [simp]: "(of_real x = of_real y) = (x = y)"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   272
by (simp add: of_real_def scaleR_cancel_right)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   273
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   274
lemmas of_real_eq_0_iff [simp] = of_real_eq_iff [of _ 0, simplified]
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   275
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   276
lemma of_real_eq_id [simp]: "of_real = (id :: real \<Rightarrow> real)"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   277
proof
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   278
  fix r
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   279
  show "of_real r = id r"
22973
64d300e16370 add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
huffman
parents: 22972
diff changeset
   280
    by (simp add: of_real_def)
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   281
qed
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   282
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   283
text{*Collapse nested embeddings*}
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   284
lemma of_real_of_nat_eq [simp]: "of_real (of_nat n) = of_nat n"
20772
7a51ed817ec7 tuned definitions/proofs;
wenzelm
parents: 20763
diff changeset
   285
by (induct n) auto
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   286
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   287
lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   288
by (cases z rule: int_diff_cases, simp)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   289
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   290
lemma of_real_number_of_eq:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   291
  "of_real (number_of w) = (number_of w :: 'a::{number_ring,real_algebra_1})"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   292
by (simp add: number_of_eq)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   293
22912
c477862c566d instance real_algebra_1 < ring_char_0
huffman
parents: 22898
diff changeset
   294
text{*Every real algebra has characteristic zero*}
c477862c566d instance real_algebra_1 < ring_char_0
huffman
parents: 22898
diff changeset
   295
instance real_algebra_1 < ring_char_0
c477862c566d instance real_algebra_1 < ring_char_0
huffman
parents: 22898
diff changeset
   296
proof
23282
dfc459989d24 add axclass semiring_char_0 for types where of_nat is injective
huffman
parents: 23127
diff changeset
   297
  fix m n :: nat
dfc459989d24 add axclass semiring_char_0 for types where of_nat is injective
huffman
parents: 23127
diff changeset
   298
  have "(of_real (of_nat m) = (of_real (of_nat n)::'a)) = (m = n)"
dfc459989d24 add axclass semiring_char_0 for types where of_nat is injective
huffman
parents: 23127
diff changeset
   299
    by (simp only: of_real_eq_iff of_nat_eq_iff)
dfc459989d24 add axclass semiring_char_0 for types where of_nat is injective
huffman
parents: 23127
diff changeset
   300
  thus "(of_nat m = (of_nat n::'a)) = (m = n)"
dfc459989d24 add axclass semiring_char_0 for types where of_nat is injective
huffman
parents: 23127
diff changeset
   301
    by (simp only: of_real_of_nat_eq)
22912
c477862c566d instance real_algebra_1 < ring_char_0
huffman
parents: 22898
diff changeset
   302
qed
c477862c566d instance real_algebra_1 < ring_char_0
huffman
parents: 22898
diff changeset
   303
27553
d315a513a150 instance real_field < field_char_0;
huffman
parents: 27552
diff changeset
   304
instance real_field < field_char_0 ..
