author | huffman |
Fri, 30 Mar 2012 10:41:27 +0200 | |
changeset 47216 | 4d0878d54ca5 |
parent 47211 | e1b0c8236ae4 |
child 47218 | 2b652cbadde1 |
permissions | -rw-r--r-- |
47108 | 1 |
(* Title: HOL/Num.thy |
2 |
Author: Florian Haftmann |
|
3 |
Author: Brian Huffman |
|
4 |
*) |
|
5 |
||
6 |
header {* Binary Numerals *} |
|
7 |
||
8 |
theory Num |
|
47191 | 9 |
imports Datatype |
47108 | 10 |
begin |
11 |
||
12 |
subsection {* The @{text num} type *} |
|
13 |
||
14 |
datatype num = One | Bit0 num | Bit1 num |
|
15 |
||
16 |
text {* Increment function for type @{typ num} *} |
|
17 |
||
18 |
primrec inc :: "num \<Rightarrow> num" where |
|
19 |
"inc One = Bit0 One" | |
|
20 |
"inc (Bit0 x) = Bit1 x" | |
|
21 |
"inc (Bit1 x) = Bit0 (inc x)" |
|
22 |
||
23 |
text {* Converting between type @{typ num} and type @{typ nat} *} |
|
24 |
||
25 |
primrec nat_of_num :: "num \<Rightarrow> nat" where |
|
26 |
"nat_of_num One = Suc 0" | |
|
27 |
"nat_of_num (Bit0 x) = nat_of_num x + nat_of_num x" | |
|
28 |
"nat_of_num (Bit1 x) = Suc (nat_of_num x + nat_of_num x)" |
|
29 |
||
30 |
primrec num_of_nat :: "nat \<Rightarrow> num" where |
|
31 |
"num_of_nat 0 = One" | |
|
32 |
"num_of_nat (Suc n) = (if 0 < n then inc (num_of_nat n) else One)" |
|
33 |
||
34 |
lemma nat_of_num_pos: "0 < nat_of_num x" |
|
35 |
by (induct x) simp_all |
|
36 |
||
37 |
lemma nat_of_num_neq_0: " nat_of_num x \<noteq> 0" |
|
38 |
by (induct x) simp_all |
|
39 |
||
40 |
lemma nat_of_num_inc: "nat_of_num (inc x) = Suc (nat_of_num x)" |
|
41 |
by (induct x) simp_all |
|
42 |
||
43 |
lemma num_of_nat_double: |
|
44 |
"0 < n \<Longrightarrow> num_of_nat (n + n) = Bit0 (num_of_nat n)" |
|
45 |
by (induct n) simp_all |
|
46 |
||
47 |
text {* |
|
48 |
Type @{typ num} is isomorphic to the strictly positive |
|
49 |
natural numbers. |
|
50 |
*} |
|
51 |
||
52 |
lemma nat_of_num_inverse: "num_of_nat (nat_of_num x) = x" |
|
53 |
by (induct x) (simp_all add: num_of_nat_double nat_of_num_pos) |
|
54 |
||
55 |
lemma num_of_nat_inverse: "0 < n \<Longrightarrow> nat_of_num (num_of_nat n) = n" |
|
56 |
by (induct n) (simp_all add: nat_of_num_inc) |
|
57 |
||
58 |
lemma num_eq_iff: "x = y \<longleftrightarrow> nat_of_num x = nat_of_num y" |
|
59 |
apply safe |
|
60 |
apply (drule arg_cong [where f=num_of_nat]) |
|
61 |
apply (simp add: nat_of_num_inverse) |
|
62 |
done |
|
63 |
||
64 |
lemma num_induct [case_names One inc]: |
|
65 |
fixes P :: "num \<Rightarrow> bool" |
|
66 |
assumes One: "P One" |
|
67 |
and inc: "\<And>x. P x \<Longrightarrow> P (inc x)" |
|
68 |
shows "P x" |
|
69 |
proof - |
|
70 |
obtain n where n: "Suc n = nat_of_num x" |
|
71 |
by (cases "nat_of_num x", simp_all add: nat_of_num_neq_0) |
|
72 |
have "P (num_of_nat (Suc n))" |
|
73 |
proof (induct n) |
|
74 |
case 0 show ?case using One by simp |
|
75 |
next |
|
76 |
case (Suc n) |
|
77 |
then have "P (inc (num_of_nat (Suc n)))" by (rule inc) |
|
78 |
then show "P (num_of_nat (Suc (Suc n)))" by simp |
|
79 |
qed |
|
80 |
with n show "P x" |
|
81 |
by (simp add: nat_of_num_inverse) |
|
82 |
qed |
|
83 |
||
84 |
text {* |
|
85 |
From now on, there are two possible models for @{typ num}: |
|
86 |
as positive naturals (rule @{text "num_induct"}) |
|
87 |
and as digit representation (rules @{text "num.induct"}, @{text "num.cases"}). |
|
88 |
*} |
|
89 |
||
90 |
||
91 |
subsection {* Numeral operations *} |
|
92 |
||
93 |
instantiation num :: "{plus,times,linorder}" |
|
94 |
begin |
|
95 |
||
96 |
definition [code del]: |
|
97 |
"m + n = num_of_nat (nat_of_num m + nat_of_num n)" |
|
98 |
||
99 |
definition [code del]: |
|
100 |
"m * n = num_of_nat (nat_of_num m * nat_of_num n)" |
|
101 |
||
102 |
definition [code del]: |
|
103 |
"m \<le> n \<longleftrightarrow> nat_of_num m \<le> nat_of_num n" |
|
104 |
||
105 |
definition [code del]: |
|
106 |
"m < n \<longleftrightarrow> nat_of_num m < nat_of_num n" |
|
107 |
||
108 |
instance |
|
109 |
by (default, auto simp add: less_num_def less_eq_num_def num_eq_iff) |
|
110 |
||
111 |
end |
|
112 |
||
113 |
lemma nat_of_num_add: "nat_of_num (x + y) = nat_of_num x + nat_of_num y" |
|
114 |
unfolding plus_num_def |
|
115 |
by (intro num_of_nat_inverse add_pos_pos nat_of_num_pos) |
|
116 |
||
117 |
lemma nat_of_num_mult: "nat_of_num (x * y) = nat_of_num x * nat_of_num y" |
|
118 |
unfolding times_num_def |
|
119 |
by (intro num_of_nat_inverse mult_pos_pos nat_of_num_pos) |
|
120 |
||
121 |
lemma add_num_simps [simp, code]: |
|
122 |
"One + One = Bit0 One" |
|
123 |
"One + Bit0 n = Bit1 n" |
|
124 |
"One + Bit1 n = Bit0 (n + One)" |
|
125 |
"Bit0 m + One = Bit1 m" |
|
126 |
"Bit0 m + Bit0 n = Bit0 (m + n)" |
|
127 |
"Bit0 m + Bit1 n = Bit1 (m + n)" |
|
128 |
"Bit1 m + One = Bit0 (m + One)" |
|
129 |
"Bit1 m + Bit0 n = Bit1 (m + n)" |
|
130 |
"Bit1 m + Bit1 n = Bit0 (m + n + One)" |
|
131 |
by (simp_all add: num_eq_iff nat_of_num_add) |
|
132 |
||
133 |
lemma mult_num_simps [simp, code]: |
|
134 |
"m * One = m" |
|
135 |
"One * n = n" |
|
136 |
"Bit0 m * Bit0 n = Bit0 (Bit0 (m * n))" |
|
137 |
"Bit0 m * Bit1 n = Bit0 (m * Bit1 n)" |
|
138 |
"Bit1 m * Bit0 n = Bit0 (Bit1 m * n)" |
|
139 |
"Bit1 m * Bit1 n = Bit1 (m + n + Bit0 (m * n))" |
|
140 |
by (simp_all add: num_eq_iff nat_of_num_add |
|
141 |
nat_of_num_mult left_distrib right_distrib) |
|
142 |
||
143 |
lemma eq_num_simps: |
|
144 |
"One = One \<longleftrightarrow> True" |
|
145 |
"One = Bit0 n \<longleftrightarrow> False" |
|
146 |
"One = Bit1 n \<longleftrightarrow> False" |
|
147 |
"Bit0 m = One \<longleftrightarrow> False" |
|
148 |
"Bit1 m = One \<longleftrightarrow> False" |
|
149 |
"Bit0 m = Bit0 n \<longleftrightarrow> m = n" |
|
150 |
"Bit0 m = Bit1 n \<longleftrightarrow> False" |
|
151 |
"Bit1 m = Bit0 n \<longleftrightarrow> False" |
|
152 |
"Bit1 m = Bit1 n \<longleftrightarrow> m = n" |
|
153 |
by simp_all |
|
154 |
||
155 |
lemma le_num_simps [simp, code]: |
|
156 |
