| author | wenzelm | 
| Tue, 02 Apr 2013 16:29:40 +0200 | |
| changeset 51596 | 4f25e800f520 | 
| parent 42463 | f270e3e18be5 | 
| child 57512 | cc97b347b301 | 
| permissions | -rw-r--r-- | 
| 27468 | 1 | (* Title : HyperNat.thy | 
| 2 | Author : Jacques D. Fleuriot | |
| 3 | Copyright : 1998 University of Cambridge | |
| 4 | ||
| 5 | Converted to Isar and polished by lcp | |
| 6 | *) | |
| 7 | ||
| 8 | header{*Hypernatural numbers*}
 | |
| 9 | ||
| 10 | theory HyperNat | |
| 11 | imports StarDef | |
| 12 | begin | |
| 13 | ||
| 42463 | 14 | type_synonym hypnat = "nat star" | 
| 27468 | 15 | |
| 16 | abbreviation | |
| 17 | hypnat_of_nat :: "nat => nat star" where | |
| 18 | "hypnat_of_nat == star_of" | |
| 19 | ||
| 20 | definition | |
| 21 | hSuc :: "hypnat => hypnat" where | |
| 37765 | 22 | hSuc_def [transfer_unfold]: "hSuc = *f* Suc" | 
| 27468 | 23 | |
| 24 | subsection{*Properties Transferred from Naturals*}
 | |
| 25 | ||
| 26 | lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0" | |
| 27 | by transfer (rule Suc_not_Zero) | |
| 28 | ||
| 29 | lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m" | |
| 30 | by transfer (rule Zero_not_Suc) | |
| 31 | ||
| 32 | lemma hSuc_hSuc_eq [iff]: "\<And>m n. (hSuc m = hSuc n) = (m = n)" | |
| 33 | by transfer (rule nat.inject) | |
| 34 | ||
| 35 | lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n" | |
| 36 | by transfer (rule zero_less_Suc) | |
| 37 | ||
| 38 | lemma hypnat_minus_zero [simp]: "!!z. z - z = (0::hypnat)" | |
| 39 | by transfer (rule diff_self_eq_0) | |
| 40 | ||
| 41 | lemma hypnat_diff_0_eq_0 [simp]: "!!n. (0::hypnat) - n = 0" | |
| 42 | by transfer (rule diff_0_eq_0) | |
| 43 | ||
| 44 | lemma hypnat_add_is_0 [iff]: "!!m n. (m+n = (0::hypnat)) = (m=0 & n=0)" | |
| 45 | by transfer (rule add_is_0) | |
| 46 | ||
| 47 | lemma hypnat_diff_diff_left: "!!i j k. (i::hypnat) - j - k = i - (j+k)" | |
| 48 | by transfer (rule diff_diff_left) | |
| 49 | ||
| 50 | lemma hypnat_diff_commute: "!!i j k. (i::hypnat) - j - k = i-k-j" | |
| 51 | by transfer (rule diff_commute) | |
| 52 | ||
| 53 | lemma hypnat_diff_add_inverse [simp]: "!!m n. ((n::hypnat) + m) - n = m" | |
| 54 | by transfer (rule diff_add_inverse) | |
| 55 | ||
| 56 | lemma hypnat_diff_add_inverse2 [simp]: "!!m n. ((m::hypnat) + n) - n = m" | |
| 57 | by transfer (rule diff_add_inverse2) | |
| 58 | ||
| 59 | lemma hypnat_diff_cancel [simp]: "!!k m n. ((k::hypnat) + m) - (k+n) = m - n" | |
| 60 | by transfer (rule diff_cancel) | |
| 61 | ||
| 62 | lemma hypnat_diff_cancel2 [simp]: "!!k m n. ((m::hypnat) + k) - (n+k) = m - n" | |
| 63 | by transfer (rule diff_cancel2) | |
| 64 | ||
| 65 | lemma hypnat_diff_add_0 [simp]: "!!m n. (n::hypnat) - (n+m) = (0::hypnat)" | |
| 66 | by transfer (rule diff_add_0) | |
| 67 | ||
| 68 | lemma hypnat_diff_mult_distrib: "!!k m n. ((m::hypnat) - n) * k = (m * k) - (n * k)" | |
| 69 | by transfer (rule diff_mult_distrib) | |
| 70 | ||
| 71 | lemma hypnat_diff_mult_distrib2: "!!k m n. (k::hypnat) * (m - n) = (k * m) - (k * n)" | |
| 72 | by transfer (rule diff_mult_distrib2) | |
| 73 | ||
| 74 | lemma hypnat_le_zero_cancel [iff]: "!!n. (n \<le> (0::hypnat)) = (n = 0)" | |
| 75 | by transfer (rule le_0_eq) | |
| 76 | ||
