992
|
1 |
(* Title: ZF/AC/WO6_WO1.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Krzysztof Gr`abczewski
|
|
4 |
|
|
5 |
The proof of "WO6 ==> WO1".
|
|
6 |
|
|
7 |
From the book "Equivalents of the Axiom of Choice" by Rubin & Rubin,
|
|
8 |
pages 2-5
|
|
9 |
*)
|
|
10 |
|
|
11 |
(* ********************************************************************** *)
|
|
12 |
(* The most complicated part of the proof - lemma ii - p. 2-4 *)
|
|
13 |
(* ********************************************************************** *)
|
|
14 |
|
|
15 |
(* ********************************************************************** *)
|
|
16 |
(* some properties of relation uu(beta, gamma, delta) - p. 2 *)
|
|
17 |
(* ********************************************************************** *)
|
|
18 |
|
|
19 |
goalw thy [uu_def] "domain(uu(f,b,g,d)) <= f`b";
|
|
20 |
by (fast_tac ZF_cs 1);
|
|
21 |
val domain_uu_subset = result();
|
|
22 |
|
|
23 |
goal thy "!!a. [| ALL b<a. f`b lepoll m; b<a |] \
|
|
24 |
\ ==> domain(uu(f, b, g, d)) lepoll m";
|
|
25 |
by (fast_tac (AC_cs addSEs
|
|
26 |
[domain_uu_subset RS subset_imp_lepoll RS lepoll_trans]) 1);
|
|
27 |
val domain_uu_lepoll_m = result();
|
|
28 |
|
|
29 |
goal thy "!! a. ALL b<a. f`b lepoll m ==> \
|
|
30 |
\ ALL b<a. ALL g<a. ALL d<a. domain(uu(f,b,g,d)) lepoll m";
|
|
31 |
by (fast_tac (AC_cs addEs [domain_uu_lepoll_m]) 1);
|
|
32 |
val quant_domain_uu_lepoll_m = result();
|
|
33 |
|
|
34 |
(* used in case 2 *)
|
|
35 |
goalw thy [uu_def] "uu(f,b,g,d) <= f`b * f`g";
|
|
36 |
by (fast_tac ZF_cs 1);
|
|
37 |
val uu_subset1 = result();
|
|
38 |
|
|
39 |
goalw thy [uu_def] "uu(f,b,g,d) <= f`d";
|
|
40 |
by (fast_tac ZF_cs 1);
|
|
41 |
val uu_subset2 = result();
|
|
42 |
|
|
43 |
goal thy "!! a. [| ALL b<a. f`b lepoll m; d<a |] ==> uu(f,b,g,d) lepoll m";
|
|
44 |
by (fast_tac (AC_cs
|
|
45 |
addSEs [uu_subset2 RS subset_imp_lepoll RS lepoll_trans]) 1);
|
|
46 |
val uu_lepoll_m = result();
|
|
47 |
|
|
48 |
(* ********************************************************************** *)
|
|
49 |
(* Two cases for lemma ii *)
|
|
50 |
(* ********************************************************************** *)
|
|
51 |
goalw thy [lesspoll_def]
|
|
52 |
"!! a f u. ALL b<a. ALL g<a. ALL d<a. u(f,b,g,d) lepoll m ==> \
|
|
53 |
\ (ALL b<a. f`b ~= 0 --> (EX g<a. EX d<a. u(f,b,g,d) ~= 0 & \
|
|
54 |
\ u(f,b,g,d) lesspoll m)) | \
|
|
55 |
\ (EX b<a. f`b ~= 0 & (ALL g<a. ALL d<a. u(f,b,g,d) ~= 0 --> \
|
|
56 |
\ u(f,b,g,d) eqpoll m))";
|
|
57 |
by (fast_tac AC_cs 1);
|
|
58 |
val cases = result();
|
|
59 |
|
|
60 |
(* ********************************************************************** *)
|
|
61 |
(* Lemmas used in both cases *)
|
|
62 |
(* ********************************************************************** *)
|
|
63 |
goal thy "!!a f. Ord(a) ==> (UN b<a++a. f`b) = (UN b<a. f`b Un f`(a++b))";
|
|
64 |
by (resolve_tac [equalityI] 1);
|
|
65 |
by (fast_tac (AC_cs addIs [ltI, OUN_I] addSEs [OUN_E]
|
|
66 |
addSDs [lt_oadd_disj]) 1);
|
|
67 |
by (fast_tac (AC_cs addSEs [lt_oadd1, oadd_lt_mono2, OUN_E]
|
|
68 |
addSIs [OUN_I]) 1);
|
|
69 |
val UN_oadd = result();
|
|
70 |
|
|
71 |
val [prem] = goal thy
|
|
72 |
"(!!b. b<a ==> P(b)=Q(b)) ==> (UN b<a. P(b)) = (UN b<a. Q(b))";
|
|
73 |
by (fast_tac (ZF_cs addSIs [OUN_I, equalityI]