"One \<le> n \<longleftrightarrow> True" |
|
157 |
"Bit0 m \<le> One \<longleftrightarrow> False" |
|
158 |
"Bit1 m \<le> One \<longleftrightarrow> False" |
|
159 |
"Bit0 m \<le> Bit0 n \<longleftrightarrow> m \<le> n" |
|
160 |
"Bit0 m \<le> Bit1 n \<longleftrightarrow> m \<le> n" |
|
161 |
"Bit1 m \<le> Bit1 n \<longleftrightarrow> m \<le> n" |
|
162 |
"Bit1 m \<le> Bit0 n \<longleftrightarrow> m < n" |
|
163 |
using nat_of_num_pos [of n] nat_of_num_pos [of m] |
|
164 |
by (auto simp add: less_eq_num_def less_num_def) |
|
165 |
||
166 |
lemma less_num_simps [simp, code]: |
|
167 |
"m < One \<longleftrightarrow> False" |
|
168 |
"One < Bit0 n \<longleftrightarrow> True" |
|
169 |
"One < Bit1 n \<longleftrightarrow> True" |
|
170 |
"Bit0 m < Bit0 n \<longleftrightarrow> m < n" |
|
171 |
"Bit0 m < Bit1 n \<longleftrightarrow> m \<le> n" |
|
172 |
"Bit1 m < Bit1 n \<longleftrightarrow> m < n" |
|
173 |
"Bit1 m < Bit0 n \<longleftrightarrow> m < n" |
|
174 |
using nat_of_num_pos [of n] nat_of_num_pos [of m] |
|
175 |
by (auto simp add: less_eq_num_def less_num_def) |
|
176 |
||
177 |
text {* Rules using @{text One} and @{text inc} as constructors *} |
|
178 |
||
179 |
lemma add_One: "x + One = inc x" |
|
180 |
by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc) |
|
181 |
||
182 |
lemma add_One_commute: "One + n = n + One" |
|
183 |
by (induct n) simp_all |
|
184 |
||
185 |
lemma add_inc: "x + inc y = inc (x + y)" |
|
186 |
by (simp add: num_eq_iff nat_of_num_add nat_of_num_inc) |
|
187 |
||
188 |
lemma mult_inc: "x * inc y = x * y + x" |
|
189 |
by (simp add: num_eq_iff nat_of_num_mult nat_of_num_add nat_of_num_inc) |
|
190 |
||
191 |
text {* The @{const num_of_nat} conversion *} |
|
192 |
||
193 |
lemma num_of_nat_One: |
|
194 |
"n \<le> 1 \<Longrightarrow> num_of_nat n = Num.One" |
|
195 |
by (cases n) simp_all |
|
196 |
||
197 |
lemma num_of_nat_plus_distrib: |
|
198 |
"0 < m \<Longrightarrow> 0 < n \<Longrightarrow> num_of_nat (m + n) = num_of_nat m + num_of_nat n" |
|
199 |
by (induct n) (auto simp add: add_One add_One_commute add_inc) |
|
200 |
||
201 |
text {* A double-and-decrement function *} |
|
202 |
||
203 |
primrec BitM :: "num \<Rightarrow> num" where |
|
204 |
"BitM One = One" | |
|
205 |
"BitM (Bit0 n) = Bit1 (BitM n)" | |
|
206 |
"BitM (Bit1 n) = Bit1 (Bit0 n)" |
|
207 |
||
208 |
lemma BitM_plus_one: "BitM n + One = Bit0 n" |
|
209 |
by (induct n) simp_all |
|
210 |
||
211 |
lemma one_plus_BitM: "One + BitM n = Bit0 n" |
|
212 |
unfolding add_One_commute BitM_plus_one .. |
|
213 |
||
214 |
text {* Squaring and exponentiation *} |
|
215 |
||
216 |
primrec sqr :: "num \<Rightarrow> num" where |
|
217 |
"sqr One = One" | |
|
218 |
"sqr (Bit0 n) = Bit0 (Bit0 (sqr n))" | |
|
219 |
"sqr (Bit1 n) = Bit1 (Bit0 (sqr n + n))" |
|
220 |
||
221 |
primrec pow :: "num \<Rightarrow> num \<Rightarrow> num" where |
|
222 |
"pow x One = x" | |
|
223 |
"pow x (Bit0 y) = sqr (pow x y)" | |
|
47191 | 224 |
"pow x (Bit1 y) = sqr (pow x y) * x" |
47108 | 225 |
|
226 |
lemma nat_of_num_sqr: "nat_of_num (sqr x) = nat_of_num x * nat_of_num x" |
|
227 |
by (induct x, simp_all add: algebra_simps nat_of_num_add) |
|
228 |
||
229 |
lemma sqr_conv_mult: "sqr x = x * x" |
|
230 |
by (simp add: num_eq_iff nat_of_num_sqr nat_of_num_mult) |
|
231 |
||
232 |
||
47211 | 233 |
subsection {* Binary numerals *} |
47108 | 234 |
|
235 |
text {* |
|
47211 | 236 |
We embed binary representations into a generic algebraic |
47108 | 237 |
structure using @{text numeral}. |
238 |
*} |
|
239 |
||
240 |
class numeral = one + semigroup_add |
|
241 |
begin |
|
242 |
||
243 |
primrec numeral :: "num \<Rightarrow> 'a" where |
|
244 |
numeral_One: "numeral One = 1" | |
|
245 |
numeral_Bit0: "numeral (Bit0 n) = numeral n + numeral n" | |
|
246 |
numeral_Bit1: "numeral (Bit1 n) = numeral n + numeral n + 1" |
|
247 |
||
248 |
lemma one_plus_numeral_commute: "1 + numeral x = numeral x + 1" |
|
249 |
apply (induct x) |
|
250 |
apply simp |
|
251 |
apply (simp add: add_assoc [symmetric], simp add: add_assoc) |
|
252 |
apply (simp add: add_assoc [symmetric], simp add: add_assoc) |
|
253 |
done |
|
254 |
||
255 |
lemma numeral_inc: "numeral (inc x) = numeral x + 1" |
|
256 |
proof (induct x) |
|
257 |
case (Bit1 x) |
|
258 |
have "numeral x + (1 + numeral x) + 1 = numeral x + (numeral x + 1) + 1" |
|
259 |
by (simp only: one_plus_numeral_commute) |
|
260 |
with Bit1 show ?case |
|
261 |
by (simp add: add_assoc) |
|
262 |
qed simp_all |
|
263 |
||
264 |
declare numeral.simps [simp del] |
|
265 |
||
266 |
abbreviation "Numeral1 \<equiv> numeral One" |
|
267 |
||
268 |
declare numeral_One [code_post] |
|
269 |
||
270 |
end |
|
271 |
||
272 |
text {* Negative numerals. *} |
|
273 |
||
274 |
class neg_numeral = numeral + group_add |
|
275 |
begin |
|
276 |
||
277 |
definition neg_numeral :: "num \<Rightarrow> 'a" where |
|
278 |
"neg_numeral k = - numeral k" |
|
279 |
||
280 |
end |
|
281 |
||
282 |
text {* Numeral syntax. *} |
|
283 |
||
284 |
syntax |
|
285 |
"_Numeral" :: "num_const \<Rightarrow> 'a" ("_") |
|
286 |
||
287 |
parse_translation {* |
|
288 |
let |
|
289 |
fun num_of_int n = if n > 0 then case IntInf.quotRem (n, 2) |
|
290 |
of (0, 1) => Syntax.const @{const_name One} |
|
291 |
| (n, 0) => Syntax.const @{const_name Bit0} $ num_of_int n |
|
292 |
| (n, 1) => Syntax.const @{const_name Bit1} $ num_of_int n |
|
293 |
else raise Match; |
|
294 |
val pos = Syntax.const @{const_name numeral} |
|
295 |
val neg = Syntax.const @{const_name neg_numeral} |
|
296 |
val one = Syntax.const @{const_name Groups.one} |
|
297 |
val zero = Syntax.const @{const_name Groups.zero} |
|
298 |
fun numeral_tr [(c as Const (@{syntax_const "_constrain"}, _)) $ t $ u] = |
|
299 |
c $ numeral_tr [t] $ u |
|
300 |
| numeral_tr [Const (num, _)] = |
|
301 |
let |
|
302 |
val {value, ...} = Lexicon.read_xnum num; |
|
303 |
in |
|
304 |
if value = 0 then zero else |
|
305 |
if value > 0 |
