| author | haftmann | 
| Thu, 28 Aug 2008 22:08:02 +0200 | |
| changeset 28052 | 4dc09699cf93 | 
| parent 27405 | 785f5dbec8f4 | 
| child 29138 | 661a8db7e647 | 
| child 29237 | e90d9d51106b | 
| permissions | -rw-r--r-- | 
| 25904 | 1 | (* Title: HOLCF/UpperPD.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Brian Huffman | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Upper powerdomain *}
 | |
| 7 | ||
| 8 | theory UpperPD | |
| 9 | imports CompactBasis | |
| 10 | begin | |
| 11 | ||
| 12 | subsection {* Basis preorder *}
 | |
| 13 | ||
| 14 | definition | |
| 15 | upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 16 | "upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. x \<sqsubseteq> y)" | 
| 25904 | 17 | |
| 18 | lemma upper_le_refl [simp]: "t \<le>\<sharp> t" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 19 | unfolding upper_le_def by fast | 
| 25904 | 20 | |
| 21 | lemma upper_le_trans: "\<lbrakk>t \<le>\<sharp> u; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> t \<le>\<sharp> v" | |
| 22 | unfolding upper_le_def | |
| 23 | apply (rule ballI) | |
| 24 | apply (drule (1) bspec, erule bexE) | |
| 25 | apply (drule (1) bspec, erule bexE) | |
| 26 | apply (erule rev_bexI) | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 27 | apply (erule (1) trans_less) | 
| 25904 | 28 | done | 
| 29 | ||
| 30 | interpretation upper_le: preorder [upper_le] | |
| 31 | by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans) | |
| 32 | ||
| 33 | lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t" | |
| 34 | unfolding upper_le_def Rep_PDUnit by simp | |
| 35 | ||
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 36 | lemma PDUnit_upper_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<sharp> PDUnit y" | 
| 25904 | 37 | unfolding upper_le_def Rep_PDUnit by simp | 
| 38 | ||
| 39 | lemma PDPlus_upper_mono: "\<lbrakk>s \<le>\<sharp> t; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<sharp> PDPlus t v" | |
| 40 | unfolding upper_le_def Rep_PDPlus by fast | |
| 41 | ||
| 42 | lemma PDPlus_upper_less: "PDPlus t u \<le>\<sharp> t" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 43 | unfolding upper_le_def Rep_PDPlus by fast | 
| 25904 | 44 | |
| 45 | lemma upper_le_PDUnit_PDUnit_iff [simp]: | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 46 | "(PDUnit a \<le>\<sharp> PDUnit b) = a \<sqsubseteq> b" | 
| 25904 | 47 | unfolding upper_le_def Rep_PDUnit by fast | 
| 48 | ||
| 49 | lemma upper_le_PDPlus_PDUnit_iff: | |
| 50 | "(PDPlus t u \<le>\<sharp> PDUnit a) = (t \<le>\<sharp> PDUnit a \<or> u \<le>\<sharp> PDUnit a)" | |
| 51 | unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast | |
| 52 | ||
| 53 | lemma upper_le_PDPlus_iff: "(t \<le>\<sharp> PDPlus u v) = (t \<le>\<sharp> u \<and> t \<le>\<sharp> v)" | |
| 54 | unfolding upper_le_def Rep_PDPlus by fast | |
| 55 | ||
| 56 | lemma upper_le_induct [induct set: upper_le]: | |
| 57 | assumes le: "t \<le>\<sharp> u" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 58 | assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)" | 
| 25904 | 59 | assumes 2: "\<And>t u a. P t (PDUnit a) \<Longrightarrow> P (PDPlus t u) (PDUnit a)" | 
| 60 | assumes 3: "\<And>t u v. \<lbrakk>P t u; P t v\<rbrakk> \<Longrightarrow> P t (PDPlus u v)" | |