|
|
74 |
addSEs [OUN_E, prem RS equalityD1 RS subsetD,
|
|
75 |
prem RS sym RS equalityD1 RS subsetD]) 1);
|
|
76 |
val UN_eq = result();
|
|
77 |
|
|
78 |
goal thy "!!a. b<a ==> b = (THE l. l<a & a ++ b = a ++ l)";
|
|
79 |
by (fast_tac (ZF_cs addSIs [the_equality RS sym]
|
|
80 |
addIs [lt_Ord2, lt_Ord]
|
|
81 |
addSEs [oadd_inject RS sym]) 1);
|
|
82 |
val the_only_b = result();
|
|
83 |
|
|
84 |
goal thy "!!A. B <= A ==> B Un (A-B) = A";
|
|
85 |
by (fast_tac (ZF_cs addSIs [equalityI]) 1);
|
|
86 |
val subset_imp_Un_Diff_eq = result();
|
|
87 |
|
|
88 |
(* ********************************************************************** *)
|
|
89 |
(* Case 1 : lemmas *)
|
|
90 |
(* ********************************************************************** *)
|
|
91 |
|
|
92 |
goalw thy [vv1_def] "vv1(f,b,succ(m)) <= f`b";
|
|
93 |
by (resolve_tac [expand_if RS iffD2] 1);
|
|
94 |
by (fast_tac (ZF_cs addSIs [domain_uu_subset]) 1);
|
|
95 |
val vv1_subset = result();
|
|
96 |
|
|
97 |
(* ********************************************************************** *)
|
|
98 |
(* Case 1 : Union of images is the whole "y" *)
|
|
99 |
(* ********************************************************************** *)
|
|
100 |
goal thy "!! a f y. [| (UN b<a. f`b) = y; Ord(a); m:nat |] ==> \
|
|
101 |
\ (UN b<a++a. (lam b:a++a. if(b<a, vv1(f,b,succ(m)), \
|
|
102 |
\ ww1(f, THE l. l<a & b=a++l, succ(m)))) ` b) = y";
|
|
103 |
by (resolve_tac [UN_oadd RS ssubst] 1 THEN (atac 1));
|
|
104 |
by (eresolve_tac [subst] 1);
|
|
105 |
by (resolve_tac [UN_eq] 1);
|
|
106 |
by (forw_inst_tac [("i","a")] lt_oadd1 1
|
|
107 |
THEN (REPEAT (atac 1)));
|
|
108 |
by (forw_inst_tac [("j","a")] oadd_lt_mono2 1
|
|
109 |
THEN (REPEAT (atac 1)));
|
|
110 |
by (asm_simp_tac (ZF_ss addsimps [ltD RS beta,
|
|
111 |
oadd_le_self RS le_imp_not_lt RS if_not_P, lt_Ord]) 1);
|
|
112 |
by (resolve_tac [the_only_b RS subst] 1 THEN (atac 1));
|
|
113 |
by (asm_simp_tac (ZF_ss
|
|
114 |
addsimps [vv1_subset RS subset_imp_Un_Diff_eq, ltD, ww1_def]) 1);
|
|
115 |
val UN_eq_y = result();
|
|
116 |
|
|
117 |
(* ********************************************************************** *)
|
|
118 |
(* every value of defined function is less than or equipollent to m *)
|
|
119 |
(* ********************************************************************** *)
|
|
120 |
goal thy "!!a b. [| P(a, b); Ord(a); Ord(b); \
|
|
121 |
\ Least_a = (LEAST a. EX x. Ord(x) & P(a, x)) |] \
|
|
122 |
\ ==> P(Least_a, LEAST b. P(Least_a, b))";
|
|
123 |
by (eresolve_tac [ssubst] 1);
|
|
124 |
by (res_inst_tac [("Q","%z. P(z, LEAST b. P(z, b))")] LeastI2 1);
|
|
125 |
by (REPEAT (fast_tac (ZF_cs addSEs [LeastI]) 1));
|
|
126 |
val nested_LeastI = result();
|
|
127 |
|
|
128 |
val nested_Least_instance = read_instantiate
|
|
129 |
[("P","%g d. domain(uu(f,b,g,d)) ~= 0 & \
|
|
130 |
\ domain(uu(f,b,g,d)) lesspoll succ(m)")] nested_LeastI;
|
|
131 |
|
|
132 |
goalw thy [vv1_def] "!!a. [| ALL b<a. f`b ~=0 --> \
|
|
133 |
\ (EX g<a. EX d<a. domain(uu(f,b,g,d))~=0 & \
|
|
134 |
\ domain(uu(f,b,g,d)) lesspoll succ(m)); m:nat; b<a |] \
|
|
135 |
\ ==> vv1(f,b,succ(m)) lesspoll succ(m)";
|
|
136 |
by (resolve_tac [expand_if RS iffD2] 1);
|
|
137 |
by (fast_tac (AC_cs addIs [nested_Least_instance RS conjunct2]