d315a513a150 instance real_field < field_char_0;
huffman
parents: 27552
diff changeset
   305
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   306
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   307
subsection {* The Set of Real Numbers *}
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   308
20772
7a51ed817ec7 tuned definitions/proofs;
wenzelm
parents: 20763
diff changeset
   309
definition
21404
eb85850d3eb7 more robust syntax for definition/abbreviation/notation;
wenzelm
parents: 21210
diff changeset
   310
  Reals :: "'a::real_algebra_1 set" where
27435
b3f8e9bdf9a7 cleaned up some code generator configuration
haftmann
parents: 25571
diff changeset
   311
  [code func del]: "Reals \<equiv> range of_real"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   312
21210
c17fd2df4e9e renamed 'const_syntax' to 'notation';
wenzelm
parents: 20828
diff changeset
   313
notation (xsymbols)
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   314
  Reals  ("\<real>")
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   315
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   316
lemma Reals_of_real [simp]: "of_real r \<in> Reals"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   317
by (simp add: Reals_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   318
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   319
lemma Reals_of_int [simp]: "of_int z \<in> Reals"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   320
by (subst of_real_of_int_eq [symmetric], rule Reals_of_real)
20718
4c4869e4ddb7 add lemmas of_int_in_Reals, of_nat_in_Reals
huffman
parents: 20694
diff changeset
   321
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   322
lemma Reals_of_nat [simp]: "of_nat n \<in> Reals"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   323
by (subst of_real_of_nat_eq [symmetric], rule Reals_of_real)
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   324
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   325
lemma Reals_number_of [simp]:
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   326
  "(number_of w::'a::{number_ring,real_algebra_1}) \<in> Reals"
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   327
by (subst of_real_number_of_eq [symmetric], rule Reals_of_real)
20718
4c4869e4ddb7 add lemmas of_int_in_Reals, of_nat_in_Reals
huffman
parents: 20694
diff changeset
   328
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   329
lemma Reals_0 [simp]: "0 \<in> Reals"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   330
apply (unfold Reals_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   331
apply (rule range_eqI)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   332
apply (rule of_real_0 [symmetric])
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   333
done
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   334
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   335
lemma Reals_1 [simp]: "1 \<in> Reals"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   336
apply (unfold Reals_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   337
apply (rule range_eqI)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   338
apply (rule of_real_1 [symmetric])
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   339
done
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   340
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   341
lemma Reals_add [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a + b \<in> Reals"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   342
apply (auto simp add: Reals_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   343
apply (rule range_eqI)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   344
apply (rule of_real_add [symmetric])
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   345
done
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   346
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   347
lemma Reals_minus [simp]: "a \<in> Reals \<Longrightarrow> - a \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   348
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   349
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   350
apply (rule of_real_minus [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   351
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   352
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   353
lemma Reals_diff [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a - b \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   354
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   355
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   356
apply (rule of_real_diff [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   357
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   358
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   359
lemma Reals_mult [simp]: "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a * b \<in> Reals"
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   360
apply (auto simp add: Reals_def)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   361
apply (rule range_eqI)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   362
apply (rule of_real_mult [symmetric])
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   363
done
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   364
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   365
lemma nonzero_Reals_inverse:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   366
  fixes a :: "'a::real_div_algebra"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   367
  shows "\<lbrakk>a \<in> Reals; a \<noteq> 0\<rbrakk> \<Longrightarrow> inverse a \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   368
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   369
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   370
apply (erule nonzero_of_real_inverse [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   371
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   372
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   373
lemma Reals_inverse [simp]:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   374
  fixes a :: "'a::{real_div_algebra,division_by_zero}"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   375
  shows "a \<in> Reals \<Longrightarrow> inverse a \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   376
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   377
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   378
apply (rule of_real_inverse [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   379
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   380
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   381
lemma nonzero_Reals_divide:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   382
  fixes a b :: "'a::real_field"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   383
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals; b \<noteq> 0\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   384
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   385
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   386
apply (erule nonzero_of_real_divide [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   387
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   388
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   389
lemma Reals_divide [simp]:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   390
  fixes a b :: "'a::{real_field,division_by_zero}"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   391
  shows "\<lbrakk>a \<in> Reals; b \<in> Reals\<rbrakk> \<Longrightarrow> a / b \<in> Reals"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   392
apply (auto simp add: Reals_def)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   393
apply (rule range_eqI)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   394
apply (rule of_real_divide [symmetric])
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   395
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   396
20722
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   397
lemma Reals_power [simp]:
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   398
  fixes a :: "'a::{real_algebra_1,recpower}"
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   399
  shows "a \<in> Reals \<Longrightarrow> a ^ n \<in> Reals"
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   400
apply (auto simp add: Reals_def)
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   401
apply (rule range_eqI)
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   402
apply (rule of_real_power [symmetric])
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   403
done
741737aa70b2 add lemmas about of_real and power
huffman
parents: 20718
diff changeset
   404
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   405
lemma Reals_cases [cases set: Reals]:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   406
  assumes "q \<in> \<real>"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   407
  obtains (of_real) r where "q = of_real r"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   408
  unfolding Reals_def
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   409
proof -
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   410
  from `q \<in> \<real>` have "q \<in> range of_real" unfolding Reals_def .
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   411
  then obtain r where "q = of_real r" ..
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   412
  then show thesis ..
