author | wenzelm |
Mon, 05 Sep 2016 15:00:37 +0200 | |
changeset 63792 | 4ccb7e635477 |
parent 61798 | 27f3c10b0b50 |
child 67443 | 3abf6a722518 |
permissions | -rw-r--r-- |
13505 | 1 |
(* Title: ZF/Constructible/WFrec.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
3 |
*) |
|
4 |
||
60770 | 5 |
section\<open>Relativized Well-Founded Recursion\<close> |
13306 | 6 |
|
16417 | 7 |
theory WFrec imports Wellorderings begin |
13223 | 8 |
|
9 |
||
60770 | 10 |
subsection\<open>General Lemmas\<close> |
13506 | 11 |
|
13254 | 12 |
(*Many of these might be useful in WF.thy*) |
13223 | 13 |
|
13269 | 14 |
lemma apply_recfun2: |
15 |
"[| is_recfun(r,a,H,f); <x,i>:f |] ==> i = H(x, restrict(f,r-``{x}))" |
|
16 |
apply (frule apply_recfun) |
|
17 |
apply (blast dest: is_recfun_type fun_is_rel) |
|
18 |
apply (simp add: function_apply_equality [OF _ is_recfun_imp_function]) |
|
13223 | 19 |
done |
20 |
||
61798 | 21 |
text\<open>Expresses \<open>is_recfun\<close> as a recursion equation\<close> |
13223 | 22 |
lemma is_recfun_iff_equation: |
46823 | 23 |
"is_recfun(r,a,H,f) \<longleftrightarrow> |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21404
diff
changeset
|
24 |
f \<in> r -`` {a} \<rightarrow> range(f) & |
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21404
diff
changeset
|
25 |
(\<forall>x \<in> r-``{a}. f`x = H(x, restrict(f, r-``{x})))" |
13223 | 26 |
apply (rule iffI) |
27 |
apply (simp add: is_recfun_type apply_recfun Ball_def vimage_singleton_iff, |
|
28 |
clarify) |
|
29 |
apply (simp add: is_recfun_def) |
|
30 |
apply (rule fun_extension) |
|
31 |
apply assumption |
|
32 |
apply (fast intro: lam_type, simp) |
|
33 |
done |
|
34 |
||
13245 | 35 |
lemma is_recfun_imp_in_r: "[|is_recfun(r,a,H,f); \<langle>x,i\<rangle> \<in> f|] ==> \<langle>x, a\<rangle> \<in> r" |
13269 | 36 |
by (blast dest: is_recfun_type fun_is_rel) |
13245 | 37 |
|
13254 | 38 |
lemma trans_Int_eq: |
39 |
"[| trans(r); <y,x> \<in> r |] ==> r -`` {x} \<inter> r -`` {y} = r -`` {y}" |
|
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
40 |
by (blast intro: transD) |
13223 | 41 |
|
13254 | 42 |
lemma is_recfun_restrict_idem: |
43 |
"is_recfun(r,a,H,f) ==> restrict(f, r -`` {a}) = f" |
|
44 |
apply (drule is_recfun_type) |
|
45 |
apply (auto simp add: Pi_iff subset_Sigma_imp_relation restrict_idem) |
|
46 |
done |
|
47 |
||
48 |
lemma is_recfun_cong_lemma: |
|
49 |
"[| is_recfun(r,a,H,f); r = r'; a = a'; f = f'; |
|
46823 | 50 |
!!x g. [| <x,a'> \<in> r'; relation(g); domain(g) \<subseteq> r' -``{x} |] |
13254 | 51 |
==> H(x,g) = H'(x,g) |] |
52 |
==> is_recfun(r',a',H',f')" |
|
53 |
apply (simp add: is_recfun_def) |
|
54 |
apply (erule trans) |
|
55 |
apply (rule lam_cong) |
|
56 |
apply (simp_all add: vimage_singleton_iff Int_lower2) |
|
57 |
done |
|
58 |
||
61798 | 59 |
text\<open>For \<open>is_recfun\<close> we need only pay attention to functions |
60770 | 60 |
whose domains are initial segments of @{term r}.\<close> |
13254 | 61 |
lemma is_recfun_cong: |
62 |
"[| r = r'; a = a'; f = f'; |
|
46823 | 63 |
!!x g. [| <x,a'> \<in> r'; relation(g); domain(g) \<subseteq> r' -``{x} |] |
13254 | 64 |
==> H(x,g) = H'(x,g) |] |
46823 | 65 |
==> is_recfun(r,a,H,f) \<longleftrightarrow> is_recfun(r',a',H',f')" |
13254 | 66 |
apply (rule iffI) |
60770 | 67 |
txt\<open>Messy: fast and blast don't work for some reason\<close> |
13254 | 68 |
apply (erule is_recfun_cong_lemma, auto) |
69 |
apply (erule is_recfun_cong_lemma) |
|
70 |
apply (blast intro: sym)+ |
|
71 |
done |