|
|
138 |
addSEs [lt_Ord]
|
|
139 |
addSIs [empty_lepollI RS lepoll_imp_lesspoll_succ]) 1);
|
|
140 |
val vv1_lesspoll_succ = result();
|
|
141 |
|
|
142 |
goalw thy [vv1_def] "!!a. [| ALL b<a. f`b ~=0 --> \
|
|
143 |
\ (EX g<a. EX d<a. domain(uu(f,b,g,d))~=0 & \
|
|
144 |
\ domain(uu(f,b,g,d)) lesspoll succ(m)); m:nat; b<a; f`b ~= 0 |] \
|
|
145 |
\ ==> vv1(f,b,succ(m)) ~= 0";
|
|
146 |
by (resolve_tac [expand_if RS iffD2] 1);
|
|
147 |
by (resolve_tac [conjI] 1);
|
|
148 |
by (fast_tac ZF_cs 2);
|
|
149 |
by (resolve_tac [impI] 1);
|
|
150 |
by (eresolve_tac [oallE] 1);
|
|
151 |
by (mp_tac 1);
|
|
152 |
by (contr_tac 2);
|
|
153 |
by (REPEAT (eresolve_tac [oexE] 1));
|
|
154 |
by (asm_simp_tac (ZF_ss
|
|
155 |
addsimps [lt_Ord, nested_Least_instance RS conjunct1]) 1);
|
|
156 |
val vv1_not_0 = result();
|
|
157 |
|
|
158 |
goalw thy [ww1_def] "!!a. [| ALL b<a. f`b ~=0 --> \
|
|
159 |
\ (EX g<a. EX d<a. domain(uu(f,b,g,d))~=0 & \
|
|
160 |
\ domain(uu(f,b,g,d)) lesspoll succ(m)); \
|
|
161 |
\ ALL b<a. f`b lepoll succ(m); m:nat; b<a |] \
|
|
162 |
\ ==> ww1(f,b,succ(m)) lesspoll succ(m)";
|
|
163 |
by (excluded_middle_tac "f`b = 0" 1);
|
|
164 |
by (asm_full_simp_tac (AC_ss
|
|
165 |
addsimps [empty_lepollI RS lepoll_imp_lesspoll_succ]) 2);
|
|
166 |
by (resolve_tac [Diff_lepoll RS lepoll_imp_lesspoll_succ] 1);
|
|
167 |
by (fast_tac AC_cs 1);
|
|
168 |
by (REPEAT (ares_tac [vv1_subset, vv1_not_0] 1));
|
|
169 |
val ww1_lesspoll_succ = result();
|
|
170 |
|
|
171 |
goal thy "!!a. [| Ord(a); m:nat; \
|
|
172 |
\ ALL b<a. f`b ~=0 --> (EX g<a. EX d<a. domain(uu(f,b,g,d))~=0 & \
|
|
173 |
\ domain(uu(f,b,g,d)) lesspoll succ(m)); \
|
|
174 |
\ ALL b<a. f`b lepoll succ(m) |] \
|
|
175 |
\ ==> ALL b<a++a. (lam b:a++a. if(b<a, vv1(f,b,succ(m)), \
|
|
176 |
\ ww1(f,THE l. l<a & b = a ++ l,succ(m))))`b lepoll m";
|
|
177 |
by (resolve_tac [oallI] 1);
|
|
178 |
by (asm_full_simp_tac (ZF_ss addsimps [ltD RS beta]) 1);
|
|
179 |
by (resolve_tac [lesspoll_succ_imp_lepoll] 1 THEN (atac 2));
|
|
180 |
by (resolve_tac [expand_if RS iffD2] 1);
|
|
181 |
by (resolve_tac [conjI] 1);
|
|
182 |
by (resolve_tac [impI] 1);
|
|
183 |
by (forward_tac [lt_oadd_disj1] 2 THEN (REPEAT (atac 2)));
|
|
184 |
by (resolve_tac [impI] 2);
|
|
185 |
by (eresolve_tac [disjE] 2 THEN (fast_tac (ZF_cs addSEs [ltE]) 2));
|
|
186 |
by (asm_full_simp_tac (ZF_ss addsimps [vv1_lesspoll_succ]) 1);
|
|
187 |
by (dresolve_tac [theI] 1);
|
|
188 |
by (eresolve_tac [conjE] 1);
|
|
189 |
by (resolve_tac [ww1_lesspoll_succ] 1 THEN (REPEAT (atac 1)));
|
|
190 |
val all_sum_lepoll_m = result();
|
|
191 |
|
|
192 |
(* ********************************************************************** *)
|
|
193 |
(* Case 2 : lemmas *)
|
|
194 |
(* ********************************************************************** *)
|
|
195 |
|
|
196 |
(* ********************************************************************** *)
|
|
197 |
(* Case 2 : vv2_subset *)
|
|
198 |
(* ********************************************************************** *)
|
|
199 |
|
|
200 |
goalw thy [uu_def] "!!f. [| b<a; g<a; f`b~=0; f`g~=0; \
|
|
201 |
\ y*y <= y; (UN b<a. f`b)=y |] \
|
|
202 |
\ ==> EX d<a. uu(f,b,g,d)~=0";
|
|
203 |
by (fast_tac (AC_cs addSIs [not_emptyI]
|
|
204 |
addSDs [SigmaI RSN (2, subsetD)]
|
|