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   413
qed
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   414
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   415
lemma Reals_induct [case_names of_real, induct set: Reals]:
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   416
  "q \<in> \<real> \<Longrightarrow> (\<And>r. P (of_real r)) \<Longrightarrow> P q"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   417
  by (rule Reals_cases) auto
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   418
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   419
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   420
subsection {* Real normed vector spaces *}
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   421
22636
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
   422
class norm = type +
c40465deaf20 new class syntax for scaleR and norm classes
huffman
parents: 22625
diff changeset
   423
  fixes norm :: "'a \<Rightarrow> real"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   424
25571
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   425
instantiation real :: norm
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   426
begin
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   427
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   428
definition
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   429
  real_norm_def [simp]: "norm r \<equiv> \<bar>r\<bar>"
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   430
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   431
instance ..
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   432
c9e39eafc7a0 instantiation target rather than legacy instance
haftmann
parents: 25062
diff changeset
   433
end
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   434
24520
40b220403257 fix sgn_div_norm class
huffman
parents: 24513
diff changeset
   435
class sgn_div_norm = scaleR + norm + sgn +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   436
  assumes sgn_div_norm: "sgn x = x /\<^sub>R norm x"
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   437
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   438
class real_normed_vector = real_vector + sgn_div_norm +
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   439
  assumes norm_ge_zero [simp]: "0 \<le> norm x"
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   440
  and norm_eq_zero [simp]: "norm x = 0 \<longleftrightarrow> x = 0"
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   441
  and norm_triangle_ineq: "norm (x + y) \<le> norm x + norm y"
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   442
  and norm_scaleR: "norm (scaleR a x) = \<bar>a\<bar> * norm x"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   443
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   444
class real_normed_algebra = real_algebra + real_normed_vector +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   445
  assumes norm_mult_ineq: "norm (x * y) \<le> norm x * norm y"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   446
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   447
class real_normed_algebra_1 = real_algebra_1 + real_normed_algebra +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   448
  assumes norm_one [simp]: "norm 1 = 1"
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   449
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   450
class real_normed_div_algebra = real_div_algebra + real_normed_vector +
25062
af5ef0d4d655 global class syntax
haftmann
parents: 24901
diff changeset
   451
  assumes norm_mult: "norm (x * y) = norm x * norm y"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   452
24588
ed9a1254d674 introduced classes
haftmann
parents: 24520
diff changeset
   453
class real_normed_field = real_field + real_normed_div_algebra
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   454
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   455
instance real_normed_div_algebra < real_normed_algebra_1
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   456
proof
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   457
  fix x y :: 'a
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   458
  show "norm (x * y) \<le> norm x * norm y"
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   459
    by (simp add: norm_mult)
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   460
next
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   461
  have "norm (1 * 1::'a) = norm (1::'a) * norm (1::'a)"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   462
    by (rule norm_mult)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   463
  thus "norm (1::'a) = 1" by simp
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   464
qed
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   465
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   466
instance real :: real_normed_field
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   467
apply (intro_classes, unfold real_norm_def real_scaleR_def)
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   468
apply (simp add: real_sgn_def)
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   469
apply (rule abs_ge_zero)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   470
apply (rule abs_eq_0)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   471
apply (rule abs_triangle_ineq)
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   472
apply (rule abs_mult)
20554
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   473
apply (rule abs_mult)
c433e78d4203 define new constant of_real for class real_algebra_1;
huffman
parents: 20551
diff changeset
   474
done
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   475
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   476
lemma norm_zero [simp]: "norm (0::'a::real_normed_vector) = 0"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   477
by simp
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   478
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   479
lemma zero_less_norm_iff [simp]:
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   480
  fixes x :: "'a::real_normed_vector"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   481
  shows "(0 < norm x) = (x \<noteq> 0)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   482
by (simp add: order_less_le)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   483
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   484
lemma norm_not_less_zero [simp]:
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   485
  fixes x :: "'a::real_normed_vector"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   486
  shows "\<not> norm x < 0"
20828