| 61 | shows "P t u" | |
| 62 | using le apply (induct u arbitrary: t rule: pd_basis_induct) | |
| 63 | apply (erule rev_mp) | |
| 64 | apply (induct_tac t rule: pd_basis_induct) | |
| 65 | apply (simp add: 1) | |
| 66 | apply (simp add: upper_le_PDPlus_PDUnit_iff) | |
| 67 | apply (simp add: 2) | |
| 68 | apply (subst PDPlus_commute) | |
| 69 | apply (simp add: 2) | |
| 70 | apply (simp add: upper_le_PDPlus_iff 3) | |
| 71 | done | |
| 72 | ||
| 27405 | 73 | lemma pd_take_upper_chain: | 
| 74 | "pd_take n t \<le>\<sharp> pd_take (Suc n) t" | |
| 25904 | 75 | apply (induct t rule: pd_basis_induct) | 
| 27289 | 76 | apply (simp add: compact_basis.take_chain) | 
| 25904 | 77 | apply (simp add: PDPlus_upper_mono) | 
| 78 | done | |
| 79 | ||
| 27405 | 80 | lemma pd_take_upper_le: "pd_take i t \<le>\<sharp> t" | 
| 25904 | 81 | apply (induct t rule: pd_basis_induct) | 
| 27289 | 82 | apply (simp add: compact_basis.take_less) | 
| 25904 | 83 | apply (simp add: PDPlus_upper_mono) | 
| 84 | done | |
| 85 | ||
| 27405 | 86 | lemma pd_take_upper_mono: | 
| 87 | "t \<le>\<sharp> u \<Longrightarrow> pd_take n t \<le>\<sharp> pd_take n u" | |
| 25904 | 88 | apply (erule upper_le_induct) | 
| 27289 | 89 | apply (simp add: compact_basis.take_mono) | 
| 25904 | 90 | apply (simp add: upper_le_PDPlus_PDUnit_iff) | 
| 91 | apply (simp add: upper_le_PDPlus_iff) | |
| 92 | done | |
| 93 | ||
| 94 | ||
| 95 | subsection {* Type definition *}
 | |
| 96 | ||
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 97 | typedef (open) 'a upper_pd = | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 98 |   "{S::'a pd_basis set. upper_le.ideal S}"
 | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 99 | by (fast intro: upper_le.ideal_principal) | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 100 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 101 | instantiation upper_pd :: (profinite) sq_ord | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 102 | begin | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 103 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 104 | definition | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 105 | "x \<sqsubseteq> y \<longleftrightarrow> Rep_upper_pd x \<subseteq> Rep_upper_pd y" | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 106 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 107 | instance .. | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 108 | end | 
| 25904 | 109 | |
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 110 | instance upper_pd :: (profinite) po | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 111 | by (rule upper_le.typedef_ideal_po | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 112 | [OF type_definition_upper_pd sq_le_upper_pd_def]) | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 113 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 114 | instance upper_pd :: (profinite) cpo | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 115 | by (rule upper_le.typedef_ideal_cpo | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 116 | [OF type_definition_upper_pd sq_le_upper_pd_def]) | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 117 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 118 | lemma Rep_upper_pd_lub: | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 119 | "chain Y \<Longrightarrow> Rep_upper_pd (\<Squnion>i. Y i) = (\<Union>i. Rep_upper_pd (Y i))" | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 120 | by (rule upper_le.typedef_ideal_rep_contlub | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 121 | [OF type_definition_upper_pd sq_le_upper_pd_def]) | 