| 77 | lemma hypnat_mult_is_0 [simp]: "!!m n. (m*n = (0::hypnat)) = (m=0 | n=0)" | |
| 78 | by transfer (rule mult_is_0) | |
| 79 | ||
| 80 | lemma hypnat_diff_is_0_eq [simp]: "!!m n. ((m::hypnat) - n = 0) = (m \<le> n)" | |
| 81 | by transfer (rule diff_is_0_eq) | |
| 82 | ||
| 83 | lemma hypnat_not_less0 [iff]: "!!n. ~ n < (0::hypnat)" | |
| 84 | by transfer (rule not_less0) | |
| 85 | ||
| 86 | lemma hypnat_less_one [iff]: | |
| 87 | "!!n. (n < (1::hypnat)) = (n=0)" | |
| 88 | by transfer (rule less_one) | |
| 89 | ||
| 90 | lemma hypnat_add_diff_inverse: "!!m n. ~ m<n ==> n+(m-n) = (m::hypnat)" | |
| 91 | by transfer (rule add_diff_inverse) | |
| 92 | ||
| 93 | lemma hypnat_le_add_diff_inverse [simp]: "!!m n. n \<le> m ==> n+(m-n) = (m::hypnat)" | |
| 94 | by transfer (rule le_add_diff_inverse) | |
| 95 | ||
| 96 | lemma hypnat_le_add_diff_inverse2 [simp]: "!!m n. n\<le>m ==> (m-n)+n = (m::hypnat)" | |
| 97 | by transfer (rule le_add_diff_inverse2) | |
| 98 | ||
| 99 | declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le] | |
| 100 | ||
| 101 | lemma hypnat_le0 [iff]: "!!n. (0::hypnat) \<le> n" | |
| 102 | by transfer (rule le0) | |
| 103 | ||
| 104 | lemma hypnat_le_add1 [simp]: "!!x n. (x::hypnat) \<le> x + n" | |
| 105 | by transfer (rule le_add1) | |
| 106 | ||
| 107 | lemma hypnat_add_self_le [simp]: "!!x n. (x::hypnat) \<le> n + x" | |
| 108 | by transfer (rule le_add2) | |
| 109 | ||
| 110 | lemma hypnat_add_one_self_less [simp]: "(x::hypnat) < x + (1::hypnat)" | |
| 111 | by (insert add_strict_left_mono [OF zero_less_one], auto) | |
| 112 | ||
| 113 | lemma hypnat_neq0_conv [iff]: "!!n. (n \<noteq> 0) = (0 < (n::hypnat))" | |
| 114 | by transfer (rule neq0_conv) | |
| 115 | ||
| 116 | lemma hypnat_gt_zero_iff: "((0::hypnat) < n) = ((1::hypnat) \<le> n)" | |
| 117 | by (auto simp add: linorder_not_less [symmetric]) | |
| 118 | ||
| 119 | lemma hypnat_gt_zero_iff2: "(0 < n) = (\<exists>m. n = m + (1::hypnat))" | |
| 120 | apply safe | |
| 121 | apply (rule_tac x = "n - (1::hypnat) " in exI) | |
| 122 | apply (simp add: hypnat_gt_zero_iff) | |
| 123 | apply (insert add_le_less_mono [OF _ zero_less_one, of 0], auto) | |
| 124 | done | |
| 125 | ||
| 126 | lemma hypnat_add_self_not_less: "~ (x + y < (x::hypnat))" | |
| 127 | by (simp add: linorder_not_le [symmetric] add_commute [of x]) | |
| 128 | ||
| 129 | lemma hypnat_diff_split: | |
| 130 | "P(a - b::hypnat) = ((a<b --> P 0) & (ALL d. a = b + d --> P d))" | |
| 131 |     -- {* elimination of @{text -} on @{text hypnat} *}
 | |
| 132 | proof (cases "a<b" rule: case_split) | |
| 133 | case True | |
| 134 | thus ?thesis | |
| 135 | by (auto simp add: hypnat_add_self_not_less order_less_imp_le | |
| 136 | hypnat_diff_is_0_eq [THEN iffD2]) | |
| 137 | next | |
| 138 | case False | |
| 139 | thus ?thesis | |
| 140 | by (auto simp add: linorder_not_less dest: order_le_less_trans) | |
| 141 | qed | |
| 142 | ||
| 143 | subsection{*Properties of the set of embedded natural numbers*}
 | |
| 144 | ||
| 145 | lemma of_nat_eq_star_of [simp]: "of_nat = star_of" | |
| 146 | proof | |
| 147 | fix n :: nat | |
| 148 | show "of_nat n = star_of n" by transfer simp | |
| 149 | qed | |
| 150 | ||