68ed2e514ca0 add lemmas norm_not_less_zero, norm_le_zero_iff
huffman
parents: 20772
diff changeset
   487
by (simp add: linorder_not_less)
68ed2e514ca0 add lemmas norm_not_less_zero, norm_le_zero_iff
huffman
parents: 20772
diff changeset
   488
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   489
lemma norm_le_zero_iff [simp]:
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   490
  fixes x :: "'a::real_normed_vector"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   491
  shows "(norm x \<le> 0) = (x = 0)"
20828
68ed2e514ca0 add lemmas norm_not_less_zero, norm_le_zero_iff
huffman
parents: 20772
diff changeset
   492
by (simp add: order_le_less)
68ed2e514ca0 add lemmas norm_not_less_zero, norm_le_zero_iff
huffman
parents: 20772
diff changeset
   493
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   494
lemma norm_minus_cancel [simp]:
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   495
  fixes x :: "'a::real_normed_vector"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   496
  shows "norm (- x) = norm x"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   497
proof -
21809
4b93e949ac33 remove uses of scaleR infix syntax; add lemma Reals_number_of
huffman
parents: 21404
diff changeset
   498
  have "norm (- x) = norm (scaleR (- 1) x)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   499
    by (simp only: scaleR_minus_left scaleR_one)
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   500
  also have "\<dots> = \<bar>- 1\<bar> * norm x"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   501
    by (rule norm_scaleR)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   502
  finally show ?thesis by simp
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   503
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   505
lemma norm_minus_commute:
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   506
  fixes a b :: "'a::real_normed_vector"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   507
  shows "norm (a - b) = norm (b - a)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   508
proof -
22898
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   509
  have "norm (- (b - a)) = norm (b - a)"
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   510
    by (rule norm_minus_cancel)
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   511
  thus ?thesis by simp
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   512
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   513
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   514
lemma norm_triangle_ineq2:
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   515
  fixes a b :: "'a::real_normed_vector"
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   516
  shows "norm a - norm b \<le> norm (a - b)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   517
proof -
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   518
  have "norm (a - b + b) \<le> norm (a - b) + norm b"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   519
    by (rule norm_triangle_ineq)
22898
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   520
  thus ?thesis by simp
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   521
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   522
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   523
lemma norm_triangle_ineq3:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   524
  fixes a b :: "'a::real_normed_vector"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   525
  shows "\<bar>norm a - norm b\<bar> \<le> norm (a - b)"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   526
apply (subst abs_le_iff)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   527
apply auto
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   528
apply (rule norm_triangle_ineq2)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   529
apply (subst norm_minus_commute)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   530
apply (rule norm_triangle_ineq2)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   531
done
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   532
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   533
lemma norm_triangle_ineq4:
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   534
  fixes a b :: "'a::real_normed_vector"
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   535
  shows "norm (a - b) \<le> norm a + norm b"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   536
proof -
22898
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   537
  have "norm (a + - b) \<le> norm a + norm (- b)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   538
    by (rule norm_triangle_ineq)
22898
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   539
  thus ?thesis
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   540
    by (simp only: diff_minus norm_minus_cancel)
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   541
qed
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   542
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   543
lemma norm_diff_ineq:
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   544
  fixes a b :: "'a::real_normed_vector"
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   545
  shows "norm a - norm b \<le> norm (a + b)"
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   546
proof -
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   547
  have "norm a - norm (- b) \<le> norm (a - - b)"
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   548
    by (rule norm_triangle_ineq2)
38ae2815989f add lemma norm_diff_ineq; shorten other proofs
huffman
parents: 22880
diff changeset
   549
  thus ?thesis by simp
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   550
qed
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   551
20551
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   552
lemma norm_diff_triangle_ineq:
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   553
  fixes a b c d :: "'a::real_normed_vector"
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   554
  shows "norm ((a + b) - (c + d)) \<le> norm (a - c) + norm (b - d)"
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   555
proof -
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   556
  have "norm ((a + b) - (c + d)) = norm ((a - c) + (b - d))"
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   557
    by (simp add: diff_minus add_ac)
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   558
  also have "\<dots> \<le> norm (a - c) + norm (b - d)"
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   559
    by (rule norm_triangle_ineq)
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   560
  finally show ?thesis .