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 122 | |
| 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 123 | lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_upper_pd xs)" | 
| 26927 | 124 | by (rule Rep_upper_pd [unfolded mem_Collect_eq]) | 
| 25904 | 125 | |
| 126 | definition | |
| 127 | upper_principal :: "'a pd_basis \<Rightarrow> 'a upper_pd" where | |
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 128 |   "upper_principal t = Abs_upper_pd {u. u \<le>\<sharp> t}"
 | 
| 25904 | 129 | |
| 130 | lemma Rep_upper_principal: | |
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 131 |   "Rep_upper_pd (upper_principal t) = {u. u \<le>\<sharp> t}"
 | 
| 25904 | 132 | unfolding upper_principal_def | 
| 27297 
2c42b1505f25
removed SetPcpo.thy and cpo instance for type bool;
 huffman parents: 
27289diff
changeset | 133 | by (simp add: Abs_upper_pd_inverse upper_le.ideal_principal) | 
| 25904 | 134 | |
| 135 | interpretation upper_pd: | |
| 27405 | 136 | ideal_completion [upper_le pd_take upper_principal Rep_upper_pd] | 
| 25904 | 137 | apply unfold_locales | 
| 27405 | 138 | apply (rule pd_take_upper_le) | 
| 139 | apply (rule pd_take_idem) | |
| 140 | apply (erule pd_take_upper_mono) | |
| 141 | apply (rule pd_take_upper_chain) | |
| 142 | apply (rule finite_range_pd_take) | |
| 143 | apply (rule pd_take_covers) | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 144 | apply (rule ideal_Rep_upper_pd) | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 145 | apply (erule Rep_upper_pd_lub) | 
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 146 | apply (rule Rep_upper_principal) | 
| 27373 
5794a0e3e26c
remove cset theory; define ideal completions using typedef instead of cpodef
 huffman parents: 
27310diff
changeset | 147 | apply (simp only: sq_le_upper_pd_def) | 
| 25904 | 148 | done | 
| 149 | ||
| 27289 | 150 | text {* Upper powerdomain is pointed *}
 | 
| 25904 | 151 | |
| 152 | lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys" | |
| 153 | by (induct ys rule: upper_pd.principal_induct, simp, simp) | |
| 154 | ||
| 155 | instance upper_pd :: (bifinite) pcpo | |
| 26927 | 156 | by intro_classes (fast intro: upper_pd_minimal) | 
| 25904 | 157 | |
| 158 | lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)" | |
| 159 | by (rule upper_pd_minimal [THEN UU_I, symmetric]) | |
| 160 | ||
| 27289 | 161 | text {* Upper powerdomain is profinite *}
 | 
| 25904 | 162 | |
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 163 | instantiation upper_pd :: (profinite) profinite | 
| 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 164 | begin | 
| 25904 | 165 | |
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 166 | definition | 
| 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 167 | approx_upper_pd_def: "approx = upper_pd.completion_approx" | 