205 |
addSEs [not_emptyE]) 1);
|
|
206 |
val ex_d_uu_not_empty = result();
|
|
207 |
|
|
208 |
goal thy "!!f. [| b<a; g<a; f`b~=0; f`g~=0; \
|
|
209 |
\ y*y<=y; (UN b<a. f`b)=y |] \
|
|
210 |
\ ==> uu(f,b,g,LEAST d. (uu(f,b,g,d) ~= 0)) ~= 0";
|
|
211 |
by (dresolve_tac [ex_d_uu_not_empty] 1 THEN (REPEAT (atac 1)));
|
|
212 |
by (fast_tac (AC_cs addSEs [LeastI, lt_Ord]) 1);
|
|
213 |
val uu_not_empty = result();
|
|
214 |
|
|
215 |
(* moved from ZF_aux.ML *)
|
|
216 |
goal thy "!!r. [| r<=A*B; r~=0 |] ==> domain(r)~=0";
|
|
217 |
by (REPEAT (eresolve_tac [asm_rl, not_emptyE, subsetD RS SigmaE,
|
|
218 |
sym RSN (2, subst_elem) RS domainI RS not_emptyI] 1));
|
|
219 |
val not_empty_rel_imp_domain = result();
|
|
220 |
|
|
221 |
goal thy "!!f. [| b<a; g<a; f`b~=0; f`g~=0; \
|
|
222 |
\ y*y <= y; (UN b<a. f`b)=y |] \
|
|
223 |
\ ==> (LEAST d. uu(f,b,g,d) ~= 0) < a";
|
|
224 |
by (eresolve_tac [ex_d_uu_not_empty RS oexE] 1
|
|
225 |
THEN (REPEAT (atac 1)));
|
|
226 |
by (resolve_tac [Least_le RS lt_trans1] 1
|
|
227 |
THEN (REPEAT (ares_tac [lt_Ord] 1)));
|
|
228 |
val Least_uu_not_empty_lt_a = result();
|
|
229 |
|
|
230 |
goal thy "!!B. [| B<=A; a~:B |] ==> B <= A-{a}";
|
|
231 |
by (fast_tac ZF_cs 1);
|
|
232 |
val subset_Diff_sing = result();
|
|
233 |
|
|
234 |
goal thy "!!A B. [| A lepoll m; m lepoll B; B <= A; m:nat |] ==> A=B";
|
|
235 |
by (eresolve_tac [natE] 1);
|
|
236 |
by (fast_tac (AC_cs addSDs [lepoll_0_is_0] addSIs [equalityI]) 1);
|
|
237 |
by (hyp_subst_tac 1);
|
|
238 |
by (resolve_tac [equalityI] 1);
|
|
239 |
by (atac 2);
|
|
240 |
by (resolve_tac [subsetI] 1);
|
|
241 |
by (excluded_middle_tac "?P" 1 THEN (atac 2));
|
|
242 |
by (eresolve_tac [subset_Diff_sing RS subset_imp_lepoll RSN (2,
|
|
243 |
diff_sing_lepoll RSN (3, lepoll_trans RS lepoll_trans)) RS
|
|
244 |
succ_lepoll_natE] 1
|
|
245 |
THEN (REPEAT (atac 1)));
|
|
246 |
val supset_lepoll_imp_eq = result();
|
|
247 |
|
|
248 |
goalw thy [vv2_def]
|
|
249 |
"!!a. [| ALL g<a. ALL d<a. domain(uu(f, b, g, d))~=0 --> \
|
|
250 |
\ domain(uu(f, b, g, d)) eqpoll succ(m); \
|
|
251 |
\ ALL b<a. f`b lepoll succ(m); y*y <= y; \
|
|
252 |
\ (UN b<a. f`b)=y; b<a; g<a; d<a; f`b~=0; f`g~=0; m:nat; aa:f`b |] \
|
|
253 |
\ ==> uu(f,b,g,LEAST d. uu(f,b,g,d)~=0) : f`b -> f`g";
|
|
254 |
by (eres_inst_tac [("x","g")] oallE 1 THEN (contr_tac 2));
|
|
255 |
by (eres_inst_tac [("P","%z. ?QQ(z) ~= 0 --> ?RR(z)")] oallE 1);
|
|
256 |
by (eresolve_tac [impE] 1);
|
|
257 |
by (eresolve_tac [uu_not_empty RS (uu_subset1 RS
|
|
258 |
not_empty_rel_imp_domain)] 1
|
|
259 |
THEN (REPEAT (atac 1)));
|
|
260 |
by (eresolve_tac [Least_uu_not_empty_lt_a RSN (2, notE)] 2
|
|
261 |
THEN (TRYALL atac));
|
|
262 |
by (resolve_tac [eqpoll_sym RS eqpoll_imp_lepoll RS
|
|
263 |
(Least_uu_not_empty_lt_a RSN (2, uu_lepoll_m) RSN (2,
|
|
264 |
uu_subset1 RSN (4, rel_is_fun)))] 1
|
|
265 |
THEN (TRYALL atac));
|
|
266 |
by (resolve_tac [eqpoll_sym RS eqpoll_imp_lepoll RSN (2,
|
|
267 |
supset_lepoll_imp_eq)] 1);
|
|
268 |
by (REPEAT (fast_tac (AC_cs addSIs [domain_uu_subset, nat_succI]) 1));
|
|
269 |
val uu_Least_is_fun = result();
|
|
270 |
|
|
271 |
goalw thy [vv2_def]
|
|
272 |
"!!a. [| ALL g<a. ALL d<a. domain(uu(f, b, g, d))~=0 --> \
|
|
273 |
\ domain(uu(f, b, g, d)) eqpoll succ(m); \