|
306 |
then pos $ num_of_int value |
|
307 |
else neg $ num_of_int (~value) |
|
308 |
end |
|
309 |
| numeral_tr ts = raise TERM ("numeral_tr", ts); |
|
310 |
in [("_Numeral", numeral_tr)] end |
|
311 |
*} |
|
312 |
||
313 |
typed_print_translation (advanced) {* |
|
314 |
let |
|
315 |
fun dest_num (Const (@{const_syntax Bit0}, _) $ n) = 2 * dest_num n |
|
316 |
| dest_num (Const (@{const_syntax Bit1}, _) $ n) = 2 * dest_num n + 1 |
|
317 |
| dest_num (Const (@{const_syntax One}, _)) = 1; |
|
318 |
fun num_tr' sign ctxt T [n] = |
|
319 |
let |
|
320 |
val k = dest_num n; |
|
321 |
val t' = Syntax.const @{syntax_const "_Numeral"} $ |
|
322 |
Syntax.free (sign ^ string_of_int k); |
|
323 |
in |
|
324 |
case T of |
|
325 |
Type (@{type_name fun}, [_, T']) => |
|
326 |
if not (Config.get ctxt show_types) andalso can Term.dest_Type T' then t' |
|
327 |
else Syntax.const @{syntax_const "_constrain"} $ t' $ Syntax_Phases.term_of_typ ctxt T' |
|
328 |
| T' => if T' = dummyT then t' else raise Match |
|
329 |
end; |
|
330 |
in [(@{const_syntax numeral}, num_tr' ""), |
|
331 |
(@{const_syntax neg_numeral}, num_tr' "-")] end |
|
332 |
*} |
|
333 |
||
334 |
subsection {* Class-specific numeral rules *} |
|
335 |
||
336 |
text {* |
|
337 |
@{const numeral} is a morphism. |
|
338 |
*} |
|
339 |
||
340 |
subsubsection {* Structures with addition: class @{text numeral} *} |
|
341 |
||
342 |
context numeral |
|
343 |
begin |
|
344 |
||
345 |
lemma numeral_add: "numeral (m + n) = numeral m + numeral n" |
|
346 |
by (induct n rule: num_induct) |
|
347 |
(simp_all only: numeral_One add_One add_inc numeral_inc add_assoc) |
|
348 |
||
349 |
lemma numeral_plus_numeral: "numeral m + numeral n = numeral (m + n)" |
|
350 |
by (rule numeral_add [symmetric]) |
|
351 |
||
352 |
lemma numeral_plus_one: "numeral n + 1 = numeral (n + One)" |
|
353 |
using numeral_add [of n One] by (simp add: numeral_One) |
|
354 |
||
355 |
lemma one_plus_numeral: "1 + numeral n = numeral (One + n)" |
|
356 |
using numeral_add [of One n] by (simp add: numeral_One) |
|
357 |
||
358 |
lemma one_add_one: "1 + 1 = 2" |
|
359 |
using numeral_add [of One One] by (simp add: numeral_One) |
|
360 |
||
361 |
lemmas add_numeral_special = |
|
362 |
numeral_plus_one one_plus_numeral one_add_one |
|
363 |
||
364 |
end |
|
365 |
||
366 |
subsubsection {* |
|
367 |
Structures with negation: class @{text neg_numeral} |
|
368 |
*} |
|
369 |
||
370 |
context neg_numeral |
|
371 |
begin |
|
372 |
||
373 |
text {* Numerals form an abelian subgroup. *} |
|
374 |
||
375 |
inductive is_num :: "'a \<Rightarrow> bool" where |
|
376 |
"is_num 1" | |
|
377 |
"is_num x \<Longrightarrow> is_num (- x)" | |
|
378 |
"\<lbrakk>is_num x; is_num y\<rbrakk> \<Longrightarrow> is_num (x + y)" |
|
379 |
||
380 |
lemma is_num_numeral: "is_num (numeral k)" |
|
381 |
by (induct k, simp_all add: numeral.simps is_num.intros) |
|
382 |
||
383 |
lemma is_num_add_commute: |
|
384 |
"\<lbrakk>is_num x; is_num y\<rbrakk> \<Longrightarrow> x + y = y + x" |
|
385 |
apply (induct x rule: is_num.induct) |
|
386 |
apply (induct y rule: is_num.induct) |
|
387 |
apply simp |
|
388 |
apply (rule_tac a=x in add_left_imp_eq) |
|
389 |
apply (rule_tac a=x in add_right_imp_eq) |
|
390 |
apply (simp add: add_assoc minus_add_cancel) |
|
391 |
apply (simp add: add_assoc [symmetric], simp add: add_assoc) |
|
392 |
apply (rule_tac a=x in add_left_imp_eq) |
|
393 |
apply (rule_tac a=x in add_right_imp_eq) |
|
394 |
apply (simp add: add_assoc minus_add_cancel add_minus_cancel) |
|
395 |
apply (simp add: add_assoc, simp add: add_assoc [symmetric]) |
|
396 |
done |
|
397 |
||
398 |
lemma is_num_add_left_commute: |
|
399 |
"\<lbrakk>is_num x; is_num y\<rbrakk> \<Longrightarrow> x + (y + z) = y + (x + z)" |
|
400 |
by (simp only: add_assoc [symmetric] is_num_add_commute) |
|
401 |
||
402 |
lemmas is_num_normalize = |
|
403 |
add_assoc is_num_add_commute is_num_add_left_commute |
|
404 |
is_num.intros is_num_numeral |
|
405 |
diff_minus minus_add add_minus_cancel minus_add_cancel |
|
406 |
||
407 |
definition dbl :: "'a \<Rightarrow> 'a" where "dbl x = x + x" |
|
408 |
definition dbl_inc :: "'a \<Rightarrow> 'a" where "dbl_inc x = x + x + 1" |
|
409 |
definition dbl_dec :: "'a \<Rightarrow> 'a" where "dbl_dec x = x + x - 1" |
|
410 |
||
411 |
definition sub :: "num \<Rightarrow> num \<Rightarrow> 'a" where |
|
412 |
"sub k l = numeral k - numeral l" |
|
413 |
||
414 |
lemma numeral_BitM: "numeral (BitM n) = numeral (Bit0 n) - 1" |
|
415 |
by (simp only: BitM_plus_one [symmetric] numeral_add numeral_One eq_diff_eq) |
|
416 |
||
417 |
lemma dbl_simps [simp]: |
|
418 |
"dbl (neg_numeral k) = neg_numeral (Bit0 k)" |
|
419 |
"dbl 0 = 0" |
|
420 |
"dbl 1 = 2" |
|
421 |
"dbl (numeral k) = numeral (Bit0 k)" |
|
422 |
unfolding dbl_def neg_numeral_def numeral.simps |
|
423 |
by (simp_all add: minus_add) |
|
424 |
||
425 |
lemma dbl_inc_simps [simp]: |
|
426 |
"dbl_inc (neg_numeral k) = neg_numeral (BitM k)" |
|
427 |
"dbl_inc 0 = 1" |
|
428 |
"dbl_inc 1 = 3" |
|
429 |
"dbl_inc (numeral k) = numeral (Bit1 k)" |
|
430 |
unfolding dbl_inc_def neg_numeral_def numeral.simps numeral_BitM |
|
431 |
by (simp_all add: is_num_normalize) |
|
432 |
||
433 |
lemma dbl_dec_simps [simp]: |
|
434 |
"dbl_dec (neg_numeral k) = neg_numeral (Bit1 k)" |
|
435 |
"dbl_dec 0 = -1" |
|
436 |
"dbl_dec 1 = 1" |
|
437 |
"dbl_dec (numeral k) = numeral (BitM k)" |
|
438 |
unfolding dbl_dec_def neg_numeral_def numeral.simps numeral_BitM |
|
439 |
by (simp_all add: is_num_normalize) |
|
440 |
||
441 |
lemma sub_num_simps [simp]: |
|
442 |
"sub One One = 0" |
|
443 |
"sub One (Bit0 l) = neg_numeral (BitM l)" |
|
444 |
"sub One (Bit1 l) = neg_numeral (Bit0 l)" |
|
445 |
"sub (Bit0 k) One = numeral (BitM k)" |
|
446 |
"sub (Bit1 k) One = numeral (Bit0 k)" |
|
447 |
"sub (Bit0 k) (Bit0 l) = dbl (sub k l)" |
|
448 |
"sub (Bit0 k) (Bit1 l) = dbl_dec (sub k l)" |