| 26927 | 168 | |
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 169 | instance | 
| 26927 | 170 | apply (intro_classes, unfold approx_upper_pd_def) | 
| 27310 | 171 | apply (rule upper_pd.chain_completion_approx) | 
| 26927 | 172 | apply (rule upper_pd.lub_completion_approx) | 
| 173 | apply (rule upper_pd.completion_approx_idem) | |
| 174 | apply (rule upper_pd.finite_fixes_completion_approx) | |
| 175 | done | |
| 176 | ||
| 26962 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 177 | end | 
| 
c8b20f615d6c
use new class package for classes profinite, bifinite; remove approx class
 huffman parents: 
26927diff
changeset | 178 | |
| 26927 | 179 | instance upper_pd :: (bifinite) bifinite .. | 
| 25904 | 180 | |
| 181 | lemma approx_upper_principal [simp]: | |
| 27405 | 182 | "approx n\<cdot>(upper_principal t) = upper_principal (pd_take n t)" | 
| 25904 | 183 | unfolding approx_upper_pd_def | 
| 26927 | 184 | by (rule upper_pd.completion_approx_principal) | 
| 25904 | 185 | |
| 186 | lemma approx_eq_upper_principal: | |
| 27405 | 187 | "\<exists>t\<in>Rep_upper_pd xs. approx n\<cdot>xs = upper_principal (pd_take n t)" | 
| 25904 | 188 | unfolding approx_upper_pd_def | 
| 26927 | 189 | by (rule upper_pd.completion_approx_eq_principal) | 
| 26407 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 190 | |
| 25904 | 191 | |
| 26927 | 192 | subsection {* Monadic unit and plus *}
 | 
| 25904 | 193 | |
| 194 | definition | |
| 195 | upper_unit :: "'a \<rightarrow> 'a upper_pd" where | |
| 196 | "upper_unit = compact_basis.basis_fun (\<lambda>a. upper_principal (PDUnit a))" | |
| 197 | ||
| 198 | definition | |
| 199 | upper_plus :: "'a upper_pd \<rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd" where | |
| 200 | "upper_plus = upper_pd.basis_fun (\<lambda>t. upper_pd.basis_fun (\<lambda>u. | |
| 201 | upper_principal (PDPlus t u)))" | |
| 202 | ||
| 203 | abbreviation | |
| 204 | upper_add :: "'a upper_pd \<Rightarrow> 'a upper_pd \<Rightarrow> 'a upper_pd" | |
| 205 | (infixl "+\<sharp>" 65) where | |
| 206 | "xs +\<sharp> ys == upper_plus\<cdot>xs\<cdot>ys" | |
| 207 | ||
| 26927 | 208 | syntax | 
| 209 |   "_upper_pd" :: "args \<Rightarrow> 'a upper_pd" ("{_}\<sharp>")
 | |
| 210 | ||
| 211 | translations | |
| 212 |   "{x,xs}\<sharp>" == "{x}\<sharp> +\<sharp> {xs}\<sharp>"
 | |
| 213 |   "{x}\<sharp>" == "CONST upper_unit\<cdot>x"
 | |
| 214 | ||
| 215 | lemma upper_unit_Rep_compact_basis [simp]: | |
| 216 |   "{Rep_compact_basis a}\<sharp> = upper_principal (PDUnit a)"
 | |
| 217 | unfolding upper_unit_def | |
| 27289 | 218 | by (simp add: compact_basis.basis_fun_principal PDUnit_upper_mono) | 
| 26927 | 219 | |
| 25904 | 220 | lemma upper_plus_principal [simp]: | 
| 26927 | 221 | "upper_principal t +\<sharp> upper_principal u = upper_principal (PDPlus t u)" | 
| 25904 | 222 | unfolding upper_plus_def | 
| 223 | by (simp add: upper_pd.basis_fun_principal | |
| 224 | upper_pd.basis_fun_mono PDPlus_upper_mono) | |
| 225 | ||
| 26927 | 226 | lemma approx_upper_unit [simp]: | 
| 227 |   "approx n\<cdot>{x}\<sharp> = {approx n\<cdot>x}\<sharp>"
 | |
| 27289 | 228 | apply (induct x rule: compact_basis.principal_induct, simp) | 