|
13223 | 72 |
|
60770 | 73 |
subsection\<open>Reworking of the Recursion Theory Within @{term M}\<close> |
13506 | 74 |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
75 |
lemma (in M_basic) is_recfun_separation': |
13319 | 76 |
"[| f \<in> r -`` {a} \<rightarrow> range(f); g \<in> r -`` {b} \<rightarrow> range(g); |
77 |
M(r); M(f); M(g); M(a); M(b) |] |
|
78 |
==> separation(M, \<lambda>x. \<not> (\<langle>x, a\<rangle> \<in> r \<longrightarrow> \<langle>x, b\<rangle> \<in> r \<longrightarrow> f ` x = g ` x))" |
|
79 |
apply (insert is_recfun_separation [of r f g a b]) |
|
13352 | 80 |
apply (simp add: vimage_singleton_iff) |
13319 | 81 |
done |
13223 | 82 |
|
60770 | 83 |
text\<open>Stated using @{term "trans(r)"} rather than |
13223 | 84 |
@{term "transitive_rel(M,A,r)"} because the latter rewrites to |
61798 | 85 |
the former anyway, by \<open>transitive_rel_abs\<close>. |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
86 |
As always, theorems should be expressed in simplified form. |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
87 |
The last three M-premises are redundant because of @{term "M(r)"}, |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
88 |
but without them we'd have to undertake |
60770 | 89 |
more work to set up the induction formula.\<close> |
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
90 |
lemma (in M_basic) is_recfun_equal [rule_format]: |
13223 | 91 |
"[|is_recfun(r,a,H,f); is_recfun(r,b,H,g); |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
92 |
wellfounded(M,r); trans(r); |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
93 |
M(f); M(g); M(r); M(x); M(a); M(b) |] |
46823 | 94 |
==> <x,a> \<in> r \<longrightarrow> <x,b> \<in> r \<longrightarrow> f`x=g`x" |
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13319
diff
changeset
|
95 |
apply (frule_tac f=f in is_recfun_type) |
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13319
diff
changeset
|
96 |
apply (frule_tac f=g in is_recfun_type) |
13223 | 97 |
apply (simp add: is_recfun_def) |
13254 | 98 |
apply (erule_tac a=x in wellfounded_induct, assumption+) |
60770 | 99 |
txt\<open>Separation to justify the induction\<close> |
13319 | 100 |
apply (blast intro: is_recfun_separation') |
60770 | 101 |
txt\<open>Now the inductive argument itself\<close> |
13254 | 102 |
apply clarify |
13223 | 103 |
apply (erule ssubst)+ |
104 |
apply (simp (no_asm_simp) add: vimage_singleton_iff restrict_def) |
|
105 |
apply (rename_tac x1) |
|
106 |
apply (rule_tac t="%z. H(x1,z)" in subst_context) |
|
46823 | 107 |
apply (subgoal_tac "\<forall>y \<in> r-``{x1}. \<forall>z. <y,z>\<in>f \<longleftrightarrow> <y,z>\<in>g") |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
108 |
apply (blast intro: transD) |
13223 | 109 |
apply (simp add: apply_iff) |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
110 |
apply (blast intro: transD sym) |
13223 | 111 |
done |
112 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
113 |
lemma (in M_basic) is_recfun_cut: |
13223 | 114 |
"[|is_recfun(r,a,H,f); is_recfun(r,b,H,g); |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
115 |
wellfounded(M,r); trans(r); |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
116 |
M(f); M(g); M(r); <b,a> \<in> r |] |
13223 | 117 |
==> restrict(f, r-``{b}) = g" |
13339
0f89104dd377
Fixed quantified variable name preservation for ball and bex (bounded quants)
paulson
parents:
13319
diff
changeset
|
118 |
apply (frule_tac f=f in is_recfun_type) |
13223 | 119 |