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   561
qed
ba543692bfa1 add theorem norm_diff_triangle_ineq
huffman
parents: 20533
diff changeset
   562
22857
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   563
lemma abs_norm_cancel [simp]:
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   564
  fixes a :: "'a::real_normed_vector"
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   565
  shows "\<bar>norm a\<bar> = norm a"
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   566
by (rule abs_of_nonneg [OF norm_ge_zero])
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   567
22880
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   568
lemma norm_add_less:
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   569
  fixes x y :: "'a::real_normed_vector"
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   570
  shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x + y) < r + s"
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   571
by (rule order_le_less_trans [OF norm_triangle_ineq add_strict_mono])
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   572
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   573
lemma norm_mult_less:
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   574
  fixes x y :: "'a::real_normed_algebra"
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   575
  shows "\<lbrakk>norm x < r; norm y < s\<rbrakk> \<Longrightarrow> norm (x * y) < r * s"
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   576
apply (rule order_le_less_trans [OF norm_mult_ineq])
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   577
apply (simp add: mult_strict_mono')
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   578
done
424d6fb67513 add lemmas norm_add_less, norm_mult_less
huffman
parents: 22876
diff changeset
   579
22857
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   580
lemma norm_of_real [simp]:
cb84e886cc90 add lemma abs_norm_cancel
huffman
parents: 22852
diff changeset
   581
  "norm (of_real r :: 'a::real_normed_algebra_1) = \<bar>r\<bar>"
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   582
unfolding of_real_def by (simp add: norm_scaleR)
20560
49996715bc6e norm_one is now proved from other class axioms
huffman
parents: 20554
diff changeset
   583
22876
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   584
lemma norm_number_of [simp]:
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   585
  "norm (number_of w::'a::{number_ring,real_normed_algebra_1})
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   586
    = \<bar>number_of w\<bar>"
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   587
by (subst of_real_number_of_eq [symmetric], rule norm_of_real)
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   588
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   589
lemma norm_of_int [simp]:
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   590
  "norm (of_int z::'a::real_normed_algebra_1) = \<bar>of_int z\<bar>"
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   591
by (subst of_real_of_int_eq [symmetric], rule norm_of_real)
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   592
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   593
lemma norm_of_nat [simp]:
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   594
  "norm (of_nat n::'a::real_normed_algebra_1) = of_nat n"
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   595
apply (subst of_real_of_nat_eq [symmetric])
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   596
apply (subst norm_of_real, simp)
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   597
done
2b4c831ceca7 add lemmas norm_number_of, norm_of_int, norm_of_nat
huffman
parents: 22857
diff changeset
   598
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   599
lemma nonzero_norm_inverse:
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   600
  fixes a :: "'a::real_normed_div_algebra"
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   601
  shows "a \<noteq> 0 \<Longrightarrow> norm (inverse a) = inverse (norm a)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   602
apply (rule inverse_unique [symmetric])
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   603
apply (simp add: norm_mult [symmetric])
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   604
done
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   605
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   606
lemma norm_inverse:
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   607
  fixes a :: "'a::{real_normed_div_algebra,division_by_zero}"
20533
49442b3024bb remove conflicting norm syntax
huffman
parents: 20504
diff changeset
   608
  shows "norm (inverse a) = inverse (norm a)"
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   609
apply (case_tac "a = 0", simp)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   610
apply (erule nonzero_norm_inverse)
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   611
done
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   612
20584
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   613
lemma nonzero_norm_divide:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   614
  fixes a b :: "'a::real_normed_field"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   615
  shows "b \<noteq> 0 \<Longrightarrow> norm (a / b) = norm a / norm b"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   616
by (simp add: divide_inverse norm_mult nonzero_norm_inverse)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   617
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   618
lemma norm_divide:
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   619