| 26927 | 229 | apply (simp add: approx_Rep_compact_basis) | 
| 230 | done | |
| 231 | ||
| 25904 | 232 | lemma approx_upper_plus [simp]: | 
| 26927 | 233 | "approx n\<cdot>(xs +\<sharp> ys) = (approx n\<cdot>xs) +\<sharp> (approx n\<cdot>ys)" | 
| 27289 | 234 | by (induct xs ys rule: upper_pd.principal_induct2, simp, simp, simp) | 
| 25904 | 235 | |
| 26927 | 236 | lemma upper_plus_assoc: "(xs +\<sharp> ys) +\<sharp> zs = xs +\<sharp> (ys +\<sharp> zs)" | 
| 27289 | 237 | apply (induct xs ys arbitrary: zs rule: upper_pd.principal_induct2, simp, simp) | 
| 238 | apply (rule_tac x=zs in upper_pd.principal_induct, simp) | |
| 25904 | 239 | apply (simp add: PDPlus_assoc) | 
| 240 | done | |
| 241 | ||
| 26927 | 242 | lemma upper_plus_commute: "xs +\<sharp> ys = ys +\<sharp> xs" | 
| 27289 | 243 | apply (induct xs ys rule: upper_pd.principal_induct2, simp, simp) | 
| 26927 | 244 | apply (simp add: PDPlus_commute) | 
| 245 | done | |
| 246 | ||
| 247 | lemma upper_plus_absorb: "xs +\<sharp> xs = xs" | |
| 27289 | 248 | apply (induct xs rule: upper_pd.principal_induct, simp) | 
| 25904 | 249 | apply (simp add: PDPlus_absorb) | 
| 250 | done | |
| 251 | ||
| 26927 | 252 | interpretation aci_upper_plus: ab_semigroup_idem_mult ["op +\<sharp>"] | 
| 253 | by unfold_locales | |
| 254 | (rule upper_plus_assoc upper_plus_commute upper_plus_absorb)+ | |
| 255 | ||
| 256 | lemma upper_plus_left_commute: "xs +\<sharp> (ys +\<sharp> zs) = ys +\<sharp> (xs +\<sharp> zs)" | |
| 257 | by (rule aci_upper_plus.mult_left_commute) | |
| 258 | ||
| 259 | lemma upper_plus_left_absorb: "xs +\<sharp> (xs +\<sharp> ys) = xs +\<sharp> ys" | |
| 260 | by (rule aci_upper_plus.mult_left_idem) | |
| 261 | ||
| 262 | lemmas upper_plus_aci = aci_upper_plus.mult_ac_idem | |
| 263 | ||
| 264 | lemma upper_plus_less1: "xs +\<sharp> ys \<sqsubseteq> xs" | |
| 27289 | 265 | apply (induct xs ys rule: upper_pd.principal_induct2, simp, simp) | 
| 25904 | 266 | apply (simp add: PDPlus_upper_less) | 
| 267 | done | |
| 268 | ||
| 26927 | 269 | lemma upper_plus_less2: "xs +\<sharp> ys \<sqsubseteq> ys" | 
| 25904 | 270 | by (subst upper_plus_commute, rule upper_plus_less1) | 
| 271 | ||
| 26927 | 272 | lemma upper_plus_greatest: "\<lbrakk>xs \<sqsubseteq> ys; xs \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsubseteq> ys +\<sharp> zs" | 
| 25904 | 273 | apply (subst upper_plus_absorb [of xs, symmetric]) | 
| 274 | apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) | |
| 275 | done | |
| 276 | ||
| 277 | lemma upper_less_plus_iff: | |
| 26927 | 278 | "xs \<sqsubseteq> ys +\<sharp> zs \<longleftrightarrow> xs \<sqsubseteq> ys \<and> xs \<sqsubseteq> zs" | 
| 25904 | 279 | apply safe | 
| 280 | apply (erule trans_less [OF _ upper_plus_less1]) | |
| 281 | apply (erule trans_less [OF _ upper_plus_less2]) | |
| 282 | apply (erule (1) upper_plus_greatest) | |
| 283 | done | |
| 284 | ||
| 285 | lemma upper_plus_less_unit_iff: | |
| 26927 | 286 |   "xs +\<sharp> ys \<sqsubseteq> {z}\<sharp> \<longleftrightarrow> xs \<sqsubseteq> {z}\<sharp> \<or> ys \<sqsubseteq> {z}\<sharp>"
 | 
| 25904 | 287 | apply (rule iffI) | 
| 288 | apply (subgoal_tac | |
| 26927 | 289 |     "adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>{z}\<sharp> \<or> f\<cdot>ys \<sqsubseteq> f\<cdot>{z}\<sharp>)")