apply (rule fun_extension) |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
120 |
apply (blast intro: transD restrict_type2) |
13223 | 121 |
apply (erule is_recfun_type, simp) |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
122 |
apply (blast intro: is_recfun_equal transD dest: transM) |
13223 | 123 |
done |
124 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
125 |
lemma (in M_basic) is_recfun_functional: |
13223 | 126 |
"[|is_recfun(r,a,H,f); is_recfun(r,a,H,g); |
13268 | 127 |
wellfounded(M,r); trans(r); M(f); M(g); M(r) |] ==> f=g" |
13223 | 128 |
apply (rule fun_extension) |
129 |
apply (erule is_recfun_type)+ |
|
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
130 |
apply (blast intro!: is_recfun_equal dest: transM) |
13254 | 131 |
done |
13223 | 132 |
|
61798 | 133 |
text\<open>Tells us that \<open>is_recfun\<close> can (in principle) be relativized.\<close> |
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
134 |
lemma (in M_basic) is_recfun_relativize: |
46823 | 135 |
"[| M(r); M(f); \<forall>x[M]. \<forall>g[M]. function(g) \<longrightarrow> M(H(x,g)) |] |
136 |
==> is_recfun(r,a,H,f) \<longleftrightarrow> |
|
137 |
(\<forall>z[M]. z \<in> f \<longleftrightarrow> |
|
58860 | 138 |
(\<exists>x[M]. <x,a> \<in> r & z = <x, H(x, restrict(f, r-``{x}))>))" |
13254 | 139 |
apply (simp add: is_recfun_def lam_def) |
13223 | 140 |
apply (safe intro!: equalityI) |
13254 | 141 |
apply (drule equalityD1 [THEN subsetD], assumption) |
142 |
apply (blast dest: pair_components_in_M) |
|
143 |
apply (blast elim!: equalityE dest: pair_components_in_M) |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13564
diff
changeset
|
144 |
apply (frule transM, assumption) |
13223 | 145 |
apply simp |
146 |
apply blast |
|
13254 | 147 |
apply (subgoal_tac "is_function(M,f)") |
60770 | 148 |
txt\<open>We use @{term "is_function"} rather than @{term "function"} because |
149 |
the subgoal's easier to prove with relativized quantifiers!\<close> |
|
13254 | 150 |
prefer 2 apply (simp add: is_function_def) |
13223 | 151 |
apply (frule pair_components_in_M, assumption) |
13254 | 152 |
apply (simp add: is_recfun_imp_function function_restrictI) |
13223 | 153 |
done |
154 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
155 |
lemma (in M_basic) is_recfun_restrict: |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
156 |
"[| wellfounded(M,r); trans(r); is_recfun(r,x,H,f); \<langle>y,x\<rangle> \<in> r; |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
157 |
M(r); M(f); |
46823 | 158 |
\<forall>x[M]. \<forall>g[M]. function(g) \<longrightarrow> M(H(x,g)) |] |
13223 | 159 |
==> is_recfun(r, y, H, restrict(f, r -`` {y}))" |
160 |
apply (frule pair_components_in_M, assumption, clarify) |
|
13254 | 161 |
apply (simp (no_asm_simp) add: is_recfun_relativize restrict_iff |
162 |
trans_Int_eq) |
|
13223 | 163 |
apply safe |
164 |
apply (simp_all add: vimage_singleton_iff is_recfun_type [THEN apply_iff]) |
|
165 |
apply (frule_tac x=xa in pair_components_in_M, assumption) |
|
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
166 |
apply (frule_tac x=xa in apply_recfun, blast intro: transD) |
13247 | 167 |
apply (simp add: is_recfun_type [THEN apply_iff] |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
168 |
is_recfun_imp_function function_restrictI) |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
169 |
apply (blast intro: apply_recfun dest: transD) |
13223 | 170 |
done |
171 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