|
449 |
"sub (Bit1 k) (Bit0 l) = dbl_inc (sub k l)" |
|
450 |
"sub (Bit1 k) (Bit1 l) = dbl (sub k l)" |
|
451 |
unfolding dbl_def dbl_dec_def dbl_inc_def sub_def |
|
452 |
unfolding neg_numeral_def numeral.simps numeral_BitM |
|
453 |
by (simp_all add: is_num_normalize) |
|
454 |
||
455 |
lemma add_neg_numeral_simps: |
|
456 |
"numeral m + neg_numeral n = sub m n" |
|
457 |
"neg_numeral m + numeral n = sub n m" |
|
458 |
"neg_numeral m + neg_numeral n = neg_numeral (m + n)" |
|
459 |
unfolding sub_def diff_minus neg_numeral_def numeral_add numeral.simps |
|
460 |
by (simp_all add: is_num_normalize) |
|
461 |
||
462 |
lemma add_neg_numeral_special: |
|
463 |
"1 + neg_numeral m = sub One m" |
|
464 |
"neg_numeral m + 1 = sub One m" |
|
465 |
unfolding sub_def diff_minus neg_numeral_def numeral_add numeral.simps |
|
466 |
by (simp_all add: is_num_normalize) |
|
467 |
||
468 |
lemma diff_numeral_simps: |
|
469 |
"numeral m - numeral n = sub m n" |
|
470 |
"numeral m - neg_numeral n = numeral (m + n)" |
|
471 |
"neg_numeral m - numeral n = neg_numeral (m + n)" |
|
472 |
"neg_numeral m - neg_numeral n = sub n m" |
|
473 |
unfolding neg_numeral_def sub_def diff_minus numeral_add numeral.simps |
|
474 |
by (simp_all add: is_num_normalize) |
|
475 |
||
476 |
lemma diff_numeral_special: |
|
477 |
"1 - numeral n = sub One n" |
|
478 |
"1 - neg_numeral n = numeral (One + n)" |
|
479 |
"numeral m - 1 = sub m One" |
|
480 |
"neg_numeral m - 1 = neg_numeral (m + One)" |
|
481 |
unfolding neg_numeral_def sub_def diff_minus numeral_add numeral.simps |
|
482 |
by (simp_all add: is_num_normalize) |
|
483 |
||
484 |
lemma minus_one: "- 1 = -1" |
|
485 |
unfolding neg_numeral_def numeral.simps .. |
|
486 |
||
487 |
lemma minus_numeral: "- numeral n = neg_numeral n" |
|
488 |
unfolding neg_numeral_def .. |
|
489 |
||
490 |
lemma minus_neg_numeral: "- neg_numeral n = numeral n" |
|
491 |
unfolding neg_numeral_def by simp |
|
492 |
||
493 |
lemmas minus_numeral_simps [simp] = |
|
494 |
minus_one minus_numeral minus_neg_numeral |
|
495 |
||
496 |
end |
|
497 |
||
498 |
subsubsection {* |
|
499 |
Structures with multiplication: class @{text semiring_numeral} |
|
500 |
*} |
|
501 |
||
502 |
class semiring_numeral = semiring + monoid_mult |
|
503 |
begin |
|
504 |
||
505 |
subclass numeral .. |
|
506 |
||
507 |
lemma numeral_mult: "numeral (m * n) = numeral m * numeral n" |
|
508 |
apply (induct n rule: num_induct) |
|
509 |
apply (simp add: numeral_One) |
|
510 |
apply (simp add: mult_inc numeral_inc numeral_add numeral_inc right_distrib) |
|
511 |
done |
|
512 |
||
513 |
lemma numeral_times_numeral: "numeral m * numeral n = numeral (m * n)" |
|
514 |
by (rule numeral_mult [symmetric]) |
|
515 |
||
516 |
end |
|
517 |
||
518 |
subsubsection {* |
|
519 |
Structures with a zero: class @{text semiring_1} |
|
520 |
*} |
|
521 |
||
522 |
context semiring_1 |
|
523 |
begin |
|
524 |
||
525 |
subclass semiring_numeral .. |
|
526 |
||
527 |
lemma of_nat_numeral [simp]: "of_nat (numeral n) = numeral n" |
|
528 |
by (induct n, |
|
529 |
simp_all only: numeral.simps numeral_class.numeral.simps of_nat_add of_nat_1) |
|
530 |
||
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
531 |
lemma mult_2: "2 * z = z + z" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
532 |
unfolding one_add_one [symmetric] left_distrib by simp |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
533 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
534 |
lemma mult_2_right: "z * 2 = z + z" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
535 |
unfolding one_add_one [symmetric] right_distrib by simp |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
536 |
|
47108 | 537 |
end |
538 |
||
539 |
lemma nat_of_num_numeral: "nat_of_num = numeral" |
|
540 |
proof |
|
541 |
fix n |
|
542 |
have "numeral n = nat_of_num n" |
|
543 |
by (induct n) (simp_all add: numeral.simps) |
|
544 |
then show "nat_of_num n = numeral n" by simp |
|
545 |
qed |
|
546 |
||
547 |
subsubsection {* |
|
548 |
Equality: class @{text semiring_char_0} |
|
549 |
*} |
|
550 |
||
551 |
context semiring_char_0 |
|
552 |
begin |
|
553 |
||
554 |
lemma numeral_eq_iff: "numeral m = numeral n \<longleftrightarrow> m = n" |
|
555 |
unfolding of_nat_numeral [symmetric] nat_of_num_numeral [symmetric] |
|
556 |
of_nat_eq_iff num_eq_iff .. |
|
557 |
||
558 |
lemma numeral_eq_one_iff: "numeral n = 1 \<longleftrightarrow> n = One" |
|
559 |
by (rule numeral_eq_iff [of n One, unfolded numeral_One]) |
|
560 |
||
561 |
lemma one_eq_numeral_iff: "1 = numeral n \<longleftrightarrow> One = n" |
|
562 |
by (rule numeral_eq_iff [of One n, unfolded numeral_One]) |
|
563 |
||
564 |
lemma numeral_neq_zero: "numeral n \<noteq> 0" |
|
565 |
unfolding of_nat_numeral [symmetric] nat_of_num_numeral [symmetric] |
|
566 |
by (simp add: nat_of_num_pos) |
|
567 |
||
568 |
lemma zero_neq_numeral: "0 \<noteq> numeral n" |
|
569 |
unfolding eq_commute [of 0] by (rule numeral_neq_zero) |
|
570 |
||
571 |
lemmas eq_numeral_simps [simp] = |
|
572 |
numeral_eq_iff |
|
573 |
numeral_eq_one_iff |
|
574 |
one_eq_numeral_iff |
|
575 |
numeral_neq_zero |
|
576 |
zero_neq_numeral |
|
577 |
||
578 |
end |
|
579 |
||
580 |
subsubsection {* |
|
581 |
Comparisons: class @{text linordered_semidom} |
|
582 |
*} |
|
583 |
||
584 |
text {* Could be perhaps more general than here. *} |
|
585 |
||
586 |
context linordered_semidom |
|
587 |
begin |
|
588 |
||
589 |
lemma numeral_le_iff: "numeral m \<le> numeral n \<longleftrightarrow> m \<le> n" |
|
590 |
proof - |
|
591 |
have "of_nat (numeral m) \<le> of_nat (numeral n) \<longleftrightarrow> m \<le> n" |
|
592 |
unfolding less_eq_num_def nat_of_num_numeral of_nat_le_iff .. |
|
593 |
then show ?thesis by simp |
|
594 |
qed |
|
595 |
||
596 |
lemma one_le_numeral: "1 \<le> numeral n" |
|
597 |
using numeral_le_iff [of One n] by (simp add: numeral_One) |
|
598 |
||
599 |