 | 
| 25925 | 290 | apply (drule admD, rule chain_approx) | 
| 25904 | 291 | apply (drule_tac f="approx i" in monofun_cfun_arg) | 
| 27289 | 292 | apply (cut_tac x="approx i\<cdot>xs" in upper_pd.compact_imp_principal, simp) | 
| 293 | apply (cut_tac x="approx i\<cdot>ys" in upper_pd.compact_imp_principal, simp) | |
| 294 | apply (cut_tac x="approx i\<cdot>z" in compact_basis.compact_imp_principal, simp) | |
| 25904 | 295 | apply (clarify, simp add: upper_le_PDPlus_PDUnit_iff) | 
| 296 | apply simp | |
| 297 | apply simp | |
| 298 | apply (erule disjE) | |
| 299 | apply (erule trans_less [OF upper_plus_less1]) | |
| 300 | apply (erule trans_less [OF upper_plus_less2]) | |
| 301 | done | |
| 302 | ||
| 26927 | 303 | lemma upper_unit_less_iff [simp]: "{x}\<sharp> \<sqsubseteq> {y}\<sharp> \<longleftrightarrow> x \<sqsubseteq> y"
 | 
| 304 | apply (rule iffI) | |
| 27309 | 305 | apply (rule profinite_less_ext) | 
| 26927 | 306 | apply (drule_tac f="approx i" in monofun_cfun_arg, simp) | 
| 27289 | 307 | apply (cut_tac x="approx i\<cdot>x" in compact_basis.compact_imp_principal, simp) | 
| 308 | apply (cut_tac x="approx i\<cdot>y" in compact_basis.compact_imp_principal, simp) | |
| 309 | apply clarsimp | |
| 26927 | 310 | apply (erule monofun_cfun_arg) | 
| 311 | done | |
| 312 | ||
| 25904 | 313 | lemmas upper_pd_less_simps = | 
| 314 | upper_unit_less_iff | |
| 315 | upper_less_plus_iff | |
| 316 | upper_plus_less_unit_iff | |
| 317 | ||
| 26927 | 318 | lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> \<longleftrightarrow> x = y"
 | 
| 319 | unfolding po_eq_conv by simp | |
| 320 | ||
| 321 | lemma upper_unit_strict [simp]: "{\<bottom>}\<sharp> = \<bottom>"
 | |
| 322 | unfolding inst_upper_pd_pcpo Rep_compact_bot [symmetric] by simp | |
| 323 | ||
| 324 | lemma upper_plus_strict1 [simp]: "\<bottom> +\<sharp> ys = \<bottom>" | |
| 325 | by (rule UU_I, rule upper_plus_less1) | |
| 326 | ||
| 327 | lemma upper_plus_strict2 [simp]: "xs +\<sharp> \<bottom> = \<bottom>" | |
| 328 | by (rule UU_I, rule upper_plus_less2) | |
| 329 | ||
| 330 | lemma upper_unit_strict_iff [simp]: "{x}\<sharp> = \<bottom> \<longleftrightarrow> x = \<bottom>"
 | |
| 331 | unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff) | |
| 332 | ||
| 333 | lemma upper_plus_strict_iff [simp]: | |
| 334 | "xs +\<sharp> ys = \<bottom> \<longleftrightarrow> xs = \<bottom> \<or> ys = \<bottom>" | |
| 335 | apply (rule iffI) | |
| 336 | apply (erule rev_mp) | |
| 27289 | 337 | apply (rule upper_pd.principal_induct2 [where x=xs and y=ys], simp, simp) | 
| 338 | apply (simp add: inst_upper_pd_pcpo upper_pd.principal_eq_iff | |
| 26927 | 339 | upper_le_PDPlus_PDUnit_iff) | 
| 340 | apply auto | |
| 341 | done | |
| 342 | ||
| 343 | lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> \<longleftrightarrow> compact x"
 | |
| 27309 | 344 | unfolding profinite_compact_iff by simp | 
| 26927 | 345 | |
| 346 | lemma compact_upper_plus [simp]: | |
| 347 | "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<sharp> ys)" | |
| 27289 | 348 | by (auto dest!: upper_pd.compact_imp_principal) | 
| 26927 | 349 | |
| 25904 | 350 | |
| 351 | subsection {* Induction rules *}
 | |
| 352 | ||
| 353 | lemma upper_pd_induct1: | |