172 |
lemma (in M_basic) restrict_Y_lemma: |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
173 |
"[| wellfounded(M,r); trans(r); M(r); |
46823 | 174 |
\<forall>x[M]. \<forall>g[M]. function(g) \<longrightarrow> M(H(x,g)); M(Y); |
13299 | 175 |
\<forall>b[M]. |
46823 | 176 |
b \<in> Y \<longleftrightarrow> |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21404
diff
changeset
|
177 |
(\<exists>x[M]. <x,a1> \<in> r & |
13299 | 178 |
(\<exists>y[M]. b = \<langle>x,y\<rangle> & (\<exists>g[M]. is_recfun(r,x,H,g) \<and> y = H(x,g)))); |
179 |
\<langle>x,a1\<rangle> \<in> r; is_recfun(r,x,H,f); M(f) |] |
|
13223 | 180 |
==> restrict(Y, r -`` {x}) = f" |
46823 | 181 |
apply (subgoal_tac "\<forall>y \<in> r-``{x}. \<forall>z. <y,z>:Y \<longleftrightarrow> <y,z>:f") |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
182 |
apply (simp (no_asm_simp) add: restrict_def) |
61798 | 183 |
apply (thin_tac "rall(M,P)" for P)+ \<comment>\<open>essential for efficiency\<close> |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
184 |
apply (frule is_recfun_type [THEN fun_is_rel], blast) |
13223 | 185 |
apply (frule pair_components_in_M, assumption, clarify) |
186 |
apply (rule iffI) |
|
13505 | 187 |
apply (frule_tac y="<y,z>" in transM, assumption) |
13223 | 188 |
apply (clarsimp simp add: vimage_singleton_iff is_recfun_type [THEN apply_iff] |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21404
diff
changeset
|
189 |
apply_recfun is_recfun_cut) |
60770 | 190 |
txt\<open>Opposite inclusion: something in f, show in Y\<close> |
13293 | 191 |
apply (frule_tac y="<y,z>" in transM, assumption) |
192 |
apply (simp add: vimage_singleton_iff) |
|
193 |
apply (rule conjI) |
|
194 |
apply (blast dest: transD) |
|
13268 | 195 |
apply (rule_tac x="restrict(f, r -`` {y})" in rexI) |
196 |
apply (simp_all add: is_recfun_restrict |
|
197 |
apply_recfun is_recfun_type [THEN apply_iff]) |
|
13223 | 198 |
done |
199 |
||
60770 | 200 |
text\<open>For typical applications of Replacement for recursive definitions\<close> |
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
201 |
lemma (in M_basic) univalent_is_recfun: |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
202 |
"[|wellfounded(M,r); trans(r); M(r)|] |
13268 | 203 |
==> univalent (M, A, \<lambda>x p. |
13293 | 204 |
\<exists>y[M]. p = \<langle>x,y\<rangle> & (\<exists>f[M]. is_recfun(r,x,H,f) & y = H(x,f)))" |
13245 | 205 |
apply (simp add: univalent_def) |
206 |
apply (blast dest: is_recfun_functional) |
|
207 |
done |
|
208 |
||
13299 | 209 |
|
61798 | 210 |
text\<open>Proof of the inductive step for \<open>exists_is_recfun\<close>, since |
60770 | 211 |
we must prove two versions.\<close> |
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
212 |
lemma (in M_basic) exists_is_recfun_indstep: |
46823 | 213 |
"[|\<forall>y. \<langle>y, a1\<rangle> \<in> r \<longrightarrow> (\<exists>f[M]. is_recfun(r, y, H, f)); |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
214 |
wellfounded(M,r); trans(r); M(r); M(a1); |
13268 | 215 |
strong_replacement(M, \<lambda>x z. |
216 |
\<exists>y[M]. \<exists>g[M]. pair(M,x,y,z) & is_recfun(r,x,H,g) & y = H(x,g)); |
|
46823 | 217 |
\<forall>x[M]. \<forall>g[M]. function(g) \<longrightarrow> M(H(x,g))|] |
13268 | 218 |
==> \<exists>f[M]. is_recfun(r,a1,H,f)" |
13223 | 219 |
apply (drule_tac A="r-``{a1}" in strong_replacementD) |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
220 |
apply blast |
60770 | 221 |