|
|
274 |
\ ALL b<a. f`b lepoll succ(m); y*y <= y; \
|
|
275 |
\ (UN b<a. f`b)=y; b<a; g<a; m:nat; aa:f`b |] \
|
|
276 |
\ ==> vv2(f,b,g,aa) <= f`g";
|
|
277 |
by (fast_tac (FOL_cs addIs [expand_if RS iffD2]
|
|
278 |
addSEs [uu_Least_is_fun]
|
|
279 |
addSIs [empty_subsetI, not_emptyI,
|
|
280 |
singleton_subsetI, apply_type]) 1);
|
|
281 |
val vv2_subset = result();
|
|
282 |
|
|
283 |
(* ********************************************************************** *)
|
|
284 |
(* Case 2 : Union of images is the whole "y" *)
|
|
285 |
(* ********************************************************************** *)
|
|
286 |
goal thy "!!a. [| ALL g<a. ALL d<a. domain(uu(f,b,g,d)) ~= 0 --> \
|
|
287 |
\ domain(uu(f,b,g,d)) eqpoll succ(m); \
|
|
288 |
\ ALL b<a. f`b lepoll succ(m); y*y<=y; \
|
|
289 |
\ (UN b<a.f`b)=y; Ord(a); m:nat; aa:f`b; b<a |] \
|
|
290 |
\ ==> (UN g<a++a. (lam g:a++a. if(g<a, vv2(f,b,g,aa), \
|
|
291 |
\ ww2(f,b,THE l. l<a & g=a++l,aa)))`g) = y";
|
|
292 |
by (resolve_tac [UN_oadd RS ssubst] 1 THEN (atac 1));
|
|
293 |
by (resolve_tac [subst] 1 THEN (atac 1));
|
|
294 |
by (resolve_tac [UN_eq] 1);
|
|
295 |
by (forw_inst_tac [("i","a"),("k","ba")] lt_oadd1 1
|
|
296 |
THEN (REPEAT (atac 1)));
|
|
297 |
by (forw_inst_tac [("j","a"),("k","ba")] oadd_lt_mono2 1
|
|
298 |
THEN (REPEAT (atac 1)));
|
|
299 |
by (asm_simp_tac (ZF_ss addsimps [ltD RS beta,
|
|
300 |
oadd_le_self RS le_imp_not_lt RS if_not_P, lt_Ord]) 1);
|
|
301 |
by (resolve_tac [the_only_b RS subst] 1 THEN (atac 1));
|
|
302 |
by (asm_simp_tac (ZF_ss
|
|
303 |
addsimps [vv2_subset RS subset_imp_Un_Diff_eq, ltI, ww2_def]) 1);
|
|
304 |
val UN_eq_y_2 = result();
|
|
305 |
|
|
306 |
(* ********************************************************************** *)
|
|
307 |
(* every value of defined function is less than or equipollent to m *)
|
|
308 |
(* ********************************************************************** *)
|
|
309 |
|
|
310 |
goalw thy [vv2_def]
|
|
311 |
"!!m. [| m:nat; m~=0 |] ==> vv2(f,b,g,aa) lesspoll succ(m)";
|
|
312 |
by (resolve_tac [conjI RS (expand_if RS iffD2)] 1);
|
|
313 |
by (asm_simp_tac (AC_ss
|
|
314 |
addsimps [empty_lepollI RS lepoll_imp_lesspoll_succ]) 2);
|
|
315 |
by (fast_tac (AC_cs
|
|
316 |
addSDs [le_imp_subset RS subset_imp_lepoll RS lepoll_0_is_0]
|
|
317 |
addSIs [singleton_eqpoll_1 RS eqpoll_imp_lepoll RS
|
|
318 |
lepoll_trans RS lepoll_imp_lesspoll_succ,
|
|
319 |
not_lt_imp_le RS le_imp_subset RS subset_imp_lepoll,
|
|
320 |
nat_into_Ord, nat_1I]) 1);
|
|
321 |
val vv2_lesspoll_succ = result();
|
|
322 |
|
|
323 |
goalw thy [ww2_def] "!!m. [| ALL b<a. f`b lepoll succ(m); g<a; m:nat; \
|
|
324 |
\ vv2(f,b,g,d) <= f`g |] \
|
|
325 |
\ ==> ww2(f,b,g,d) lesspoll succ(m)";
|
|
326 |
by (excluded_middle_tac "f`g = 0" 1);
|
|
327 |
by (asm_simp_tac (AC_ss
|
|
328 |
addsimps [empty_lepollI RS lepoll_imp_lesspoll_succ]) 2);
|
|
329 |
by (dresolve_tac [ospec] 1 THEN (atac 1));
|
|
330 |
by (resolve_tac [Diff_lepoll RS lepoll_imp_lesspoll_succ] 1
|
|
331 |
THEN (TRYALL atac));
|
|
332 |
by (asm_simp_tac (AC_ss addsimps [vv2_def, expand_if, not_emptyI]) 1);
|
|
333 |
val ww2_lesspoll_succ = result();
|
|
334 |
|
|
335 |
goal thy "!!a. [| ALL g<a. ALL d<a. domain(uu(f,b,g,d)) ~= 0 --> \
|
|
336 |
\ domain(uu(f,b,g,d)) eqpoll succ(m); \