lemma numeral_le_one_iff: "numeral n \<le> 1 \<longleftrightarrow> n \<le> One" |
|
600 |
using numeral_le_iff [of n One] by (simp add: numeral_One) |
|
601 |
||
602 |
lemma numeral_less_iff: "numeral m < numeral n \<longleftrightarrow> m < n" |
|
603 |
proof - |
|
604 |
have "of_nat (numeral m) < of_nat (numeral n) \<longleftrightarrow> m < n" |
|
605 |
unfolding less_num_def nat_of_num_numeral of_nat_less_iff .. |
|
606 |
then show ?thesis by simp |
|
607 |
qed |
|
608 |
||
609 |
lemma not_numeral_less_one: "\<not> numeral n < 1" |
|
610 |
using numeral_less_iff [of n One] by (simp add: numeral_One) |
|
611 |
||
612 |
lemma one_less_numeral_iff: "1 < numeral n \<longleftrightarrow> One < n" |
|
613 |
using numeral_less_iff [of One n] by (simp add: numeral_One) |
|
614 |
||
615 |
lemma zero_le_numeral: "0 \<le> numeral n" |
|
616 |
by (induct n) (simp_all add: numeral.simps) |
|
617 |
||
618 |
lemma zero_less_numeral: "0 < numeral n" |
|
619 |
by (induct n) (simp_all add: numeral.simps add_pos_pos) |
|
620 |
||
621 |
lemma not_numeral_le_zero: "\<not> numeral n \<le> 0" |
|
622 |
by (simp add: not_le zero_less_numeral) |
|
623 |
||
624 |
lemma not_numeral_less_zero: "\<not> numeral n < 0" |
|
625 |
by (simp add: not_less zero_le_numeral) |
|
626 |
||
627 |
lemmas le_numeral_extra = |
|
628 |
zero_le_one not_one_le_zero |
|
629 |
order_refl [of 0] order_refl [of 1] |
|
630 |
||
631 |
lemmas less_numeral_extra = |
|
632 |
zero_less_one not_one_less_zero |
|
633 |
less_irrefl [of 0] less_irrefl [of 1] |
|
634 |
||
635 |
lemmas le_numeral_simps [simp] = |
|
636 |
numeral_le_iff |
|
637 |
one_le_numeral |
|
638 |
numeral_le_one_iff |
|
639 |
zero_le_numeral |
|
640 |
not_numeral_le_zero |
|
641 |
||
642 |
lemmas less_numeral_simps [simp] = |
|
643 |
numeral_less_iff |
|
644 |
one_less_numeral_iff |
|
645 |
not_numeral_less_one |
|
646 |
zero_less_numeral |
|
647 |
not_numeral_less_zero |
|
648 |
||
649 |
end |
|
650 |
||
651 |
subsubsection {* |
|
652 |
Multiplication and negation: class @{text ring_1} |
|
653 |
*} |
|
654 |
||
655 |
context ring_1 |
|
656 |
begin |
|
657 |
||
658 |
subclass neg_numeral .. |
|
659 |
||
660 |
lemma mult_neg_numeral_simps: |
|
661 |
"neg_numeral m * neg_numeral n = numeral (m * n)" |
|
662 |
"neg_numeral m * numeral n = neg_numeral (m * n)" |
|
663 |
"numeral m * neg_numeral n = neg_numeral (m * n)" |
|
664 |
unfolding neg_numeral_def mult_minus_left mult_minus_right |
|
665 |
by (simp_all only: minus_minus numeral_mult) |
|
666 |
||
667 |
lemma mult_minus1 [simp]: "-1 * z = - z" |
|
668 |
unfolding neg_numeral_def numeral.simps mult_minus_left by simp |
|
669 |
||
670 |
lemma mult_minus1_right [simp]: "z * -1 = - z" |
|
671 |
unfolding neg_numeral_def numeral.simps mult_minus_right by simp |
|
672 |
||
673 |
end |
|
674 |
||
675 |
subsubsection {* |
|
676 |
Equality using @{text iszero} for rings with non-zero characteristic |
|
677 |
*} |
|
678 |
||
679 |
context ring_1 |
|
680 |
begin |
|
681 |
||
682 |
definition iszero :: "'a \<Rightarrow> bool" |
|
683 |
where "iszero z \<longleftrightarrow> z = 0" |
|
684 |
||
685 |
lemma iszero_0 [simp]: "iszero 0" |
|
686 |
by (simp add: iszero_def) |
|
687 |
||
688 |
lemma not_iszero_1 [simp]: "\<not> iszero 1" |
|
689 |
by (simp add: iszero_def) |
|
690 |
||
691 |
lemma not_iszero_Numeral1: "\<not> iszero Numeral1" |
|
692 |
by (simp add: numeral_One) |
|
693 |
||
694 |
lemma iszero_neg_numeral [simp]: |
|
695 |
"iszero (neg_numeral w) \<longleftrightarrow> iszero (numeral w)" |
|
696 |
unfolding iszero_def neg_numeral_def |
|
697 |
by (rule neg_equal_0_iff_equal) |
|
698 |
||
699 |
lemma eq_iff_iszero_diff: "x = y \<longleftrightarrow> iszero (x - y)" |
|
700 |
unfolding iszero_def by (rule eq_iff_diff_eq_0) |
|
701 |
||
702 |
text {* The @{text "eq_numeral_iff_iszero"} lemmas are not declared |
|
703 |
@{text "[simp]"} by default, because for rings of characteristic zero, |
|
704 |
better simp rules are possible. For a type like integers mod @{text |
|
705 |
"n"}, type-instantiated versions of these rules should be added to the |
|
706 |
simplifier, along with a type-specific rule for deciding propositions |
|
707 |
of the form @{text "iszero (numeral w)"}. |
|
708 |
||
709 |
bh: Maybe it would not be so bad to just declare these as simp |
|
710 |
rules anyway? I should test whether these rules take precedence over |
|
711 |
the @{text "ring_char_0"} rules in the simplifier. |
|
712 |
*} |
|
713 |
||
714 |
lemma eq_numeral_iff_iszero: |
|
715 |
"numeral x = numeral y \<longleftrightarrow> iszero (sub x y)" |
|
716 |
"numeral x = neg_numeral y \<longleftrightarrow> iszero (numeral (x + y))" |
|
717 |
"neg_numeral x = numeral y \<longleftrightarrow> iszero (numeral (x + y))" |
|
718 |
"neg_numeral x = neg_numeral y \<longleftrightarrow> iszero (sub y x)" |
|
719 |
"numeral x = 1 \<longleftrightarrow> iszero (sub x One)" |
|
720 |
"1 = numeral y \<longleftrightarrow> iszero (sub One y)" |
|
721 |
"neg_numeral x = 1 \<longleftrightarrow> iszero (numeral (x + One))" |
|
722 |
"1 = neg_numeral y \<longleftrightarrow> iszero (numeral (One + y))" |
|
723 |
"numeral x = 0 \<longleftrightarrow> iszero (numeral x)" |
|
724 |
"0 = numeral y \<longleftrightarrow> iszero (numeral y)" |
|
725 |
"neg_numeral x = 0 \<longleftrightarrow> iszero (numeral x)" |
|
726 |
"0 = neg_numeral y \<longleftrightarrow> iszero (numeral y)" |
|
727 |
unfolding eq_iff_iszero_diff diff_numeral_simps diff_numeral_special |
|
728 |
by simp_all |
|
729 |
||
730 |
end |
|
731 |
||
732 |
subsubsection {* |
|
733 |
Equality and negation: class @{text ring_char_0} |
|
734 |
*} |
|
735 |
||
736 |
class ring_char_0 = ring_1 + semiring_char_0 |
|
737 |
begin |
|
738 |
||
739 |
lemma not_iszero_numeral [simp]: "\<not> iszero (numeral w)" |
|
740 |
by (simp add: iszero_def) |
|
741 |
||
742 |
lemma neg_numeral_eq_iff: "neg_numeral m = neg_numeral n \<longleftrightarrow> m = n" |