| 151 | lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard" | |
| 152 | by (auto simp add: Nats_def Standard_def) | |
| 153 | ||
| 154 | lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats" | |
| 155 | by (simp add: Nats_eq_Standard) | |
| 156 | ||
| 157 | lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = (1::hypnat)" | |
| 158 | by transfer simp | |
| 159 | ||
| 160 | lemma hypnat_of_nat_Suc [simp]: | |
| 161 | "hypnat_of_nat (Suc n) = hypnat_of_nat n + (1::hypnat)" | |
| 162 | by transfer simp | |
| 163 | ||
| 164 | lemma of_nat_eq_add [rule_format]: | |
| 165 | "\<forall>d::hypnat. of_nat m = of_nat n + d --> d \<in> range of_nat" | |
| 166 | apply (induct n) | |
| 167 | apply (auto simp add: add_assoc) | |
| 168 | apply (case_tac x) | |
| 169 | apply (auto simp add: add_commute [of 1]) | |
| 170 | done | |
| 171 | ||
| 172 | lemma Nats_diff [simp]: "[|a \<in> Nats; b \<in> Nats|] ==> (a-b :: hypnat) \<in> Nats" | |
| 173 | by (simp add: Nats_eq_Standard) | |
| 174 | ||
| 175 | ||
| 176 | subsection{*Infinite Hypernatural Numbers -- @{term HNatInfinite}*}
 | |
| 177 | ||
| 178 | definition | |
| 179 | (* the set of infinite hypernatural numbers *) | |
| 180 | HNatInfinite :: "hypnat set" where | |
| 181 |   "HNatInfinite = {n. n \<notin> Nats}"
 | |
| 182 | ||
| 183 | lemma Nats_not_HNatInfinite_iff: "(x \<in> Nats) = (x \<notin> HNatInfinite)" | |
| 184 | by (simp add: HNatInfinite_def) | |
| 185 | ||
| 186 | lemma HNatInfinite_not_Nats_iff: "(x \<in> HNatInfinite) = (x \<notin> Nats)" | |
| 187 | by (simp add: HNatInfinite_def) | |
| 188 | ||
| 189 | lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N" | |
| 190 | by (auto simp add: HNatInfinite_def Nats_eq_Standard) | |
| 191 | ||
| 192 | lemma star_of_Suc_lessI: | |
| 193 | "\<And>N. \<lbrakk>star_of n < N; star_of (Suc n) \<noteq> N\<rbrakk> \<Longrightarrow> star_of (Suc n) < N" | |
| 194 | by transfer (rule Suc_lessI) | |
| 195 | ||
| 196 | lemma star_of_less_HNatInfinite: | |
| 197 | assumes N: "N \<in> HNatInfinite" | |
| 198 | shows "star_of n < N" | |
| 199 | proof (induct n) | |
| 200 | case 0 | |
| 201 | from N have "star_of 0 \<noteq> N" by (rule star_of_neq_HNatInfinite) | |
| 202 | thus "star_of 0 < N" by simp | |
| 203 | next | |
| 204 | case (Suc n) | |
| 205 | from N have "star_of (Suc n) \<noteq> N" by (rule star_of_neq_HNatInfinite) | |
| 206 | with Suc show "star_of (Suc n) < N" by (rule star_of_Suc_lessI) | |
| 207 | qed | |
| 208 | ||
| 209 | lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N" | |
| 210 | by (rule star_of_less_HNatInfinite [THEN order_less_imp_le]) | |
| 211 | ||
| 212 | subsubsection {* Closure Rules *}
 | |
| 213 | ||
| 214 | lemma Nats_less_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x < y" | |
| 215 | by (auto simp add: Nats_def star_of_less_HNatInfinite) | |
| 216 | ||
| 217 | lemma Nats_le_HNatInfinite: "\<lbrakk>x \<in> Nats; y \<in> HNatInfinite\<rbrakk> \<Longrightarrow> x \<le> y" | |
| 218 | by (rule Nats_less_HNatInfinite [THEN order_less_imp_le]) | |
| 219 | ||
| 220 | lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x" | |
| 221 | by (simp add: Nats_less_HNatInfinite) | |
| 222 | ||
| 223 | lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x" | |