|
|
337 |
\ ALL b<a. f`b lepoll succ(m); y*y <= y; \
|
|
338 |
\ (UN b<a. f`b)=y; b<a; aa:f`b; m:nat; m~= 0 |] \
|
|
339 |
\ ==> ALL ba<a++a. (lam g:a++a. if(g<a, vv2(f,b,g,aa), \
|
|
340 |
\ ww2(f,b,THE l. l<a & g=a++l,aa)))`ba lepoll m";
|
|
341 |
by (resolve_tac [oallI] 1);
|
|
342 |
by (asm_full_simp_tac AC_ss 1);
|
|
343 |
by (resolve_tac [lesspoll_succ_imp_lepoll] 1 THEN (atac 2));
|
|
344 |
by (resolve_tac [conjI RS (expand_if RS iffD2)] 1);
|
|
345 |
by (asm_simp_tac (AC_ss addsimps [vv2_lesspoll_succ]) 1);
|
|
346 |
by (forward_tac [lt_oadd_disj1] 1 THEN (REPEAT (ares_tac [lt_Ord2] 1)));
|
|
347 |
by (fast_tac (FOL_cs addSIs [ww2_lesspoll_succ, vv2_subset]
|
|
348 |
addSDs [theI]) 1);
|
|
349 |
val all_sum_lepoll_m_2 = result();
|
|
350 |
|
|
351 |
(* ********************************************************************** *)
|
|
352 |
(* lemma ii *)
|
|
353 |
(* ********************************************************************** *)
|
|
354 |
goalw thy [NN_def]
|
|
355 |
"!!y. [| succ(m) : NN(y); y*y <= y; m:nat; m~=0 |] ==> m : NN(y)";
|
|
356 |
by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1));
|
|
357 |
by (resolve_tac [quant_domain_uu_lepoll_m RS cases RS disjE] 1
|
|
358 |
THEN (atac 1));
|
|
359 |
(* case 1 *)
|
|
360 |
by (resolve_tac [CollectI] 1);
|
|
361 |
by (atac 1);
|
|
362 |
by (res_inst_tac [("x","a ++ a")] exI 1);
|
|
363 |
by (res_inst_tac [("x","lam b:a++a. if (b<a, vv1(f,b,succ(m)), \
|
|
364 |
\ ww1(f,THE l. l<a & b=a++l,succ(m)))")] exI 1);
|
|
365 |
by (fast_tac (FOL_cs addSIs [Ord_oadd, lam_funtype RS domain_of_fun,
|
|
366 |
UN_eq_y, all_sum_lepoll_m]) 1);
|
|
367 |
(* case 2 *)
|
|
368 |
by (REPEAT (eresolve_tac [oexE, conjE] 1));
|
|
369 |
by (resolve_tac [CollectI] 1);
|
|
370 |
by (eresolve_tac [succ_natD] 1);
|
|
371 |
by (res_inst_tac [("A","f`?B")] not_emptyE 1 THEN (atac 1));
|
|
372 |
by (res_inst_tac [("x","a++a")] exI 1);
|
|
373 |
by (res_inst_tac [("x","lam g:a++a. if (g<a, vv2(f,b,g,x), \
|
|
374 |
\ ww2(f,b,THE l. l<a & g=a++l,x))")] exI 1);
|
|
375 |
by (fast_tac (FOL_cs addSIs [Ord_oadd, lam_funtype RS domain_of_fun,
|
|
376 |
UN_eq_y_2, all_sum_lepoll_m_2]) 1);
|
|
377 |
val lemma_ii = result();
|
|
378 |
|
|
379 |
|
|
380 |
(* ********************************************************************** *)
|
|
381 |
(* lemma iv - p. 4 : *)
|
|
382 |
(* For every set x there is a set y such that x Un (y * y) <= y *)
|
|
383 |
(* ********************************************************************** *)
|
|
384 |
|
|
385 |
(* the quantifier ALL looks inelegant but makes the proofs shorter *)
|
|
386 |
(* (used only in the following two lemmas) *)
|
|
387 |
|
|
388 |
goal thy "ALL n:nat. rec(n, x, %k r. r Un r*r) <= \
|
|
389 |
\ rec(succ(n), x, %k r. r Un r*r)";
|
|
390 |
by (fast_tac (ZF_cs addIs [rec_succ RS ssubst]) 1);
|
|
391 |
val z_n_subset_z_succ_n = result();
|
|
392 |
|
|
393 |
goal thy "!!n. [| ALL n:nat. f(n)<=f(succ(n)); n le m; n : nat; m: nat |] \
|
|
394 |
\ ==> f(n)<=f(m)";
|
|
395 |
by (res_inst_tac [("P","n le m")] impE 1 THEN (REPEAT (atac 2)));
|
|
396 |
by (res_inst_tac [("P","%z. n le z --> f(n) <= f(z)")] nat_induct 1);
|
|
397 |
by (REPEAT (fast_tac lt_cs 1));
|
|
398 |
val le_subsets = result();
|
|
399 |
|
|
400 |