|
743 |
by (simp only: neg_numeral_def neg_equal_iff_equal numeral_eq_iff) |
|
744 |
||
745 |
lemma numeral_neq_neg_numeral: "numeral m \<noteq> neg_numeral n" |
|
746 |
unfolding neg_numeral_def eq_neg_iff_add_eq_0 |
|
747 |
by (simp add: numeral_plus_numeral) |
|
748 |
||
749 |
lemma neg_numeral_neq_numeral: "neg_numeral m \<noteq> numeral n" |
|
750 |
by (rule numeral_neq_neg_numeral [symmetric]) |
|
751 |
||
752 |
lemma zero_neq_neg_numeral: "0 \<noteq> neg_numeral n" |
|
753 |
unfolding neg_numeral_def neg_0_equal_iff_equal by simp |
|
754 |
||
755 |
lemma neg_numeral_neq_zero: "neg_numeral n \<noteq> 0" |
|
756 |
unfolding neg_numeral_def neg_equal_0_iff_equal by simp |
|
757 |
||
758 |
lemma one_neq_neg_numeral: "1 \<noteq> neg_numeral n" |
|
759 |
using numeral_neq_neg_numeral [of One n] by (simp add: numeral_One) |
|
760 |
||
761 |
lemma neg_numeral_neq_one: "neg_numeral n \<noteq> 1" |
|
762 |
using neg_numeral_neq_numeral [of n One] by (simp add: numeral_One) |
|
763 |
||
764 |
lemmas eq_neg_numeral_simps [simp] = |
|
765 |
neg_numeral_eq_iff |
|
766 |
numeral_neq_neg_numeral neg_numeral_neq_numeral |
|
767 |
one_neq_neg_numeral neg_numeral_neq_one |
|
768 |
zero_neq_neg_numeral neg_numeral_neq_zero |
|
769 |
||
770 |
end |
|
771 |
||
772 |
subsubsection {* |
|
773 |
Structures with negation and order: class @{text linordered_idom} |
|
774 |
*} |
|
775 |
||
776 |
context linordered_idom |
|
777 |
begin |
|
778 |
||
779 |
subclass ring_char_0 .. |
|
780 |
||
781 |
lemma neg_numeral_le_iff: "neg_numeral m \<le> neg_numeral n \<longleftrightarrow> n \<le> m" |
|
782 |
by (simp only: neg_numeral_def neg_le_iff_le numeral_le_iff) |
|
783 |
||
784 |
lemma neg_numeral_less_iff: "neg_numeral m < neg_numeral n \<longleftrightarrow> n < m" |
|
785 |
by (simp only: neg_numeral_def neg_less_iff_less numeral_less_iff) |
|
786 |
||
787 |
lemma neg_numeral_less_zero: "neg_numeral n < 0" |
|
788 |
by (simp only: neg_numeral_def neg_less_0_iff_less zero_less_numeral) |
|
789 |
||
790 |
lemma neg_numeral_le_zero: "neg_numeral n \<le> 0" |
|
791 |
by (simp only: neg_numeral_def neg_le_0_iff_le zero_le_numeral) |
|
792 |
||
793 |
lemma not_zero_less_neg_numeral: "\<not> 0 < neg_numeral n" |
|
794 |
by (simp only: not_less neg_numeral_le_zero) |
|
795 |
||
796 |
lemma not_zero_le_neg_numeral: "\<not> 0 \<le> neg_numeral n" |
|
797 |
by (simp only: not_le neg_numeral_less_zero) |
|
798 |
||
799 |
lemma neg_numeral_less_numeral: "neg_numeral m < numeral n" |
|
800 |
using neg_numeral_less_zero zero_less_numeral by (rule less_trans) |
|
801 |
||
802 |
lemma neg_numeral_le_numeral: "neg_numeral m \<le> numeral n" |
|
803 |
by (simp only: less_imp_le neg_numeral_less_numeral) |
|
804 |
||
805 |
lemma not_numeral_less_neg_numeral: "\<not> numeral m < neg_numeral n" |
|
806 |
by (simp only: not_less neg_numeral_le_numeral) |
|
807 |
||
808 |
lemma not_numeral_le_neg_numeral: "\<not> numeral m \<le> neg_numeral n" |
|
809 |
by (simp only: not_le neg_numeral_less_numeral) |
|
810 |
||
811 |
lemma neg_numeral_less_one: "neg_numeral m < 1" |
|
812 |
by (rule neg_numeral_less_numeral [of m One, unfolded numeral_One]) |
|
813 |
||
814 |
lemma neg_numeral_le_one: "neg_numeral m \<le> 1" |
|
815 |
by (rule neg_numeral_le_numeral [of m One, unfolded numeral_One]) |
|
816 |
||
817 |
lemma not_one_less_neg_numeral: "\<not> 1 < neg_numeral m" |
|
818 |
by (simp only: not_less neg_numeral_le_one) |
|
819 |
||
820 |
lemma not_one_le_neg_numeral: "\<not> 1 \<le> neg_numeral m" |
|
821 |
by (simp only: not_le neg_numeral_less_one) |
|
822 |
||
823 |
lemma sub_non_negative: |
|
824 |
"sub n m \<ge> 0 \<longleftrightarrow> n \<ge> m" |
|
825 |
by (simp only: sub_def le_diff_eq) simp |
|
826 |
||
827 |
lemma sub_positive: |
|
828 |
"sub n m > 0 \<longleftrightarrow> n > m" |
|
829 |
by (simp only: sub_def less_diff_eq) simp |
|
830 |
||
831 |
lemma sub_non_positive: |
|
832 |
"sub n m \<le> 0 \<longleftrightarrow> n \<le> m" |
|
833 |
by (simp only: sub_def diff_le_eq) simp |
|
834 |
||
835 |
lemma sub_negative: |
|
836 |
"sub n m < 0 \<longleftrightarrow> n < m" |
|
837 |
by (simp only: sub_def diff_less_eq) simp |
|
838 |
||
839 |
lemmas le_neg_numeral_simps [simp] = |
|
840 |
neg_numeral_le_iff |
|
841 |
neg_numeral_le_numeral not_numeral_le_neg_numeral |
|
842 |
neg_numeral_le_zero not_zero_le_neg_numeral |
|
843 |
neg_numeral_le_one not_one_le_neg_numeral |
|
844 |
||
845 |
lemmas less_neg_numeral_simps [simp] = |
|
846 |
neg_numeral_less_iff |
|
847 |
neg_numeral_less_numeral not_numeral_less_neg_numeral |
|
848 |
neg_numeral_less_zero not_zero_less_neg_numeral |
|
849 |
neg_numeral_less_one not_one_less_neg_numeral |
|
850 |
||
851 |
lemma abs_numeral [simp]: "abs (numeral n) = numeral n" |
|
852 |
by simp |
|
853 |
||
854 |
lemma abs_neg_numeral [simp]: "abs (neg_numeral n) = numeral n" |
|
855 |
by (simp only: neg_numeral_def abs_minus_cancel abs_numeral) |
|
856 |
||
857 |
end |
|
858 |
||
859 |
subsubsection {* |
|
860 |
Natural numbers |
|
861 |
*} |
|
862 |
||
863 |
lemma Suc_numeral [simp]: "Suc (numeral n) = numeral (n + One)" |
|
864 |
unfolding numeral_plus_one [symmetric] by simp |
|
865 |
||
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
866 |
definition pred_numeral :: "num \<Rightarrow> nat" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
867 |
where [code del]: "pred_numeral k = numeral k - 1" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
868 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
869 |
lemma numeral_eq_Suc: "numeral k = Suc (pred_numeral k)" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
870 |
unfolding pred_numeral_def by simp |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
871 |
|
47108 | 872 |
lemma nat_number: |
873 |
"1 = Suc 0" |
|
874 |
"numeral One = Suc 0" |
|
875 |
"numeral (Bit0 n) = Suc (numeral (BitM n))" |
|
876 |
"numeral (Bit1 n) = Suc (numeral (Bit0 n))" |