| 224 | by (simp add: Nats_less_HNatInfinite) | |
| 225 | ||
| 226 | lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x" | |
| 227 | by (simp add: Nats_le_HNatInfinite) | |
| 228 | ||
| 229 | lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite" | |
| 230 | by (simp add: HNatInfinite_def) | |
| 231 | ||
| 232 | lemma Nats_downward_closed: | |
| 233 | "\<lbrakk>x \<in> Nats; (y::hypnat) \<le> x\<rbrakk> \<Longrightarrow> y \<in> Nats" | |
| 234 | apply (simp only: linorder_not_less [symmetric]) | |
| 235 | apply (erule contrapos_np) | |
| 236 | apply (drule HNatInfinite_not_Nats_iff [THEN iffD2]) | |
| 237 | apply (erule (1) Nats_less_HNatInfinite) | |
| 238 | done | |
| 239 | ||
| 240 | lemma HNatInfinite_upward_closed: | |
| 241 | "\<lbrakk>x \<in> HNatInfinite; x \<le> y\<rbrakk> \<Longrightarrow> y \<in> HNatInfinite" | |
| 242 | apply (simp only: HNatInfinite_not_Nats_iff) | |
| 243 | apply (erule contrapos_nn) | |
| 244 | apply (erule (1) Nats_downward_closed) | |
| 245 | done | |
| 246 | ||
| 247 | lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite" | |
| 248 | apply (erule HNatInfinite_upward_closed) | |
| 249 | apply (rule hypnat_le_add1) | |
| 250 | done | |
| 251 | ||
| 252 | lemma HNatInfinite_add_one: "x \<in> HNatInfinite \<Longrightarrow> x + 1 \<in> HNatInfinite" | |
| 253 | by (rule HNatInfinite_add) | |
| 254 | ||
| 255 | lemma HNatInfinite_diff: | |
| 256 | "\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite" | |
| 257 | apply (frule (1) Nats_le_HNatInfinite) | |
| 258 | apply (simp only: HNatInfinite_not_Nats_iff) | |
| 259 | apply (erule contrapos_nn) | |
| 260 | apply (drule (1) Nats_add, simp) | |
| 261 | done | |
| 262 | ||
| 263 | lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite ==> \<exists>y. x = y + (1::hypnat)" | |
| 264 | apply (rule_tac x = "x - (1::hypnat) " in exI) | |
| 265 | apply (simp add: Nats_le_HNatInfinite) | |
| 266 | done | |
| 267 | ||
| 268 | ||
| 269 | subsection{*Existence of an infinite hypernatural number*}
 | |
| 270 | ||
| 271 | definition | |
| 272 | (* omega is in fact an infinite hypernatural number = [<1,2,3,...>] *) | |
| 273 | whn :: hypnat where | |
| 274 | hypnat_omega_def: "whn = star_n (%n::nat. n)" | |
| 275 | ||
| 276 | lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn" | |
| 277 | by (simp add: hypnat_omega_def star_of_def star_n_eq_iff) | |
| 278 | ||
| 279 | lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n" | |
| 280 | by (simp add: hypnat_omega_def star_of_def star_n_eq_iff) | |
| 281 | ||
| 282 | lemma whn_not_Nats [simp]: "whn \<notin> Nats" | |
| 283 | by (simp add: Nats_def image_def whn_neq_hypnat_of_nat) | |
| 284 | ||
| 285 | lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite" | |
| 286 | by (simp add: HNatInfinite_def) | |
| 287 | ||
| 288 | lemma lemma_unbounded_set [simp]: "{n::nat. m < n} \<in> FreeUltrafilterNat"
 | |
| 29920 | 289 | apply (insert finite_atMost [of m]) | 
| 27468 | 290 | apply (drule FreeUltrafilterNat.finite) | 
| 291 | apply (drule FreeUltrafilterNat.not_memD) | |
| 29920 | 292 | apply (simp add: Collect_neg_eq [symmetric] linorder_not_le atMost_def) | 
| 27468 | 293 | done | 
| 294 | ||
| 295 | lemma Compl_Collect_le: "- {n::nat. N \<le> n} = {n. n < N}"