goal thy "!!n m. [| n le m; m:nat |] ==> \
|
|
401 |
\ rec(n, x, %k r. r Un r*r) <= rec(m, x, %k r. r Un r*r)";
|
|
402 |
by (resolve_tac [z_n_subset_z_succ_n RS le_subsets] 1
|
|
403 |
THEN (TRYALL atac));
|
|
404 |
by (eresolve_tac [Ord_nat RSN (2, ltI) RSN (2, lt_trans1) RS ltD] 1
|
|
405 |
THEN (atac 1));
|
|
406 |
val le_imp_rec_subset = result();
|
|
407 |
|
|
408 |
goal thy "!!x. EX y. x Un y*y <= y";
|
|
409 |
by (res_inst_tac [("x","UN n:nat. rec(n, x, %k r. r Un r*r)")] exI 1);
|
|
410 |
by (resolve_tac [subsetI] 1);
|
|
411 |
by (eresolve_tac [UnE] 1);
|
|
412 |
by (resolve_tac [UN_I] 1);
|
|
413 |
by (eresolve_tac [rec_0 RS ssubst] 2);
|
|
414 |
by (resolve_tac [nat_0I] 1);
|
|
415 |
by (eresolve_tac [SigmaE] 1);
|
|
416 |
by (REPEAT (eresolve_tac [UN_E] 1));
|
|
417 |
by (res_inst_tac [("a","succ(n Un na)")] UN_I 1);
|
|
418 |
by (eresolve_tac [Un_nat_type RS nat_succI] 1 THEN (atac 1));
|
|
419 |
by (resolve_tac [rec_succ RS ssubst] 1);
|
|
420 |
by (fast_tac (ZF_cs addIs [le_imp_rec_subset RS subsetD]
|
|
421 |
addSIs [Un_upper1_le, Un_upper2_le, Un_nat_type]
|
|
422 |
addSEs [nat_into_Ord]) 1);
|
|
423 |
val lemma_iv = result();
|
|
424 |
|
|
425 |
(* ********************************************************************** *)
|
|
426 |
(* Rubin & Rubin wrote : *)
|
|
427 |
(* "It follows from (ii) and mathematical induction that if y*y <= y then *)
|
|
428 |
(* y can be well-ordered" *)
|
|
429 |
|
|
430 |
(* In fact we have to prove : *)
|
|
431 |
(* * WO6 ==> NN(y) ~= 0 *)
|
|
432 |
(* * reverse induction which lets us infer that 1 : NN(y) *)
|
|
433 |
(* * 1 : NN(y) ==> y can be well-ordered *)
|
|
434 |
(* ********************************************************************** *)
|
|
435 |
|
|
436 |
(* ********************************************************************** *)
|
|
437 |
(* WO6 ==> NN(y) ~= 0 *)
|
|
438 |
(* ********************************************************************** *)
|
|
439 |
|
|
440 |
goalw thy [WO6_def, NN_def] "!!y. WO6 ==> NN(y) ~= 0";
|
|
441 |
by (eresolve_tac [allE] 1);
|
|
442 |
by (fast_tac (ZF_cs addSIs [not_emptyI]) 1);
|
|
443 |
val WO6_imp_NN_not_empty = result();
|
|
444 |
|
|
445 |
(* ********************************************************************** *)
|
|
446 |
(* 1 : NN(y) ==> y can be well-ordered *)
|
|
447 |
(* ********************************************************************** *)
|
|
448 |
|
|
449 |
goal thy "!!f. [| (UN b<a. f`b)=y; x:y; ALL b<a. f`b lepoll 1; Ord(a) |] \
|
|
450 |
\ ==> EX c<a. f`c = {x}";
|
|
451 |
by (fast_tac (AC_cs addSEs [lepoll_1_is_sing]) 1);
|
|
452 |
val lemma1 = result();
|
|
453 |
|
|
454 |
goal thy "!!f. [| (UN b<a. f`b)=y; x:y; ALL b<a. f`b lepoll 1; Ord(a) |] \
|
|
455 |
\ ==> f` (LEAST i. f`i = {x}) = {x}";
|
|
456 |
by (dresolve_tac [lemma1] 1 THEN (REPEAT (atac 1)));
|
|
457 |
by (fast_tac (AC_cs addSEs [lt_Ord] addIs [LeastI]) 1);
|
|
458 |
val lemma2 = result();
|
|
459 |
|
|
460 |
goalw thy [NN_def] "!!y. 1 : NN(y) ==> EX a f. Ord(a) & f:inj(y, a)";
|
|
461 |
by (eresolve_tac [CollectE] 1);
|
|
462 |
by (REPEAT (eresolve_tac [exE, conjE] 1));
|
|
463 |
by (res_inst_tac [("x","a")] exI 1);
|
|
464 |
by (res_inst_tac [("x","lam x:y. LEAST i. f`i = {x}")] exI 1);
|
|
465 |
by (resolve_tac [conjI] 1 THEN (atac 1));
|
|
466 |