|
877 |
by (simp_all add: numeral.simps BitM_plus_one) |
|
878 |
||
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
879 |
lemma pred_numeral_simps [simp]: |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
880 |
"pred_numeral Num.One = 0" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
881 |
"pred_numeral (Num.Bit0 k) = numeral (Num.BitM k)" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
882 |
"pred_numeral (Num.Bit1 k) = numeral (Num.Bit0 k)" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
883 |
unfolding pred_numeral_def nat_number |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
884 |
by (simp_all only: diff_Suc_Suc diff_0) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
885 |
|
47192
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
886 |
lemma numeral_2_eq_2: "2 = Suc (Suc 0)" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
887 |
by (simp add: nat_number(2-4)) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
888 |
|
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
889 |
lemma numeral_3_eq_3: "3 = Suc (Suc (Suc 0))" |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
890 |
by (simp add: nat_number(2-4)) |
0c0501cb6da6
move many lemmas from Nat_Numeral.thy to Power.thy or Num.thy
huffman
parents:
47191
diff
changeset
|
891 |
|
47207
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
892 |
lemma numeral_1_eq_Suc_0: "Numeral1 = Suc 0" |
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
893 |
by (simp only: numeral_One One_nat_def) |
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
894 |
|
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
895 |
lemma Suc_nat_number_of_add: |
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
896 |
"Suc (numeral v + n) = numeral (v + Num.One) + n" |
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
897 |
by simp |
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
898 |
|
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
899 |
(*Maps #n to n for n = 1, 2*) |
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
900 |
lemmas numerals = numeral_One [where 'a=nat] numeral_2_eq_2 |
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
huffman
parents:
47192
diff
changeset
|
901 |
|
47209
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
902 |
text {* Comparisons involving @{term Suc}. *} |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
903 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
904 |
lemma eq_numeral_Suc [simp]: "numeral k = Suc n \<longleftrightarrow> pred_numeral k = n" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
905 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
906 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
907 |
lemma Suc_eq_numeral [simp]: "Suc n = numeral k \<longleftrightarrow> n = pred_numeral k" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
908 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
909 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
910 |
lemma less_numeral_Suc [simp]: "numeral k < Suc n \<longleftrightarrow> pred_numeral k < n" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
911 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
912 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
913 |
lemma less_Suc_numeral [simp]: "Suc n < numeral k \<longleftrightarrow> n < pred_numeral k" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
914 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
915 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
916 |
lemma le_numeral_Suc [simp]: "numeral k \<le> Suc n \<longleftrightarrow> pred_numeral k \<le> n" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
917 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
918 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
919 |
lemma le_Suc_numeral [simp]: "Suc n \<le> numeral k \<longleftrightarrow> n \<le> pred_numeral k" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
920 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
921 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
922 |
lemma max_Suc_numeral [simp]: |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
923 |
"max (Suc n) (numeral k) = Suc (max n (pred_numeral k))" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
924 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
925 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
926 |
lemma max_numeral_Suc [simp]: |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
927 |
"max (numeral k) (Suc n) = Suc (max (pred_numeral k) n)" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
928 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
929 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
930 |
lemma min_Suc_numeral [simp]: |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
931 |
"min (Suc n) (numeral k) = Suc (min n (pred_numeral k))" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
932 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
933 |
|
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
934 |
lemma min_numeral_Suc [simp]: |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
935 |
"min (numeral k) (Suc n) = Suc (min (pred_numeral k) n)" |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
936 |
by (simp add: numeral_eq_Suc) |
4893907fe872
add constant pred_numeral k = numeral k - (1::nat);
huffman
parents:
47207
diff
changeset
|
937 |
|
47216
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
938 |
text {* For @{term nat_case} and @{term nat_rec}. *} |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
939 |
|
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
940 |
lemma nat_case_numeral [simp]: |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
941 |
"nat_case a f (numeral v) = (let pv = pred_numeral v in f pv)" |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
942 |