 | |
| 296 | by (simp add: Collect_neg_eq [symmetric] linorder_not_le) | |
| 297 | ||
| 298 | lemma hypnat_of_nat_eq: | |
| 299 | "hypnat_of_nat m = star_n (%n::nat. m)" | |
| 300 | by (simp add: star_of_def) | |
| 301 | ||
| 302 | lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
 | |
| 303 | by (simp add: Nats_def image_def) | |
| 304 | ||
| 305 | lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn" | |
| 306 | by (simp add: Nats_less_HNatInfinite) | |
| 307 | ||
| 308 | lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn" | |
| 309 | by (simp add: Nats_le_HNatInfinite) | |
| 310 | ||
| 311 | lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn" | |
| 312 | by (simp add: Nats_less_whn) | |
| 313 | ||
| 314 | lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn" | |
| 315 | by (simp add: Nats_le_whn) | |
| 316 | ||
| 317 | lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn" | |
| 318 | by (simp add: Nats_less_whn) | |
| 319 | ||
| 320 | lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn" | |
| 321 | by (simp add: Nats_less_whn) | |
| 322 | ||
| 323 | ||
| 324 | subsubsection{*Alternative characterization of the set of infinite hypernaturals*}
 | |
| 325 | ||
| 326 | text{* @{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}*}
 | |
| 327 | ||
| 328 | (*??delete? similar reasoning in hypnat_omega_gt_SHNat above*) | |
| 329 | lemma HNatInfinite_FreeUltrafilterNat_lemma: | |
| 330 |   assumes "\<forall>N::nat. {n. f n \<noteq> N} \<in> FreeUltrafilterNat"
 | |
| 331 |   shows "{n. N < f n} \<in> FreeUltrafilterNat"
 | |
| 332 | apply (induct N) | |
| 333 | using assms | |
| 334 | apply (drule_tac x = 0 in spec, simp) | |
| 335 | using assms | |
| 336 | apply (drule_tac x = "Suc N" in spec) | |
| 337 | apply (elim ultra, auto) | |
| 338 | done | |
| 339 | ||
| 340 | lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
 | |
| 341 | apply (safe intro!: Nats_less_HNatInfinite) | |
| 342 | apply (auto simp add: HNatInfinite_def) | |
| 343 | done | |
| 344 | ||
| 345 | ||
| 346 | subsubsection{*Alternative Characterization of @{term HNatInfinite} using 
 | |
| 347 | Free Ultrafilter*} | |
| 348 | ||
| 349 | lemma HNatInfinite_FreeUltrafilterNat: | |
| 350 |      "star_n X \<in> HNatInfinite ==> \<forall>u. {n. u < X n}:  FreeUltrafilterNat"
 | |
| 351 | apply (auto simp add: HNatInfinite_iff SHNat_eq) | |
| 352 | apply (drule_tac x="star_of u" in spec, simp) | |
| 353 | apply (simp add: star_of_def star_less_def starP2_star_n) | |
| 354 | done | |
| 355 | ||
| 356 | lemma FreeUltrafilterNat_HNatInfinite: | |
| 357 |      "\<forall>u. {n. u < X n}:  FreeUltrafilterNat ==> star_n X \<in> HNatInfinite"
 | |
| 358 | by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq) | |
| 359 | ||
| 360 | lemma HNatInfinite_FreeUltrafilterNat_iff: | |
| 361 |      "(star_n X \<in> HNatInfinite) = (\<forall>u. {n. u < X n}:  FreeUltrafilterNat)"
 | |
| 362 | by (rule iffI [OF HNatInfinite_FreeUltrafilterNat | |
| 363 | FreeUltrafilterNat_HNatInfinite]) | |
| 364 | ||
| 365 | subsection {* Embedding of the Hypernaturals into other types *}
 | |
| 366 | ||
| 367 | definition | |
| 368 | of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star" where | |