  fixes a b :: "'a::{real_normed_field,division_by_zero}"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   620
  shows "norm (a / b) = norm a / norm b"
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   621
by (simp add: divide_inverse norm_mult norm_inverse)
60b1d52a455d added classes real_div_algebra and real_field; added lemmas
huffman
parents: 20560
diff changeset
   622
22852
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   623
lemma norm_power_ineq:
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   624
  fixes x :: "'a::{real_normed_algebra_1,recpower}"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   625
  shows "norm (x ^ n) \<le> norm x ^ n"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   626
proof (induct n)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   627
  case 0 show "norm (x ^ 0) \<le> norm x ^ 0" by simp
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   628
next
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   629
  case (Suc n)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   630
  have "norm (x * x ^ n) \<le> norm x * norm (x ^ n)"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   631
    by (rule norm_mult_ineq)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   632
  also from Suc have "\<dots> \<le> norm x * norm x ^ n"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   633
    using norm_ge_zero by (rule mult_left_mono)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   634
  finally show "norm (x ^ Suc n) \<le> norm x ^ Suc n"
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   635
    by (simp add: power_Suc)
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   636
qed
2490d4b4671a clean up RealVector classes
huffman
parents: 22636
diff changeset
   637
20684
74e8b46abb97 add lemma norm_power
huffman
parents: 20584
diff changeset
   638
lemma norm_power:
74e8b46abb97 add lemma norm_power
huffman
parents: 20584
diff changeset
   639
  fixes x :: "'a::{real_normed_div_algebra,recpower}"
74e8b46abb97 add lemma norm_power
huffman
parents: 20584
diff changeset
   640
  shows "norm (x ^ n) = norm x ^ n"
20772
7a51ed817ec7 tuned definitions/proofs;
wenzelm
parents: 20763
diff changeset
   641
by (induct n) (simp_all add: power_Suc norm_mult)
20684
74e8b46abb97 add lemma norm_power
huffman
parents: 20584
diff changeset
   642
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   643
22972
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   644
subsection {* Sign function *}
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   645
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   646
lemma norm_sgn:
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   647
  "norm (sgn(x::'a::real_normed_vector)) = (if x = 0 then 0 else 1)"
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   648
by (simp add: sgn_div_norm norm_scaleR)
22972
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   649
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   650
lemma sgn_zero [simp]: "sgn(0::'a::real_normed_vector) = 0"
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   651
by (simp add: sgn_div_norm)
22972
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   652
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   653
lemma sgn_zero_iff: "(sgn(x::'a::real_normed_vector) = 0) = (x = 0)"
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   654
by (simp add: sgn_div_norm)
22972
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   655
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   656
lemma sgn_minus: "sgn (- x) = - sgn(x::'a::real_normed_vector)"
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   657
by (simp add: sgn_div_norm)
22972
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   658
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   659
lemma sgn_scaleR:
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   660
  "sgn (scaleR r x) = scaleR (sgn r) (sgn(x::'a::real_normed_vector))"
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   661
by (simp add: sgn_div_norm norm_scaleR mult_ac)
22973
64d300e16370 add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
huffman
parents: 22972
diff changeset
   662
22972
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   663
lemma sgn_one [simp]: "sgn (1::'a::real_normed_algebra_1) = 1"
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   664
by (simp add: sgn_div_norm)
22972
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   665
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   666
lemma sgn_of_real:
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   667
  "sgn (of_real r::'a::real_normed_algebra_1) = of_real (sgn r)"
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   668
unfolding of_real_def by (simp only: sgn_scaleR sgn_one)
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   669
22973
64d300e16370 add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
huffman
parents: 22972
diff changeset
   670
lemma sgn_mult:
64d300e16370 add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
huffman
parents: 22972
diff changeset
   671
  fixes x y :: "'a::real_normed_div_algebra"
64d300e16370 add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
huffman
parents: 22972
diff changeset
   672
  shows "sgn (x * y) = sgn x * sgn y"
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   673
by (simp add: sgn_div_norm norm_mult mult_commute)
22973
64d300e16370 add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
huffman
parents: 22972
diff changeset
   674
22972
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   675
lemma real_sgn_eq: "sgn (x::real) = x / \<bar>x\<bar>"
24506
020db6ec334a final(?) iteration of sgn saga.