by (simp add: numeral_eq_Suc) |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
943 |
|
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
944 |
lemma nat_case_add_eq_if [simp]: |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
945 |
"nat_case a f ((numeral v) + n) = (let pv = pred_numeral v in f (pv + n))" |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
946 |
by (simp add: numeral_eq_Suc) |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
947 |
|
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
948 |
lemma nat_rec_numeral [simp]: |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
949 |
"nat_rec a f (numeral v) = |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
950 |
(let pv = pred_numeral v in f pv (nat_rec a f pv))" |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
951 |
by (simp add: numeral_eq_Suc Let_def) |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
952 |
|
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
953 |
lemma nat_rec_add_eq_if [simp]: |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
954 |
"nat_rec a f (numeral v + n) = |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
955 |
(let pv = pred_numeral v in f (pv + n) (nat_rec a f (pv + n)))" |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
956 |
by (simp add: numeral_eq_Suc Let_def) |
4d0878d54ca5
move more theorems from Nat_Numeral.thy to Num.thy
huffman
parents:
47211
diff
changeset
|
957 |
|
47108 | 958 |
|
959 |
subsection {* Numeral equations as default simplification rules *} |
|
960 |
||
961 |
declare (in numeral) numeral_One [simp] |
|
962 |
declare (in numeral) numeral_plus_numeral [simp] |
|
963 |
declare (in numeral) add_numeral_special [simp] |
|
964 |
declare (in neg_numeral) add_neg_numeral_simps [simp] |
|
965 |
declare (in neg_numeral) add_neg_numeral_special [simp] |
|
966 |
declare (in neg_numeral) diff_numeral_simps [simp] |
|
967 |
declare (in neg_numeral) diff_numeral_special [simp] |
|
968 |
declare (in semiring_numeral) numeral_times_numeral [simp] |
|
969 |
declare (in ring_1) mult_neg_numeral_simps [simp] |
|
970 |
||
971 |
subsection {* Setting up simprocs *} |
|
972 |
||
973 |
lemma numeral_reorient: |
|
974 |
"(numeral w = x) = (x = numeral w)" |
|
975 |
by auto |
|
976 |
||
977 |
lemma mult_numeral_1: "Numeral1 * a = (a::'a::semiring_numeral)" |
|
978 |
by simp |
|
979 |
||
980 |
lemma mult_numeral_1_right: "a * Numeral1 = (a::'a::semiring_numeral)" |
|
981 |
by simp |
|
982 |
||
983 |
lemma divide_numeral_1: "a / Numeral1 = (a::'a::field)" |
|
984 |
by simp |
|
985 |
||
986 |
lemma inverse_numeral_1: |
|
987 |
"inverse Numeral1 = (Numeral1::'a::division_ring)" |
|
988 |
by simp |
|
989 |
||
47211 | 990 |
text{*Theorem lists for the cancellation simprocs. The use of a binary |
47108 | 991 |
numeral for 1 reduces the number of special cases.*} |
992 |
||
993 |
lemmas mult_1s = |
|
994 |
mult_numeral_1 mult_numeral_1_right |
|
995 |
mult_minus1 mult_minus1_right |
|
996 |
||
997 |
||
998 |
subsubsection {* Simplification of arithmetic operations on integer constants. *} |
|
999 |
||
1000 |
lemmas arith_special = (* already declared simp above *) |
|
1001 |
add_numeral_special add_neg_numeral_special |
|
1002 |
diff_numeral_special minus_one |
|
1003 |
||
1004 |
(* rules already in simpset *) |
|
1005 |
lemmas arith_extra_simps = |
|
1006 |
numeral_plus_numeral add_neg_numeral_simps add_0_left add_0_right |
|
1007 |
minus_numeral minus_neg_numeral minus_zero minus_one |
|
1008 |
diff_numeral_simps diff_0 diff_0_right |
|
1009 |
numeral_times_numeral mult_neg_numeral_simps |
|
1010 |
mult_zero_left mult_zero_right |
|
1011 |
abs_numeral abs_neg_numeral |
|
1012 |
||
1013 |
text {* |
|
1014 |
For making a minimal simpset, one must include these default simprules. |
|
1015 |
Also include @{text simp_thms}. |
|
1016 |
*} |
|
1017 |
||
1018 |
lemmas arith_simps = |
|
1019 |
add_num_simps mult_num_simps sub_num_simps |
|
1020 |
BitM.simps dbl_simps dbl_inc_simps dbl_dec_simps |
|
1021 |
abs_zero abs_one arith_extra_simps |
|
1022 |
||
1023 |
text {* Simplification of relational operations *} |
|
1024 |
||
1025 |
lemmas eq_numeral_extra = |
|
1026 |
zero_neq_one one_neq_zero |
|
1027 |
||
1028 |
lemmas rel_simps = |
|
1029 |
le_num_simps less_num_simps eq_num_simps |
|
1030 |
le_numeral_simps le_neg_numeral_simps le_numeral_extra |
|
1031 |
less_numeral_simps less_neg_numeral_simps less_numeral_extra |
|
1032 |
eq_numeral_simps eq_neg_numeral_simps eq_numeral_extra |
|
1033 |
||
1034 |
||
1035 |
subsubsection {* Simplification of arithmetic when nested to the right. *} |
|
1036 |
||
1037 |
lemma add_numeral_left [simp]: |
|
1038 |
"numeral v + (numeral w + z) = (numeral(v + w) + z)" |
|
1039 |
by (simp_all add: add_assoc [symmetric]) |
|
1040 |
||
1041 |
lemma add_neg_numeral_left [simp]: |
|
1042 |
"numeral v + (neg_numeral w + y) = (sub v w + y)" |
|
1043 |
"neg_numeral v + (numeral w + y) = (sub w v + y)" |
|
1044 |
"neg_numeral v + (neg_numeral w + y) = (neg_numeral(v + w) + y)" |
|
1045 |
by (simp_all add: add_assoc [symmetric]) |
|
1046 |
||
1047 |
lemma mult_numeral_left [simp]: |
|
1048 |
"numeral v * (numeral w * z) = (numeral(v * w) * z :: 'a::semiring_numeral)" |
|
1049 |
"neg_numeral v * (numeral w * y) = (neg_numeral(v * w) * y :: 'b::ring_1)" |
|
1050 |
"numeral v * (neg_numeral w * y) = (neg_numeral(v * w) * y :: 'b::ring_1)" |
|
1051 |
"neg_numeral v * (neg_numeral w * y) = (numeral(v * w) * y :: 'b::ring_1)" |
|
1052 |
by (simp_all add: mult_assoc [symmetric]) |
|
1053 |
||
1054 |
hide_const (open) One Bit0 Bit1 BitM inc pow sqr sub dbl dbl_inc dbl_dec |
|
1055 |
||
1056 |
subsection {* code module namespace *} |
|
1057 |
||
1058 |
code_modulename SML |
|
47126 | 1059 |
Num Arith |
47108 | 1060 |
|
1061 |
code_modulename OCaml |
|
47126 | 1062 |
Num Arith |
47108 | 1063 |
|
1064 |
code_modulename Haskell |
|
47126 | 1065 |
Num Arith |
47108 | 1066 |
|
1067 |
end |