txt\<open>Discharge the "univalent" obligation of Replacement\<close> |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
222 |
apply (simp add: univalent_is_recfun) |
61798 | 223 |
txt\<open>Show that the constructed object satisfies \<open>is_recfun\<close>\<close> |
13223 | 224 |
apply clarify |
13268 | 225 |
apply (rule_tac x=Y in rexI) |
60770 | 226 |
txt\<open>Unfold only the top-level occurrence of @{term is_recfun}\<close> |
13254 | 227 |
apply (simp (no_asm_simp) add: is_recfun_relativize [of concl: _ a1]) |
60770 | 228 |
txt\<open>The big iff-formula defining @{term Y} is now redundant\<close> |
13254 | 229 |
apply safe |
13299 | 230 |
apply (simp add: vimage_singleton_iff restrict_Y_lemma [of r H _ a1]) |
60770 | 231 |
txt\<open>one more case\<close> |
13254 | 232 |
apply (simp (no_asm_simp) add: Bex_def vimage_singleton_iff) |
13223 | 233 |
apply (drule_tac x1=x in spec [THEN mp], assumption, clarify) |
13268 | 234 |
apply (rename_tac f) |
235 |
apply (rule_tac x=f in rexI) |
|
13293 | 236 |
apply (simp_all add: restrict_Y_lemma [of r H]) |
60770 | 237 |
txt\<open>FIXME: should not be needed!\<close> |
13299 | 238 |
apply (subst restrict_Y_lemma [of r H]) |
239 |
apply (simp add: vimage_singleton_iff)+ |
|
240 |
apply blast+ |
|
13223 | 241 |
done |
242 |
||
60770 | 243 |
text\<open>Relativized version, when we have the (currently weaker) premise |
244 |
@{term "wellfounded(M,r)"}\<close> |
|
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
245 |
lemma (in M_basic) wellfounded_exists_is_recfun: |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
246 |
"[|wellfounded(M,r); trans(r); |
13268 | 247 |
separation(M, \<lambda>x. ~ (\<exists>f[M]. is_recfun(r, x, H, f))); |
248 |
strong_replacement(M, \<lambda>x z. |
|
249 |
\<exists>y[M]. \<exists>g[M]. pair(M,x,y,z) & is_recfun(r,x,H,g) & y = H(x,g)); |
|
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
250 |
M(r); M(a); |
46823 | 251 |
\<forall>x[M]. \<forall>g[M]. function(g) \<longrightarrow> M(H(x,g)) |] |
13268 | 252 |
==> \<exists>f[M]. is_recfun(r,a,H,f)" |
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
253 |
apply (rule wellfounded_induct, assumption+, clarify) |
13223 | 254 |
apply (rule exists_is_recfun_indstep, assumption+) |
255 |
done |
|
256 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
257 |
lemma (in M_basic) wf_exists_is_recfun [rule_format]: |
13268 | 258 |
"[|wf(r); trans(r); M(r); |
259 |
strong_replacement(M, \<lambda>x z. |
|
260 |
\<exists>y[M]. \<exists>g[M]. pair(M,x,y,z) & is_recfun(r,x,H,g) & y = H(x,g)); |
|
46823 | 261 |
\<forall>x[M]. \<forall>g[M]. function(g) \<longrightarrow> M(H(x,g)) |] |
262 |
==> M(a) \<longrightarrow> (\<exists>f[M]. is_recfun(r,a,H,f))" |
|
13251
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
263 |
apply (rule wf_induct, assumption+) |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
264 |
apply (frule wf_imp_relativized) |
74cb2af8811e
new treatment of wfrec, replacing wf[A](r) by wf(r)
paulson
parents:
13247
diff
changeset
|
265 |
apply (intro impI) |
13268 | 266 |
apply (rule exists_is_recfun_indstep) |
267 |
apply (blast dest: transM del: rev_rallE, assumption+) |
|
13223 | 268 |
done |
269 |
||
13506 | 270 |
|
60770 | 271 |
subsection\<open>Relativization of the ZF Predicate @{term is_recfun}\<close> |
13506 | 272 |
|
21233 | 273 |
definition |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
274 |
M_is_recfun :: "[i=>o, [i,i,i]=>o, i, i, i] => o" where |
13352 | 275 |
"M_is_recfun(M,MH,r,a,f) == |
46823 | 276 |