| 354 | assumes P: "adm P" | |
| 26927 | 355 |   assumes unit: "\<And>x. P {x}\<sharp>"
 | 
| 356 |   assumes insert: "\<And>x ys. \<lbrakk>P {x}\<sharp>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<sharp> +\<sharp> ys)"
 | |
| 25904 | 357 | shows "P (xs::'a upper_pd)" | 
| 27289 | 358 | apply (induct xs rule: upper_pd.principal_induct, rule P) | 
| 359 | apply (induct_tac a rule: pd_basis_induct1) | |
| 25904 | 360 | apply (simp only: upper_unit_Rep_compact_basis [symmetric]) | 
| 361 | apply (rule unit) | |
| 362 | apply (simp only: upper_unit_Rep_compact_basis [symmetric] | |
| 363 | upper_plus_principal [symmetric]) | |
| 364 | apply (erule insert [OF unit]) | |
| 365 | done | |
| 366 | ||
| 367 | lemma upper_pd_induct: | |
| 368 | assumes P: "adm P" | |
| 26927 | 369 |   assumes unit: "\<And>x. P {x}\<sharp>"
 | 
| 370 | assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs +\<sharp> ys)" | |
| 25904 | 371 | shows "P (xs::'a upper_pd)" | 
| 27289 | 372 | apply (induct xs rule: upper_pd.principal_induct, rule P) | 
| 373 | apply (induct_tac a rule: pd_basis_induct) | |
| 25904 | 374 | apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit) | 
| 375 | apply (simp only: upper_plus_principal [symmetric] plus) | |
| 376 | done | |
| 377 | ||
| 378 | ||
| 379 | subsection {* Monadic bind *}
 | |
| 380 | ||
| 381 | definition | |
| 382 | upper_bind_basis :: | |
| 383 |   "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
 | |
| 384 | "upper_bind_basis = fold_pd | |
| 385 | (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a)) | |
| 26927 | 386 | (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)" | 
| 25904 | 387 | |
| 26927 | 388 | lemma ACI_upper_bind: | 
| 389 | "ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)" | |
| 25904 | 390 | apply unfold_locales | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 391 | apply (simp add: upper_plus_assoc) | 
| 25904 | 392 | apply (simp add: upper_plus_commute) | 
| 393 | apply (simp add: upper_plus_absorb eta_cfun) | |
| 394 | done | |
| 395 | ||
| 396 | lemma upper_bind_basis_simps [simp]: | |
| 397 | "upper_bind_basis (PDUnit a) = | |
| 398 | (\<Lambda> f. f\<cdot>(Rep_compact_basis a))" | |
| 399 | "upper_bind_basis (PDPlus t u) = | |
| 26927 | 400 | (\<Lambda> f. upper_bind_basis t\<cdot>f +\<sharp> upper_bind_basis u\<cdot>f)" | 
| 25904 | 401 | unfolding upper_bind_basis_def | 
| 402 | apply - | |
| 26927 | 403 | apply (rule fold_pd_PDUnit [OF ACI_upper_bind]) | 
| 404 | apply (rule fold_pd_PDPlus [OF ACI_upper_bind]) | |
| 25904 | 405 | done | 
| 406 | ||
| 407 | lemma upper_bind_basis_mono: | |
| 408 | "t \<le>\<sharp> u \<Longrightarrow> upper_bind_basis t \<sqsubseteq> upper_bind_basis u" | |
| 409 | unfolding expand_cfun_less | |
| 410 | apply (erule upper_le_induct, safe) | |
| 27289 | 411 | apply (simp add: monofun_cfun) | 
| 25904 | 412 | apply (simp add: trans_less [OF upper_plus_less1]) | 
| 413 | apply (simp add: upper_less_plus_iff) | |
| 414 | done | |
| 415 | ||
| 416 | definition | |
| 417 |   upper_bind :: "'a upper_pd \<rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
 | |
| 418 | "upper_bind = upper_pd.basis_fun upper_bind_basis" | |
| 419 | ||
| 420 | lemma upper_bind_principal [simp]: | |