nipkow
parents: 23282
diff changeset
   676
by (simp add: sgn_div_norm divide_inverse)
22972
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   677
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   678
lemma real_sgn_pos: "0 < (x::real) \<Longrightarrow> sgn x = 1"
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   679
unfolding real_sgn_eq by simp
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   680
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   681
lemma real_sgn_neg: "(x::real) < 0 \<Longrightarrow> sgn x = -1"
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   682
unfolding real_sgn_eq by simp
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   683
3e96b98d37c6 generalized sgn function to work on any real normed vector space
huffman
parents: 22942
diff changeset
   684
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   685
subsection {* Bounded Linear and Bilinear Operators *}
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   686
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   687
locale bounded_linear = additive +
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   688
  constrains f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_vector"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   689
  assumes scaleR: "f (scaleR r x) = scaleR r (f x)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   690
  assumes bounded: "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   691
begin
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   692
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   693
lemma pos_bounded:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   694
  "\<exists>K>0. \<forall>x. norm (f x) \<le> norm x * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   695
proof -
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   696
  obtain K where K: "\<And>x. norm (f x) \<le> norm x * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   697
    using bounded by fast
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   698
  show ?thesis
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   699
  proof (intro exI impI conjI allI)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   700
    show "0 < max 1 K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   701
      by (rule order_less_le_trans [OF zero_less_one le_maxI1])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   702
  next
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   703
    fix x
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   704
    have "norm (f x) \<le> norm x * K" using K .
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   705
    also have "\<dots> \<le> norm x * max 1 K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   706
      by (rule mult_left_mono [OF le_maxI2 norm_ge_zero])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   707
    finally show "norm (f x) \<le> norm x * max 1 K" .
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   708
  qed
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   709
qed
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   710
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   711
lemma nonneg_bounded:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   712
  "\<exists>K\<ge>0. \<forall>x. norm (f x) \<le> norm x * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   713
proof -
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   714
  from pos_bounded
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   715
  show ?thesis by (auto intro: order_less_imp_le)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   716
qed
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   717
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   718
end
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   719
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   720
locale bounded_bilinear =
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   721
  fixes prod :: "['a::real_normed_vector, 'b::real_normed_vector]
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   722
                 \<Rightarrow> 'c::real_normed_vector"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   723
    (infixl "**" 70)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   724
  assumes add_left: "prod (a + a') b = prod a b + prod a' b"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   725
  assumes add_right: "prod a (b + b') = prod a b + prod a b'"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   726
  assumes scaleR_left: "prod (scaleR r a) b = scaleR r (prod a b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   727
  assumes scaleR_right: "prod a (scaleR r b) = scaleR r (prod a b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   728
  assumes bounded: "\<exists>K. \<forall>a b. norm (prod a b) \<le> norm a * norm b * K"
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   729
begin
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   730
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   731
lemma pos_bounded:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   732
  "\<exists>K>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   733
apply (cut_tac bounded, erule exE)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   734
apply (rule_tac x="max 1 K" in exI, safe)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   735
apply (rule order_less_le_trans [OF zero_less_one le_maxI1])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   736
apply (drule spec, drule spec, erule order_trans)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   737
apply (rule mult_left_mono [OF le_maxI2])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   738
apply (intro mult_nonneg_nonneg norm_ge_zero)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   739
done
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   740
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   741
lemma nonneg_bounded:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   742
  "\<exists>K\<ge>0. \<forall>a b. norm (a ** b) \<le> norm a * norm b * K"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   743
proof -
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   744
  from pos_bounded
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   745
  show ?thesis by (auto intro: order_less_imp_le)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   746
qed
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   747
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   748
lemma additive_right: "additive (\<lambda>b. prod a b)"
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   749
by (rule additive.intro, rule add_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   750
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   751
lemma additive_left: "additive (\<lambda>a. prod a b)"
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   752
by (rule additive.intro, rule add_left)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   753
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   754
lemma zero_left: "prod 0 b = 0"
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   755
by (rule additive.zero [OF additive_left])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   756
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   757
lemma zero_right: "prod a 0 = 0"
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   758
by (rule additive.zero [OF additive_right])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   759
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   760