\<forall>z[M]. z \<in> f \<longleftrightarrow> |
13254 | 277 |
(\<exists>x[M]. \<exists>y[M]. \<exists>xa[M]. \<exists>sx[M]. \<exists>r_sx[M]. \<exists>f_r_sx[M]. |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
21404
diff
changeset
|
278 |
pair(M,x,y,z) & pair(M,x,a,xa) & upair(M,x,x,sx) & |
13254 | 279 |
pre_image(M,r,sx,r_sx) & restriction(M,f,r_sx,f_r_sx) & |
13348 | 280 |
xa \<in> r & MH(x, f_r_sx, y))" |
13223 | 281 |
|
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
282 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
283 |
is_wfrec :: "[i=>o, [i,i,i]=>o, i, i, i] => o" where |
13353 | 284 |
"is_wfrec(M,MH,r,a,z) == |
285 |
\<exists>f[M]. M_is_recfun(M,MH,r,a,f) & MH(a,f,z)" |
|
286 |
||
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
287 |
definition |
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21233
diff
changeset
|
288 |
wfrec_replacement :: "[i=>o, [i,i,i]=>o, i] => o" where |
13353 | 289 |
"wfrec_replacement(M,MH,r) == |
290 |
strong_replacement(M, |
|
291 |
\<lambda>x z. \<exists>y[M]. pair(M,x,y,z) & is_wfrec(M,MH,r,x,y))" |
|
292 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
293 |
lemma (in M_basic) is_recfun_abs: |
46823 | 294 |
"[| \<forall>x[M]. \<forall>g[M]. function(g) \<longrightarrow> M(H(x,g)); M(r); M(a); M(f); |
13634 | 295 |
relation2(M,MH,H) |] |
46823 | 296 |
==> M_is_recfun(M,MH,r,a,f) \<longleftrightarrow> is_recfun(r,a,H,f)" |
13634 | 297 |
apply (simp add: M_is_recfun_def relation2_def is_recfun_relativize) |
13254 | 298 |
apply (rule rall_cong) |
299 |
apply (blast dest: transM) |
|
13223 | 300 |
done |
301 |
||
302 |
lemma M_is_recfun_cong [cong]: |
|
303 |
"[| r = r'; a = a'; f = f'; |
|
46823 | 304 |
!!x g y. [| M(x); M(g); M(y) |] ==> MH(x,g,y) \<longleftrightarrow> MH'(x,g,y) |] |
305 |
==> M_is_recfun(M,MH,r,a,f) \<longleftrightarrow> M_is_recfun(M,MH',r',a',f')" |
|
13223 | 306 |
by (simp add: M_is_recfun_def) |
307 |
||
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
308 |
lemma (in M_basic) is_wfrec_abs: |
46823 | 309 |
"[| \<forall>x[M]. \<forall>g[M]. function(g) \<longrightarrow> M(H(x,g)); |
13634 | 310 |
relation2(M,MH,H); M(r); M(a); M(z) |] |
46823 | 311 |
==> is_wfrec(M,MH,r,a,z) \<longleftrightarrow> |
13353 | 312 |
(\<exists>g[M]. is_recfun(r,a,H,g) & z = H(a,g))" |
13634 | 313 |
by (simp add: is_wfrec_def relation2_def is_recfun_abs) |
13223 | 314 |
|
60770 | 315 |
text\<open>Relating @{term wfrec_replacement} to native constructs\<close> |
13564
1500a2e48d44
renamed M_triv_axioms to M_trivial and M_axioms to M_basic
paulson
parents:
13506
diff
changeset
|
316 |
lemma (in M_basic) wfrec_replacement': |
13353 | 317 |
"[|wfrec_replacement(M,MH,r); |
46823 | 318 |
\<forall>x[M]. \<forall>g[M]. function(g) \<longrightarrow> M(H(x,g)); |
13634 | 319 |
relation2(M,MH,H); M(r)|] |
13353 | 320 |
==> strong_replacement(M, \<lambda>x z. \<exists>y[M]. |
321 |
pair(M,x,y,z) & (\<exists>g[M]. is_recfun(r,x,H,g) & y = H(x,g)))" |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13564
diff
changeset
|
322 |
by (simp add: wfrec_replacement_def is_wfrec_abs) |
13353 | 323 |
|
324 |
lemma wfrec_replacement_cong [cong]: |
|
46823 | 325 |
"[| !!x y z. [| M(x); M(y); M(z) |] ==> MH(x,y,z) \<longleftrightarrow> MH'(x,y,z); |
13353 | 326 |
r=r' |] |
46823 | 327 |
==> wfrec_replacement(M, %x y. MH(x,y), r) \<longleftrightarrow> |
13353 | 328 |
wfrec_replacement(M, %x y. MH'(x,y), r')" |
329 |
by (simp add: is_wfrec_def wfrec_replacement_def) |
|
330 |
||
331 |
||
13223 | 332 |
end |
333 |