| 421 | "upper_bind\<cdot>(upper_principal t) = upper_bind_basis t" | |
| 422 | unfolding upper_bind_def | |
| 423 | apply (rule upper_pd.basis_fun_principal) | |
| 424 | apply (erule upper_bind_basis_mono) | |
| 425 | done | |
| 426 | ||
| 427 | lemma upper_bind_unit [simp]: | |
| 26927 | 428 |   "upper_bind\<cdot>{x}\<sharp>\<cdot>f = f\<cdot>x"
 | 
| 27289 | 429 | by (induct x rule: compact_basis.principal_induct, simp, simp) | 
| 25904 | 430 | |
| 431 | lemma upper_bind_plus [simp]: | |
| 26927 | 432 | "upper_bind\<cdot>(xs +\<sharp> ys)\<cdot>f = upper_bind\<cdot>xs\<cdot>f +\<sharp> upper_bind\<cdot>ys\<cdot>f" | 
| 27289 | 433 | by (induct xs ys rule: upper_pd.principal_induct2, simp, simp, simp) | 
| 25904 | 434 | |
| 435 | lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>" | |
| 436 | unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit) | |
| 437 | ||
| 438 | ||
| 439 | subsection {* Map and join *}
 | |
| 440 | ||
| 441 | definition | |
| 442 |   upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where
 | |
| 26927 | 443 |   "upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<sharp>))"
 | 
| 25904 | 444 | |
| 445 | definition | |
| 446 | upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where | |
| 447 | "upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))" | |
| 448 | ||
| 449 | lemma upper_map_unit [simp]: | |
| 26927 | 450 |   "upper_map\<cdot>f\<cdot>{x}\<sharp> = {f\<cdot>x}\<sharp>"
 | 
| 25904 | 451 | unfolding upper_map_def by simp | 
| 452 | ||
| 453 | lemma upper_map_plus [simp]: | |
| 26927 | 454 | "upper_map\<cdot>f\<cdot>(xs +\<sharp> ys) = upper_map\<cdot>f\<cdot>xs +\<sharp> upper_map\<cdot>f\<cdot>ys" | 
| 25904 | 455 | unfolding upper_map_def by simp | 
| 456 | ||
| 457 | lemma upper_join_unit [simp]: | |
| 26927 | 458 |   "upper_join\<cdot>{xs}\<sharp> = xs"
 | 
| 25904 | 459 | unfolding upper_join_def by simp | 
| 460 | ||
| 461 | lemma upper_join_plus [simp]: | |
| 26927 | 462 | "upper_join\<cdot>(xss +\<sharp> yss) = upper_join\<cdot>xss +\<sharp> upper_join\<cdot>yss" | 
| 25904 | 463 | unfolding upper_join_def by simp | 
| 464 | ||
| 465 | lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs" | |
| 466 | by (induct xs rule: upper_pd_induct, simp_all) | |
| 467 | ||
| 468 | lemma upper_map_map: | |
| 469 | "upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs" | |
| 470 | by (induct xs rule: upper_pd_induct, simp_all) | |
| 471 | ||
| 472 | lemma upper_join_map_unit: | |
| 473 | "upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs" | |
| 474 | by (induct xs rule: upper_pd_induct, simp_all) | |
| 475 | ||
| 476 | lemma upper_join_map_join: | |
| 477 | "upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)" | |
| 478 | by (induct xsss rule: upper_pd_induct, simp_all) | |
| 479 | ||
| 480 | lemma upper_join_map_map: | |
| 481 | "upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) = | |
| 482 | upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)" | |
| 483 | by (induct xss rule: upper_pd_induct, simp_all) | |
| 484 | ||
| 485 | lemma upper_map_approx: "upper_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs" | |
| 486 | by (induct xs rule: upper_pd_induct, simp_all) | |
| 487 | ||
| 488 | end |