| 37765 | 369 | of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat" | 
| 27468 | 370 | |
| 371 | lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0" | |
| 372 | by transfer (rule of_nat_0) | |
| 373 | ||
| 374 | lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1" | |
| 375 | by transfer (rule of_nat_1) | |
| 376 | ||
| 377 | lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m" | |
| 378 | by transfer (rule of_nat_Suc) | |
| 379 | ||
| 380 | lemma of_hypnat_add [simp]: | |
| 381 | "\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n" | |
| 382 | by transfer (rule of_nat_add) | |
| 383 | ||
| 384 | lemma of_hypnat_mult [simp]: | |
| 385 | "\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n" | |
| 386 | by transfer (rule of_nat_mult) | |
| 387 | ||
| 388 | lemma of_hypnat_less_iff [simp]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
29920diff
changeset | 389 | "\<And>m n. (of_hypnat m < (of_hypnat n::'a::linordered_semidom star)) = (m < n)" | 
| 27468 | 390 | by transfer (rule of_nat_less_iff) | 
| 391 | ||
| 392 | lemma of_hypnat_0_less_iff [simp]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
29920diff
changeset | 393 | "\<And>n. (0 < (of_hypnat n::'a::linordered_semidom star)) = (0 < n)" | 
| 27468 | 394 | by transfer (rule of_nat_0_less_iff) | 
| 395 | ||
| 396 | lemma of_hypnat_less_0_iff [simp]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
29920diff
changeset | 397 | "\<And>m. \<not> (of_hypnat m::'a::linordered_semidom star) < 0" | 
| 27468 | 398 | by transfer (rule of_nat_less_0_iff) | 
| 399 | ||
| 400 | lemma of_hypnat_le_iff [simp]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
29920diff
changeset | 401 | "\<And>m n. (of_hypnat m \<le> (of_hypnat n::'a::linordered_semidom star)) = (m \<le> n)" | 
| 27468 | 402 | by transfer (rule of_nat_le_iff) | 
| 403 | ||
| 404 | lemma of_hypnat_0_le_iff [simp]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
29920diff
changeset | 405 | "\<And>n. 0 \<le> (of_hypnat n::'a::linordered_semidom star)" | 
| 27468 | 406 | by transfer (rule of_nat_0_le_iff) | 
| 407 | ||
| 408 | lemma of_hypnat_le_0_iff [simp]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
29920diff
changeset | 409 | "\<And>m. ((of_hypnat m::'a::linordered_semidom star) \<le> 0) = (m = 0)" | 
| 27468 | 410 | by transfer (rule of_nat_le_0_iff) | 
| 411 | ||
| 412 | lemma of_hypnat_eq_iff [simp]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
29920diff
changeset | 413 | "\<And>m n. (of_hypnat m = (of_hypnat n::'a::linordered_semidom star)) = (m = n)" | 
| 27468 | 414 | by transfer (rule of_nat_eq_iff) | 
| 415 | ||
| 416 | lemma of_hypnat_eq_0_iff [simp]: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
29920diff
changeset | 417 | "\<And>m. ((of_hypnat m::'a::linordered_semidom star) = 0) = (m = 0)" | 
| 27468 | 418 | by transfer (rule of_nat_eq_0_iff) | 
| 419 | ||
| 420 | lemma HNatInfinite_of_hypnat_gt_zero: | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
29920diff
changeset | 421 | "N \<in> HNatInfinite \<Longrightarrow> (0::'a::linordered_semidom star) < of_hypnat N" | 
| 27468 | 422 | by (rule ccontr, simp add: linorder_not_less) | 
| 423 | ||
| 424 | end |