by (res_inst_tac [("d","%i. THE x. x:f`i")] lam_injective 1);
|
|
467 |
by (dresolve_tac [lemma1] 1 THEN (REPEAT (atac 1)));
|
|
468 |
by (fast_tac (AC_cs addSEs [Least_le RS lt_trans1 RS ltD, lt_Ord]) 1);
|
|
469 |
by (resolve_tac [lemma2 RS ssubst] 1 THEN (REPEAT (atac 1)));
|
|
470 |
by (fast_tac (ZF_cs addSIs [the_equality]) 1);
|
|
471 |
val NN_imp_ex_inj = result();
|
|
472 |
|
|
473 |
goal thy "!!y. [| y*y <= y; 1 : NN(y) |] ==> EX r. well_ord(y, r)";
|
|
474 |
by (dresolve_tac [NN_imp_ex_inj] 1);
|
|
475 |
by (fast_tac (ZF_cs addSEs [well_ord_Memrel RSN (2, well_ord_rvimage)]) 1);
|
|
476 |
val y_well_ord = result();
|
|
477 |
|
|
478 |
(* ********************************************************************** *)
|
|
479 |
(* reverse induction which lets us infer that 1 : NN(y) *)
|
|
480 |
(* ********************************************************************** *)
|
|
481 |
|
|
482 |
val [prem1, prem2] = goal thy
|
|
483 |
"[| n:nat; !!m. [| m:nat; m~=0; P(succ(m)) |] ==> P(m) |] \
|
|
484 |
\ ==> n~=0 --> P(n) --> P(1)";
|
|
485 |
by (res_inst_tac [("n","n")] nat_induct 1);
|
|
486 |
by (resolve_tac [prem1] 1);
|
|
487 |
by (fast_tac ZF_cs 1);
|
|
488 |
by (excluded_middle_tac "x=0" 1);
|
|
489 |
by (fast_tac ZF_cs 2);
|
|
490 |
by (fast_tac (ZF_cs addSIs [prem2]) 1);
|
|
491 |
val rev_induct_lemma = result();
|
|
492 |
|
|
493 |
val prems = goal thy
|
|
494 |
"[| P(n); n:nat; n~=0; \
|
|
495 |
\ !!m. [| m:nat; m~=0; P(succ(m)) |] ==> P(m) |] \
|
|
496 |
\ ==> P(1)";
|
|
497 |
by (resolve_tac [rev_induct_lemma RS impE] 1);
|
|
498 |
by (eresolve_tac [impE] 4 THEN (atac 5));
|
|
499 |
by (REPEAT (ares_tac prems 1));
|
|
500 |
val rev_induct = result();
|
|
501 |
|
|
502 |
goalw thy [NN_def] "!!n. n:NN(y) ==> n:nat";
|
|
503 |
by (fast_tac ZF_cs 1);
|
|
504 |
val NN_into_nat = result();
|
|
505 |
|
|
506 |
goal thy "!!n. [| n:NN(y); y*y <= y; n~=0 |] ==> 1:NN(y)";
|
|
507 |
by (resolve_tac [rev_induct] 1 THEN (REPEAT (ares_tac [NN_into_nat] 1)));
|
|
508 |
by (resolve_tac [lemma_ii] 1 THEN (REPEAT (atac 1)));
|
|
509 |
val lemma3 = result();
|
|
510 |
|
|
511 |
(* ********************************************************************** *)
|
|
512 |
(* Main theorem "WO6 ==> WO1" *)
|
|
513 |
(* ********************************************************************** *)
|
|
514 |
|
|
515 |
(* another helpful lemma *)
|
|
516 |
goalw thy [NN_def] "!!y. 0:NN(y) ==> y=0";
|
|
517 |
by (fast_tac (AC_cs addSIs [equalityI]
|
|
518 |
addSDs [lepoll_0_is_0] addEs [subst]) 1);
|
|
519 |
val NN_y_0 = result();
|
|
520 |
|
|
521 |
goalw thy [WO1_def] "!!Z. WO6 ==> WO1";
|
|
522 |
by (resolve_tac [allI] 1);
|
|
523 |
by (excluded_middle_tac "A=0" 1);
|
|
524 |
by (fast_tac (ZF_cs addSIs [well_ord_Memrel, nat_0I RS nat_into_Ord]) 2);
|
|
525 |
by (res_inst_tac [("x1","A")] (lemma_iv RS revcut_rl) 1);
|
|
526 |
by (eresolve_tac [exE] 1);
|
|
527 |
by (dresolve_tac [WO6_imp_NN_not_empty] 1);
|
|
528 |
by (eresolve_tac [Un_subset_iff RS iffD1 RS conjE] 1);
|
|
529 |
by (eres_inst_tac [("A","NN(y)")] not_emptyE 1);
|
|
530 |
by (forward_tac [y_well_ord] 1);
|
|
531 |
by (fast_tac (ZF_cs addEs [well_ord_subset]) 2);
|
|
532 |
by (fast_tac (ZF_cs addSIs [lemma3] addSDs [NN_y_0] addSEs [not_emptyE]) 1);
|
|
533 |
qed "WO6_imp_WO1";
|
|
534 |
|