lemma minus_left: "prod (- a) b = - prod a b"
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   761
by (rule additive.minus [OF additive_left])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   762
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   763
lemma minus_right: "prod a (- b) = - prod a b"
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   764
by (rule additive.minus [OF additive_right])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   765
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   766
lemma diff_left:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   767
  "prod (a - a') b = prod a b - prod a' b"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   768
by (rule additive.diff [OF additive_left])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   769
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   770
lemma diff_right:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   771
  "prod a (b - b') = prod a b - prod a b'"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   772
by (rule additive.diff [OF additive_right])
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   773
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   774
lemma bounded_linear_left:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   775
  "bounded_linear (\<lambda>a. a ** b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   776
apply (unfold_locales)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   777
apply (rule add_left)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   778
apply (rule scaleR_left)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   779
apply (cut_tac bounded, safe)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   780
apply (rule_tac x="norm b * K" in exI)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   781
apply (simp add: mult_ac)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   782
done
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   783
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   784
lemma bounded_linear_right:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   785
  "bounded_linear (\<lambda>b. a ** b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   786
apply (unfold_locales)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   787
apply (rule add_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   788
apply (rule scaleR_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   789
apply (cut_tac bounded, safe)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   790
apply (rule_tac x="norm a * K" in exI)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   791
apply (simp add: mult_ac)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   792
done
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   793
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   794
lemma prod_diff_prod:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   795
  "(x ** y - a ** b) = (x - a) ** (y - b) + (x - a) ** b + a ** (y - b)"
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   796
by (simp add: diff_left diff_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   797
27443
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   798
end
22b6281d6719 use begin and end for proofs in locales
huffman
parents: 27435
diff changeset
   799
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   800
interpretation mult:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   801
  bounded_bilinear ["op * :: 'a \<Rightarrow> 'a \<Rightarrow> 'a::real_normed_algebra"]
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   802
apply (rule bounded_bilinear.intro)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   803
apply (rule left_distrib)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   804
apply (rule right_distrib)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   805
apply (rule mult_scaleR_left)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   806
apply (rule mult_scaleR_right)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   807
apply (rule_tac x="1" in exI)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   808
apply (simp add: norm_mult_ineq)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   809
done
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   810
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   811
interpretation mult_left:
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   812
  bounded_linear ["(\<lambda>x::'a::real_normed_algebra. x * y)"]
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   813
by (rule mult.bounded_linear_left)
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   814
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   815
interpretation mult_right:
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   816
  bounded_linear ["(\<lambda>y::'a::real_normed_algebra. x * y)"]
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   817
by (rule mult.bounded_linear_right)
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   818
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   819
interpretation divide:
23120
a34f204e9c88 interpretation bounded_linear_divide
huffman
parents: 23113
diff changeset
   820
  bounded_linear ["(\<lambda>x::'a::real_normed_field. x / y)"]
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   821
unfolding divide_inverse by (rule mult.bounded_linear_left)
23120
a34f204e9c88 interpretation bounded_linear_divide
huffman
parents: 23113
diff changeset
   822
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   823
interpretation scaleR: bounded_bilinear ["scaleR"]
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   824
apply (rule bounded_bilinear.intro)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   825
apply (rule scaleR_left_distrib)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   826
apply (rule scaleR_right_distrib)
22973
64d300e16370 add lemma sgn_mult; declare real_scaleR_def and scaleR_eq_0_iff as simp rules
huffman
parents: 22972
diff changeset
   827
apply simp
22442
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   828
apply (rule scaleR_left_commute)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   829
apply (rule_tac x="1" in exI)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   830
apply (simp add: norm_scaleR)
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   831
done
15d9ed9b5051 move bounded (bi)linear operator locales from Lim.thy to RealVector.thy
huffman
parents: 21809
diff changeset
   832
23127
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   833
interpretation scaleR_left: bounded_linear ["\<lambda>r. scaleR r x"]
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   834
by (rule scaleR.bounded_linear_left)
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   835
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   836
interpretation scaleR_right: bounded_linear ["\<lambda>x. scaleR r x"]
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   837
by (rule scaleR.bounded_linear_right)
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   838
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   839
interpretation of_real: bounded_linear ["\<lambda>r. of_real r"]
56ee8105c002 simplify names of locale interpretations
huffman
parents: 23120
diff changeset
   840
unfolding of_real_def by (rule scaleR.bounded_linear_left)
22625
a2967023d674 interpretation bounded_linear_of_real
huffman
parents: 22442
diff changeset
   841
20504
6342e872e71d formalization of vector spaces and algebras over the real numbers
huffman
parents:
diff changeset
   842
end